MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY
A.I.MEMO 739 JUNE, 1984

, DIAGNOSTIC REASONING BASED ON STRUCTURE AND BEHAVIOR

Randall Davis
The Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

We describe a system that reasons from first principles, i.e., using knowledge of structure
and behavior. The system has been implemented and tested on several examples in the domain of
troubleshooting digital electronic circuits. We give an example of the system in operation, illustrating
that this approach provides several advantages, including a significant degree of device
independence, the ability to constrain the hypotheses it considers at the outset, yet deal with a
progressively wider range of problems, and the ability to deal with situations that are novel in the
sense that their outward manifestations may not have been encountered previously.

As background we review our basic approach to describing structure and behavior, then
explore some of the technologies used previously in troubleshooting. Difficulties encountered there

. lead us to a number of new contributions, four of which make up the central focus of this paper.

We describe a technique we call constraint suspension that provides a powerful tool for
troubleshooting.

We point out the importance of making explicit the assumptions underlying reasoning and
describe a technique that helps enumerate assumptions methodically.

The result is an overall strategy for troubleshooting based on the progressive relaxation of
underlying assumptions. The system can focus its efforts initially, yet will methodically
expand its focus to include a broad range of fauits.

Finally, abstracting from our examples, we find that the concept of adjacency proves to be
useful in understanding why some faults are especially difficult and why multiple different
representations are useful.

This report describes research done at the Artificial Inteiligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory’s Artificial intelligence research on electironic troubleshooting is
provided in part by the Digital Equipment Corporation and in part by the Defense Advanced Research Projects
Agency.

@ Massachusetts Institute of Technology 1984

e

DIAGNOSTIC REASONING BASED ON STRUCTURL AND BEHAVIOR 2.
CONTENTS

1. INTRODUGCTION ..oeeveveuieireesereessesssesissessssssssassssssssesassssstshesnsbssstsasnsssssastates sisessnsasasassssssasesasasiacs 3
2 CENTRAL CONCERNSoooteermmicsstisinrismsesisssssmsesinessnsinee s eeeeereeesresresrenesaresat st asa s e ensanees 5
3. DESCRIBING STRUCTURE ...ccvciieriietsiststsssesssssst st st s s st 7
4. DESCRIBING BEHAVIORcuoverriereresicriiesssimsssessssss s csatsssstststssasasass st sasassassinssssassssssssssscns 1
4.1 Simulation Rules and Inference RUIES ..., JONS 1

4.2 IMPIEMENTALION ...ovuivicrititnisersse et 1
5. TROUBLESHOOTING wooooseesseeseessssrsssssssssesssssssessisss s sssssssss s s ssss s i 13
5.1 The Traditional APPrOACHcociiiermrsnsneenineetnessisnsss s 13

6. DISCREPANCY DETECTION AND CANDIDATE GENERATION ...coovnmiiiiininnnisinsisiisisinsines 15
' B.1 CONSErAINT SUSPENSION w.vuvvrreruersiiiserssissssssissssssise et ssasessrsssssnss 16
6.2 Advantages of Discrepancy Detection and Constraint Suspensioncccevreevnses 19

6.3 Subtleties in Candidate Generation ... 20

7. MECHANISM AND KNOWLEDGEiveciitiiissniennnnsessssistiisssssmsssssnsssssssisscsis st 22
8. ORGANIZING THE PATHWAYS OF INTERACTIONccviiiimirimmnicnssesnnntsiensies 23
9. EXAMPLE: A BRIDGE FAULT oottt sttt s asa s s 25
0.1 ThE EXAMPIE ..covrerrereereisisiisiiterenressesssststs sttt st s 26

9.2 The Example: Summary and COmmEeNntsc.cocminmimniiiiniinesnssniini, 31

10. CATEGORIES OF FAILURE ...vooeniieiiitininimntsseisnssssesesssisssbsnssss s sasssssssassasisssssasanessassinens 33
10.1 OFIQINS wotevrereeerstssresssismsssssssassssssasssts sttt s s s eEEEEESS s s 33

10.2 OFEIING ceoveerrreersssisessessissesssnsssssteastsssssessss bttt s s s st st sRES RS s s 34

11. THE ADJACENCY PRINCIPLE ...ccociriiirtiintiinienisnesicstsssstsstsessissssnsesssssssnnsessssssissussnsanansanes 36
12. EVALUATION AND FUTURE WORKcciiiniimmiiiinisencsnsstiasnsisissssssssssssssssssssssssassnsssses 39
12.1 Advantages of Reasoning From Structure and Behaviorcccoeeiriisseneenininennns vee 39

12.2 Describing Structure and Behavior ... 40

12.3 Limitations in Candidate Generation ..., 43

12.4 Comments on the EXamMPIEccciveiniieniiiiiiiniii s 43

12.5 The Example: Implementation ..., 44

12.6 Scaling: Device Complexity and TIME ... 44

12.7 Limits of Modeling: Analog Devices and Incomplete MOdElS .ooviieeerrerineeeerereeeen 45

12.8 But That's Not How It's Really DONEcccoivmeienniinninisiiiniiinssieseesii. 46

13. RELATED WORK ..c.vovirerirernressessssestsassessessssesassessasesaesssssstsbisssssssssssasssassssssassssssssssassassasssassases a7
13.1 Hardware DiagnoSiScccervriiinienensininisessitsssiiississsniissess st sssisssasnsssesannss 47

13.2 Fault Models and Categories of Failure ... 48

13.3 Other Al WOTK cuovveeveereeienriisersseiitisissaniaesinsssssssssssssssssssstestesssssnssasssnsassssassssssssstssnens 48

14, SUMMARY ooovoeeeveceevisaesassssetsesssses s s sss st LSS e 51

IHAGROSG TG REABORBG BASED ON STRUCTURE AND B HAVION 4 DAVIH

1. INTRODUCTION

The overall goal of this research is to develop a theory of reasoning that exploits knowledge
of structure and behavior. We proceed by building programs that use such knowledge to reason from
first principles in solving problems. The initial focus is troubleshooting digital electronic hardware,
where we have implemented a system based on a number of new ideas and tools.

Troubleshooting digital electronics is a good domain for several reasons. First,
troubleshooting seems to be one good test of part of what it means to "understand” a device. We
view the task as a process of reasoning from behavior to structure, or more precisely, from
misbehavior to structural defect: given symptoms of misbehavior, we are to determine the structural
abberation responsible for the symptoms. Second, the task is interesting and difficult because the
devices are complex and because there is no established theory of diagnosis for them. Third, the
domain is appropriate because the required knowledge is readily available from schematics and
manuals. Finally, the application itself is relevant and tractable. ‘

Work with a similar intent has been done in other domains, including medicine [23],
computer-aided instruction [6], and electronic troubleshooting [7,18], with the "devices" rangihg
from the gastro-intestinal tract, to transistors and digital logic components.

This work is novel in a number of respects, some of which have been reported in an earlier
publication [8]. As.noted there:

We have developed languages that distinguish carefully between structure and behavior, and
that provide muitiple descriptions of structure, organizing it both functionally and physically.

We have argued that the concept of paths of causal interaction is a primary component of the
knowledge needed to do reasoning from structure and behavior.

We have developed an approach to troubleshooting based on the use of a layered set of
categories of failure and demonstrated its use in diagnosing a bridge fault.

This paper substantially expands and develops this line of work,! reporting several new contributions:

We describe a new technique called constraint suspension, capable of determining which
components can be responsible for an observed set of symptoms.

We show that the categories of failure, previously derived informally, can be given a
systematic foundation. We show that the categories can be generated by examining the
assumptions underlying our representation.

This in turn gives us a new way to view our approach to troubleshooting: the methodical
enumeration and relaxation of assumptions about the device.

Finally, we describe the concept of adjacency and argue that it helps in understanding both
what it means to have a good representation, and why multiple representations can be useful,

Section 2 is introductory, supplying a brief review of the overall concerns, expanding on the
ideas listed above as a preview of what is central to this work.

1. For the sake of continuity and ease of presentation, parts of [8] are reprinted here, including the bridge fault example and
some of the background material (machinery for describing structure and function, and the introduction to troubleshooting).
This material is reprinted with permission from [8], Copyright Academic Press Inc. (London) Ltd.

PHEACHOT I T ASORINC ASE OB S TRUC UL AND BEHAVION Rl DAV,

If we are to reason from first principles, we require: (/) a language for describing structure, (ii)
a language for describing behavior, and (i17) a set of principles for troubleshooting that uses the two
descriptions to guide its investigation. The central part of the paper describes each of those
components, paying particular attention to the nature of the reasoning that underlies troubleshooting.

Sections 3 and 4 explore our approach to describing structure and behavior, while Sections
5 through 9 deal with troubleshooting. In Section 5 we consider the machinery traditionally used to
reason about circuits and show that it fails to solve the problem we face. We then show how a
technique called discrepancy detection offers a number of useful advances, but claim that it must be
used with care. We suggest that the potential difficulties center around implicit assumptions typically
made when using the technique. We find a solution to the problems encountered by making those
assumptions explicit. organizing them appropriately, and providing for a way to surrender them one
by one, methodically expanding the scope of failure the program considers. Section 9 provides an
example of these ideas in operation, showing how they guide the diagnosis of a bridge fault.

In Sections 10 and 11 we draw back from the specific example presented and attempt to
generalize our methods. We argue that the concept of paths of interaction offers a useful framework
for asking questions about a domain. We claim that the notion of "adjacency” both explains some of
the difficulty in reasoning about bridges and provides guidance in selecting and using multiple
representations.

Section 12 reviews the machinery we have presented, pointing out its limitations and
suggesting directions for future work. Finally, Section 13 compares our work to a number of previous
approaches to similar problems.

DHEACHON TG EE ASORIHG EALE D OR S HRUG TURL ALY BEHAVION b DAVIS

2. CENTRAL CONCERNS

Some of the examples in later sections of this paper require a substantial amount of detail,
yet the principles they illustrate are often relatively uncomplicated. In order to be sure that the
important points are not lost in the detail, we describe the fundamental principles here briefly,
enlarging on them in the remainder of the paper.

+ Candidate generation can be achieved by using a new technique we call
constraint suspension.

Given the symptoms of a malfunction, we wish to generate candidate components, i.e., determine
which components could plausibly be responsible for the malfunction. We model the intended
behavior of a device as a network of interconnected constraints, where each constraint models the
behavior of one of the components. If the device is malfunctioning, then the outputs predicted by the
entire constraint network will not match the actual outputs. Normally, contradictions in’ constraint
networks are handled by retracting one or more of the input values. Constraint suspension takes the
dual view and asks instead, /s there some constraint (component behavior) whose retraction will
leave the network in a consistent state? Each such constraint that we find corresponds to a
component whose misbehavior can account for all the observed symptoms. in many cases the
technique will also supply the details of the.component misbehavior (i.e., show how it is misbehaving).
We describe the technique in detail in Section 6.1.

+ Paths of causal interaction play a central role in troubleshooting.
An important part of the basic knowledge needed for troubleshooting is understanding the
mechanisms and pathways by which one component can affect another. Electronic components
typically interact because they are wired together, but they can also interact due to heat, capacitive
coupling, etc. We argue that viewing the problem in terms of paths of interaction is more useful and
revealing than the fault models (e.g., stuck-ats) traditionally used.

+ In doing troubleshooting we are faced with an unavoidable problem of
complexity vs. completeness.
To be good at troubleshooting, we need to handle many different kinds of paths of interaction. But
this presents a serious problem. If we include all possible paths, candidate generation becomes
indiscriminate: every component could somehow be responsible for the observed symptoms. Yet
omitting any one path would make it impossible to diagnose an entire class of faults.

t One technique for dealing with this dilemma is enumerating and layering the
categories of failure. ;
As experienced troubleshooters know, some things are more likely to go wrong than others. But what
are the "some things"? And what does "more likely" mean? We make both of these notions more
precise. ‘

We show how to generate the "things that can go wrong" by making explicit the assumptions
underlying our representation; the result is a list of "categories of failure". The categories are
organized by using the most likely first and adding additional, less likely categories only in the face of
contradictions.

Associated with each category of failure is a collection of paths of interaction. Hence the
ordered listing of categories produces an ordering on the paths of interaction to be considered. This
allows us to constrain the paths we consider initially, making it possible to constrain candidate
generation. But no path is permanently excluded, hence no class of faults is overlooked.

t The result is a strategy for troubleshooting based on the methodical

DIAGNOS TG REASONING BASE D ON STRucTunt AND BEHAVIOR © DAVIS

enumeration and relaxation of underlying assumptions.
This technique allows us to deal with a progressively wider range of different faults without being
overwhelmed by too many candidates at any one step.

+ The categories of failure can be generated systematically by examining the
assumptions underlying our representation.

As we demonstrate in Section 10, the categories can be derived by listing the assumptions implicit in
the representation and considering the consequences of violating each in turn. Because the
representation employs little more than the traditional notion of black boxes, the categories of failure
deal with information transmission, and the results of this exercise have relevance broader than
digital electronics. We suggest that the results are applicable to software and speculate about wider
applications.

t The concept of adjacency proves to be useful in both troubleshooting and the

selection of representations.

We noted above that the possible pathways for device interaction are an important part of the
knowledge required for troubleshooting. We take the view that devices interact because they are in
some sense adjacent: electrically adjacent (wired together), physically adjacent (hence "thermally
connected"), electromagnetically adjacent (not shielded), etc. Each of these definitions can be used
as the basis for a different representation of the device, -different in its definition of adjacency. The
multiplicity of possible definitions helps to explain why some faults are especially difficult to diagnose:
they result from interactions between components that are adjacent in a sense (representation) that is
unusual or subtle.

This concept appears to generalize in several ways. We view faults as modifications to the
original design, and claim that changes that appear small and local in one representation may not
appear small and local in another. We also suggest that adjacency can help determine what makes
for a "good" representation: one in which the change can be seen as compact. It may also explain
some of the utility of using multiple representations: they offer multiple different definitions of
adjacency.

t Adjacency is a useful principle to the extent that the single initial cause
heuristic holds true.
A common sense heuristic suggests that malfunction of a previously working device generally resuits
from a single cause rather than a number of simultaneous, independent events. When there is indeed
a single cause, there will be some representation in which a compact change accounts for the
difference between the good and faulty device.

+ The concept of a single point of failure is not well defined without specification
of the underlying representation.

A failure in a single physical component, for example, may manifest as multiple points of failure in the
behavior of the overall device. Consider a single chip with four AND gates in it. If the chip is damaged
(via over-voltage, heat, mechanical stress, etc.), we will have a single point of failure in the physical
representation, but may find four different points of failure (the four AND gates) in the functional view
of the device. We claim as a result that "single point of failure" is by itself an under-determined
concept. and that to make precise sense of the term we need to indicate the underlying
representation to which "point" refers. We claim further that the use of multiple representations can
add diagnostic power by offering different ways of resolving apparently independent failures into a
single cause.

1

DEAGNOS TG REAGOHING BASE D ON STHUC HHRE AND BEHAVIOR ‘ DAVIS

3. DESCRIBING STRUCTURE

if we wish to reason about structure and behavior, we clearly need a way of representing
both. We consider each of these in turn.

By structure we mean information about the interconnection of modules. Roughly speaking,
it is the information that would remain after removing all the textual annotation from a schematic.

Two different ways of organizing this information are particularly relevant to troubleshooting:
functional and physical. The functional view gives us the machine organized according to how the
modules interact; the physical view tells us how it is packaged. We thus prefer to replace the
somewhat vague term “structure" by the slightly more precise terms functional organization and
physical organization. As we will see, every device is described from both perspectives, producing

-two distinct, interconnected descriptions.

