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1. The Problem and the Approach

A central characteristic of advanced applications in robotics is the presence of
significant uncertainty about the identities and positions of objects in the workspace
of the robot. It is this characteristic that makes sensing of the external environment
an essential component of robot systems. The process of sensing can be loosely
divided into two stages: first, the measurements of properties of the objects in the
environment, and second, the interpretation of those measurements. In the present
paper, we will concentrate on the interpretation of sensory data. In investigating
this problem, we make only a few, simple assumptions about available sensory
measurements, rather than considering specific details of a particular sensor. As a
consequence, the interpretation technique that is developed here should be applicable
to a wide range of sensing modalities. As well, the interpretation technique may
have implications for the design of three-dimensional sensors.

1.1. Problem Definition

The specific problem we consider in this paper is to identify an object from
among a set of known objects and to locate it relative to the sensor. The object
sensed is assumed to be a single, possibly non-convex, polyhedral object (for which
we have an accurate geometric model). The object may have up to six degrees
of freedom relative to the sensor (three translational and three rotational). The
sensor, which could be tactile or range, is assumed to be capable of providing
three-dimensional information about the position and local surface orientation of a
small set of points on the object. Each sensor point is processed to obtain:

1. Surface points — On the basis of sensor readings, the positions of some
points on the sensed object can be determined to lie within some small
volume relative to the sensor.

2. Surface normals — At the sensed points, the surface normal of the object’s
surface can be recovered to within some cone of uncertainty.

Our goal is to use local information about sensed points to determine the set
of positions and orientations of an object that are consistent with the sensed data.
If there are no consistent positions and orientations, the object is excluded from
the set of possible objects.

In this paper we do not discuss how surface points and normals may be obtained
from actual sensor data, since this process is highly sensor-dependent (for references
to existing measurement methods see Section 1.3). Our aim is to show, instead,
how such data may be used in conjunction with object models to recognize and
localize objects. The method, in turn, suggests criteria for the design of sensors and
sensor-processing strategies.

Our only assumption about the input data is that fairly accurate positions
of surface points are obtainable from the sensor, but that significant errors exist
in determining normal information. This assumption reflects the type of data
obtainable from tactile sensors. Range sensors based on triangulation can be used
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to obtain high quality measurements of normals from patches of depth data. The
availability of good normal data merely increases the efliciency of the method.

1.2. Approach

A recent paper [Gaston and Lozano-Pérez 83] introduced a new approach to
tactile recognition and localization for polyhedra with three degrees of positional
freedom (two translational and one rotational). The present paper generalizes that
approach to polyhedra with six degrees of positional freedom. The inputs to the
recognition process are: a set of sensed points and normals, and a set of geometric
object models for the known objects. The recognition process, as outlined in the
earlier paper, proceeds in two steps:

1. Generate Feasible Interpretations: A set of feasible interpretations of the
sense data is constructed. Interpretations consist of pairings of each sensed
point with some object surface of one of the known objects. Interpretations
inconsistent with local constraints (derived from the model) on the sense
data are discarded.

2. Model Test: The feasible interpretations are tested for consistency with
surface equations obtained from the object models. An interpretation is
legal if it is possible to solve for a rotation and translation that would
place each sense point on an object surface. The sensed point must lie
tnstde the object face, not just on the surface.

The first step is the key to this process. The number of possible interpretations
given s sensed points and n surfaces is n°. Therefore, it is not feasible to carry out
a model test on all possible interpretations. The goal of the recognition algorithm is
to exploit the local constraints on the sensed data so as to minimize the number of
interpretations that need testing. This approach is an instance of a classic paradigm
of artificial intelligence: generate and test; see for example [Buchanan, et al. 69].

Consider a simple example of the approach, illustrated in Figure 1. The model
is a right triangle, with edge sizes of 3, 4, and 5 respectively. From this model, we
can construct a table of ranges of distances between pairs of points on the edges.
The table is as follows:

Distance Ranges Between Edges
1 2 3
1 0,3] 10,5] 0,4]
2 [0,5] [0,4] [0,3]
3 [0,4] [0,3] [0,5]

Now, suppose we know the positions of the three sensed points, P; through Ps, shown
in Figure 1. The measured distances between those points are dist(Py, Py) = 3.5,
dist(Py, P3) = 4.4, dist(P,, P3) = 0.8. From this we see that any interpretation of
the sensed points that assigns P; and P, both to edge 1 is inconsistent with the
model. Similarly, assigning P; and P to edges 2 and 3 is not consistent. Many other
pairwise assignments of points to edges can be discarded simply by comparing the
‘measured distances to the ranges in the table. Note that the sensed positions are
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Figure 1. An example of the approach

subject to error, so that a range of actual distances is consistent with the measured
positions. It is these distance ranges that must be compared against the ranges
in the table. For this example, only 6 of the 27 possible assignments of the three
points to the three model edges are legal.

Of the six interpretations consistent with the distance ranges, the two shown
in Figure 1, are completely consistent once the line equations of the edges are taken
into account. Each of these interpretations leads to a solution for the position and
orientation of the triangle relative to the sensor. Furthermore, these positions and
orientations of the triangle place the measured points inside the finite edges, not
just on the infinite line.

This paper discusses both steps of the recognition process, focusing first
on the generate step and then considering the model testing stage. We show, by
mathematical analysis and by simulation, that the number of feasible interpretations
can be reduced to manageable numbers by the use of local geometric constraints.
In particular, we investigate the effectiveness of the different local constraints and
the impact of measurement errors on their effectiveness. We further show that the
few rema{ining feasible interpretations can efficiently be subjected to an explicit
model test, generally resulting in a single interpretation of the sense data (up to
symmetries). We also illustrate the performance of the algorithm on range data
obtained by triangulation.
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1.3. Three Dimensional Sensing

Sensors can be roughly divided into two categories: non-contact and contact.
Non-contact sensing, especially visual sensing, has received extensive attention in
the robotics and artificial intelligence literature. Contact sensing, such as tactile or
haptic sensing, plays an equally important role in robotics, but has received much
less attention. In this paper, our aim is to develop a sensory interpretation method
that is applicable to data from both contact and non-contact sensors.

While two-dimensional sensing, for example silhouette or binary vision, may
be adequate for restricted situations such as problems with three degrees of freedom
in positioning, the general localization and recognition problem requires three-
dimensional sensing. Throughout this paper, we will concentrate on the six-degree
of freedom recognition and localization problem and the use of three-dimensional
sensing. Restrictions of the method to the simpler case of three degrees of freedom
are straightforward.

1.3.1. Previous Work in Visual Range Sensing

The measurement stage of visual sensing has received extensive attention in the
literature. Of particular interest here are methods for obtaining three-dimensional
position and surface normal information; see [Jarvis 83] for a detailed survey.
Possible methods include edge-based stereo systems [e.g. Grimson 81, Baker and
Binford 81, Mayhew and Frisby, 81|, which provide three-dimensional positions of
sparse sets of points in the image. This sparse data can be used to reconstruct a
dense surface representation, from which surface normals can be estimated [Grimson
82, 83; Terzopoulos 83]. Other methods for obtaining three-dimensional positions
are laser range—finding [e.g. Nitzan, Brain, and Duda 77, Lewis and Johnston 77]
and structured-light systems [e.g. Shirai and Suwa 71, Popplestone, et al. 75].
Many other visual processes can be used to obtain surface normal information
directly, e.g., photometric stereo [e.g. Woodham 78, 80, 81, Ikeuchi and Horn, 79)
and texture gradients [Bajesy 73, Bajscy and Liebermann 76, Kender 80, Stevens
80]. In fact, there is no constraint that the sensory data for one problem must come
from one sensory modality. Data from visual sensors and tactile sensors may be
combined in one run of the algorithm.

The interpretation stage of visual recognition has received less attention,
especially when dealing with three-dimensional objects with six degrees of freedom.
Much of the previous work in the area of interpretation of three-dimensional data
has focused on the recognition of simple generic objects such as planar patches,
regular polyhedra, generalized cylinders, and spheres [e.g., Shirai and Suwa 71,
Popplestone, et al, 75, Nitzan, Brain, and Duda 77, Oshima and Shirai 78,
Faugeras, et al. 83, Agin and Binford 73, Nevatia and Binford 77]. Some authors
have examined the problem we deal with here of recognizing specific objects from
three-dimensional data [e.g., Shneier 79, Sugihara 79, Oshima and Shirai 83, Bolles,
Horaud, and Hannah 83, Brou 83, Ikeuchi, et al. 83]. The principal difference
between previous work on recognition and the approach described here is our
reliance on sparse data acquired at points. This makes our approach adaptable to
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contact sensing as well as visual sensing. The sparseness of the data does make the
problem of segmentation, determining which data is drawn from which objects in
a scene, more difficult. Further research on this topic is currently underway.

In the final stages of preparing this paper, we became aware of the work of
Faugeras and Hebert [83] which adopts an approach that is similar in many respects
to the one described here. Their work, however, focuses on deriving an accurate
model test. Their method does not emphasize the problem of enumerating all the
legal interpretations of the data. Instead, a measure of the accuracy of the model
test (and a simple angle pruning heuristic) is used to drive a best-first search for
a good interpretation. This method does not ensure that the interpretation found
is the only one consistent with the data, however. Their method and ours are
complementary in this respect. Their approach also does not assume sparse data,
but it is in fact applicable to that problem.