QOur aim is to provide a means of encoding in one place all of the information about a circuit
that is typically distributed across several different documents. To this end our approacﬁ provides a
way of representing much of the information traditionally found in a schematic, as well as the
hierarchical description often encoded in block diagrams.

The most basic level of our structure description is built on three concepts: modules, ports,
and terminals (Fig. 1). A module can be thought of as a standard black box; ports are the place
where information flows into or out of a module. Every port has at least two termmals one terminal on
the outside of the port and one or more inside. Terminals are primitive elements they are the places
we can "probe"” to examine the information flowing into or out of a device through a port, but they are
otherwise devoid of interesting substructure.

ra————MODULE

O wire-1 [input-1

ADDER -1 sum TERMINAL

d: input-2 ORT

Figure 1 - The basic terms used in structure description.

Two modules are attached to one another by superimposing their terminals. In Fig. 1, for
example, wire-1 is a (wire) module that has been attached to the input-1 port of adder-1 (an adder
module) in this fashion.

The language is hierarchical in the usual sense: modules at any level may have substructure.
In practice, our descriptions terminate at the gate level in the functional hierarchy and the chip level in
the physical hierarchy, since for our purposes these are black boxes --- only their behavior (or
misbehavior) matters. Fig. 2 shows the next level of structure of the adder and illustrates why ports
may have multipie terminals on their inside: ports provide the important function of shifting level of
abstraction. It may be useful to think of the information flowing along wire-1 as an integer between 0
and 15, yet we need to be able to map those four bits into the four single-bit lines insider the adder.
Ports are the place where such information is kept. They have machinery (described below) that
allows them to map information arriving at their outer terminal onto their inner terminals.

Since our ultimate intent is to deal with hardware on the scale of a mainframe computer, we

Ly

DHACHOS T BT ALORING BASTED QN O EHUGCTUR AR L HIAVION b DAVIG

need terms in the vocabulary capable of describing levels of organization more substantial than the
terms used at the circuit level. We can, for example. refer to horizontal, vertical, and bitslice
organizations, describing a memory, for instance, as "two rows of five 1K ram's". We use these
specifications in two ways: as a description of the organization of the device and a specification for
the pattern of interconnections among the components.

Our eventual aim is to provide an integrated set of descriptions that span the levels of
hardware organization ranging from interconnection of individual modules, through higher level of
organization of modules, and eventually on up through the register transfer and PMS [4] levels. Some
of this requires inventing vocabulary like that above, in other places we may able to make use of
existing terminology and concepts.

—{
==
—
=
cf.'(ci

Figure 2 - Next level of structure of the adder, showing that it is implemented as a ripple-carry.

The structural description of a module is expressed as a set of commands for building it. The
adder of Fig. 2, for example, is described by the instructions shown in Fig. 3. With NBitsWide bound
to 4, the first expression indicates that we should repeat the following sequence of operations 4 times:

create an adder slice

run a wire from the first input of the adder to the first input of the slice

run a wire from the second input of the adder to the second input of the slice

run a wire from the output of the slice to the output of the adder
The next expression builds the carry chain and the last wires up the high order bit.

These commands are executed by the system, resulting in the creation of data structures
that model all the components and connections shown. These data structures are isomorphic to the
diagram shown above. That is, the data structures are connected in the LISP sense in the same ways
that the objects are connected in Fig. 2. As in real devices. information flow occurs as a result of
these interconnections: s1ice-1 can place information on its end of the data structure modeling the
carry-out wire, for example, because the two are superimposed. This information will then be
propagated to the other end of the wire and pass into the data structure modeling s1ice-2 because
those two are superimposed.? The utility of this approach is explored below in Section 12.

D IO IO i ALORIE R ALE D ORSHRUC TR ANDBEHAVION i hAVIG

(definemodule adder NBitsWide
(repeat NBitsWide i
(part slice-i adder-slice)
(run-wire (input-1 adder) (input-1 slice-1))
(run-wire (input-2 adder) (input-2 slice-i))
~ (run-wire (output slice-i) (sum adder))

(repeat (- NBitsWide 1) i (run-wire (carry-out slice-1i)
(carry-in slice-[i+1])))
(run-wire (carry-out slice-[NBitsWide - 1]) (sum adder)))

Figure 3 - Parts are described by a pathname through the part hierarchy, e.g., (input-1 adder).

The definition in Fig. 3 is thus a specification of a prototypical ripple-carry adder; invoking it
with a specific value for the width parameter produces one particular instance. We have found it
useful to maintain this prototype/inétance distinction for several reasons. It allows the standard
economy of representation. since information common to all instances ¢an be stored once with the
prototype. It also makes possible the parameterization illustrated above, allowing us to describe the
overall structure of the device, capturing the generalization inherent in the standard pattern of
interconnections. Finally, it allows us to build up a library of module definitions available for later use.
There is considerable utility in assembling such a library, utility beyond the ease of describing more
complicated devices. By requiring that we define modules outside of the context of their use in any
particular circuit, we encourage an important form of "mental hygiene" described further in Section
12.2.

Since our eventual aim is troubleshooting of devices as complex as a computer, the
complete description of the device could become quite large. To deal with this we have made use of
"lazy instantiation": when an instance of a module is created, only the "shell" is actually built at that
time. For the adder above, for example, the outer "box" and ports are built, but the substructure ---
the slices --- are not built until they are actually needed. Only when we need to "look inside” the box,
i.e., drop down a level of structural detail, is additional structure actually built.

As a result, the system maintains a compact description of the device. expanding only where
necessary. This can save a considerable amount of space. Even for the simple adder example
above, there is a lot to describe: each slice is built from two half adders and an CR gate, each
half-adder is built from an XOR and an AND gate. The initial instantiation is simply an adder with two
inputs and an output, rather than four levels of detail and 20 gates. For more complex devices the
savings can of course be greater.

The examples above iliustrate how we describe functional organization: an adder composed
of slices. which are in turn composed of half-adders, etc. Exactly the same module, port and terminal
machinery is used to describe physical organization, but now the hierarchy of modules is cabinets,
boards, and chips.

Since, as noted earlier, every component has both a functional and physical description, we
have two interconnected description hierarchies. We represent this in our system by having the two
hierarchies linked at their terminal nodes (Fig. 4).

2. We do not, by the way, have any special mechanism for dealing with wires. They are simply another module, albeit one with
a particularly simple behavior: information presented to either port will be propagated to the other.

PHACHOUS TG HE ASONIHC Tasl Do S TRUC UL AND BEHAVIOR u DAVIS

adder board

slice-1 slice-2 slice-3
chipEl chipE2 chipE3...

half-adder-1 half-adder-2 or-gate

and-gate-1 and-gate-2 ...

/
- - - - e
and gate\l xor-gate-1 -
~ - / —

Figure 4 -- Interconnection?f functional and physical descriptions

. We determine the physical location of any non-terminal entry in the functional organization
by aggregating the physical locations of all of its leaves. These descriptions are available at various
levels of abstraction. The physical location of slice-1. for example, is the list of all the locations of its
gates (e.g., E1. E4, E7, etc.); alternatively we can also say simply that it is on board-1, if all of those
chips are in fact on the same board.

By having available cross-links between the two descriptions, it becomes possible to answer
a range of useful questions. For example, we can ask, Where physically do | find the (part that
functions as the) address translation register, or, What function(s) does this quad-and-gate chip
perform?

Our description language has been built on a foundation provided by a subset of DPL [3].
While DPL as originally implemented was specific to VLSI design, it proved relatively easy to "peel
off" the top level of language (which dealt with chip layout) and rebuild on that base the new layers of
language described above.

Since pictures are a fast, easy and natural way to describe structure, we have developed a
simple circuit drawing system that permits interactive entry of pictures like those in Figs. 1 and 2.
Circuits are entered with a combination of mouse movements and key strokes; the resulting
structures are then "parsed" into the language shown in Fig. 3.

DHAGHO HC T AVONING BALED ORSTRUGCTURE AMND BEHAVIOR t DAVIS

4. DESCRIBING BEHAVIOR

By behavior we mean the black box description of a component: how is the information
leaving the component related to the information that entered it? A variety of techniques have been
used in the past to describe behavior, including simple rules for mapping inputs to outputs, petri nets,
and unrestricted chunks of code. Simple rules are useful where device behavior is uncomplicated,
petri nets are usetul where the focus is on modeling parallel events, and unrestricted code is often the
last resort when more structured forms of expression prove too limited or awkward. Various
combinations of these three have also been explored.

4.1 Simulation Rules and Inference Rules

Our initial implementation is based on a constraint-like approach ([30], [32]). Conceptuaily a
constraint is simply a relationship. The behavior of the adder of Fig. 1, for example, can be expressed
by saying that the logic levels of the terminals on ports input-1, input-2 and sum are related in the
obvious fashion.

In practice, this is accomplished by writing a set of expressions covering all the different
individual relations (the three for the adder are shown below) and setting them up as demons that
watch the appropriate terminals. A complete description of a 'module, then, is composed of its
structural description as outlined earlier and a behavior description in the form of rules that interrelate
the logic levels at its terminals.

toget sumfrom (input-1input-2) do (+ input-1 input-2)
toget input-1from (sum input-2) do (- suminput-2)
toget input-2 from (sum input-1) do (- sum input-1)

A set of rules like these is in keeping with the original conception of constraints, which
emphasized the non-directional, relationship character of the information. When we attempt to use it
to model behavior of physical devices, however, we have to be careful. This approach is well suited to
modeling behavior in analog circuits, where devices are largely non-directional. But we can hardly
say that the last two rules above are a good description of the behavicr of an adder chip --- the device
doesn’t do subtraction; putting logic levels at its output and one input does not cause a logic level to
appear on its other input.

The last two rules really model the inferences we make about the device. Hence our
implementation distinguishes between simulation rules that represent flow of electricity (digital
behavior, the first rule above) and inference rules representing flow of inference (conclusions we can
make about the device, the next two rules).

We find this distinction useful in part for reasons of "mental hygiene" (the two kinds of rules
deal with different kinds of knowledge) and in part because it contributes to the robustness of the
simulation in the face of unanticipated events. Consider for example a circuit that included an adder,
and imagine that a fault in that circuit resulted in some other component trying to drive the output of
the adder. If we treated all rules the same, our simulation would suggest that the device did the
subtraction described above, yet this simply doesn’t happen.

4.2 Implementation

Our implementation accomplishes this distinction by using two parallel but separate
networks, one containing the simulation rules modeling causality, the other containing the inference
rules. We keep them distinct by giving each terminal two slots, one holding the value computed by
the simulation rules, the other holding the value computed by the inference rules (Fig. 5). Each

DIAGHOSBHIC REAGOMING BAGH D ON LETHUCGTURE AND BEHAVIOR 1. DAVIYS

network then works independently, using the standard demon-like style of propagating values
through its collection of slots.

Sv

4 .
S eeeemm——a
' (Tl :]
’ - - -
/ /-"‘ :e IV
/| -~ P
SVI: - -~

-
D

Figure 5 - Adder with one simulation rule (solid) and two inference rules (dashed).
(SV - simulation value; IV - inference value)

In addition to firing rules to propagate information around the network, this rule-running
machinery also keeps track of dependencies. allowing us to determine how the value in a slot got
there. This is done by having each slot keep track of (i) every rule that uses this slot as an input, (ii)
every rule that can place a value in this slot (i.e. uses it as an output) and (iii) which rule did, in fact,
provide the current value (since, in general, more than one rule can set the value of a slot).?

This dependency network offers several advantages. As we explore below, it is one of the
foundations of the discrepancy detection approach to troubleshooting. As the work in [6]
demonstrated, such a network also makes it easy to explore hypothetical situations. We can place a
value in some terminal and observe the consequences, i.e., see what values propagate from it. When
done with the exploration, removing the value at the terminal causes the dependency network to
remove everything that depends on it as well. This mechanism makes it easy to discover the answer
to some questions by simulation: we can get the device to a particular state, then explore multiple
alternative futures from that point.

While all of the examples given thusfar deal with combinatorial devices, we can also
represent and model simple devices with memory. This requires three simple augmentations of the
approach described above. First, we use a global clock and timestamp all values. Second, we extend
the behavior rule vocabulary so that it can refer to previous values. For example, one simulation rule
for a D flip-flop would be

To get output from (input previous-output clock)
do (if clock is high then input else previous-input)
Finally, our propagation machinery is extended to keep a history of values at each terminal (details
are in [10]). This mode! of time is still very simple, but has allowed us to represent and reason about
basic flipflops, memories, etc.

3. The user can also set a value; this is most commonly done at the primary inputs.

5

DIAGHON HIC RE ASORING BAGE D OM S ERUC TURE AND BE HAVIOR 14 DAVIS

5. TROUBLESHOOTING

Having provided a way of describing functional organization. physical organization and
behavior, we come now to the important third step of providing a troubleshooting mechanism that
works from those descriptions. We develop the topic in three stages. In the first stage we consider
test generation --- the traditional approach to troubleshooting --- and explain how it falls short of our
requirements.

We consider next the style of debugging known as discrepancy detection and demonstrate
why it is a fundamental advance. Further exploration, however, demonstrates that this approach has
to be used with care in dealing with some commonly known classes of faults. We suggest that the
difticulties arise from a number of implicit assumptions typically made when troubleshooting.

In discussing how to deal with the ditficulties uncovered, we argue for the primacy of models
of causal interaction, rather than traditional fault models. We point out the importance of making
these models explicit and separate from the troubleshooting mechanism. The result is a strategy for
troubleshooting based on the systematic enumeration and relaxation of underlying assumptions. This
approach allows us to deal with a progressively wider range of different faults, without being
overwhelmed by too many candidates at any one step.

We demonstrate the power of this approach on a bridge fault, a traditionally difficult problem,
showing how our system locates the fault in a focused process that generates only a few plausible
candidates. . ‘

5.1 The Traditional Approach

The traditional approach to troubleshooting digital circuitry (e.g., [5]) relies primarily on the
process of path sensitization in a range of forms, of which the D-Algorithm [26] is one of the most
powerful. A simple example of path sensitization will illustrate the essential character of the process.
Consider the circuit shown in Fig. 6 and imagine that we want to determine whether the wire labeled A
is stuck at 1. We try to put a zero on it by setting both x1 and x2 to 0. Then, to observe the actual
value on the wire we set x3 to 1, thereby propagating the value unchanged through G2, and set x4 to
0, making the output of G3 = 0, allowing the value of A to propagate unchanged through G1.

X1 A
X2

—Jeo—

. X4 G3

Figure 6 - Simple example of path sensitization.

Troubleshooting with this approach is then accomplished by running a complete set of such tests,
checking for all stuck-ats on all wires.

2y

DitGHOS TG T ABONING BAGE D OFFSTRUGC TBHE AND BEHAVIOR id DAVIG

For our purposes this approach has a number of significant drawbacks. Perhaps most
important, it is a theory of test generation. not a theory of diagnosis. Given a specified fault, it is
capable of determining a set of input values that will detect the fault (i.e., a set of values for which the
output of the faulted circuit differs from the output of a good circuit). The theory tells us how to move
from faults to sets of inputs; it provides little help in determining what fault to consider, or which
component to suspect. Such questions are a central issue in our work because of complexity: the
size of the devices we want to work with in the long run precludes the use of diagnosis trees ---
complete decision trees for all possible faults.