1.3.2. Previous Work in Tactile Sensing

Contact sensors measure the locus of contact and the forces generated when
in contact with an object. We make the distinction between tactile sensors, which
measure forces over small areas, such as a fingertip, and force sensors, which
measure the resultant forces and torques on some larger structure, such as a
complete gripper. A micro-switch, for example, can serve as a simple tactile sensor
capable of detecting when the force over a small area, e.g. an elevator button,
exceeds some threshold. The most important type of tactile sensors are the matriz
tactile sensors, composed of an array of sensitive points. The simplest example
of a matrix tactile sensor is an array of micro-switches. Much more sophisticated
tactile sensors, with much higher spatial and force resolution, have been designed;
see [Harmon 82] for a review and [Hillis 82, Overton and Williams 81, Purbrick 81,
Raibert and Tanner 82, Schneiter 82] for some recent designs.

For descriptions of previous work in tactile sensing, we refer the reader to
two very thorough surveys by Harmon [80, 82]. A more detailed discussion of
previous work on tactile recognition can be found in [Gaston and Lozano-Pérez 83].
In this section, we briefly survey the two major alternative approaches to tactile
recognition: statistical pattern recognition, and description-building and matching.

Much of the existing work on tactile recognition has been based on statistical
pattern recognition or classification. Some researchers have used pressure patterns
“on matrix sensors primarily [Briot 79, Okada and Tsuchiya 77]. Others have used
the joint angles of fingers grasping the object as their data [Briot, Renaud, and
Stojilkovic 78, Marik 81, Okada and Tsuchiya 77, Stojilkovic and Saletic 75]. A
related approach uses the pattern of activation of on-off contacts placed on the
finger links [Kinoshita, Aida, and Mori 75].

The range of possible contact patterns between multiple sensors and complex
objects is highly variable and seems to require detailed geometric analysis. Tactile
recognition methods based on statistical pattern recognition are limited to dealing
with simple objects because they do not exploit the rich geometric data available
from object models.
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~ Several proposed recognition methods build a partial description of the object
from the sense data and match this description to the model. One approach emulates
the feature-based descriptions in vision systems, for example, identification of holes,
edges, vertices, pits, and burrs [Binford 72, Hillis 82, Snyder and St. Clair 78].
Another approach is to build surface models, either from pressure distributions
on matrix sensors [Overton and Williams 81], or from the displacements of an
array of needle-like sensors [Page, Pugh, and Heginbotham 76, Takeda 74]. A
related approach builds a representation of an object’s cross section [Ozaki et al
‘82, Kinoshita, Aida, Mori 75].

Description-based methods are more general than statistical methods but must
solve two formidable problems: building accurate object descriptions from tactile
data, and matching the descriptions to the models. One major difficulty is that
existing sensors do not have the spatial or force resolution needed to build nearly
complete object descriptions. Furthermore, there are few methods for matching
the partial descriptions obtainable from tactile sensors to object models. In our
opinion, part of the problem in tactile data interpretation has been the tendency
to adapt the techniques developed for two-dimensional vision, where dense data is
readily obtainable, to tactile data, which is naturally sparse.

One lesson from the simulations described later is that some estimate of surface
normal is an extremely powerful constraint on recognition and localization. The
estimate need not be very tight for performance to improve drastically. There has
been little previous emphasis on measuring surface normals with tactile sensors.
Accuracy in measuring normals requires some attention to engineering tradeoffs
in sensor design, especially the sensor stiffness. In a stiff sensor (one that deforms
very little under contact), the normal to the sensor surface at the point of contact
directly gives an estimate of the object’s surface normal. So, a stiff sensor with high
spatial resolution can be used to measure normals. In a soft sensor, the pattern of
forces can be analyzed to determine the shape of the object surface. So, a soft sensor
with good force measurement accuracy can also be used. Today, it is probably
~ easier to build stiff sensors with poor force resolution than soft sensors with good

force resolution [Snyder and St. Clair 78]. This argues that a stiff VLSI sensor [e.g.
Raibert and Tanner 82] may be acceptable. Another factor is that the method used
here, since it is based on local information, does not require large sensor areas; it
can function better with many small sensors.

The approach used in this paper is an instance of a description-based
recognition method. The basic departure from previous methods is the reliance on
sparse three-dimensional positions and surface normals obtained at points!. This
contrasts with the dense area data needed in global feature-based or surface-based
description methods. The point-based data we use is more readily obtainable
from simple tactile sensors and the process of matching it to models is relatively
straightforward. Therefore, the method described here could be a powerful addition
to approaches based on more complete descriptions.

Very different approaches to tactile recognition based on this type of data are outlined in [Dixon,
Salazar, and Slagle 79, Ivancevic 74].
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I'igure 2. Interpretation Tree
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2. Generating Feasible Interpretations

After sensing an object, we have the positions of up to s points, P;, known to
be on the surface of one of the m known objects, O;, having n; faces. The range of
possible pairings of sensed points and model faces for one object can be cast in the
form of an interpretation tree (IT) [Gaston and Lozano-Pérez 83]. The root node
of the ITy, for object Oj;, has n; descendants, each representing an interpretation
in which P; is on a different face of O;. There are a total of s levels in the tree,
level ¢ indicating the possible pairings of F; with the faces of object O; (see Figure
2). Note that there may be multiple points on a single face, so that the number of
branches remains constant at all levels.

" A k-interpretation is any path from the root node to a node at level & in the
IT; it is a list of k£ pairings of points and faces. The set of IT’s contains a very large
number of possible s-interpretations

f: (ny)°.
71=1

In an object with symmetries, of course, the IT is highly redundant [Gaston and
Lozano-Pérez 83]. The m IT’s, one for each known object, represent the search
space for the recognition problem discussed here.

2.1. Pruning the IT by Local Constraints

Only a very few interpretations in an IT are consistent with the input data.
We can exploit the following local constraints to prune inconsistent interpretations:
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1. Distance Constraint — The distance between each pair of P;’s must be a
possible distance between the faces paired with them in an interpretation.

2. Angle Constraint — The range of possible angles between measured
normals at each pair of P;’s must include the known angle between surface
normals of the faces paired with them in an interpretation.

3. Direction Constraint — The range of values for the component of a vector
between sensed points (P; + P;) in the direction of the sensed normal at
P; and at P; must intersect the range of components of possible vectors
between points on the faces assigned to P; and P; by the interpretation.

These constraints typically serve to prune most of the non-symmetric s-
interpretations of the data. Other constraints are possible, for example, the area of
the triangle defined by three sensed points must be contained within the range of
areas defined by the faces paired with them, and the pairing of sensed points with
faces must not be such as to require that the path of the sensor {(beam) pass through
some portion of the object before sensing that face [Gaston and Lozano-Pérez 83].
We will focus on the three constraints above, primarily because they are simple to
implement while being quite effective. Moreover, they capture all the constraints
between pairs of points.

Note that the distance, angle, and direction constraints can be used to prune
k-interpretations, for k¥ > 2, thereby collapsing whole subtrees of the IT. This is a
crucial point, worth dwelling on for a moment.

Recall that the overall problem we are considering is to determine the position
and orientation of an object, using sparse sensory data. In principle, one could
consider all possible interpretations of the data, and for each onme, determine
whether there is a transformation from model coordinates to sensor coordinates
that would account for the sensory data. Unfortunately, this is computationally
extremely expensive. In order to compute such a model test, we need three points,
whose corresponding face normals are linearly independent, as well as the measured
normals at those points. Clearly, we would in general need k sensory points to
ensure this, where k& > 3. Thus, if n is the number of faces in the object, we would
need to consider on the order of n* model tests, each of which requires considerable
computational effort.

On the other hand, using the simple geometric constraints eutlined above
* requires only a straightforward table lookup, and, as we shall see, can drastically
reduce the number of interpretations to which a model test must be applied. Since
the constraints can be applied near the root of the tree, it is possible to prune
whole subtrees from the IT, at virtually no computational expense.

We consider each of the constraints in more detail below.

2.1.1. Distance Pruning

If an interpretation calls for pairing two of the sensed points with two object
faces, the distance between the sensed points must be within the range of distances
between the faces (see also [Bolles and Cain 82]). Note that the distances between
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all pairs of sensed points must be consistent, i.e., there are three distances between
three sensed points, and in general g) distances between k sensed points. Because
of this, the distance constraint typically becomes more effective as more sensed
points are considered.

Given two faces on a three-dimensional object, we can compute the range of
distances between points on the faces. The minimum distance may be determined
as the minimum of the shortest distance between all pairs of edges and the
perpendicular distances between vertices of one face and the plane of the other
face (when the vertex projects inside the face polygon). The maximum requires
examining distances between pairs of vertices. Note that we can also compute the
range of distances between points on one face (zero up to the diameter of the
face). Sophisticated algorithms may be used to reduce the complexity of these
computations, but since they are to be performed off-line, once for each model,
their efficiency is not critical to the approach.

The distance constraint can be implemented in the following manner. For
object O;, with f; faces, we construct an f; by f; table, whose entries determine the
range of possible distances between pairs of faces. In particular, for a pair of faces
(v,k), © 5% k, the maximum distance between the faces is stored in table location
dtable;[max(¢, k), min(z, k)] and the minimum distance between the faces is stored in
table location dtable;min(z, k), max(z, k)]. If ¢ = k, we simply store the maximum
distance in the diagonal entry dtable;[¢,], since the minimum distance defaults
to 0. This representation makes checking a distance constraint straightforward,
since the set of all pairs of faces (7, k) on object O; consistent with some measured
distance d is given by

{(i, k) | dtable;[min(;, k), max(s, k)] < d < dtable;[max(i, k), min(i, k)]}

plus the pair (¢,7) if d < dtable;[z, ).

Given any k — l-interpretation, represented by the set of faces (11, ..., 7—1),
and a new k" sensed point, the generation of the next level of the IT below this
interpretation can be easily computed by checking the appropriate portions of the
distance tables. In particular, if the measured distance between one of the previous
sensed points, 74, and the new one is given by d;,, the set of possible faces that can
be assigned to sensed point P is given by

k—1

N {z | dtable;[min(i, ), max(7, iz)] < di, < dtable;[max(s, i¢), min(i, iz)]}

{=1 .

unioned with the set

k—1

N {iz 10 < d;, < dtable;[iz, i,]}.

=1
For very complex objects, much more time efficient ways of representing and
searching for faces that satisfy a distance constraint are possible. A full discussion
of these methods is beyond the scope of this paper, however.
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- We note that it may frequently be the case, e.g. for a flat tactile sensor, that
the sensor makes contact along an edge or at a vertex, rather than in the interior
of a face. The method described above would still work unchanged under these
circumstances. But if the sensor is capable of detecting that contact is at a vertex or
edge, then tighter constraints can be applied. This is accomplished by constructing
tables of distance ranges between vertices and between edges and applying the
pruning algorithm based on those tables when appropriate.

Similarly, in the case of visual sensing, if the edges and vertices of an object
can be reliably determined from the sense data, the recognition process is greatly
simplified. (Note the relationship to the recognition method used in [Bolles, et al.
82].)

2.1.2. Angle Pruning

Sensed points are associated with a range of legal surface normals consistent
with the sensory data. If an interpretation calls for pairing two of the sensed points
(and normals) with two object faces, the range of angles between the sensed normals
must include the angle between the normals of the corresponding object faces.

To see how this information can be used to prune the IT, we first consider
the case in which the object has three degrees of freedom (two translation and
one rotational). Under this restriction on degrees of freedom, the range of surface
normals can be represented as a range of angles relative to the hand frame.

At a sensed point P, we can measure the local surface normal as lying in the
range of angles

PE|w—ewt¢

where w is the actual measurement, and ¢ defines the range of possible angles about
this measurement. We are given a sensor point Py, with measured normal wy, which
has been assigned to face z, with associated model coordinate surface normal given
by ;. Next, we record a second point Pp, with measured normal wy, which has
been assigned to face k, with associated model coordinate surface normal given
by v¥. For these assignments to be consistent, it must be the case that the angle
between the model faces must be included in the range of angles between the ranges
of normals determined from the measured normals and the error bounds

(wg —w1) — (1 +€2) < ¥ — ¥y < (wa — wyp) + (€1 + €2).

It is clear that an implementation similar to that used for distance pruning will also
suffice here. For object O;, with e; edges, we can set up an ¢; by e;, lower diagonal
table atable; such that atable;[max(, k), min(¢, k)] = 95 — %;. This representation
makes checking a surface normal constraint straightforward, since the set of all
pairs of faces (7, k) on object O; consistent with some measured ranges of surface
normals is given by

{(i, K) | (w2 — w1) — (&1 4 €2) < atable; [max(i, &), min(i, k)] < (w3 — w1) & (e1 -+ ez)}.

10
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Figure 3. Angle Ranges

Given any k — l-interpretation, and a new k** sensed point, the generation of the
next level of the IT below this interpretation can easily be computed by checking the
appropriate portions of the angle tables. Note that the k** edge must be consistent
with the angles between all previous faces.

In the two-dimensional (three degree of freedom) case, the range of possible
surface normals at a sensed point was represented by the pair (w1, €1) where wy
denoted the sensed normal, and €; denoted the range of error about that sensed
point. In three dimensions, the obvious generalization is to use angle cones, so that
if u; denotes the unit sensed surface normal, the range of possible values for the
actual surface normal will be denoted by the right circular cone

{n1 |ny-u; > e}

We could proceed identically to the two-dimensional case by noting that the cone of
sensed normals constrains the set of possible three-dimensional rotations between
the hand and model coordinate systems. Then, given a second sensed point Py with
some sensed normal, the set of feasible faces would be restricted by the range of
possible rotations. This method is quite difficult to implement, however. There is a
* much simpler alternative method.

Suppose that at the second sensed point, the set of possible surface normals in
hand coordinates is given by
{ng [ nz-uz > €2}

Then, in order for faces ¢ and k, with associated surface normals v; and v to be
consistent it must be the case that

vi-vg €{n1-ma|ng-w > €1, npeup > e}

We can rephrase this in the following manner. Let cos a; = €1, cos as = €3,
a1y = a1 + ag and cos 12 = uj - uz. Then, we claim that the set

11
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Figure 4. Range of Directions between Seased Points

Cos”’ Sk

{n;-mz|n;-u; > €, nz-up > e}
is contained in the set
{n; - ny | cos [min(m, y12 + @12)] < ny -0y < cos [max(0, y1g — @12)]}. (1)
A proof of this is found in Appendix I. Figure 3 illustrates this result in two
dimensions. :

An implementation of angle pruning similar to that used for distance pruning
is now also possible. For object O;, with f; faces, we can set up an [; by f;, lower
diagonal table atable; such that atable;[max(z, k), min(s, k)] = v; - vk, where recall
that v, denotes the unit normal to face : in the model.

2.1.3. Direction Pruning

Consider a pair of sensed points P; and P, and let ujs be the unit direction
vector between them. Suppose that we know the measured surface normal at point
Py to within some cone of error, for example, the measured value is wi, and the
range of possible values for the surface normal is

{vi|vi-w1 > g}

Then the set of possible “angles” between the direction vector and the surface
normal of the face is given by

{vi-ug | vi-wy > e}

In an interpretation, suppose that point P; has been assigned to face 1, with
normal n; in the model, and we now consider possible faces k to assign to point Ps.
Let the range of possible unit vectors (directions) from face 7 to face k be denoted
by the cone

{sik | sik - tix > 65}

12




Grimson & Lozano-Pérez Model-Based Recognition

for some pair t;; and 6;;. Figure 4 illustrates this cone in a two-dimensional
example. Appendix II shows how this cone may be computed from models of the
object faces. In the model, the set of possible angles between legal directions and
the surface normal is

{ni - sik | sik - tag > Sk} (2)

Thus, assume that point P; is on face ¢, with normal n;, that we have measured

w1, that we know €3, and that we have also measured P;. A face k, whose direction

range from face ¢ is given by the pair (t;, &%), is a feasible face for point P; if the
set in equation (2) intersects the cone

{Vl - u12 IV1 Wy 2> 61}» (3)

If cos vix = bk, and cos ¢;x = n;-t;, then we know from the derivation in Appendix
I that the set of equation (2) is contained in the set

{n; - sk | cos(vik + dik) < ;- s < cos(Yik — Gik)}-
Similarly, if cosa; = €1 and coswiz = v; - uye, then the set of equation (3) is
contained in the set

{vi-upg | cos(e + wiz) < vi-ugp < cos(ag — wia)}-
Therefore, for the pairings of P; with face 2 and P, with face &k to be consistent with

the direction constraint, it must be the case that the intersection of the numerical
ranges of dot products is not null, i.e.,

[cos(ag — w1z), cos(eq + w12)] () [cos(Yik — dix), cos(Vik + dik)] 7 @

The direction constraint can also be implemented in a form similar to that used
for distance and angle pruning. For object Oy, with f; faces, we can set up an f;
by f; table ctable; such that ctable;[s, k] == [cos(v;x — ¢ik), cos(Vik + d4k)]. Again,
the set of all pairs of faces (7, k) on object O; consistent with some measured ranges
of surface normals is given by

{(z’, k) | [cos(a1 — w1z), cos(ay + wiz)][) ctable,[s, k] 5% (0}.

Note that the direction constraint is not symmetric, as are the distance and
angle constraints, so before pairing P, to face k, we must repeat the test above
interchanging the roles of ¢+ and k. Similarly, the test must be applied to each
pairing of sensed points and faces in an interpretation.

The constraint described above places constraints on the angle between a surface
normal and unit vectors from one face to another. In addition to constraining the
angles of unit vectors, we may constrain the magnitude of the component along
the surface normal of the vector between the sensed points. The statement and
implementation of the constraint is essentially unchanged, except that ujs and t;x
are no longer unit vectors but the actual vector between the sensed points. The
effectiveness of the constraint is in general improved, however, since it now captures
some distance and some angular constraint. The difference between this extended
direction constraint and the simple direction constraint is illustrated in Figure 5.
Two parallel faces (faces 1 and 2 in the figure) displaced relative to each other
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Figure 5. Extended Direction Constraint

extended direction
dicection v, constraint
Constraint
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give rise to a cone of directions, but a single value for the normal component of
vectors connecting the faces. Note that an interpretatation that assigns Py to face 1
and P, to face 3 is consistent with all the previously mentioned constraints except
for the extended direction constraint. The figure also illustrates that the extended
direction constraint does not subsume the distance constraint, since direction only
constrains the normal component of distance.

There is an alternate form of the direction constraint, useful when no bound
on the surface normal is available. It can briefly be described as follows. Given two
faces h and 7 on an object, we can compute the range of directions between points
on the faces, forming a cone of possible directions. Similarly for faces 7 and 7, we
can compute the cone of possible directions. The combination of these two cones
defines a range of possible angles for the triplet of faces h,1, .

If an interpretation calls for pairing three of the sensed points with three object
faces, the angle formed by this triplet of sensed points must be within the range
of possible angles between the triplets of faces. Note that the angles formed by all
triplets of sensed points must be consistent, i.e. for three sensed points, there are
three angles, for k sensed points, there are 3(’;) angles. Hence, this constraint also
becomes more effective as more sensed points are considered.

This form of the direction constraint can be used when only vertices and edges
are touched, as it does not require sensing surface normals. Note that this form of
the constraint can also be extended to use the magnitude of the vectors between
sensed points as well as their direction. This form of the direction constraint allows
pruning of the IT for & > 3. The previous formulation of the constraint allows

- pruning of the IT for k£ > 2. As well, this form of the constraint would require an

n® table, as opposed to an n? one for the previous formulation. Given the size of n
to be expected for typical objects, this is a critical difference.