A second drawback of the existing approach is its lack of sharp distinction between between
diagnosis in the field and verification at the end of the manufacturing line. As a result of economic
and historical forces, diagnostics written to verify the correct operation of a newly manufactured
device have been pressed into service in the field. Yet the tasks are sharply different. We are not
requesting verification that a machine is free of faults. The problem facing us is "Given the observed
misbehavior, determine the cause.” We know that the device has worked in the past, we know that
some part of it has failed, and we know the symptoms of that failure. Given the complexity of the
device, it is important to be able to use all of this information as a focus for further exploration. Only if
this fails might it make sense to fall back on a set of diagnostics that, by design, start with no
information and test exhaustively. .

A final drawback of the existing theaory is its unavoidable use of a set of explicitly enumerated
fault models.® Since the theory is based on boolean logic, it is strongly oriented toward faults whose
behavior can be modeled as some form of permanent binary value, typically the result of stuck-ats
and opens. One consequence of this is the paucity of results concerning bridging faults.®

In solving the diagnosis problem, though, we have a significant luxury: we can treat as an
error any behavior that differs from the expected correct behavior. The misbehavior need not be
modelabie in terms of any fixed set of faults. it need only be different from what should have resulted.

In summary, the technology often used for troubleshooting is oriented toward test generation
and the task of verification. We, on the other hand, are concerned with troubleshooting, a process
that makes use of test generation (for an example, see [27]), but which requires as necessary
precursors the processes of candidate generation (determining which components may be failing)
and "symptom generation” (how they may be failing). The next section explores an approach that
supports both of these.

4. Fault models are necessary in verification if we want to avoid the exponential effort of exhaustive testing. If we treat a
device as a black box (e.g.. saying only that it is an adder). we are forced to verify all of its behavior, a task that is potentially
exponential in the number of inputs and amount of state. The most common way of avoiding this is by combining knowledge of
the substructure of the device (e.g., that it is a carry-chain adder) with a specific set of faults to consider (e.q., stuck-ats on all
wires), to produce tests for all such faults on all specified parts of the substructure. This task is at worst a product of the
number of faults and wires.

5. While the theory underlying verification may be limited in the range of faults it can describe, in practice it turns out to
handle a large part of the problem: experience indicates that a large percentage of all faults turn out to be detected (but not
diagnosed) by checking just for stuck-ats. Hence we can determine that something is wrong (satisfying the verification task);
determining the identity and location of the error (diagnosis), however, is a different problem.

IDIAGHOSTIC HTASONIRG BASE D OR STHUC TURE AND BEHAVIOR 15 DAVIL

6. DISCREPANCY DETECTION AND CANDIDATE GENERATION

One response to these problems has been the use of "discrepancy detection" (e.g., [11,6]).
The two basic insights of the technique are (i) the substitution of violated expectations for specific
fault models and (ii) the use of dependency records to trace back to the possible sources of a fault.
instead of postulating a possible fault and exploring its consequences, the technigue looks for
mismatches between the values it expected from correct operation and those actually obtained. This
allows detection of a wide range of faults because misbehavior is now simply defined as anything that
isn’t correct. rather than only those things produced by a struck-at on a line.

The inspiration behind using dependency networks is that any component on the path from
an input to an incorrect output could conceivably have been responsible for the faulty behavior. As
we have seen, the simulator builds a dependency network by recording the propagation of values as it
simulates the circuit. Using those records (or, equivalently, the original schematic) as a guide to
which components to examine appears to be an effective way to focus attention appropriately. As we
will see, itis in fact an interesting trap.

We work through a simple example to show the basic approach of discrepancy detectién,
then add to it the idea of constraint suspension. We comment on the strengths of the resulting
procedure for candidate generation, then use the same example to illustrate difficulties that can arise.

Consider the circuit in Fig. 7.° If we set the inputs as shown, the system will Use the behavior
descriptions to simulate the circuit, constructing dependency records as it does so, and indicating
that we should expect 12 at F.

| Mult-1 X

Add-1 |- (12)

...
Muit-2 Y

Add-2 |- (12)

[12]
3 E Muit-3 2z
Expected-() _

Actual---[]~

=

Figure 7 - Troubleshooting example using discrepancy detection.

If, upon measuring, we find the value at F to be 10, we have a conflict between observed results and
our model of correct behavior. We trace back through the dependency network to enumerate the
possible sources of the problem [11]. The dependency record at F indicates that the value expected
there was determined using the behavior rule for the adder and the values emerging from the first and
second multiplier. One of those three must be the source of the conflict, so we have three
possibilities to pursue: either the adder behavior rule is inappropriate (i.e., the first adder is broken),

6. As is common in the field, we make the usual assumptions that there is only a single source of error and the error is not
transient. Both of these assumptions are important in the reasoning that follows; we comment further on them below.

ja%

THACHOS TG HEASONING BASE D OH S TRUCGTURE AND BEHAVIOR 16 DAVIS

or one of the two inputs did not have the expected values (and the problem lies further back).
Consideration of the first possibility immediately generates hypothesis # 1: adder-1 is broken.

To pursue the second possibility, we assume that the second input to adder-1 is good. In
that case the first input must have been a 4 (reasoning from the result at F, valid behavior of the
adder, and one of the inputs), but we expected a 6. Hence we now have a discrepancy at the input to
adder-1; we have succeeded in pushing the discrepancy one step further back along the dependency
chain. The expected value there was based on the behavior rule for the multiplier and the expected
value of its inputs. Since the inputs to the multiplier are primitive (supplied by the user), the only
alternative along this line of reasoning is that the multiplier is broken. Hence hypothesis # 2 is that
adder-1 is good and multiplier-1 is faulty.

Pursuing the third possibility: if the first input to adder-1 is good, then the second input must
have been a 4 (suggesting that the second multiplier might be bad). But if that were a 4, then the
expected value at G would be 10 (reasoning forward through the second adder). We can check this
and discover in this case that the output at G is 12. Hence the value on the output of the second
multiplier can't be 4, it must be 6, so the second multiplier can’t be causing the current problem.

This style of reasoning can be described as the interaction of simulation and inference:
simulation generates expectations about correct outputs based on inputs and knowing how devices
work (simulation rules); inference generates conclusions about actual behavior based on observed
outputs and device inference rules. The comparison of these two, in particular differences between
them, provides a foundation for troubleshooting.’

6.1 Constraint Suspension

In the discussion above, we glossed over the question of determining when a candidate is
valid (as ADDER-1 was) and when it is inconsistent with all the available evidence (as MULT-2 was).
One of the novel contributions of this work is the development of the constraint suspension technique
as a way of providing an answer to this question.

To see how it works, consider once again the first step of the problem. When we examine the
dependency record at F, we find that the vaiue there resulted from the behavior rule for ADDER-1 and
the values coming from MULT-1 and MULT-2. As above, the first possibility is that ADDER-1 is
broken.

But this is a local inference (i.e., it is based only on the dependency record at F) and we have
to be sure it's globally consistent with all the symptom data. More precisely, we want to ask whether
there is some assignment of values to the ports of the adder that is consistent with all of the inputs
and observed outputs. Is there any way in which ADDER-1 alone couid be broken and produce the
symptoms noted?

We can do this conveniently by using the "constraint-like" character of our representation
and the notion of constraint suspension. While the simulation and inference ruies are usually kept
distinct, for the moment we use the whole collection of them together. in effect a network of
constraints that can indicate whether we have a consistent set of assignments to the inputs and
outputs. If, for example, we were to try to assign to the network the inputs and observed outputs of
Fig. 7. it would report a contradiction: there is no way for ail the rules to be active (i.e., all the
components working as expected) and for those inputs to have produced the observed outputs.

Normally contradictions in constraint networks are handled by retracting one of the values
inserted into the network. But here we are sure of the values (the inputs we sent in to the circuit and
the outputs we measured); what we are unsure of is the constraints (component behaviors). We

7. The guided probe technique. in common use in industry, is based on a set of ideas that is closely related, though not
identical. We discuss the differences in Section 13.

)

DEacHOS TG AGOMICHADE D ON S HRUG TN AHD B HAVION i [RITA

therefore take a dual view, and rather than looking for a value we can retract, we look for a constraint
whose retraction will leave the network in a consistent state. This is the basic idea behind constraint
suspension.

To check the global consistency of ADDER-1, for example, we suspend (disable) all the rules
in ADDER-1, assign the input values to input ports A through E. and assign the observed values to
output ports F and G. We then allow the whole collection of rules to run to quiescence, determining
for us whether there is some set of values on the ports of ADDER-1 consistent with the inputs and
observed outputs.

If the network does reach a consistent state, we know that the candidate can account for the
symptoms. In addition, we can examine the resulting state to see what values the candidate must
have at its ports. In the case of ADDER-1, for example, the network indicates that the inputs must be
6 and 6, and the output 10. Thus in the process of determining the global consistency of a candidate,
constraint suspension also produces symptom information about the misbehavior. .

If the network reports an intractable contradiction, there is no assignment of values to the
component that is consistent with all the symptoms, and hence no way for that component to account
for the observed malfunction. For example, when we disable the rules of MULT-2 and insert the
inputs and observed outputs, an inescapable contradiction resuits. This demonstrates that MULT-2
cannot account for all the observed values.

Fig. 8 provides a complete description of the candidate generation process in a code-like
notation (the procedure has been made easier to follow by ignoring the simulation/inference
distinction for the moment and assuming we have a traditional constraint network). Candidate
generation occurs in three basic steps: simulate the circuit and collect discrepancies, determine
potential candidates using the dependency records; and finally, for each potential candidate
determine global consistency and symptom values by using constraint suspension.

DIAGHDS TG HE AGONING BASED ON STHUCTURL AN BEHAVIOR T DAVIG

CANDIDATE GENERATION PROCEDURE

STEP 1: COLLECT DISCREPANCIES
1.1 Insert device inputs into the constraint network inputs
: eg. insert 3, 2, 2, 3, and 3 at primary inputs A through E
. simulation predicts values at F and G
1.2 Compare predicted outputs with observed and collect discrepancies
; e.g., prediction and observation differ at F.
STEP 2: DETERMINE POTENTIAL CANDIDATES VIA DEPENDENCY RECORDS
2.1 For each discrepancy found in Step 1:
follow the dependency chain back from the predicted value
to find all components that contributed to that prediction
. these are all the components "upstream” of the discrepancy ’
. e.g., if we follow the dependency chain back from the 12

. at F, we find ADDER-1, MULT-1, and MULT-2

2.2 Take the intersection of all the sets found by Step 2.1
; this yields the components common to all discrepancies (and

. hence potentially able to account for all discrepancies)

’

. (in the example above there is only one discrepancy)

STEP 3: DETERMINE CANDIDATE CONSISTENCY VIA CONSTRAINT SUSPENSION
3.1 For each component found in Step 2.2:-
3.1.1 Turn off (suspend) the constraint modeling its behavior
3.1.2 Insert observed values at outputs of constraint network
: (inputs were inserted earlier at Step 1. 1)
3.1.3 If the network reaches a consistent state
-- the component is a globally consistent candidate
-- its symptoms can be found at its ports
-- add the candidate and its symptoms to the candidate list
: e.g., ADDER-1 and its values of 6, 6, and 10
otherwise
the candidate is not globally consistent, ignore it
; e.g., MULT-2
.1.4 Retract the values at constraint network outputs
1 Turn on the constraint turned off in Step 3.1.1
: (these last two just get ready for the next iteration of 3.1)

W w

[64]

Figure 8 - Candidate generation via constraint suspension (assuming single point of failure)

As we explore further below, there are a number of important assumptions
underlying this reasoning. But constraint suspension provides a mechanism that is both
very useful and characteristic of a basic theme underlying this work: the careful
management of assumptions. The traditional approach to diagnosis proceeds by assuming
that it knows how the component might be failing: it is displaying one of the known
misbehaviors found in the set of fault models. We, on the other hand, proceed by simply
suspending all assumptions about how a component might be behaving. We then allow
the symptoms to tell us what the component might be doing. By suspending the
constraint in the adder, for example, we are in effect withdrawing all preconceptions about
how that component is behaving. We then let the symptoms and the rest of the network
tell us whether there is any behavior at all that is consistent with all our observations.

DHACHON TG REASOMIEG BAGED ON STRUCG TURE AN EBEHAVIOR 1 DAVIS

6.2 Advantages of Discrepancy Detection and Constraint Suspension
The combination of discrepancy detection and constraint suspension provides a very
useful mechanism with a number of advantages:

t It is fundamentally a diagnostic technique, since it allows systematic
isolation of the possibly faulty devices, and does so without having
to precompute fault dictionaries, diagnosis trees, or the like.

¥ It reasons from the structure and behavior of the device: the
candidate generation process works from the schematic itself to
determine which components might be to blame.

1+ Since it defines failure behaviorally, i.e., as anything that doesn't
match the expected behavior, it can deal with a wide range of,
faults, including any systematic misbehavior. This is more widely
applicable than a fixed set of models like stuck-ats.

+ As we saw above, the technique yields symptom information about
the malfunction: if ADDER-1 is indeed the culprit, then we know a
littte about how it is misbehaving. As will . become clear, this
information turns out to be useful in several ways.

+ The approach allows natural use of hierarchical descriptions, a
marked advantage for dealing with complex structures.
In the example above, for instance, we determined the relevant candidates at the current,
fairly high level of description, never having to deal with lower level descriptions (e.g.,
gate-level devices). We could now continue the process "inside" either candidate, using
the next level of description in exactly the same fashion, to determine what subcomponents
might be responsible.

+ Continuing the process at the next level might indicate that no
subcomponent could be responsible, ruling out that candidate.
We might, for example, find that, given how the adder is implemented, there may no
subcomponent of it that can logically account for the "6 plus 6 equals 10" symptom that
the adder would have to be displaying. Thus the same candidate generation machinery
will either provide a set of candidate subcomponents at the next level, or indicate that
none can account for the inferred misbehavior, exonerating this candidate.

¥ This approach keeps knowledge about logical plausibility distinct from
knowledge about physical plausibility. This helps simplify
construction of the system.
Constraint suspension answers the question of logical plausibility of a candidate: it
determines whether there is any set of values the component might display that could
account for all the symptoms. The technique (by design) knows nothing about whether
that set of values is in fact physically plausible.

Our candidate generation machinery would, for example, consider a forked wire to
be a plausible candidate if it inferred that the values at its three ports were 1 at the
"input” (the point where some device is driving the wire), and 0 and 1 at the two
"outputs" (where the wire in turn drives two other devices). Viewed at the black box
level, the wire is a three port device that could well display the symptoms noted. To
know that this is implausible requires understanding the physics of a specific technology: a
wire will display different values at its ends as a result of breaks, but a broken wire in
TTL will manifest as a high. Hence the pattern of values given can be ruled out by using
knowledge of the particular technology.

The candidate generator thus provides a list of logically plausible components;

QY

DIAGNOGTIC T ABONING BAGED GON STROGTURE AND BEHAVIOR o DAVIE

further pruning of this list can then be done by invoking a distinct body of technology
specific knowledge. Keeping the two distinct simplifies the construction of both.

T The technique extends in straightforward fashion across multiple
tests.
Each test of the overall device provides one set of symptoms specifying the misbehavior of
a candidate component. The test in Fig. 7, for instance, gives us one /O pair for
ADDER-1 and one for MULT-1; subsequent tests can provide additional |/O pairs. Two
kinds of knowledge then relate results across tests.

The non-intermittency assumption indicates that if a component is misbehaving, that
misbehavior is at least consistent and reproducible. Hence if a candidate has identical
inputs in a later test, it must have an identical output. If, for example, a later test were
to indicate that ADDER-1 was a candidate with inputs 6 and 5, and an output of 13,
those two test results (and the non-intermittency assumption) exonerate ADDER-1..