14
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3. Model Testing

Once the interpretation tree has been pruned by the local constraints, there
will be some set of possible interpretations of the sensed data, each one consisting
of a set of triples (p;, 1, fi), where p; is the vector representing the sensed position,
n; is the vector representing the sensed normal, and f; is the face assigned to
this sensed data for that particular interpretation. In the model test stage of the
processing, we want to

1. determine the actual transformation from model coordinates to sensor
coordinates, corresponding to the interpretation,

2. check that under this transformation, not only are the sensed points
transformed to lie on the appropriate planes, but moreover, that the
sensed points actually lie within the bounds of the assigned faces.

We will assume that a vector in the model coordinate system is transformed
into a vector in the sensor coordinate system by the following transformation:

vs = Rvpy -+ vg
where R is a rotation matrix, and vg is some translation vector. We need to solve
for R and vg. We note that a solution could be obtained using a least-squares
method, such as is used by [Faugeras and Hebert 83]. This type of solution can be

computationally expensive, however, and in the following sections, we develop an
alternative method.

3.1. Rotation Component

We consider first the rotation component of the transformation. Consider the
first triple of a particular interpretation, (p;, n;, f;). The sensed normal is given by v;
and corresponding to face f; is a face normal m;. For R to be a legitimate rotation,
it should take the normal m; into n, (ignoring issues of error in the measurements
for now).

Now, any rotation can be represented by a direction about which the rotation
takes place, and an angle of rotation about that direction. What is the set of possible
directions of rotation r consistent with n; and m;? Any rotation will preserve the
angle between the transformed vector and the direction of rotation. Hence, any
legitimate rotation direction must be equiangular with n; and m;. Thus, the set of
potential directions is given by

{rij | £y - my =1y -ni}.
or equivalently
{l‘ij | iy - (m; — ;) = 0}‘

That is, ry; is perpendicular to (m; — n;).
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Now, consider a second triple in the interpretation, (p;,n;, f;) and let m; be
the normal to face f;. Provided m; ¢ 4m; and n; — m; is not (anti-)parallel to
n; — mj, we can constrain r;; to a second set

{l‘ij | rij - (m; —n;) = 0}.
Since the rotation is the same, r;; must lie in both sets, i.e., it must be perpendicular
to both vectors. Hence, ry; is given by the unit vector in the direction

(m; — ng) X (mj — n;)
to within an ambiguity of 180°.

This derivation can be recast in geometric terms in the following manner. Any
unit rotation vector r taking m; into n; must lie on the perpendicular bisector of the
line connecting n; to m,;. Similarly, it must also lie on the perpendicular bisector
of the line connecting n; to m;. Since the rotation is the same, it must lie in the
intersection of the two perpendicular bisector planes, as above, and hence is given
by the specified unit vector

(m; — ng) X (m; — nj).
If there were no error in the sensed normals, we would be done. With error included
in the measurements, however, the computed rotation direction r could be slightly
wrong. One way to reduce the effect of this error is to compute all possible r;; as

1 and 7 vary over the faces of the interpretation, and then cluster these computed
directions to determine a value for the direction of rotation r.

Once we have computed a direction of rotation r, we need to determine the
angle 0 of rotation about it. It is straightforward to show that (see, for example,
[Korn and Korn, 68] p. 473)

m; = cos fn; + (1 — cos §)(r - n;)r + sin 6(r X n;).

Simple algebraic manipulation, using the fact that r- m; =r - n;, yields

cosf =1— 1 — (ns - my)
1 —(r-ng)(r-my)
sin § = (r X i) - m,

1—(r-ng)(r-m;)

Hence, given r, we can solve for 8. Note that if sin 8 is zero, there is a singularity
in determining 6, which could be either 0 or «. In this case, however, r lies in the
plane spanned by n; and m; and hence, only the § == 7 solution is valid.

As before, in the presence of error, we may want to cluster the r vectors, and
then take the average of the computed values of @ over this cluster.

Finally, given values for both r and 6, we can determine the rotation matrix
R. Let rz,ry, 7, denote the components r. Then

1 0 0 ri Tely Tglz 0 —Ty Ty
R=cos0l0 1 O|+(1—cosf)|ryrz 72 ryrz|-+sindl 7, 0 —rg
TzTz  TzTy ri —Ty Tz 0

0 01
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Note that in computing the rotation component of the transformation, we have
ignored the ambiguity inherent in the computation. That is, there are two solutions
to the problem, (r,0) and (—r, —@). We assume that a simple convention concerning
the sign of the rotation is used to choose one of the two solutions.

3.2. Translation Component

Next, we need to solve for the translation component of the transformation.
We know that vy = Rv,, -+ vo, where v,, is a vector in model coordinates, v is the
corresponding vector in sensor coordinates, and R has been computed as above.
Given a triple (p;, n;, f;) from the interpretation, let m; be the normal of face f;,
with offset d;, that is, the face is defined by the set of vectors

{v]v-m;=d}.
Then the point in model coordinates corresponding to p; is
R (p; — vo)

and the following equation holds ,
m; - (R“l(p,- — vo)) =d;
or equivalently |
(Rmy) - (ps — vo) = d;.
This equation essentially constrains the componént of the translation vector in the
direction of Rm;.

Suppose we consider three triplets from the interpretation, (p;, 0, f3), (p;, ny, f;),
and (pg,ng, fr) such that the triple product m; - (m; X myg) is non-zero, (i.e. the
three face normals are independent). Then, we can construct three independent
equations ‘

(Rmy) - vo = (Rm;) - pi — d;

(ij) Vo = (ij) - p; — dj

(Rmg) - vo = (Rmg) - pk — di.
Each of these equations constrains a different, independent component of the
translation vector vg, and hence the three equations together determine the actual

- vector. Straightforward algebraic manipulation then yields the following solution
for the translation component vgp:

m; - (m; X mk)}vo =((Rm;) - p; — di)((ij) X (Rmk))
+ ((Rm;) - p; — d;)(Rmy) X (Rm))
+ ((Rmk) Pk — dk)((Rmi) X (ij))

As in the case of rotation, if there is no error in the measurements, then we are done.
The simplest means of attempting to reduce the effects of error on the computation
is to average vg over all possible trios of triplets from the interpretation. Note that

N
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for numerical stability, cne may want to restrict the computation to triplets such
that m; - (n; X my) is greater than some threshold.

Finally, we have computed the transform (R,vg) from model coordinates
to sensor coordinates. To check a possible interpretation, we ccnsider all triples
(psi, ny, f;) in the interpretation and compute

R—_l(pi — VQ).

We then check that this point lies within the bounds of face f; (to within some
error range). If it does not, then the interpretation is invalid, and may be pruned.
If all such triples satisfy this check, the interpretation is still valid.

We have assumed above that three independent face normals have been
measured. When only one normal is available, neither the rotation or translation
can be determined. When only two independent normals are available, the rotation
can be determined as before, but only a direction of translation can be determined,
not the actual magnitude of the translation. A range of possible translations can
be determined, however, by interesecting the line, determined by the position of a
sensed point and the translation direction, with the facc assigned to the point by
the interpretation. Of course, further sensing along this line to discover the position
of the edge would determine the actual translation.

After the model test has been applied to all leaves of the interpretation tree,
there may still be several interpretations remaining. Upon examination, one usually
finds that these interpretations differ only in the assignment of one or two faces,
all other faces being identical. This inability to distinguish between such nearly
identical interpretations is a result of the error bounds on the sensing. Thus, as
a final stage, we cluster the remaining interpretations in terms of their computed
transformations, that is, we cluster the interpretations in terms of the computed
orientation of the object in space. Here, we generally find very few such clusters.
Indeed, in general there is only one computed orientation for the object, (the correct
one), although occasionally two or more clusters survive, usually corresponding to
symmetric interpretations of the sensed data.

4. Simulation Data

In order to test the efficacy of the algorithm in pruning the interpretation
tree, we ran a large number of simulations. Some simulations for objects with three
degrees of freedom (two translational and one rotational) have been described in
[Gaston and Lozano-Pérez 83]. We include additional simulation data for objects
with three positional freedoms, including the direction constraint. We also provide
data for the more general case of three-dimensional objects with six degrees of
freedom.

Our goals are first to demonstrate that effective pruning of the interpretation
tree is possible, at low computational expense, and second to explore the sensitivity
of the algorithm to error in measuring the surface normal and the position of the
sensed points.
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~

Figure 6. 2D Test Models
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4.1. Three Positional Freedoms

We begin by considering objects with two degrees of translational freedom
and one degree of rotational freedom, using sample objects first considered in
[Gaston and Lozano-Pérez 83], illustrated in Figure 6. The addition of the direction
constraint greatly reduces the extent of the set of possible interpretations. To
demonstrate this, a series of 250 runs of the algorithm was executed for each of the
objects. Each run determined the number of interpretations consistent with a set of
5 sensed points. The points were determined by first randomly rotating the object
about its centroid and then intersecting the object with five lines from its centroid
along five evenly spaced directions. The points of intersection farthest from the
centroid along each line were used as the sensed point. The (simulated) error in
measuring the sensed position was bounded by 0.1 (i.e. a randomly oriented offset
vector of random magnitude bounded by 0.1 was added to the point on the object),
and the (simulated) error in measuring the angle of the surface normal was % (i.e. a
random vector was chosen whose dot product with the actual normal was bounded
by cos™! ). To place these error ranges in perspective, the diameters of the models
in Figure 6 were 9,14 and 12 units for the wrench, gator and hand respectively.

The following table describes the:results of this set of simulations, by
histogramming the number of interpretations found. Thus, for + < 10, the number
in the 7** column is the number of trial runs which resulted in ¢ ‘possible
interpretations. Beyond this point, the histogram is compressed into units of tens.
For example, the column labelled 20 lists the number of trial runs resulting in &
interpretations, where 10 < & < 20. In order to examine the effectiveness of adding
the direction constraint to the algorithm described in [Gaston and Lozano-Pérez
83], the simulations were run both with and without this constraint. For each object
in the table, the first histogram correspends to the case of using the direction
constraint, and the second histogram to the case of not using it. Note that the
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number of edges for the wrench (W), gator (G) and hand (H) is 12, 50 and 67
respectively.

Table I - Two dimehsional objects — Histograms —Errors /8, 0.1
112 3/4(5]/6]7 [8]9]10[20/30[/40|50 |60/70/80/90/100|>100

W 242 7 1

W 31 25 2 2 3119129120 |3427[13[20| 23 2
G |22] 6231/38/20]23/10 | 61 8|10]20

G| 1] 12] 9/11| 8(23/10 |1715|14|63|34| 7| 7 | 7| 5| 5 1 1

H |15] 61[36(29/21]20,22 |14|11 ] 9}12
H{ 4] 13/17]21/17[17{12 116 18/11]86/18

The results are striking in a number of different ways. First, note that the
maximum number of possible interpretations observed for any of the objects was
20 (in the case of using the direction constraint), which is exceptionally low when
considering that the total number of possible intepretations for the gator was
505 or 312,500,000. Second, the median number of possible interpretations was
only 2 for the wrench, and 4 for the gator and hand, when using the direction
constraint. Without this constraint, the median number of interpretations rose to
48,12 and 9 for the wrench, gator and hand, respectively. Of course, the results of
the simulations will depend to a certain extent on the error ranges, a point that
will be explored in some detail in the next section. We note that a tenth of an inch
sensitivity in distance over a 10 to 20 inch range is within the range of current
tactile sensors. The positioning accuracy of many current manipulators is within
0.01 inches, and the Purbrick tactile sensor has a matrix element separation of 0.06
inches, and the Hillis sensor has an element separation of 0.025 inches.

4.2. Six Positional Freedoms

When considering the full three-dimensional problem of objects with six degrees
of freedom, we have run extensive simulations on the models illustrated in figure 7.
The diameters of these objects (that is the maximum separation of two points on
the object) were roughly 4, 7, 8 and 8 inches for the housing, stapler, simple hand
and complex hand respectively. In running simulations of the recognition algorithm
on these objects, we have used two different sensing strategies, reflecting in part
the difference between range and tactile sensing capabilities.

It should be noted that in all the following simulations, the efficiency of the
tree pruning mechanism was improved by sorting the sensed points. In particular,
rather than using the sensory data in arbitrary order, the points were sorted on the
basis of pairwise separation, with the more distant points being ordered first. This
sorting on distance tends to place the most effective constraints at the beginning
of the process, a point that will be illustrated in Section 4.5.

4.3. Grid Sensing

In the first sensing method, the sensory data were generated by projecting a
regular grid of points along three orthogonal directions, and noting where contact
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was made with an arbitrarily oriented model of the object. This arbitrary orientation
was obtained by randomly choosing values for the three Euler angles, computing
a rotation transformation based on this and applying the rotation to the model.
Note that this does not produce a uniform sampling of the space of rotations, but
for our purposes it is a sufficiently random sampling. No translation offset was
added, since this would not affect the process. The three-dimensional positions of-
the sensed points and the associated surface normals were then corrupted by noise
within some specified bounds. For the simulations discussed below, the number of
sensed points on each trial varied between 12 and 20.

The results of the first set of simulations is shown in Tables II, III, and IV.
Table 11 lists statistics of the number of interpretations in the tree following local
pruning, for a variety of sensing accuracies. Each simulation consisted of 100 trials,
and the minimum and maximum number of interpretations are recorded over this
set of trials, as well as the 50th and 90th percentile of the distribution of number
of interpretations. Table III lists statistics of the number of interpretations in the
IT that survive an explicit model test. it was observed at this stage that while the
number of interpretations was not reduced to 1, as might be expected, the surviving
interpretations generally tended to differ only in one or two faces. Moreover, the
computed transformation parameters were nearly identical, indicating that the
multiple interpretations surviving a model test actually corresponded to a single
interpretation, to within the error ranges of the algorithm. Thus, Table IV lists
statistics of the number of separate transformations computed fecr each trial. In
particular, transformations whose direction of rotation differed by more than 1.5°
were judged to be different, yielding a very tight clustering of the computed
transformations. This clustering ignores differences in the translation component,
a point that is addressed later in Table VI.
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Table IT - No. of Interpretations After I.ocal Pruning
Object, Normal | Dist | Min 50th | 90th | Max | Faces
Housing /15 .01 1 4 8 36 40
.05 1 8 28 72 40
10 2 40 208 658 40
7/10 01 2 4 16 240 40
.05 2 16 40 256 40
10 6 96 410 1618 40
n/8 | .01 2 | 8 28 96 40
.05 2 24 108 576 40
10 10 156 1144 3576 40
Simple Hand /12 .01 4 4 8 16 28
.05 4 8 16 24 28
7/10 | .01 4 4 12 64 28
.05 4 8 16 96 28
/8 .01 4 8 16 16 28
.05 4 8 24 96 28
Stapler /12 .01 2 8 32 72 34
.05 2 52 204 772 34
/10 .01 2 14 68 276 34
.05 8 132 1104 2856 34
Complex Hand /12 .01 2 24 120 896 64
' .05 8 128 560 | 2880 64
/10 .01 2 40 240 3456 64
.05 12 144 496 4416 64

In the table above, the normal column lists the radius of the error cone about
the measured surface normal; the dist column lists the error range of the distance
sensing; the min and maz columns list the minimum and maximum number of
interpretations observed; the 50th column lists the median point of the set of
simulations; the 90th column lists the 90t* percentile of the set of simulations; and
the faces column lists the number of faces in the model.
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Table 11l - No. of Interpretations After Model Test
Object Normal | Dist | Min 50th 90th | Max Faces
Housing 7/15 01 1 2 4 18 40
.05 1 4 16 36 40
10 1 24 106 384 40
/10 .01 1 2 8 120 40
.05 1 8 20 228 40
, 10 3 40 136 434 40
7/8 | .01 1 4 14 42 40
.05 1 12 44 190 40
10 2 57 264 936 40
Simple Hand /12 .01 2 2 4 8 28
.05 2 4 7 12 28
7/10 .01 2 3 8 40 28
.05 2 4 12 40 28
7/8 | .01 2 4 8 10 28
.05 2 4 12 48 28
Stapler /12 .01 1 4 18 49 34
.05 1 30 112 386 34
/10 .01 1 6 36 138 34
.05 4 68 483 2148 34
Complex Hand /12 .01 1 12 78 448 64
.05 4 92 426 | 1800 64
/10 .01 1 24 144 1728 64
.05 6 100 336 2208 64

In the table above, the normal column lists the radius of the error cone about
the measured surface normal; the dist column lists the error range of the distance
sensing; the min and maz columns list the minimum and maximum number of
interpretations observed; the 50th column lists the median point of the set of
simulations; the 90th column lists the 90" percentile of the set of simulations; and
the faces column lists the number of faces in the model.
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Table IV — No. of Transforms After Clustering
Object Normai Dist | Min 50th 90th Max | Faces
Housing n/15 | .01 1 1 1 2 40
.05 1 1 1 2 40
.10 1 1 2 12 40
7/10 | .01 1 1 1 2 40
.05 1 1 1 6 40
.10 1 1 2 6 40
7/8 | .01 1 1 1 2 40
.05 1 1 2 4 40
.10 1 1 2 6 40
Simple Hand /12 .01 2 2 2 4 28
.05 2 2 2 3 28
/10 .01 2 2 2 4 28
.05 2 2 2 4 28
/8 .01 2 2 3 4 28
.05 2 2 3 4 28
Stapler /12 .01 1 1 2 4 34
.05 1 1 2 4 34
7/10 .01 1 1 2 4 34
.05 1 2 3 5 34
Complex Hand /12 .01 1 2 3 4 64
.05 1 2 4 6 64
/10 .01 1 2 4 4 64
.05 1 2 4 7 64

In the table above, the normal column lists the radius of the error cone about
the measured surface normal; the dist column lists the error range of the distance
sensing; the min and maz columns list the minimum and maximum number of
interpretations observed; the 50th column lists the median point of the set of
simulations; the 90th column lists the 90** percentile of the set of simulations; and
the faces column lists the number of faces in the model.
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Figure 8. Simple Hand Histograms
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The first point to stress is that all of these numbers are remarkably low, given
that the total number of possible interpretations of 15 sensed points on an object
with 40 faces is roughly 1.074 X 10%4. Thus, the local geometric constraints are
very effective in reducing the combinatorics of feasible interpretations.

As might be expected, the number of interpretations in all three tables tends to
rise with increasing error in the measured parameters. The distributions also tend
to be strongly clustered near the low end of the scale, with a very shallow tail on the
high end of the distribution. Thus, while the maximum number 6f interpretations
can be high (e.g. 3576 for surface normal error cone of 7/8 and distance error of
0.10), the median point and even the 90th percentile of the distribution are generally
much smaller. Sample distributions for the number of interpretations surviving tree
pruning are shown in Figure 8. One reason that the maximum number of feasible
interpretations can be significantly larger than the median of the distribution is the
occasional occurrence of dependent sensor information. For example, if most of the
sensed points happen to lie on a single face, the amount of independent information
about the object’s position is much smaller than when the same number of sensed

points lie on different faces. While the sensing strategy used here will reduce the
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the error cone about the sensed normal, in radians, and a bound on the magnitude
of the position error, in inches.

One reason that the maximum number of feasible interpretations can be
significantly larger than the median of the distribution is the occasional occurrence
of dependent sensor information. For example, if most of the sensed points happen
to lie on a single face, the amount of independent information about the object’s
position is much smaller than when the same number of sensed points lie on
different faces. While the sensing strategy used here will reduce the probability
of this occuring, there is still a nonzero chance of such redundant sensing taking
place, resulting in an occasional case of a large number of feasible interpretations.