The second source of knowledge comes from additional information concerning
faults physically plausible within a specific technology. Consider a situation in which Test
1 indicates that a particular wire is a candidate because it is getting a 0 but propagating
a 1, while Test 2 indicates the wire is a candidate because it is getting a 1 but
propagating a 0. Considered simply as a two port device, this is logically consistent and
the candidate generator will report it as such. But knowledge about TTL circuits tells us
that there is no physically plausible fault which will cause a wire to start behaving as an
inverter, hence the wire can be exonerated. ’

t This approach makes the <N>-point-of-failure assumption both explicit
and easily modified.

In Fig. 8 above the single point of failure assumption appears in two places: at Step 2.2
where we intersected the sets, and at Step 3.1 where we disable the rules for exactly one
component when checking candidate consistency. To deal with any specific N > 1, the
simplest change is to take the union at Step 2.2 and take pairs, triples, etc., at Step 3.1.

While this does not in any sense solve -the problem of multiple points of failure, it
does demonstrate two important points. First, it shows that, unlike many approaches, our
constraint suspension technique is not limited to dealing with a single point of failure.
Second, it does provide some aid in grappling with multiple failures, since we can
methodically try possible single failures, then pairs, triples, etc.®

Unfortunately, as we demonstrate, the power of all of this mechanism is only part of the
story.

6.3 Subtleties in Candidate Generation

Consider the slightly revised example shown in Fig. 9. Reasoning as before, we
would discover in this case that there is only one hypothesis consistent with the values
measured at F and G: the second multiplier is malfunctioning, outputting a 0.

8. While checking pairs. etc. using constraint suspension (Step 3.1.3) is computationally simple, generation of appropriate
pairs, tripies, etc.. (Step 3.1} is still an exponential process. This has not yet proved to be untenable, since both the number of
faults considered and the number of components at any given level of description are relatively small. We are nevertheless
exploring ways of improving the process. For example, some simple bookkeeping tricks can be used to rule out some of the
pairs, triples, etc., very quickly.

i

DIACHOG HC REASOMING BAGE D ON GTROC TURE AND BEHIAVIOR M DAVIS

A
3 Mult-1 [—x

B F
28 Add-1 | (12)

i 6]
2 Mult-2 Y
3 "__J— Add-2 |-°(12)

(6]
3 E Muit-3 —J—z_
- Expected-())
Actual---[]

Figure 9 - Troublesome troubleshooting example.

Yet there is another quite reasonable hypothesis: the third multiplier might be bad (or the
first).

But how could this produce errors at both F and G? The key lies in being wary
of our models. The thought that digital devices have input and output ports is a
convenient abstraction, not an electrical reality. If, as sometimes happens (due to a bent
pin, bad socket, etc.), a chip fails to get power, its inputs are no longer guaranteed to act
unidirectionally as inputs. If the third multiplier were a chip that failed to get power, it
might not only send out a 0 along wire z, but it might also pull down wire C to O.
Hence the symptoms result from a single point of failure (MULT-3), but the error
propagates along an "input" line common to two devices.

The most immediate problem lies in our implicit acceptance of unidirectional ports
and the reflection of that acceptance in the basic dependency tracing machinery. We
implicitly assumed that wires get information only from output ports --- when checking the
inputs to MULT-1, we assumed that the inputs are "primitive". We looked only at
terminals A and C, never at the other end of the wire at MULT-3.

Bridges are a second common fault that illustrates another place where we need to
be careful: the reasoning style used above can never hypothesize a bridging fault, again
because of implicit assumptions and their subtle reflection in the reasoning. Bridges can
be viewed as wires that don't show up in the design. But we traditionally make an
implicit closed world assumption: the structure description is assumed to be complete and
anything not shown there "doesn’t exist". Clearly this is not always true. Bridges are
only one manifestation: wiring errors during assembly are another possibility.

Let's review for a moment. The traditional test generation technology suffered from
a number of problems: among others, it is a technology for test generation, not diagnosis,
and it uses a limited fault model. The use of discrepancy detection and constraint
suspension improves on this substantially by providing a diagnostic ability, by defining a
fault as anything that produces behavior different from that expected, and by working
directly from descriptions of structure and behavior. This seems to be perfectly general,
but, as we illustrated, it has to be used with care.

Put simply, the virtue of the technique is that it reasons from the schematic; the
serious flaw in the technique is that it reasons from the schematic and the
schematic might be wrong.

We believe it is instructive to examine the basic source and nature of this problem.

Y2

CIAGHOGHIC REAGGRNING BAGE D O GTHUG TURE ARND BEHAVIOR O DAVIS

7. MECHANISM AND KNOWLEDGE

In the example above we encountered some interesting situations because we failed
to make explicit a number of important assumptions underlying the reasoning. In the
power failure example, we were assuming implicitly that there was only one possible
direction of causality at an input port, and thus never examined the other end of wire C.
Similarly, tracing back through the circuit from input X of ADDER-1, we looked only at
MULT-1, because that was the only apparent connection at that point. We never looked
at, say MULT-3, because there was no wire leading there, hence no reason to believe one
might affect the other.

Note carefully the character of these assumptions:. they concern the existence of
causal pathways. the applicability of a particular model of interaction. In the power failure
example we assumed implicitly that there was no way for MULT-3 to affect MULT-1
through wire C, yet such a path is possible. As we noted above in discussing the
possibility of a bridge fault, there seemed to be no path in the schematic that would allow
MULT-3 to affect ADDER-1, yet a pathway is in fact possible.

The problem is not in the existence of such assumptions --- they are in fact
crucial to the reasoning process. The problem lies instead in the careful and explicit
management of them. To see the necessity of having assumptions about causal pathways,
consider the nature of the candidate generation task. Given a problem noticed at some
point in the device, candidate generation attempts to determine which modules could have
caused the problem. To answer the question we must know by what mechanisms and
pathways modules can interact. Without some notion of how modules can affect one
another, we can make no choice, we have no basis for selecting any one module over
another.

In this domain the obvious answer is "wires”: modules interact because they're
explicitly wired together. But that's not the only possibility. As we saw, bridges are one
exception; they are "wires" that aren’t supposed to be there. But we also might consider
thermal interactions, capacitive coupling, transmission line effects, etc.

Generating candidates, then, should not be thought of in terms of tracing wires (or
dependency records). Rather, we claim, it should be thought of in terms of tracing paths
of causality. Wires are only the most obvious pathway. In fact, given the wide variety of
faults we want to deal with, we need to consider many different pathways of interaction.

And that leaves us on the horns of a classic dilemma. |If we include every
interaction path, candidate generation becomes indiscriminate --- there will be some
(possibly convoluted) pathway by which every module could conceivably be to blame. Yet
if we omit any pathway, there will be whole classes of faults we will never be able to

diagnose.

What can we do? We believe that two steps are important. First, we have to
recognize that our inference mechanisms --- in this case dependency detection and
constraint suspension --- are not the source of problem-solving power. The power is

instead in the knowledge that wesupply those techniques, i.e., the pathways of interaction.

And therein lies the second step: there is an important task in enumerating and
organizing the pathways of interaction to be considered. How can we do this? We
believe that human performance supplies a useful clue.

23

DACGHON TG HE ASONIFG BASE D ORESTRUCTORE AND BEHAVIOR AN bAavi

8. ORGANIZING THE PATHWAYS OF INTERACTION

We appear to be faced with an unavoidable dilemma, caught between the desire to
be complete and the need to constrain the possibilities we consider. But people face
exactly the same dilemma and seem to handle it. What do they do?

The answer seems be an instantiation of Occam’s razor: an experienced engineer
knows that some things are more likely to go wrong than others. He will, as a result,
attempt to generate solutions that employ simpler and more likely hypotheses first, falling
back on more elaborate possibilities only in face of an intractabie contradiction (i.e., given
the current set of assumptions, there is no way to account for the observed misbehavior).
There are three important points here.

The engineer has a notion of "the kinds of things that can go wrong”.

There is an ordering criterion that indicates which category of hypotheses to
entertain first.

The categories are ordered but none is permanently excluded. ‘

To capture this same sort of behavior in our program we need to (i) make precise
the notion of "what can go wrong", and (i) determine what constitutes a "simple"
explanation. We consider both of these briefly here, as background for the example that
follows, then address the issue in detail in Section 10.

To address the first of these, we need some wmethodical way to define and
generate the possible kinds of failures. = This” is accomplished by enumerating the
assumptions built into our "module and information path" representation and then
characterizing the variety of failure that results from violating each assumption. We refer
to the resulting list as the categories of failure.

One such category is illustrated by the problem presented in Fig. 9. The implicit
assumption there was that information flows in only one direction at an input (or output)
port. If this assumption is violated, we get a category of failure we term an "unexpected
direction” failure. The other categories generated in this way are described in Section 10.

Given such a notion of "what can go wrong”, we now need an appropriate metric
for ordering the list. This is currently accomplished by relying on the experience of expert
troubleshooters, who tell us which categories of failure are encountered more frequently
than others. Stuck-ats are more likely than assembly errors, for example. While the
ordering criterion may eventually need be more elaborate, its precise content is less an
issue here than its character: it is a summary of empirical experience that helps us to
order the kinds of hypotheses we consider. For our current domain, this approach
produces the following list:

localized failure of function (e.g., stuck-at on a wire, failure of a RAM cell)
bridges

unexpected direction (e.g., the power failure problem)

multiple point of failure

assembly error

design error

We start by attempting to generate candidates in the localized failure category,
assuming that the structure is as shown in the schematic, that there was only a single
point of error, that information flowed only in the predicted directions, etc. Only if this
leads to a contradiction are we willing to surrender an assumption (e.g., that the schematic
was correct) and entertain the notion that a bridge might be at fault. If this too leads us
down a blind alley then we would surrender additional assumptions and consider ever more
elaborate hypotheses, eventually entertaining the possibility of multiple errors, an assembly
error {every individual component works but they have been wired up incorrectly) and even
design errors (the implementation is correct but cannot produce the desired behavior).

This mimics what we believe a good engineer will do: make all the assumptions
necessary to simplify a problem and make it tractable, but be prepared to discover that
some of those simpiifications were incorrect. In that case, surrender some of those
assumptions and be willing to consider additional kinds of failure.

In terms of the dilemma noted above, the categories of failure serve as a set of

By

DIAGHOSTIC 1EASONING BAGED ON STRUGTURE AN BEHAVIOR o DAVIS

filters. They restrict the paths of interaction we are willing to consider, thereby preventing
candidate generation from becoming indiscriminate. In using the localized failure of
function category, for example, we are assuming for the moment that the structure is as
shown in the schematic, hence there are no additional paths of interaction (and thus no
bridges). But these are fiiters that we have carefully ordered and consciously put in place.
If we cannot account for the observed symptoms with the current set of filters in place,
we remove one, leaving us with a set that is less restrictive, allowing us to consider
additional interaction paths and hence more elaborate hypotheses.

There are of course no guarantees that this will lead us to the correct category of
failure without any false steps. It is possible that all the evidence at a given point is
consistent with, say, a localized failure of function in a single component, yet replacing
that component may make it clear that the fault is elsewhere. As always with Occam’s
razor, our only assurance is that we are generating a hypothesis that is by some measure
the simplest and most likely, and that's the best we can do. We may subsequently
discover that the problem is in fact more complex. By making the ordering criteria explicit
and accessible, we have at least provided a place for embedding knowledge that can make
the choice of hypothesis category as informed as possible at each step.

>3

HAGHOS TIC ERE ASORING BALE D ON STRUCTURE AND BEHAVIOR) DAVIS

9. EXAMPLE: A BRIDGE FAULT

As we have noted, traditional automated reasoning about circuits works from a
predefined list of fault models and uses the mathematical style of analysis exemplified by
boolean algebra or the D algorithm. As a result, it is strongly oriented toward faults that
can be modeled as a permanent binary value. One problem with this is its inability to
provide useful results concerning bridge faults.

In this section we show how our system works when faced with a bridge fault,
illustrating a number of the ideas described above. While the example has been simplified
for presentation, there is still unfortunately a fair amount of detail necessary. A summary
of the basic steps will help make clear how the problem is soived.

The device is a 6-bit carry-chain adder (Fig. 10). The problem -begins when
we notice that the attempt to add 21 and 19 produces an incorrect result.
The candidate generation process outlined above generates a set S1 of three
candidates, any of whose malfunction can explain this result.

A new set of inputs (1 and 19) is chosen in an attempt to discriminate
among the three possibilities. The adder's output is incorrect for this set of
inputs also. The candidate generator indicates that there are two candidates
capable of explaining this new result.

Neither of these two candidates are found in St. Thus we reach a
contradiction: no one component is capable of explaining the data from both
sets of inputs.

Put slightly differently, we have a contradiction under the current set of
assumptions and interaction models. We therefore have to surrender one of
our assumptions and use a different interaction model.

The next model --- bridge faults --- surrenders the assumption that the
structure is as shown in the schematic and considers one class of
modifications to the structure: the addition of one wire between physically
adjacent pins.

The combination of functional information (the expected pattern of values
produced by the fault) and physical adjacency provides a strong constraint
on the set of connections which might be plausible bridges.

The first application of this idea produces two hypotheses that are
functionally plausible, but both are ruled out on physical grounds.

Dropping down a level of detail in our description reveals additional bridge
candidates, two of which prove to be both physically and functionally
plausible. One of these proves to be the actual error.

A key point is the utility of ordering the paths of interaction to be considered. Starting
with a very restricted category of failure, we discover that it leads us to a contradiction.
We surrender an assumption, consider an additional category and hence an additional
pathway of interaction: bridge faults. We show how knowledge of both structural and
functional organization allows us to generate a select few bridge fault hypotheses,
eventually discovering the underlying fault.

%6

PHACHION I HE ADOHIMG HAST D ON STRUGEURE AHD BETAVION Jo DIAVIS

9.1 The Example

Consider the six bit adder shown in Fig. 10 and imagine that the attempt to add
21 and 19 produces 36 rather than the expected value of 40. Invoking the candidate
generation process described above, we would find that there are three devices (SLICE-1,
A2 and SLICE-2), any one of whose malfunction can explain the misbehavior.?

SLICE1
A2
SLICE2

\ : — :_}0.2) (
. { 4 |

\

Figure 10 - Six bit adder constructed from single bit slices. Heavy lines indicate components
implicated as possibly faulty.

A good strategy when faced with several candidates is to devise a test that can
cut the space of possibilities in haif. In this case changing the first input (21) to 1 will
be informative: if the output of SLICE-2 does not change (to a 0) when we add 1 and 19,
then the error must be in either A2 or SLICE-2.%

As it turns out, the result of adding 1 and 19 is 4 rather than 20. Since the
output of SLICE-2 has not changed, it appears that the error must be in either A2 or
SLICE-2.

But if we invoke the candidate generator, we discover an oddity: the only way to
account for the behavior in which adding 1 and 19 produces a 4 is if one of the two
candidates highlighted in Fig. 11 (B4 and SLICE-4) is at fauit.

9. The example has been simplified slightly for presentation.

10. This and subsequent test generation is currently done by hand. Work on automating test generation is in progress [27].
The reasoning behind this test relies on the single fault assumption: if the malfunctioning component reaily were

SLICE-1. both A2 and SLICE-2 would be fault-free. Hence the output of SLICE-2 would have to change when we changed one

of its inputs. (Notice, however, if the output actually does change, we don't have any clear indication about the error location:

SLICE-2, for example, might still be faulty.)

PUAGNOSHIC BE ASOMING BASE D ON GTRUG TURE AND 1 HAVIOR 0 DAVIS

SLICEO

SLICE1

SLICE2

—
}m

@
B @

7

SLICE3

A

SLICE 4

1

SLICE S

Figure 11 - Components indicated as possibly faully by the second test.