The probability of such redundant sensing is also to a certain extent dependent
on the shape of the object. FFor example, note that the aspect ratio of the stapler
is much longer than that of the motor housing. This would tend to suggest that
a regular sensing strategy is more likely to yield redundant information for the
stapler than the housing. Indeed, a comparison of the appropriate sections of Table
II shows that under similar conditions in measurement error, the number of feasible
interpretations of the stapler is much higher than the motor housing, even though
the stapler has fewer faces. This is partly due to redundant sensing and also partly
due to symmetric interpretations of the data.

The number of distinct transformations is almost always 1 in these simulations.
It was also observed that the computed transformation was generally very close to
the actual one. For example, each row of Table V illustrates the average error in the
computed transformations over 100 runs of the algorithm. The direction column
lists the average angle between the correct and the computed direction of rotation,
the angle column lists the average angle between the correct and the computed
magnitude of rotation about the rotation direction, and the translation column
lists the average magnitude of the difference between the correct and the computed
translation component of the transformation. It can be seen from the table that
the average error is remarkably low, generally on the order of 2--3 degrees, even for
different objects and different amounts of sensor error. As might be expected, the
average error does tend to rise with increases in the sensor error. In no case did
the algorithm discard the correct interpretation. Note that the errors illustrated in
Table V were recorded from the difference between the correct transformation and
the computed transformation for the correct interpretation. There will be other,
erroneous interpretations, with much larger differences between the computed and
correct transformation.
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Table V — Average Errors in Computed Transformation
Object Normal | Dist | Direction (deg.) | Angle (deg.) | Translation (in.)
Simple Hand m/12 | .01 217 | 2.33 0.08
.05 2.08 2.62 0.09
7/10 | .01 3.13 2.93 | 0.11
.05 3.58 3.15 0.12
7/8 | .01 4.43 3.64 0.16
.05 5.26 3.03 0.17
Housing /15 | .05 2.18 2.17 0.11
w/10 | .01 3.42 3.70 0.12
.05 3.64 3.22 0.14
10 3.77 3.62 0.20
7/8 | .05 4.28 5.07 0.19
Stapler n/12 | .01 2.15 2.22 0.11
/10 | .01 2.68 2.35 0.11

In the few cases in which more than one transformation were found, two factors
generally are observed. The first is that the noise in the measured data can result in
transformations differing by only a few degrees, although these transformations are
counted as being distinct. The second, more interesting, factor is the possibility of
symmetric interpretations of the data, for example, due to a rotation of the object
relative to the sensor. Consider first the case of a completely symmetric object, such
as the simple hand, which has a rotational symmetry of 180°. Here, the algorithm
always found at least two distinct transformations of the model that were consistent
with the sensed data. For objects such as the motor housing, portions of the object
are symmetric, for example, the base of the housing, ignoring the projecting lip.
If all the sensed points happen to fall only on such a portion of the object, then
symmetric interpretations of the data are possible. In general these symmetric
interpretations account for most of the cases of multiple transformations, especially
when the sensor error is small. The few remaining cases arise when the error in
the measurements yields two nearly identical (i.e. differing by only a few degrees of
rotation) transformations that account for the data. As the error in the measured
data decreases, these multiple interpretations tend to disappear.

The simulation data listed in Table IV is derived from a clustering of the
interpretations based strictly on the rotation component of the transformation,
that is, two transformations whose direction of rotation differed by less than 1.5°
were considered to be part of the same cluster. This clustering technique, while
very tight in the rotation component, ignores possible differences in the translation
component of the transformation. To examine such differences, a number of the
simulations were run, using a clustering of the interpretations with a rotation
sensitivity of 1.5° and a translation sensitivity of either 0.05 or 0.01. The number
of distinct transformations under this clustering scheme are indicated in Table VI.
Note that while the number of distinct transformations does increase relative to
the corresponding entries in Table IV, the change is not significant.
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Table VI — No. of Transforms After Clustering

Object Normal | Dist | Cluster | Min | 50th | 90th | Max
Housing /10 | .05 01 1 2 4 6
.05 1 1] 2 4

Simple Hand /10 .05 .01 2 4 6 16
.05 2 2 4 12

Stapler /10 .01 .01 1 4 14 57
.05 1 2 4 32

Complex Hand /10 .01 01 1 5 | 15 20
.05 1 3 6 16

4.4. Random Sensing

All of the previous simulations have generated the sensed data by projecting
a regular grid of points along three orthogonal directions, generally resulting in
between 12 and 20 contact points. Such a sensing strategy would be consistent with
visual sensing modalities. A second set of simulations has been run using a sensing
strategy more consistent with tactile sensors. Consider a set of three mutually
orthogonal, directed rays, which intersect at a point. Suppose this point is taken
to be some arbitrary point (z,y,0), chosen on the z — y plane (note that by the
definition of the object models, this plane will interect the object). Each ray is
traced along is preferred direction, (with decreasing z component), until either the
object or the support plane was contacted. This operation was repeated for several
different approaches, using randomly generated values of z and y, until between 7
and 9 different contact points were made on the object. Tables VII, VIII and IX
summarize the results of running sets of simulations, using sensory data generated
in this fashion.

Table VII — No. of Interpretations After Local Pruning
Object Normal Dist, Min 50th 90th Max Faces
Simple Hand /10 .01 2 4 20 90 28
.05 2 8 44 300 28
/8 .01 2 8 48 444 28
.05 2 12 84 320 28
Housing /10 .01 2 10 70 946 34
.05 2 32 124 | 1234 34
/8 .01 2 14 74 284 34
.05 2 62 406 4053 34
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Table VIIT — No. of Interpretations After Mod.‘el Test,

Object Normal Dist. | Min 50th 90th | Max | Faces
Simple Hand /10 .01 2 4 12 60 28
.05 2 4 24 116 28

7/8 | .01 2 4 24 98 28

.05 2 7 39 160 28

Housing /10 .01 1 4 32 516 34
.05 1 16 80 606 34

/8 .01 1 8 26 136 34

.05 1 32 164 377 34

Table IX - No. of Transforms After Clustering on Rotation

Object Normal Dist, Min 50th 90th Max Faces
Simple Hand 7/10 01 2 2 4 10 28
.05 2 2 6 10 28

/8 .01 2 2 6 14 28

.05 2 3 8 22 28

Housing m/10 .01 1 1 4 11 34
.05 1 2 7 13 34

/8 .01 1 1 5 9 34

.05 1 3 10 14 34

As in the case of the earlier simulations, the effectiveness of the local
constraints in reducing the number of feasible interpretations is clearly demonstrated.
Interestingly, the number of distinct transformations tends to be somewhat higher
than the earlier cases, especially for the motor housing. This results in part from
the following situation. With the exception of one projecting portion, (see Figure
6), the housing is essentially a symmetric object, with respect to two different axes.
As a consequence, if the sampled data points do not lie on this distinguishing
projection, there could be several consistent, symmetric, interpretations of the data.
In the case of sensory sampling on a regular grid of points, it is likely that at least
one point will lie on this projection, and the symmetric ambiguity will not arise.
In the case of fewer sample points, generated by random approaches to the object,
it is much more likely that the feasible transformations will reflect this symmetry,
and thus be higher in number.

In cases of ambiguity in interpretation, for example, when several orientations
of the motor housing are consistent with the sensed data, due to a partial symmetry
of the object, it would be useful to have effective means for distinguishing between
the possible solutions. A straightforward method would be to add sensory points
generated at random until only one interpretation is consistent. This, of course,
could be very inefficient, since it could take the addition of several points before
a solution is found. In the case of the motor housing, for example, one would
need to consider additional sensory points until one lying on the projecting lip
of the housing is recorded. A more effective solution is to use the difference in
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feasible interpretations to find directions along which the points of contact of the
different interpretations are widely separated. Such directions then constitute good
candidates for generating the next sensed point [Gaston and Lozano-Pérez 83].
Extensions of the method to the six degree of freedom problem are currently under
investigation.

4.5. Tree Pruning

Tables X and XI contain a final set of statistics that demonstrates the
effectiveness of the local contraints in reducing the number of feasible interpretations
in the IT. The regular grid approach is used to generate the sensory data. For the
data in Table X, the points are sampled in random order as the IT is generated
and pruned. For the data in Table XI, the sensed points are sorted on the basis of
pairwise separation, with the more distant points being ordered first. This sorting
on distance tends to place the most effective constraints at the beginning of the
process. Since the point of the local constraints is to prune the IT as efficiently as
possible, applying the most effective constraints first should result in pruning out
entire subtrees at as early a stage in the tree generation process as possible. Using
the sorted sense data, the interpretation tree was generated and pruned. Tables X
and XI list statistics of the number of interpretations at each level of the tree, (i.e.
the number of k-interpretations for different values of k), based on trials of 100
simulations each.

Table X — Feasible Interpretations — Unsorted Points
Points Min 50th 90th Max

2 12 96 334 432

3 4 110 388 678

4 4 55 313 675

5 4 40 244 10004

6 4 26 189 1000

7 2 24 108 ' 686

8 2 20 82 636

9 2 20 76 520

10 2 20 72 336

11 2 16 62 280

12 2 16 64 200

13 4 20 64 304

14 2 18 72 304

15 2 20 80 304
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Table XI — Feasible Interpretations — Sorted Points

Points Min 50th 90th Max
2 4 18 48 g4

3 2 18 38 82

4 2 12 29 68

5 2 8 22 50

6 2 8 24 58

7 2 8 24 56

8 2 8 24 72

9 2 8 32 72

10 2 8 24 8¢
11 2 8 34 192
12 2 8 36 352
13 2 12 32 512
14 2 12 40 480
15 2 12 48 288

It can be seen that the median number of feasible interpretations is quite small
at all levels of the tree, even as the number of contact points is increased. This data
~ implies that one of the strengths of the approach is the ability to prune out whole
subtrees of the IT at a very early stage, thereby ensuring that the total number
of tests to be applied is significantly smaller than the size of the entire tree. This
leads to very efficient processing of the feasible interpretations.

Sorting the points on distance is extremely effective as can be seen from the
results reported in Table XI of the same set of runs as those in Table X, but where
the points were sorted prior to pruning. The effect on running times ef the pruning
program is also quite drastic.

5. Performance on Range Data

We have performed limited testing of the algorithms described above using
high—quality range data obtained from a laser-based triangulation system developed
by Philippe Brou at our laboratory. Two samples of the data we used are shown in
Figure 9. The data is obtained at high resolution, approximately 0.04 centimeter
" grid spacing along z and 0.08 centimeter along y. A small number of points were
obtained from the dense data by choosing points where a least-squares fit to a
plane over a 5 X 5 patch produced very low normalized residue errors. Points were
chosen that included at least three independent normals. Note that the actual
object includes a protrusion that was not present in the model; no data was taken
from that region. In the data from figure 9(a), eleven points were used; in the data
from figure 9(b) nine points were used. The accuracy bounds we employed were
-+0.02 inch position accuracy and +-{¢ accuracy in measuring the normal.

Figure 9 shows the results obtained from running the algorithm on the data
described above. There were only 9 and 11 interpretations, respectively, left in the
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Figure 8. Sample Range Data and Computed Interpretations
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tree after pruning with the local constraints. From these, three valid transformations
were found in one case and two in the other; they are shown in the figure. The
correct transformation was found each time. The other transformations correspond
to rotations that place the sensed points on parallel faces. Note, however, that
disambiguations between the valid transformations would be straightforward once
the transformations are known.

The quality -of the data used in the experiments illustrated in Figure 9
corresponds to nearly the best error conditions used in the simulations. Results
with larger error bounds, using data from sections where the data is less accurate,
showed results similar to those in the simulations, i.e., more legal interpretations
in the tree and more valid transformations but always including the correct one. It
tends to reinforce the validity of the conclusions found in the simulations.

6. The Combinatorics of Pruning the IT

In the previous sections, we have outlined the basic interpretation algorithm.
The crucial issue that determines the viability of this algorithm is the effectiveness
of pruning the interpretation tree. Our goal has been to demonstrate that one can
use simple local constraints to prune the interpretation tree, so that only a few
of the relatively expensive model tests need to be made. The simulation results,
under a variety of conditions, and the results on range data provide support for
this claim. '

It is also possible to provide a combinatorial analysis of the pruning of
interpretation trees provided by local constraints. A detailed presentation of such
an analysis is contained in a companion paper [Grimson and Lozano-Pérez 83].
Here, we demonstrate the scope of the combinatorical analysis by presenting a
detailed discussion of the use of the distance constraint in pruning interpretation
trees. Similar results hold for the other constraints. '

We stress that the results given below are actually weak bounds on the number
of interpretations to be expected after pruning. In practice, numbers close to these
bounds are observed only when the sensors are arranged so as to obtain a minimum
of information about the object.

6.1. Combinatorics of Distance Pruning

We will consider the case in which all faces (or edges in the two-dimensional
case) have the same size, and derive bounds on the expected pruning of the IT.

Assume we have some arbitrary labelling of the faces from 1 to n (for example,
in the two-dimensional case, based on arc length from some starting point). For
each pair of faces, 7 and j, let d;; denote the separation of the midpoints of the
faces. Let ¢;; be an upper bound on the range of variation in distance, for different
sensed points on the two faces, i.e. let

&y = lim sup{e: dij — e < |x —y| < dij +¢€,Vx on face 4, Vy on face j}

34




Grimson & Lozano-Péresz Model-Based Recognition

where |x — y| is the distance between point x on face 7 and point y on face j. Let €
be defined as the maximum over all ¢, 7 of ¢;; plus some estimate of the maximum
error of the sensed distance.

- Now assume that we have recorded the position of two sensor points, P; and
Py, and let s15 be the measured distance between them. Assume that the first point
has been arbitrarily assigned to some face 7 of the object. We want to determine
how many faces 7 of the object can consistently be assigned to the second point,
given the separation sis and the known distribution of distances. Moreover, we
want to be able to continue this for k& sensor points, determining an upper bound
on the number of assignments of faces to sensor points that are consistent with the
sensed separation between the faces.

Let the distribution of faces with respect to face ¢ as a function of distance be
denoted by p;(s). In other words, p;(s) records the number of faces whose midpoint
separation from face ¢ is given by the distance s. As a consequence,

«/.:—-0 dpi(s) =n

where 7 is the total number of faces, and d is the diameter, or maximum separation
of the object. Note that because dp; is a distribution, this is a Lebesgue-Stieltjes
integral. The following bound on the number of nodes at the &* level of the IT
holds for both two-dimensional and three-dimensional objects.

Proposition 1: An upper bound on the expected number of nodes at the kt%
level of the interpretation tree, & > 2, is given by

(2en)’°“’1n
d

where d is the diameter of the object, and ¢ is a bound on the distance sensitivity
of the model.

Proof: The proof proceeds by considering an iterative application of the
expected maximum branching factor at each level of the tree. We assume that
bir—1 denotes a bound on the number of consistent nodes at the k — 1°¢ level of the
interpretation tree, and consider the branching factor obtained when adding a &**
sensed point. Assume that sensor point Pg._; has been assigned to face ¢, and that
the measured separation of sensor point Px__1 and Py is si. This implies that the
. midpoint separation of the corresponding faces is within € of s;. Hence, an upper
bound on the number of possible faces consistent with sk, given face ¢ assigned to
point Pg_q is

[ s+

Since the number of nodes at the k — 1%t level of the tree is bounded by b;_4, an
upper bound on the total number of nodes at the k** level of the tree is
€

br—1 max -/;:==—-c dpi(sk + z).
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We now wish to determine a bound on the expected number of nodes, evaluated
over the range of possible values for s¢. If ¥(s) denotes the distribution of sensed
distances, then an upper bound on the expected number of nodes is

fsdzo by—1max; [;_._ . dpi(s + a:)]d\I!(s)
Ly d(s).

If we know which object is being sensed, we could derive an explicit form for d\¥(s).
Since we are considering the case of sensing from a set of possible objects, the
best we can do is consider the distribution of sensed distances over all possible
orientations of all objects, and this is best given by a uniform distribution. Thus,

d¥(s) = éds

and an upper bound on the expected number of nodes becomes

%——lmax/ / dpz (s + z)ds

Note that this double integration can essentlally be considered as a counting
problem. That is, we want to count the number of faces whose separation from
the sampled face lies in an e-range about some point s, with this number being
accumulated over all possible e-ranges (i.e. vary the midpoint s). Reversing the
order of integration basically reverses the order of counting. Thus, rather than
counting the number of faces lying within a range, and summing over the set of
ranges, we count the number of ranges in which each face is included, and sum
over the number of faces. Clearly each face can be counted in at most 2¢ ranges
(as the midpoint of the range moves from s — € to s 4 ¢), and the total number of

faces is n. Thus, the branching factor at this level yields the iterative expression
2en

by = bx_1 R

The base case of £ = 1 yields the bound of b; = n since the initial as51gnment of
the point P; is arbitrary.

Evaluation of the iterative expression yields

k—1
= ()

thereby concluding the proof by induction. §

While this proposition gives us an upper bound on the expected number of
nodes, in order to evaluate it we need some estimate on €. The following two
propositions provide this for the two- and three-dimension cases.

Proposition 2: If all the edges of a two-dimensional object have the same length
e, then V1,7 ¢;; < e.

Proof: Connect the midpoints of two arbitrary faces, ¢ and j, with a line of
length d;;. Consider first the case of d;; > e. The set of all possible orientations
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Figure 10. Illustration for Proof of Proposition 2

of each of the edges about its midpoint describes a circle of radius & about that
endpoint. We are interested in the extrema in separation of points in these disks
(see Figure 10). We claim that the maximum and minimum separation of points in
the disks occur for the case of the edges parallel to the midpoint connector, giving
a minimum of d;; — e and a maximum of d;; + e.

While this can be shown algebraically, there is also a simple geometric proof.
Construct a coordinate system with origin at the midpoint of edge ¢ and with z axis
along the midpoint connector. Now construct a circle of radius d;; — e about the
point (d;; — §,0). Clearly, this circle grazes the first disk at the point (£,0). Now, in
order for any other point in the second disk to have a shorter distance, we must be
able to position a circle of the same radius about that point and still intersect the
first disk. This is not possible, by the following argument. The envelope of possible
points can be formed by sweeping a circle of radius d;; — e through a series of
positions such that the center of the circle lies at the limit of the second disk. This
envelope only intersects the first disk at the above mentioned point, and hence, the
minimum possible separation between the two edges is given by d;; —e.

Similarly, the maximum separation can be shown to be di; + e by constructing
a circle of radius d;; + e about the point (di; + £,0) and using the same argument.

If d;; < e, then the minimum distance is clearly bounded below by 0. The
construction for the bound on the maximum distance is identical to that above.
Hence, we see that €;; <, Vi,7. 1

Corollary: If all the edges of a two-dimensional object have the same length,
and the sensor error in measuring distances is much smaller than the length of an
edge, then the expected number of nodes at the k" level of the interpretation tree,
k > 2, that survive distance pruning is bounded above by

2 k—1
(Z)
where p is the perimeter of the object, and d is its diameter.