Therein lies our contradiction. The only candidates that account for the behavior
of the first test are those in Fig. 10, the only candidates that account for the second test
are those in Fig. 11. There is no overlap, so there is no single candidate that accounts
for all the observed behavior.

Our current category --- the localized failure of function --- has thus led us to a
contradiction.”” We therefore surrender it and consider the next, less restrictive category,
one that allows us to consider an additional kind of interaction path --- bridging faults.

The problem now is to see if there is some way to unify the test resuits, some way to
generate a single bridge fault candidate that accounts for all the observations.

Much of the difficuity in dealing with bridging faults arises because they violate the
rather basic assumption that the structure of the device is in fact as shown in the
schematic. But admitting that the structure may not be as pictured says only that we
know what the structure isn’t. Saying that we may have a bridge fault narrows it to a
particular ciass of modifications to consider, but the real problem here remains one of
making a few plausible conjectures about modifications to the structure. Between which
two points can we insert a wire and produce the behavior observed?

To understand how we answer that question, consider what we have and what we
need. We have test results, i.e., observations of behavior, and we want conjectures about
modification to structure. The link from behavior to structure is provided by knowledge of
electronics: in TTL, a bridge fault acts like an and-gate, with ground dominating.’?

From this fact we can derive a simple pattern of behavior indicative of bridges.
Consider the simple example of Fig. 12 and assume that we ran two tests. Test 1
produced one candidate, module A, whick should have produced a 1 but yielded a 0 (the
zero is underlined to show that it is an incorrect output). Module B was working correctly
and produced a 0 as expected. In Test 2 this situation is exactly reversed, A was
performing as expected and B failed.

The pattern displayed in these two tests makes it plausible that there is a bridge

11. Note that dropping down another level of detail in the functional description cannot help resolve the contradiction,
because our functional description is a tree rather than a graph: in our work to date, at least, no component is used in more
than one way. (If the tunctional description were in fact a graph, we could easily continue down it to see if the two candidate
sets did indeed have a subcomponent in common).

12. This is an oversimplification, but accurate enough to be useful. in any case. the point here is how the information is used;
a more complex model could be substituted and carried through the rest of the problem. Note also that for notational
convenience, we assume in the rest of the description that ground is equivalent to a 0.

PHAGHOS HIC HE ASONING BASED OH G THUGTUHRE AND BEHAVIOR o [RTYUNY

linking the outputs of A and B: in the first test the output of A was dragged low by B, in
the second test the output of B was dragged low by A.

TEST 1 TEST 2
A 0 A —0
N — B |—20

Figure 12 - Pattern of values indicative of a bridge. Heavy lines indicate candidates.

We have thus turned the insight from electronics into a pattern of values on the
candidates. It is plausible to hypothesize a bridge fault between two modules A and B
from two different tests if. in test 1, A produced an erroneous 0 and B produced a valid
0, and in test 2, A produced a valid 0 while B produced an erroneous 0. Note that this
can resolve the contradiction of non-overlapping candidate sets: it hypothesizes one fault
that involves a member of each set and accounts for all the test data.

Thus, if we want to account for all of the test data in the original problem with a
single bridge fault, we need a bridge that links one of the candidates from the first test
(SLICE-1, A2, SLICE-2) with one of the candidates from the second test (B4, SLICE-4), and
that mimics the pattern shown in Fig. 12.

Fig. 13 shows the candidate generation results from both tests in somewhat more
detail. As noted earlier, the candidate generation procedure can indicate for each
candidate the values that would have to exist at its ports for that candidate to be the
broken one. For example, for SLICE-1 to be at fault in test 1. it would have to have the
three inputs shown, with its sum output a zero (as expected) and its carry output also a
zero (the manifestation of the error, underlined).

TEST 1 TEST2
1 1

‘]’ SLICE1 |0 ? SLICE1 |— 0

N\ o~
X ~—_ Y N\ Ny
0 \\| 0o\
' \I
B4 1 i B4 0 i
1 1 1_|SLICE4 [—0 1 01 SLICE4 }—0
1 0

Figure 13 - Candidates and values at their ports.

In Fig. 13 there are two pairs of devices that match the desired pattern, yielding
two functionally plausible bridge hypotheses:
Dotted line X, bridging wire A2 to the sum output of SLICE-4;
Dotted line Y, bridging the carry output of SLICE-2 to the sum output of SLICE-4.

But the faults have to be physically plausible as well. For the sake of simplicity,
we assume that bridge faults result only from solder splashes at the pins of chips.® To
check physical plausibility, we switch to our physical representation, Fig. 14. Wire A2 is

DUACHOSTIC REAGORING BASED ONSERUCTURE AND BEHAVIOR oY DAVIG

connected to chip E1 at pin 4 and chip E3 at pin 4; the sum output of SLICE-4 emerges
at chip E2. pin 13. Since they are not adjacent. the first hypothesis is not physically
reasonable. Similar reasoning rules out Y, the hypothesized bridge between the carry-out
of SLICE-2 and the sum output of SLICE-4.

g i el
165 @E = =
o 9 — — z0r ¥ p—
= | pu— — —] 4 —
e §=
m e ‘}i:
— " pro u.——
=)= == p= —
e H— = =
- = = —
:"‘?: - Lo el
— o —] 4 — !
-—’g: = “‘?:
e § — R 9 —
— — — = B%:
= e
P vy Y W— . S o
= eon— pli—
= — -
= IE =g !}:
Hwe { wd {1
I e
- AR STl

Figure 14 - Physical layout of the board with first bridge hypotheses indicated. (Slices 0, 2, and
4 are in the upper 5 chips, slices 1, 3, and 5 are in the lower 5.))

So far we have considered only the top level of functional organization. We can
run the candidate generator at the next lower level of detail in each of the non-primitive
components in Fig. 13. (Dropping down a level of detail proves useful here because
additional substructure becomes visible, effectively revealing new places that might be
bridged.)

We obtain the components and values shown in Fig. 15. Checking here for the
desired pattern, we find that either of the two wires labeled A2 and S2 could be bridged
to either of the two wires labeled S4 and C4, generating four functionally plausible bridge
faults.

13. Again this is correct but oversimplified {e.g., backplane pins can be bent or bridged), but as above we can introduce a
more complex model if necessary.

DIAGNOGTIC HE ASORING BASE D ON GTRUCTURE AND B HAVIOR S0 DAVIS

TEST1 TEST2
— i
SLICE1 SUCED |
— —
A2 S2
[0 0
SLICE?2 SLICE?
! 1.4
0 ” 0 ‘
SLICE4 SLICE4 “

Figure 15 - Candidates at the next level of functional description. Each single bit adder is built
from two "half-adders" and an OR gate. (To simplify the figure, only the relevant values are
shown.)

Once again we check physical plausibility by examining the actual locations of A2,
S2, S4, and C4 (Fig. 16). ' As illustrated there, two of the possibilities are physically
plausible as well: A2-S4 on chip E1 and S2-S4 on chip E2.

p— 14 fme — 14 b
= =
2 wor §p— ——f 20 § f—
[= — 8 p— —EIO{‘
—] -
= .lZ:
p— 4 b— —] l— p— —
] s] e s
A2 0— - 4t 0— L
— — = —
== Rl e
- 4 — —
- B}E = H‘—
:xul9: xul:
s $ f— o T
= 3
e — =
— B~ — Bi_
5«?5 ‘:‘»«32

Figure 16 - Second set of bridge hypotheses located on physical layout.

Switching back to our functional organization once more, Fig. 17, we see that the
two possibilities correspond to (X) an output-tc-input bridge between the xor gates in the
rear half-adders of SLICE-2 and SLICE-4, and (Y) a bridge between two inputs of the xor
in the forward half-adders of slices 2 and 4. '

14. Note that the erroneous 0 on wire S2 can be in any of three physical locations, because S2 fans out (inside the module it
enters on its right).

10. CATEGORIES OF FAILURE

Since the categories of failure and paths of interaction play a significant role in
our approach, two obvious questions concern their origin and ordering. Where do we get
them, and how can we determine an appropriate ordering?

We want a methodical way to generate the categories so that we have some
reason to believe that the result is systematic and hence reasonably compiete. We need
to define the criterion for simplicity so that we know how to order the categories to
produce a sequence of successively more elaborate hypotheses.

10.1 Origins

The list in Section 8 of possibilities to consider is of course specific to our current
domain. We believe that our overall framework does, however, offer a useful set of
questions that we can ask about any domain to generate an analogous listing.
Appropriately enough, many of the questions derive from examining carefully our simple
"module and information path" representation, asking what assumptions the representation
makes about the world, and then asking what the consequences are of violating those
assumptions.

The simplest assumption (indicated schematically in Fig. 18a) lies in believing that a
module can be said to have a particular behavior. To say this is violated means, as we
saw earlier, that the module isn't behaving in accordance with the. assigned behavior, i.e.,
it is broken. This is the simple "localized failure of function" category that heads the list
in Section 8. Simple examples in our current domain include the traditional stuck-at (a
particular kind of failure of a wire module), as well as failures of primitive gates (e.g., a
NOR-gate acting as an inverter), or even the use of an incorrect part during assembly
(e.g., a NOR-gate chip instead of a NAND-chip).

R
v

Figure 18a - Assigning behavior to 2 module.

Our representation also assumes that modules have ports, each with a specified
direction (Fig. 18b). Yet as we saw above, this too can be violated. We term it an
"unexpected direction" error, with the power failure example as one instance.

gy

Figure 18b - Assuming ports have specified direction.

Treating a module as a black box means committing only to its behavior; when we
drop down a level in the description, we are assuming that it has a specific substructure.
But that may not be true; we refer to this as a "structure error” (Fig. 18c). How could
the substructure be different from what we expect? In our current domain there are a

DIAGNOS EIC TEASORING BASETTON STRUCTHEE ANETBEHAVIOR N DAVIS

choosing a particular variety of adjacency. contiguity of pins on chips. This produced a
significant reduction in the potential search space, but still left us with too many choices
to produce an effective hypothesis generator: trying each pair of pins would be too
unwieldy.

We then found a way to reduce the search using the functional representation.
We used knowledge about slectronics to derive a link from behavior to structure, producing
a pattern characteristic of bridges. This reduced the search space considerably, since the
pattern had to include one candidate from each of the two sets (each of which is itself
typically small), and since the pattern of "alternating 0's" is relatively rare.

The result was sufficiently constrained to be an effective generator of bridge
hypotheses. We were then able to use the physical representation as a filter on the
hypotheses generated.

In general then, our system produces a focused development of its solution by
relying on several keys: .

The layered set of interaction nodels produced by methodical enumeration
and relaxation of underlying assumptions constrained the categories of errors
we were willing to consider, yet allowed us to consider more elaborate
hypotheses when simpler ones failed.

The availability of multiple representations allowed us to take advantage of
constraints associated with each representation.

We were able to use one representation as the basis for a constrained
generator of hypotheses and use the other to filter the hypotheses generated.

In Section 11 we speculate on ways of generalizing the set of ideas used here.
We consider the character of the representations used and ask what made them effective
generators and filters. Our goal there is to produce a set of principles that will function
as guidelines in selecting representations, making it possible to carry over this approach to
other problems in other domains.

DIACROG TG HEASONING BAGE D OR GTRUCTHERE AND EEHAVIOR Gt DAVIS

SLICE-2

\
|

l SLICE-3 [g- l

- :-

\ I
.

\ SLICE-4

~ /
—_\‘ — .’/

Figure 17 - Functional representation with bridge fault hypotheses illustrated.

It is easy to find a. test that distinguishes between these two possibilities'® : adding
0 and 4 means that the inputs of SLICE-2 will be 1 and 0, with a carry-in of O, while the
inputs of SLICE-4 will both be 0, with a carry-in of 0. This set of values will show the
effects of bridge YV, if it in fact exists: the sum output of SLICE-2 will be O if it does exist
and a 1 otherwise. When we perform this test the result is 1, hence bridge Y is not in
fact the problem. '

Bridge X becomes the likely answer, but we should still test for it directly. Adding
4 and O (i.e., just switching the order of the inputs), is informative: if bridge X exists the
result will be 0 and 1 otherwise. In this case the result is 0, hence the bridge labeled X
is in fact the problem.'®

9.2 The Example: Summary and Comments

A fundamental point illustrated by the example is the utility of a layered set of
models as a device for making explicit our simplifying assumptions and for dealing with
complexity in candidate generation. Our original model, localized failure of function,
incorporated the largest set of simplifying assumptions and was the most restrictive. It
worked initially, but we eventually found ourselves unable to account for all the
observations. At that point we surrendered one of our assumptions, adopted a less
restrictive model. and considered an additional path of interaction. This allowed us to
generate several bridge fauit hypotheses, one of which eventually proved to be correct.
The notion of layers of interaction models thus provided an important overall framework
guiding the problem solving.

A second source of problem solving power came from using multiple
representations. This was particularly important in constraining the generation of bridge
candidates. Faced with the original, apparently insoluble problem, we admitted the
possibility of a bridge. But this left us with the difficult task of deciding where the bridge
might be. The problem is quite similar to adding a new line to complete a proof in
geometry and the difficulty is analogous: new constructions are difficult in general because
they are relatively unconstrained [22].

The system's search for likely candidates turned out to be focused because we
were able to derive useful constraints from each of our multiple representations. Consider
the physical representation, where the constraint is physical adjacency. We started by

15. As above, tests are currently generated by hand.
16. Had both been ruled out by direct test. then we would once again have had a contradiction on our hands and would have
had to drop back to consider a still more elaborate model with additional paths of interaction.

PHAGHOGTIC EALONING BASE D ON STRUCG TURE AND BE HAVIOR 34 DAVIS

wide range of answers, ie., a wide range of paths of interaction: bridges, thermal or
transmission line effects, as well as out of date schematics or a wiring error during
assembly. Each of these has the effect of producing a substructure different from what
we expected.

Figure 18c - Assuming substruciure is as specified.

.

Finally, our representation assumes that the overall behavior of a module should .be
matched by the aggregate behavior of its substructure (Fig. 18d). Violating this assumption
means there is a design error: all components work as specified. but they cannot produce
the desired behavior.

//\\k

Figure 18d - Assuming overall behavior matches aggregate of substructure.

Thus, examining carefully the character of the assumptions built into our
representation yields a set categories of failure. These in turn provide a number of
questions we can ask about the domain, questions whose answers are the pathways of
interaction to be considered. While we have answered these questions here for our digital
circuits, we believe the questions are more broadly applicable, and may prove to be a
useful way to think about other domains where the "module and information path" view is
appropriate. . ‘

One additional category derives from examining our candidate generator. As noted
in Section 6.2, the single point of failure assumption is embodied in the fact that we
disabled the rules for exactly one component when checking candidate consistency. This
too may be an incorrect assumption, yielding yet another category, muitiple faults.

10.2 Ordering

The example in Section 9 used a very simple approach to ordering the categories:
a fixed order based on frequency of occurrence as reported by experienced
troubleshooters. While the program currently uses this approach, it is easy to imagine
more sophisticated ordering schemes that still fit naturally into this framework. The
remainder of this section speculates about a number of such possibilities.

More elaborate static ordering criteria might take account of the age of the
machine or the age of the design. We might want to indicate that assembly errors are
more common in machines received from the production line recently, and design errors
more likely if the device is a new model or has undergone substantial redesign.

Note that, were we willing to model enormously more of the world, we might be
able to infer that design errors are less common in well-established designs, but this is

DIACHOG TG REASONING BAGE DY ORNSEROC TURE AMD BEHAVION KW DAVIS

beyond the scope of our efforts and the investment would be very large for a relatively
modest return. As it stands, we are in this case willing to rely on some simple
experiential observations for guidance, without bothering to model the causality in any
detail.