Proof: Since the sensor error is much less than the edge ]ength, we see that € is
essentially given by the maximum over all ¢, 5 of €;;. From the previous proposition,
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this is bounded by the edge size e, and since all the edges are of the same length,
e = g. The corollary follows naturally. g

Note that for convex objects, p < 7d, so that the bound becomes linear in n
(2r)* " n.

In general, the perimeter for non-convex objects can be much larger. We note,
however, that for highly convoluted objects, if sensing is along straight lines, then
much of the perimeter of the object is “invisible” to the sensor. This follows from
the observation that sensing at such a face would require sensing through some
other portion of the object. Thus, in practice, the perimeter term in the above
expression for non-convex objects. should be replaced by an “effective perimeter”,
which will generally correspond to the perimeter of a nearly-convex object.

Proposition 3: If all the faces of a three-dimensional object have the same
diameter e, and the same arca Ay then Vi,j ¢;; <.

Proof: The proof is almost identical to the two-dimensional case. Here the
geometric construction consists of two spheres of radius £ centered about the
endpoints of a line of length d;;, and we seek the minimum and maximum
separations of points on the two spheres. As in the previous case, a geometric
construction shows that the extremal cases occur when the diameters of the faces
are parallel to the midpoint connnectors, and hence €;; < e. 1§

Corollary: If all the faces of a three-dimensional object have the same diameter
and the same surface area, and the sensor error in measuring distances is much
smaller than the diameter of a face, then the expected number of nodes at the k*h
level of the interpretation tree, k > 2, that survive distance pruning is bounded

above by
1 k—1
k41

where A is the surface area of the object and d is its diameter.

Proof: Since the sensor error in measuring distance is much less than the
- diameter of a face, we see that € is essentially given by the maximum over all ¢, 7
of €;;. From the previous proposition, this is bounded by the face diameter e. If
Ay is the surface area of the face, then Af > m(£)?. Moreover, A = 4, so that

e<e< 2\/%—; and the corollary follows. 1

If the object is convex, then the area A is bounded above by md?, and the
upper bound reduces to

4k—1n§:ﬁu.
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As in the two-dimensional case, non-convex objects can esscntially be treated as
convex ones, where the surface area of a convoluted object is replaced by the
“effective surface area” of a nearly-convex one, and a similar bound will hold.

6.2. The Relevance of the Combinatorics

The key point to be stressed here is that the use of distance pruning can be
shown to reduce the interpretation problem significantly. In principle, the problem of
k sensor points against a model of n faces would result in n* possible interpretations
that must be tested. We have shown that for two-dimensional objects, distance
pruning reduces this to a number linear in n, and for three-dimensional objects,
the number is reduced to at most one proportional to nlk+1/2,

We also stress that this is a weak upper bound, in particular because the
analysis does not consider the full constraint of distance pruning. The analysis given
considers the sequential pruning obtained by iteratively applying the constraint
imposed by the sensed distance between the (k -+ 1) sensed point and the k*
one. Clearly, given k sensed points, there are g;) different distance constraints,
 and taking all of these into account should provide a tighter bound. Moreover, the
bounds derived refer to the pruning due to a single type of constraint. Clearly,
when all three constraints are used, we would expect the number of possible
interpretations to be further reduced.

It was a surprise to the authors that weak upper bounds on the number of
interpretations would be less than exponential in the number of sensed points, & (for
example in the three degree of freedom case, where the number of interpretations
is linear in the number of sensed points). In our experience, however, many people
find it surprising that any of the bounds should grow with k. Most people expect
them to decrease with k, i.e., as more points are acquired, the constraint should be
tighter. Recall, however, that the bounds derived above do not take into account
the fact that there are (’5) distance constraints at the k** level of the tree; they
only apply a single constraint at each level of the tree. There is another important
effect that (partially) accounts for the growth in the number of interpretations
with k. Namely, that for & < 6 each interpretation corresponds to a continuous
range of positions and orientations. For example, for k¥ = 1, each interpretation
corresponds to the whole space of positions and orientations. As more points are
added, the “volume” in the space of positions and orientations consistent with each
interpretation decreases, but the number of these interpretations may increase (as
they do between k = 1 and k = 2)2.

7. Discussion

It is important to note that the algorithm described in this paper has quite
low computational cost. The pruning algorithm is particularly efficient. The range
tables store all the model information needed and pruning is done by simply

2We are indebted to John Canny for this observation.
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comparing the ranges of values measured (plus or minus error estimates) with those
in the tables. Therefore, no arithmetic is done during pruning (except for indexing
into tables). It is only the model test that requires any significant computation and,
therefore, the desire to minimize the number of times it must be performed.

To illustrate this point, we have recorded actual run times for a nuamber of
simulations. While the times are clearly dependent on a number of factors, such
as the type of machine, the specific algorithm, the object sensed, and so on, the
‘order of magnitude of the run times helps illustrate the computational efficiency of
the method. For example, using an implementation in Lisp running on a Symbolics
3600 Lisp Machine, simulations on the motor housing with angular error range of
and positional error range of 0.05 took an average of 1.27 seconds to generate and
prune the interpretation tree and an average of 3.17 seconds to perform the model
check. The time required to generate and prune the tree is clearly dependent on
the number of plausible interpretations and grows non-linearly with an increase in
this number. The time required to perform model checking grows linearly with the
number of interpretations to which such a check must be applied. The average time
expended on each model check was 0.24 seconds. In general, the average time to
complete the computation was under 5 seconds, for this particular implementation,
although this number would occasionally be exceeded in sensing situations in which
a large number of interpretations were possible.

The local constraint method developed here requires that all the sensory data
be drawn from one object. This is difficult to guarantee, in the tactile or visual
domain, when the object is in a bin among other objects. Of course, if a hypothesis
is made that all the points belong to one object and no feasible interpretations
are found, then one can tell that the hypothesxs is wrong. Much more research is
needed in this area, however.

Throughout the paper we have limited our attention to the number of
interpretations, relative to one model, of data obtained from that object. To
carry out recognition between several objects, one determines the number of legal
interpretations of one set of data relative to multiple object models. This process
can simply be performed sequentially on each model. One simple improvement is
clearly possible. If one stores with each model the maximum distance between any
of the faces, then if one of the measured distances is greater than this upper bound,
the model can be discarded at once. This technique quickly separates large objects
- from small ones. Unfortunately, very small measured distances do not rule out
large objects. A second method would be to use direction histograms to rule out
certain models. For example, if the angle between two sensed normals was 30°,
then a model of a cube would not be consistent with this data, and could quickly
be excluded.

After generating and pruning the interpretation tree and performing the model
test on each of the known objects, we have a listing of all the positions and
orientations of all objects consistent with the measured data. At this point, further
discrimination can be carried out by additional unguided sensing as before or
by considering the alternatives and choosing a good place to sense next. The
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recognition problem that remains is now amenable to other techniques as well since
it has been reduced to the much more tractable problem of differentiating among
a class of objects in known positions and orientations.
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AppendixI

Here, we establish the claim of section 2.1.2 that the set

{ng:my|n;-u; > €, ny-uz > e}

‘is contained in the set

{ny - ny | cos [min(7, 812 + ¢1 + ¢2)] < 1 -np < cos[max(0, 013 — @1 + ¢2)]}

- where
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Figure 11. Extremal values of dot products between two cones

Cosg,

cos @1 = €1

cos (/52 == €2

cosfip =uy -ugy =1,
While it is possible to prove this algebraically, it is simpler to see this by the
following geometric construction (see Figure 11). We wish to determine the extremal
values of the dot product between unit vectors in the two cones, or equivalently,
extremal values in the angle between any two such vectors. If the cones about ujy
and uy intersect, clearly the maximum value of the dot product is 1. If the cones
are antipodal, clearly the minimum value is —1.

We now consider cases in which the cones do not overlap. We claim that the
extremal values for the dot product occur when the two vectors lie in the plane
spanned by u; and uy, with the vectors lying at the limits of the cone within this
plane. That is, if we let
2
1

1—~2

1—e¢

pPi =

then the extrema occur at
n; = (€1 — Yp1)u; + pyuy
n2 = pouy + (€2 — ypa)uy
and
ny = (e1 + Yp1)ur — pruz
ny = —poug + (€2 + vp2)uy
The first case can be shown to correspond to the minimal angle between vectors

in the two cones, by the following construction. Construct a cone centered about
n; with radius such that n; lies on the boundary of the cone, that is the new
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cone grazes the uz cone at na. If there is a smaller angle, it must be possible to
reposition this cone so that it is centered at some other point in the u; cone and
yet still intersects the uy cone. This is clearly not possible, and hence the minimum
value of the dot product is given by the stated choice of n; and ny. Expanding the
dot product for this case, and making the appropriate trigonometric substitutions
yields the required expression. A similar construction holds for the maximum angle
(or minimum dot product).

Appendix I

Here, we show how to compute the range of possible direction vectors between
face; and face; in the object model. Let us erect a coordinate system on face; at
the centroid of the face and whose z axis points along the normal of the face. Then,
it is clear that the set of possible direction vectors is the set

{vj—vi|v; € face; & v; € face;}

where both v; and v, are expressed relative to the frame on face;. Assume, for
now, that both faces are convex. It can be shown [Lozano-Pérez 83] that this set is
equivalent to

ch({v; —vil|v,; € ve}t(face]-) & v; € vert(face;)})

where ch() is the convex hull of a set of points and vert() is the set of vertices of a
face. Because of convexity, the extrema of the component of the direction vectors
along the normal of face;, occur at the vertices of this convex hull. Clearly, the
vertices of the convex hull of a set of points are drawn from the set of points itself.
Therefore, we need only find the extrema of the finite set

{n;-(vj—vi)|vj; € vert(facej) & v; € vert(face;)}
where n; is the normal to face;.

When the faces are non-convex, the procedure above will generate a conservative

bound.
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