The character of the reported misbehavior can be revealing as well Small
changes in external behavior are often suggestive of the local failure of function category,
while substantial variations in behavior can be suggestive of assembly and wiring errors.
We might thus borrow from medicine the notion of a "presenting complaint” and use
information about the character of the misbehavior to reorder the categories to be
considered.

An obvious further extension would make the ordering dynamic. We might start
- out as above, but reorder the categories in response to information gained as inference
and testing proceeds.

Whatever the ordering criteria chosen, the overall point is that having an ordered
set of fault categories provides a number of advantages. First. it offers a means of
expressing and managing simplifying assumptions. Second. it provides a simple mechanism
for dealing with complexity, by limiting the set of interaction paths to consider. Finally, it
supplies a relatively natural site for embedding and using the empirical knowledge of an
experienced engineer that might be difficult to represent at the level of first principles.

DIAGHOGTIC BEAGORING BASED ON STRUCTURE AND HE HAVIOR R DIAVIS

11. THE ADJACENCY PRINCIPLE
The bridge fault example raises two interesting questions:
Why are bridge faults so difficult?
Why does the physical representation prove to be so useful?
To see the answer, we start with the trivial observation that all faults are the result of
some difference between the device as it is and as it should be. With bridge faults the
difference is the addition of a wire between two physically adjacent points.

Now recall the nature of our task: we are typically presented with a device that
misbehaves. not one with obvious structural damage. Hence we reason from behavior, i.e.,
from the functional representation. And the important point is that for a bridge fault, the
difference in question --- the addition of a single wire --- is not small and local in that
representation. As the comparison of Figs. 16 and 17 ‘makes clear, the new wire connects
two points that are adjacent in the physical representation but widely separated in the
functional representation.

The ditference is also not as simple in that representation: if we include in our
functional diagram the AND gate implicitly produced by the bridge (Fig. 19), we see that a
single added wire in the physical representation maps into an AND gate and a fanout in
the functional representation.

SLICE-2

0

SLICE-3
SLICE-4

T

Figure 19 - Full functional representation of bridge fault X.

This view helps to explain why bridge faults produce behavior that is difficult to
understand. Bridge faults are modifications that are simple and local in the physical
description, but our reasoning is done using the functional description. Hence the
dilemma:

The desire to reason from bahavior requires us to use a representation that

does not necessarily provide a compact description of the fault.

This non-locality and complexity should not be surprising, since devices physically
adjacent are not necessarily functionally related. Hence there is no guarantee that a
change that is compact in one will produce a change that is compact in the other. More
generally, changes compact in one representation are not necessarily compact in another.

We can turn this around to put it to work for us:

Part of the art of choosing the right representation(s) for diagnostic

reasoning is finding one in which the suspected change is compact.

This explains the utility of the physical representation: it's the "right" one because it's the
one in which the change is compact because the affected components are adjacent.

Going one step further, we might ask why adjacency is the relevant organizing

DIACNOS TG BRE AGONING BASHD ON STRUCTORE AHD BE HAVIOR 30 DAVIS

principle. We believe the answer follows from two facts: (a) devices interact through
physical processes (voltage on a wire, thermal radiation, etc.) and (b) physical processes
occur locally, or more generally, causality proceeds devices that are in some sense
adjacent: there is no action at a distance. To make this useful, we turn it around:

The paths of interaction are one way to define adjacency. That is, each

kind of interaction path can define a representation.

Bridge faults - arise from physical adjacency and hence are local in the physical
representation. The notion of thermal adjacency and a corresponding representation would
be useful in dealing with faults resulting from heat conduction or radiation, electromagnetic
adjacency would help with faults dealing with transmission line effects, etc.

Each of these produces a different representation, different in its definition of

adjacency. And each will be useful for understanding and reasoning about a

category of failure.

The paths of interaction are in effect a set of "representation generators”. They
can tell us what kinds of views to take of the device; how to represent it in order to
make use of the fundamental belief that physical action proceeds between components that
are adjacent in some way.

Finally, we can push this one step further, asking why we expect that there will in
fact be some representation, some definition of adjacency, that "makes sense" of the
problem at hand. Why should there be some representation in which the fault appears to
be a compact perturbation? The belief appears to be based on what we might call the
"single initial cause heuristic": '

It is often the case that the malfunction of a previously working device

results from a single cause, rather than a number of simultaneous,

independent events.
When there is indeed a single cause, there will be some representation in which a small
and local change accounts for the difference between the good and faulty device. To the
extent that a malfunction results from multiple, unrelated events (e.g., multiple failures in an
old machine; multiple problems inserted deliberately), it becomes far less likely that we can
find a single representation that offers a unifying perspective for every fault at once."

One additional illustration of the utility of multiple representations with multiple
definitions of adjacency comes from considering devices with shared components. In some
designs, one physical component (e.g., an AND-gate) may be used for two different
purposes. We can model this by having two different modules in the functional
representation that point to the same module in the physical representation (using the
cross-links shown in Fig. 4). If the physical gate is bad, then the candidate generator
may find that it needs two points of failure to account for the symptoms. But what looks
like two failures in the functional representation can be resolved to a single point of failure
by shifting to the physical representation.

Similarly, if a chip containing 4 AND gates is completely bad, our candidate
generator will find four apparently distinct candidates. Once again, shifting to the physical
representation gives us a view in which the problem can be understood as a single failure.

In both cases shifting to a different definition of adjacency helps resolve the issue
and provides alternate definitions of the notion of a single point of failure. In the first
case two modules distant in functionai representation are adjacent (in fact coincident) in
the physical representation; in the second case four different functional modules become
adjacent (same package) in the physical representation.

As this illustrates, the basic concept of a "single point of failure" is not in fact
well defined until we specify the representation. We should really speak of a single point
with respect to a particular representation, since, as we have seen, what appears as
multiple distinct points in one representation may be a single point in a different

17. This work has not yet explored the problem of multiple, related failures, where one fault causes a cascade of other
failures.

DIAGNOS BIC TE ALONING BAGE D ON STRUCTHRE Ao BEHAVIOR R DAVIS

representation.

We still have substantial additional work to do on these topics, but we seem at
least to be asking the right questions. The concept of pathways of interaction and the
corresponding definitions of adjacency appear to make sense for a wide range of hardware
faults.

The ideas also appear to work in other domains. When debugging software, for
example, the pathways of interaction differ (e.g., procedure call, mutation of data
structures), but the resulting perspectives appear to make sense and there are some
interesting analogies. Unintended side eftects in software, for example, are in some ways
like bridge faults. An unexpected direction of information flow can result during a
procedure call, by assigning a value to a parameter that turns out to be called by name
rather than by value.)

More generally still, there appears to be substantial breadth to this whole
perspective of viewing different representations as embodying different definitions of
adjacency. Consider software once again. Our typical view of software is functional, in
flowcharts or dataflow diagrams. Yet there are faults where the notion of "physical
adjacency” is crucial in understanding the bug. Consider for example an out-of-bounds
array addressing error. Full understanding of the bug may require knowing how the
software is mapped physically into memory, so that we can determine which cell was
actually referenced.

A similar phenomenon is apparent in speech:, the classic "recognize speech" vs.
"wreck a nice beach" confusion is entertaining in part because the two are so "far apart”
in meaning (distant in any semantic representation) yet adjacent ‘in their phonetic
representation. The idea even supports "troubleshooting” in this domain. In reading an
abstract recently, | encountered a number of phrases that made no sense in an otherwise
coherent text. Then, considering the origin of the document, it became plausible that the
text might have been dictated over a noisy (transatlantic) phone line. This suggested that
a phonetic representation might be the "correct"” one for debugging, i.e., the one in which
the errors could be seen as small and local changes. |t was then easy to debug phrases
like "decorative representations” ("declarative representations”) and "rule space systems"
("rule based systems").

Two widely accepted bits of wisdom about Al suggest that having the "right”
representation is an important key in problem solving and that multiple representations often
contribute substantial power. We believe that the notion of adjacency as a way of
defining representations is useful in understanding more about both of these ideas. In the
effort to define what is meant by the "right" representation, for example, a number of
general guidelines have emerged, at the level of suggestions that appropriate
representations "make the important things explicit”, and "expose the natural constraints"
(e.g., [34]). The notion of adjacency offers one additional level of detail to these
catchphrases. It suggests that natural constraints arise because things are adjacent "in
some sense", and that "in some sense" can have multiple different instantiations. We can
generate a variety of representations by seeking out different definitions of adjacency.
Finally, this in turn may help explain the utility of multiple representations: part of the
power in using them arises because they provide us with multiple different definitions of
adjacency.

DIAGHOS HIC HE ASONING BAGT D ON STRUCTURE AND BEHAVIOR R DAVIL

12. EVALUATION AND FUTURE WORK
Since this work is still in its formative stages, there are still a number of
interesting questions about its limits and appropriate directions for future work.

12.1 Advantages of Reasoning From Structure and Behavior

There are several advantages in basing reasoning on knowledge of structure and
behavior, rather than previous approaches like the empirical associations used in a number
of earlier programs (e.g., MYCIN [28.9], INTERNIST [24], or PROSPECTOR [17]). Reasoning from
first principles provides a strong degree of machine independence, makes the system easier
to construct and maintain, facilitates defining the program’'s scope of competence, and
makes it capable of dealing with bugs that display novel symptoms.

Reasoning from first principles offers a significant degree of machine independence.
The tools and techniques described above work directly from the descriptions of structure
and behavior and make explicit their assumptions about those descriptions. This ‘allows us
to cover a wide range of devices built from digital logic components. Even more
fundamentally, concepts like modules linked by causal pathways, expected behavior, etc.,
are widely useful, extending perhaps to include handheld calculators, digital watches,
automobiles and software.

Rules, on the other hand, are typically strongly machine-specific. There is
distressingly little carry-over from one machine to the next when we capture troubleshooting
knowledge at the level of symptom/disease associations. Even simple changes to a single
machine (e.g., design upgrades) can mean substantial changes in the rules. Working on a
new machine means even more difficulty. Each new system would require a new
knowledge base with all of the difficulties that entails.

A system based on reasoning from first principles is easier to construct because
there is a way of systematically enumerating the required knowledge: the structure and
behavior of the device. A system based on empirical associations is more difficult to
construct because the character of the knowledge makes it necessary to extract the rules
on a case by case basis. To the extent that the knowledge is a distillation of the
expert's experience, the best we can do is to assemble a representative collection of cases
and ask an expert for the rules dealing with each case. No more systematic method of
collecting rules is available and the process often continues for an extended period of
time. This time lag is a particular problem in dealing with electronic hardware: the time
necessary to accumulate the relevant experience is beginning to be longer than the design
cycle for the next model of the machine.

A system based on reasoning from first principles is also easier to maintain, since
modifications to the machine design are relatively easy to accommodate. We can update
the structure and behavior specifications for each modified component, rather than having
to determine how each change should modify the overall behavior and the troubleshooting
strategy.

The ability to enumerate the knowledge systematically also aids in defining the
program’'s scope and competence. We know what parts of the machine have been
modeled and to what level of detail.

When building a system from empirical associations, it is more difficult to define
precisely what such a program "knows". A precise answer to the question is often
possible only for a problem that can be formalized, so almost every Al system suffers from
this to some extent. But the more systematic our mechanism for enumerating the required
knowledge, the more precise we can be about defining the program’s competence.
Deriving the knowledge strictly from a collection of case studies is one of the less
systematic mechanisms, yet it is in such cases that rule-based systems are appropriate. As
a result, often the best we can say about the system is that it has a set of rules dealing
with one or another class of problems, with only a very informal measure of how
thoroughly that class has been covered.

Finally, reasoning from first principles offers the possibility of dealing with novel

DIACHOG TG REASORING BAGE D ON STRUCTURE AND BE HAVIOR 40 DAVIS

faults. As we have seen, our system does not depend for its performance on a catalog
of observed error manifestations. Instead it takes the view that any discrepancy between
observed and expected behavior is a bug, and it uses knowledge about the device
structure and behavior to determine the possible sources of the bug. As a result, it is
able to reason about bugs that are novel in the sense that they are not part of the
“training set” and are manifested by symptoms not seen previously.

Since rules are a distillation of an expert’s experience, a program built from them
will be reasonably sure of handling only cases quite similar to those the human expert has
already seen, solved, and communicated to the program. We have little reason to believe
that the program will handle a bug whose outward manifestation is unfamiliar, even if the
root cause is within the claimed scope of the system.

At times there may not be a choice: in domains where knowledge truly is
anecdotal and experiential, a rule-based encoding may be appropriate. Where knowledge
in the domain does admit of some more basic model, however, we find the reasons above
present a strong argument for capturing that level of understanding in the program.

12.2 Describing Structure and Behavior
12.2.1 Previous representations

There is a long history of attempts to represent structure and behavior in general
and computer hardware in particular. Our approach has a number of features in common
with that work. The primary points of overlap are the black box view of modules and the
use of hierarchical descriptions (both of which are found in [16] and [33], for example).
Major points of difference include (i) our distinction between, and explicit representation of
functional, physical and behavioral information, (ii)) emphasis on the creation of a
domain-specific language, and (iii) the ability to make multiple uses of our representations.

Many previous languages fail to include information about physical organization at
all. This seems to have resulted from their origin in work on machine design, where
physical packaging is sometimes considered only after functional design has been
accomplished.

In some other description languages there is a significant intermixing of structure
and behavior information, arising apparently from the use of traditional programming
languages as foundations. There are many advantages to implementing a new language as
a variant on some existing language (like ALGOL), including the availability of a compiler
and other language development tools. But this made it all too easy to carry over a set
of habits that may be inappropriate. The temptation exists, for example, to use datatype
declarations as a mechanism for expressing the existence of functional modules. Hence
we see such things as

STRUCTURE:

DECLARE
MEMORY[0:1023]<0:15>
ACCUMULATOR<0:16>
PC<0:11>

IR<0:15>;

BEHAVIOR:

IR := MEMORY[PC]
IF IR<8:11> = 13 ; add instruction
etc.
There is a significant intermixing of structure and behavior here. The declarations
are supposed to contain the structure information, but where is the indication that the

instruction register (IR) is connected to the memory? It is indicated indirectly in the
behavior section of the code, where we discover that the IR is capable of being loaded
from memory. We prefer that such information be made explicit. Among other things, this

permits more systematic fault insertion. In the current example, we would be able to
simulate the effects of faulty behavior in the bus that links the memory and instruction
register.

A second major difference in our approach lies in our creation of a
domain-specific language, one that incorporates the concepts and vocabulary of computer
architecture. As noted, several hardware description languages have used the the black
box view and the module/port approach as a starting point. Simple interconnections of
devices are easily accommodated in this scheme, but the attempt to describe even small
real circuits soon presents problems. One common insight is that many circuits contain a
substantial amount of regularity. The pattern of interconnections in memory or between
slices of an ALU, for example, is often easily expressed as some form of iteration. One
common response (see, e.g., [21]) is to adopt more of the traditional pregramming
language constructs, like iterative loops.

But this presents problems. A bitslice CPU, for example, has a form of regularity
different from that displayed by an array of memory chips. Using a for loop to express
both of them ignores, or at best makes obscure, the important difference. The result is
often difficult to interpret as well. It can take a considerable amount of study to
determine that a tightly coded iterative loop 'in fact eékpresses a well-known organization.

We are pursuing an alternate approach, described in Section 3, of assembling a
vocabulary of terms common to architects. Each such term labels a particular kind of
organization and has associated with it information on how to wire up that configuration.
The result is in effect a new, high-level language, with all of the standard benefits of such.
It allows us to make explicit the nature of the organization in the circuit, as well as
providing a compact, efficient, and easily understood language.

A third major difference in our approach is our ability to make use of descriptions
in several different ways. The same description is used (i) as a basis for the
troubleshooting module, (i) as a database of facts about connectivity, part identity, etc., (iii)
as a body of code that can be run to simulate the device, and (iv) as the basis for a
display program for observing the device. This is possible because we have avoided the
temptation to write code oriented toward a single purpose like simulation, and have instead
produced a set of data structures (described in Sections 3 and 4) that can be used in all
the different ways noted. This approach is not unknown in the hardware description
language world --- iSPS has been used quite profitably in this fashion [2] --- but it is rare.
We find that it offers sufficient leverage to be worth the additional effort.

12.2.2 Advantages

Our approach offers a number of features which, while not necessarily novel, do
provide useful performance. For example, there is a unity of device description and
simulation, since . the descriptions themselves are '"runnable". That is, the behavior
descriptions associated with a given module allow us to simulate the behavior of that
module; the interconnection of modules specified in the structure description then causes
results computed by one module to propagate to another. Thus we don’'t need a separate
description or body of code as the basis for the simulation, we can simply "run" the
description itseif. This ensures that our description of a device and the machinery that
simulates it can never disagree about what to do. as can be the case if the simulation is
produced by a separately maintained body of code.

Qur use of a hierarchic approach and the terminal. port, module vocabulary makes
multi-level simulation very easy. In simulating any module we can either run the behavior
associated with that module (simulating the module in a single step), or "run the
substructure" of the module, simulating the device according to its next level of structure.
Enabling the behavior that spans the entire module gives us a one-step simulation;

DIACGROO TG BEAGORING BAGED GN STHUG TURE AND BEHAVIOR b HIAVIG

enabling the abstraction shifting machinery that implements a port gives us a detailed
simulation (by allowing information to propagate into the next lower level). Since the
abstraction shifting behavior of ports is also implemented with the constraint-like mechanism
described in Section 4, we have a convenient uniformity and economy of machinery.

Varying the level of simulation is useful for speed (no need to simulate verified
substructure), and provides as well a simple check on structure and behavior specification:
we can compare the results generated by the module's behavior specification with those
generated by the next lower level of simulation. Mismatches typically mean a mistake in
structure specification at the lower level.

Work in [6] described the importance of the "no function in structure” concept,
essentially a point of methodology and "mental hygiene", suggesting that device behaviors
be defined independent of their use in any specific circuit. We have adopted this
perspective and built a small library of component descriptions (adders, wires, and-gates,
etc.); a set of prototypical modules with structure and behavior descriptions independent of
any particular circuit. Devices are then constructed by assembling and interconnecting
instances of those prototypes, using the language described in Section 3.

A wire, for example, is a device whose behavior is a simple bi-directional
propagation: information appearing at either one of its terminals will be propagated to the
other. Any particular use of a wire typically has a single direction of propagation in mind,
but our simulator runs the behavior description that reflects the "actual" (bi-directional)
behavior. ,

While this approach offers no formal guarantees that the behavior definitions are
free of implicit assumptions, it does provide an environment that strongly encourages
attention to the issue by (i) distinguishing clearly between behavior definition of an
individual module and its intended use in a circuit, and (ii) by forcing every module of a
particular type to share the same behavior specification. This approach is especially
important in troubleshooting, since some of the more difficult faults to locate are those that
cause devices to behave not as we know they "should", but as they are in fact
electrically capable of doing.

Finally, our approach offers a convenient mechanism for fault insertion. A wire
stuck at zero, for example, is modeled by giving the wire a behavior specification that
maintains its terminals at logic level 0 despite any attempt to change them. Bridges,
opens, etc., are similarly easily modeled.

12.2.3 Limitations

The behavior specification mechanism we have described is quite straightforward
and some of its limits are well-known. A set of constraints is, for example, a relatively
simple mechanism for specifying behavior, in that it offers no obvious support for
expressing behavior that falls outside the "relation between terminals" view. A bus
protocol, for example, would require additional machinery to represent the state transition
network describing the protocol. We might also want to describe and reason about
behavior in higher-level terms like enables, or inhibits, suggesting the need for a vocabulary
similar to the one developed in [25].

In addition, our current propagation mechanism works well when dealing with
simple quantities like numbers or logic levels, but cannot deal with more elaborate symbolic
expressions. What, for example, do we do if we know that the output of an or-gate is 1
but we don’'t know the value at either input? We can refrain from making any conclusion
about the inputs, which makes the rules easy to write but misses some information. Or
we can write a rule which express the value on one input in terms of the value on the
other input. This captures the information but produces problems when trying to use the
resulting expression elsewhere. A simple but effective propagation of symbolic expressions
is accomplished in [19], suggesting that the approach taken there may be a good starting
point.

DIAGHOSTIC RE ALORING BASED ON STHRUGTURE AND BEHAVIOR BN DAVIS

12.3 Limitations in Candidate Generation

This limitation in our propagation machinery is also responsible for the primary
limitation in the candidate generation facility. As we have seen. the basic technique works
by looking for a contradiction: we “turn off" the behavior rules for a single device and
see if there is any set of assignments to its terminals that is consistent with the inputs
and observed output symptoms. If no contradiction is reported, we consider the
component to be a candidate.

But sometimes no contradiction is reported because the propagation machinery is
too weak to discover it. One simple case can arise from reconvergent errors. In the
simple circuit below (Fig. 20), for example, our current system is unable to determine that
the input wire could not be a consistent candidate. When, in using constraint suspension,
we "turn off" the behavior of the input wire, and insert the input (2) and observed output
(7), several terminals end up with no values assigned. This is not considered a
contradiction, so the input wire is put on the list of plausible candidates. ‘

t)) () - Predicted
2—] LSH | + [7] []-Observed

Figure 20 --- Reconvergent error. There is no way for the input wire alone to account for the
symptoms. (The first device shifts its input left one place and sends the result to both outputs.)

In principle, we should have been able to rule it out, but including it as a
candidate does not present any serious problems. The candidate set will be larger than it
should be, so our system may end up doing some additional work in narrowing the set
later (e.g., running more tests than should strictly have been necessary). The net result is
some inefficiency, but no intractable difficulties. Enhancing the propagation machinery to
handle this situation would involve difficult problems, including propagating and manipulating
symbolic expressions [32], and reasoning about such properties as integer solutions to
equations.

12.4 Comments on the Example

We chose a bridge example because they have traditionally been difficult; we
considered the problem in TTL because of its common use. But this turns out to be a
convenient choice. Bridges in TTL are easily modeled and the pattern easily checked for
in the symptoms; we noted earlier the power this supplies in constraining the search
space. In other technologies, unfortunately, the behavior of bridge faults is not so easily
described. The reasoning is correspondingly more difficult and our system would be less
focused in its generation of hypotheses.

A second problem highlighted by the example is the nature of the overall control
of problem solving. Some parts are reasonably clear. The use of the categories of
failure, for example, is to date at least fairly straightforward, starting with the most likely
and moving toward the more exotic categories. We were also able to describe the overall
strategy behind using and switching between multiple representations (using the functional
as a hypothesis generator and the physical as a filter), but this is currently hardwired into
the system. It would of course be better to have the system able to make this choice.
Finally, we have yet to develop a globally defined strategy concerning the use of the
description hierarchy. In general we work at the higher description levels before moving
down, but this may not always be appropriate. It is not ‘yet clear, for example, how
"deep" to pursue candidate generation before stopping to generate distinguishing tests.

DIAGHOSG HIC HE ASONING BASED ON STRUCHRE AND BEHAVIOR 44 DAVIS

Consider the example of Fig. 7. There we determined that either the first multiplier
or first adder could be at fault. Should we now drop down a level and try generating
candidates inside the adder and multiplier, or should we try another test vector to provide
more symptom data? Either of these strategies might indicate which of the two candidates
contains the broken compeonent. As noted earlier, dropping down a level may demonstrate
that no subcomponent of (say) the adder can account for the original set of symptoms,
hence it cannot be at fault: running a second test provides additional symptom data that
may distinguish between the candidates. The appropriate strategy presumably depends on
the costs in the specific case at hand: when we are very near the "bottom" of the
description hierarchy, it may cost relatively little to go down the one final level; when tests
are relatively cheap to generate and run, that may be the preferred approach.

.

12.5 The Example: Implementation

As we have noted, test generation in the example is currently done by hand, but
all the rest has been imglemented, in Franz Lisp running on a VAX 780. The example
shown requires approximately 3 minutes of CPU time, but since this is early prototype, no
attention has been given yet to producing efficient code.

The system is still a simple feasibility demonstration and as such lacks a number
of design features necessary before it can be used as a serious tool. The current control
structures, for example, are too deeply hardwired into the system. The sequencing through
various categories of failure is currently embodied in a collection of procedure calls. Yet,
given our emphasis on enumerating and keeping careful track of assumptions (as in
Section 10), the selection of a failure category would more appropriately be accomplished
with a general TMS system of the sort described in [15]. We do have a simple form of
TMS in the dependency networks maintained by the simulation and inference rules, but it
would be useful to construct a more general version and use it to keep track of the
assumptions underlying the failure categories.

We are also working on a graphics interface that will allow dynamic display of the
reasoning. As the sequence of figures shown earlier suggests, much of the process of
candidate generation (for both the individual components and bridges) is easily understood
in terms of diagrams. We are developing a system that will allow us to do this, displaying
the results as they are generated.

12.6 Scaling: Device Complexity and Time

With any initial demonstration of this size, the scaling issue is always of concern.
We have demonstrated the feasibility of a particular technique on a small combinatorial
circuit assembled from simple devices. What happens when the circuit gets considerably
larger and the devices get more complex?

We believe that size alone is unlikely to be a disabling problem, arguing that the
design task imposes a limit on complexity. In order to make the design task tractable, a
circuit with several hundred or several thousand components must have some sort
description more compact than a simple listing of the components. Without such a
hierarchy, it is unlikely it could have been designed successfully.

Complex behavior is likely to present a more difficult problem. Describing the
behavior of devices at the scale of gates and adders is relatively straightforward.
Describing the behavior of a disk controller is likely to be considerably more challenging,
but, by the design argument once again, we speculate that it will not be overwhelmingly
so.

The significant problem with complex devices is likely to lie in the inference rules.
It is one thing to describe what a disk controller should do, it may be. quite another task
to infer what some of its inputs were, given its outputs. One important subproblem we
will encounter here is propagating symbolic expressions, since, as noted, many devices are
not uniquely invertible.

DIAGROSTIC RE ASONING BASE L ON STRUCGCTURE AND Bt HAVIOR 4b DAVIS

A second problem lies in extending our work to deal with more elaborate models
of time and more complex devices with state. Our current system uses only the simplest
model of time, enabling us to deal with simple synchronous devices. There are several
steps we need to take to elaborate this. We have to model propagation delays so we can
deal with races. Since protocols play an important role in communication, we need to be
able to represent and reason about them.

Reasoning about devices with memory will also require elaboration of our candidate
generation machinery. Our planned approach will be in the spirit of the current effort:
where discrepancy detection currently moves us backward in space through the circuit, we
intend to extend it to move backward in time as well, inferring values at previous time
slices.

- In facing the problem of scaling this feasibility demonstration up to problems of
practical size, then, we find two issues of central concern: how can we generate
inference rules for complex devices, and how can we model time in a way that® allows us
to reason over a significant number of slices? Work on both of these is currently under
way.

12.7 Limits of Modeling: Analog Devices and Incomplete Models

Though we have set our sights here on reasoning from first principles, as with any
representation we eventually encounter a level of detail not incorporated in our model. We
have been working strictly in the digital world and as such cannot model or reason about
analog phenomena. This is most obvious in the power failure example: our representation
makes it easy to incorporate the insight that input ports can behave as output ports, but
reasoning at the level of the digital abstraction precludes deriving that insight. Marginal
signals are a second example: the effects might be captured at the digital level but some
of the reasoning would be outside our current abilities.

Since every representation incorporates some level of abstraction, the issue is not
that we encounter limits, but rather how important those limits are to the current domain
and how difficult it would be to press beyond them. In answer to the first of these, we
simply need more experience to determine how much of the problem can be captured at
the level of detail we use.

Concerning the second, previous work (e.g., [13]) suggests that dealing with analog
circuits and their continuous variables requires confronting significant additional problems.
One difficulty arises because most analog devices are bi-directional and this often makes
candidate generation considerably less constrained. There are more paths of interaction to
be considered and hence more components in the circuit that could have caused the fault.
In the example of Figure 9, for instance, allowing ports to be bi-directional widens the set
of candidates (as it should) to include ali the multipliers. Working in the digital domain
means that most of our devices are uni-directional, keeping the set of candidate
components smaller. »

A second problem arising in analog circuits is the use of designs that rely on
aggregate properties. The feedback or hysteresis in a device, for example, cannot be said
to reside in or result from any one component. This produces difficulties when
troubleshooting because some of the more interesting faults are those that are local to a
single component but that disable the desired aggregate property. Tracing the fault from
the disappearance of the aggregate property back to a single component can be difficult.

Finally, dealing with the continuous values present in analog devices presents its
own set of problems, motivating much of the work on qualitative physics (e.g., [13]). We
have to determine whether it will be possible to quantize the domain, developing and
reasoning from a small vocabulary of labels like high, low, float, rising, and falling, or
whether more complex machinery is necessary.

An equally pressing issue concerns the completeness of our models. Our system
is focused in its efforts in part because its models of structure and behavior are complete:
we knew, for example, exactly how the adder was constructed and how it behaved. Yet

DIAGNOSTIC BREASONING BAGE D ON STRUCTURE AND Bl HAVIOR an DAVIS

much real-world troubleshooting is done with incomplete models. Experienced engineers
employ much the same sort of reasoning shown here even when the device is a
mainframe computer and the behavior is on the scale of an operating system, yet they
clearly are not using complete models of either. The ability to specify and use incomplete
models would thus help address the scaling issue and would increase the likely scope of
utility of our work to fields like medicine, where complete models are simply unavailable.

12.8 But That’s Not How It’s Really Done

The performance of the program we have developed is in some ways noticeably
different from the standard practice of a human expert. As expert systems work rather
than cognitive science, the intent here is to be inspired by- human performance without
modeling it in detail. It is nevertheless useful to consider how our system differs from real
practice. !

While we argued earlier for the difficulty of troubleshooting based solely on
empirical associations, it is clear that rules can serve useful roles. They might, for
example, offer a form of memory to shortcut the process for problems previously
encountered. This would clearly be an improvement on our current system, which will
solve a problem from first principles every time, no matter how many times it is
encountered. Such rules can also help focus the process by recognizing symptoms
characteristic of particular kinds of malfunctions (e.g., power supply failures), characteristic
of particular locations of failures (e.g., memory, 170 bus, etc.), or characteristic of particular
machines (e.g., the disk controllers on this model tend to fail sooner).

Real troubleshooting also typically involves extensive use of logic probes, an issue
this work has not addressed at all yet. While it will clearly be important in the long run,
we would argue that it is appropriately delayed for several reasons. First, we claim that
inference is "free", while measurement is often quite expensive. It's comparatively
expensive in time: many inferences can be drawn in the time it takes to place a probe.
More important, it's expensive in potential loss of information: it is often necessary to put
cards on extenders or otherwise disturb the current state of the machine to make the
measurement and the information lost can be crucial. The current trend in hardware
speed makes this imbalance likely to continue.® As a result, we claim that it's well worth
it to "think as much as you can" before taking another measurement.

The real issue here is the longstanding problem of information gathering. Where,
contrary to our current assumption, we do not have complete data available, the real
problem is reasoning from the current stock of information and deciding what measurement
to take next. Our current examples are small enough that complete information is
reasonable, but we will clearly encounter the issue as we scale the problem up to larger
devices.

Finally, we might ask what fraction of the troubleshooting problem is not currently
handled by simpler, existing technology of the sort characterized by stuck-at models and
state of the art diagnostics. A significant percentage of the problem is solved in this
fashion, but the fraction left unsolved turns out to be quite expensive. It is not unusual
to find a strongly bi-modal distribution in which problems are commonly solved in either
two hours or two days. There is thus a significant problem here, which, because of
issues like decreasing design lifetimes, is likely to become worse.

18. There is some countervailing trend in the design of hardware that offers visibility of internal machine state and the
possibility of automated probing.

DIAGNOSTIC REAGONING BASE D ON STRUCTUNE AND B HAVIOR BN DAVIS

13. RELATED WORK
13.1 Hardware Diagnosis

Two lines of work developed in the hardware diagnosis community have some
interesting overlap with the work described here: the guided probe [5] and the effect cause
analysis of Abramovici and Breuer [1].

The guided probe technique has been in use in industry for some time and shares
some basic ideas with our approach to troubleshooting. Both are based on the notion of
discrepancy detection; both trace an error at an output back to its source by following the
wiring of the circuit, and both use simulation to produce the correct values.'®

One important difference arises because the guided probe approach does not have
anything analogous to our inference rules (it uses a logic probe to measure voltages at
nodes interior to the circuit). Having inference rules is important because it allows us to
separate candidate generation from probing. That is, we can determine the entire set of
plausibly broken components before making any additional measurements on the circuit.
This can be an advantage because, given the entire candidate set, we may be able to
select a few (or even one) place to probe that best reduces the size of the candidate set
(e.g., the usual half-split strategy). The standard guided probe approach, by interleaving
discrepancy detection with probing, in effect requires us to consider every candidate when
it is first encountered.®®

One further practical concern suggests additional utility of inference rules. Given
-the tendency toward increasingly exotic packaging technology, it is becoming more difficult
to probe at random on a board. In such cases the inference rules become especially
useful.

Finally, since the guided probe works directly from the schematic, it also inherits
the fundamental problem noted earlier: the schematic may be wrong, and there is nothing
in this approach capable of dealing with that problem.

Abramovici and Breuer have independently developed an approach to diagnosis that
has a number of the features of a constraint-based system. Their deduction algorithm is
similar to the use of inference and simulation rules in discrepancy detection, and they use
multiple tests as we do to further prune the candidate set. One interesting result of their
work is in its application to synchronous sequential circuits, where they show that this
approach can diagnose a fault that prevents initialization (i.e., the initial states of the
flipflops are unknown). This has long been a difficult roadblock for traditional
fault-dictionary style diagnostics.

Drawbacks in the approach include its extensive use of inferences drawn from the
fact that a wire can be labeled as "normal" (i.e., it has been observed to take on all
possible values). The label is easy to establish in the binary world but clearly gets
considerably more difficult for circuits modeled at higher levels. More seriously, the
approach has been extensively explored for faults modelable as wires stuck at 1 or 0, but
does not appear to go beyond this. One of the examples in [1], for instance, produces a
unique diagnosis for a circuit under the stuck-at model, but does not indicate that, among
other possibilities, a malfunctioning OR gate is an equally valid diagnosis. Finally, like
other approaches that work solely from the schematic, it has no mechanism for considering
that the schematic may be incorrect.

19. Some automatic testers use a board known to be good as the source of the correct values.

20. The lack of inference rules and corresponding need to probe suggests that, where we earlier characterized our approach
as the interaction of simulation and inference, the guided probe is analogously characterized as the interaction of simulation
and measurement.

DIAGNOS HEG REASONING BASLD ON STRUCTURE AND BE HAVIOR Bl DAVIS

13.2 Fault Models and Categories of Failure

In reviewing some of the traditional approaches to troubleshooting (Section 5), we
noted several problems. We pointed out the historical trend toward using code originally
designed for verification (proof that a device is totally free of faults) to do troubleshooting.
We noted that code designed for verification requires fault models --- if we are to avoid
exhaustive testing, we need to limit our tests to errors produced by a pre-specified list of
faults. We then claimed that we do not need traditional fault models when the task is
diagnosis and when a fault is defined as anything different from the correct behavior.

Yet in doing discrepancy detection we found it necessary to come up with an
apparently similar sort of list: we had to enumerate the categories of failure in order to
limit the paths of interaction we considered. Have we in fact made any progress or have
we simply substituted one list for another?

We claim that progress has been made along two fronts. First, by focusing on
troubleshooting and defining a fault as any discrepancy, we can deal with a wider range
of faults, including any systematic misbehavior. Second, we have taken a step toward
providing a somewhat more formal way of generating the entries on the list. The
traditional fault model list is typically an informally generated listing of erroneous behaviors
that have been observed in practice. Carefully examining the assumptions underlying our
representation, as we did in Section 10, is in effect a "generator" of categories. It
produces a number of well-known categories (e.g., local failures like stuck-ats, assembly
errors, design errors) and suggests some less obvious ones as well (e.g., direction of
information flow errors). While it is still not a formally complete generator, we at least
have some relatively systematic basis for enumerating categories of failure to consider.

13.3 Other Al Work
As we have noted at several points above, a number of ideas developed in
previous Al research have proved very useful in this undertaking.

13.3.1 Troubleshooting

From the work of Sussman and Steele on constraints, for example, we take the
local propagation style of computation [32] and the maintenance of dependency networks
[29]. Work by deKleer first demonstrated [11] that a first order theory of troubleshooting
could be based on examining the dependency records left behind by a local propagator:
any device on the path to a discrepancy should be considered a potential candidate; any
device that participates in a "corroboration" (a place where predicted and measured values
agree) can be ruled out. We used the first half of this approach in our candidate
generator, when Step 2 of Fig. 8 used the dependency network leading to a discrepancy
to determine the potential candidates.

Our work moves beyond this in two ways: by viewing troubleshooting in the
framework of methodical relaxation of assumptions, and by the use of constraint
suspension. Relaxation of assumptions handles bridge faults, while the approach in [11]
specifically excludes all such errors in topology. The approach there works by examining
dependency records produced by the local propagator, but the propagator worked from the
original schematic. Nothing in this approach provides a way of entertaining the idea that
the original schematic was incorrect; there is no mechanism for hypothesizing additional
paths of interaction not shown in the original description.

Constraint suspension provides two additional advantages. First, like the approach
in [11], it determines which components might be at fault, but then it also determines
symptom values for the candidates. This provided important information in solving the
bridge fault problem in particular, and in general allows candidate generation to continue at
successively lower levels of description.

Second, as noted in [11], the use of corroborations in the first order theory above
runs into trouble with any device whose behavior can inhibit propagation of an error (e.g.,

DIAGNOS TG REASONING BASLD ON STRUG TUIL. AND Bt HAVIOR 49 DAVIS

an AND-gate or multiplier whose other input is 0). Consider for example a slight
modification to Fig. 7. If ADDER-2 were a fourth multiplier and input E were 0, we would
get a corroboration at G (0 expected and observed), apparently exonerating MULT-2. . But
in that circuit MULT-2 would in fact be a valid candidate. Our constraint suspension
approach handles this situation without difficulty: by running the behavior descriptions of all
but one component (the one being tested for candidacy), it effectively determines the
appropriate consequences of all discrepancies and corroborations.

The approach in [11] was developed further in SOPHIE [6] to include knowledge of
component fault modes (e.g.. resistors can be shorted, open, high or low), and to include
knowledge about higher-level modules that was specific to the particular circuit and module.
Our approach differs in using a uniform approach to device modeling and troubleshooting,
where SOPHIE’s troubleshooting of the high-level modules was handled using the circuit .
specific knowledge (the first principles approach was used at the level of primitive
components). .

That system also noted the potential difficulties arising from implicit assumptions,
and speculated about the use of a general truth maintenance system to deal with .the
problem. This does not appear to have been implemented.

We have drawn from the work in [6] in some other respects, both for specific
techniques and overall approach. That work demonstrated the use of simulation as a
fundamenta! tool in troubleshooting (using it for example to predict observations from inputs
and to predict consequences of failures). It showed how dependency chains could support
hypothetical reasoning. The work also made clear the importance of "mental hygiene" in
building simulation models. Ideas like the "no function in structure” concept were both
directly useful (as noted in Section 12) and helped sensitize us to the importance of
implicit assumptions.

That work also kept distinct the kinds of knowledge used in doing troubleshooting.
The system relied on dependency records to generate the candidate set first, and only
then used knowledge about component fault modes to prune the set.

13.3.2 Adjacency

The notion of adjacency has been pursued from several different directions, some
of which proved useful in our own approach to the concept. The original conception of
constraints [32] helped define the issue and characterize local propagation as a way of
thinking about computation. Work by deKleer [12] and deKleer and Brown [13, 14]
developed a number of principles involving local propagation when reasoning about cause
and effect in physical devices.

A slightly different conception of adjacency underlies some of the work of Lenat
[20]. There, syntactic changes to LISP descriptions produced useful new mathematical
concepts because LISP and mathematics are languages that are "close" together. That is,
the primitives and method of composition are similar enough that the languages are
structurally similar: concepts that are "adjacent"” mathematically often have LISP definitions
that are quite similar. As a result, making small syntactic changes to a LISP expression
that captured one mathematical concept often produced an expression embodying another
meaningful mathematical concept. This underscores the importance of the choice of
representation language when making changes to a description: the changes will produce
meaningful results to the extent that the languages share a definition of adjacency. A
similar inspiration lies behind our analysis of the need for the "right" representation in
understanding different kinds of faults: the physical definition was appropriate for bridge
faults because it provided the appropriate definition of adjacency.

In Section 11 we suggested that it can be useful to have several different
definitions of adjacency, provided by the multiple representations (functional, physical, etc.)
employed there. A related notion, multiple views of a circuit, shows up in the concept of
slices [31] used in design. A central observation in that work was that simplifying the
design task requires being able to have several different views of a circuit, each one

DIAGNQOS HC REASONING BAGED ON STRUCTURE AND 81 HAVIOR 50 DAVIS

packaging up things differently. The basis for the packaging is typically teleological: a
particular section of a circuit is packaged up in a slice because it has an identifiable
behavior that accomplishes a particular purpose. The design task can then be simplified
by reasoning about the device using that abstraction, without being concerned about how
that behavior is actually accomplished. Multiple slices can provide muiltiple views of the
same section of the circuit; slices thus offer a mechanism for expressing multiple
abstractions.

Our emphasis has been on using different definitions of what adjacent can mean in
order to produce fundamentally different representations for troubleshooting. Slices may
offer multiple different views of the circuit, but they are all functional views and share the
same basic representational vocabulary (that of functional modules). We have both a
functional representation with its definition of adjacency and its vocabulary, and a physical
representation with its own distinct definition of adjacency and vocabulary (cabinets, boards,
chips). Our focus is thus not on having multiple views of the device, but on having
fundamentally different representations, and on carefully enumerating the different criteria
(definitions of adjacency) that can be used as the basis for each representation. The
definitions are in turn derived from the different pathways of interaction, since those
pathways reflect the mechanisms by which faults manifest.

Finally, our categories of failure are similar in spirit to the class wide assumptions
in [13]. As pointed out there, it is impossible to write: assumption-free descriptions of
behavior. The problem manifests itself in the most basic terms in simply choosing a
vocabulary. Any behavior description will be built from a finite vocabulary of terms, yet
there is no obvious limit to the set of terms that might prove relevant (weight, color,
flexibility, etc.). Since we have to choose a finite vocabulary, we should at least provide
an explicit, defensible set of selection criteria. The problem arises also in using a given
vocabulary to describe a device. In describing a door bell, for example, the model in [13]
needs to refer to the effect of the coil's magnetic field on the clapper, but wish to invoke
the common assumption that the field is not strong enough to induce currents in nearby
wires. Again we need explicit, defensible grounds for making such assumptions.

The authors suggest that introductory physics provides a convenient and routinely,
if tacitly, used set of criteria; they term them "class wide assumptions". These are
assumptions about behavior whose utility (and credibility) arises in part because they apply
to whole sets of devices. Ignoring the effect of the magnetic field on nearby wires, for
example, is a reasonable assumption because it applies to a wide class of devices.

Our categories of failure are similar in spiritt We are motivated by the same
original consideration, namely that it is impossible to create assumption-free descriptions of
structure and behavior. We have made the identification and handling of such assumptions
a primary concern and have been able to provide a somewhat more systematic generation
of the categories. Since deKleer and Brown are concerned with qualitative physics, they
appropriately look to that field for inspiration ‘and have the task of identifying and
accumulating the assumptions. Our- more tightly focused concern --- troubleshooting ---
allows us to examine what kinds of things can go wrong, and makes possible the relatively
systematic generation of assumptions accomplished by perturbing the representation, as we
did in Section 10.

This also reflects our concern with enumerating the pathways of interaction as
completely as possible. While class wide assumptions reflect important knowledge about
the domain, that knowledge is often in the form of a reason not to include a particular
pathway - of interaction (e.g., omitting the path from the coil to nearby wires in the door
bell example). We want to press one step further on by building a list of possible
pathways that is as systematic as possible, and then consider the variety of fault
characterized by the existence (or omission) of such a pathway.

DINGNOSTIC REASONING BASED ON STRUCGTURE AND BEHAVIOR 51- DAVIS

14. SUMMARY

We seek to build a system that reasons from first principles in understanding how
devices operate. We find troubleshooting of digital hardware to be a tractable and fertile
ground for exploration. We have developed languages describing structure and behavior
that distinguish carefully between them, and provide information about structure that is
organized both functionally and physically.

We find that the traditional machinery for troubleshooting focuses primarily on test
generation and its use in verification of device behavior. Our problem is better
characterized as diagnosis in the presence of known symptoms, in devices complex enough
that it is important to use the symptoms to help guide the troubleshooting.

We view the process as the interaction of simulation and inference, with
discrepancies between them driving the generation of candidates. Discrepancy detection
and tracing through dependency records gives us a foundation for troubleshooting that
identifies potential candidates. The technique of constraint suspension extends this by
supplying symptom values for the candidates and handling both discrepancies and
corroborations with a single mechanism. «

In exploring this approach further, we find that the concept of paths of causal
interaction plays a key role, supplying the knowledge that makes the machinery work. We
need an explicit model of causal interactions in order to determine which components to
consider. The amount of such knowledge then leads us to a fundamental dilemma: the
desire to deal with a wide range of faults seems to force us to choose between an
inability to discriminate among candidates and the inability to deal with some classes of
faults.

In response we have developed a troubleshooting strategy based on the methodical
enumeration and relaxation of underlying assumptions about the device. We were able to
generate the assumptions in a relatively systematic fashion by examining the module and
information path representation of hardware. By considering the consequences of violating
each assumption, we were able to generate a collection of categories of failure.

We then invoked a version of Occam’s razor, noting that some categories of failure
are more likely than others. This provides a criterion for ordering the categories and
pathways of interaction to be considered. We start with the simplest category of failure
first and consider only one class of paths of interaction initially. If this fails to generate a
consistent hypothesis, we surrender one of our underlying assumptions, adding the next
category of failure, and consider additional pathway of interaction.

We illustrated this approach by diagnosing a bridge fault. When our initial
categorization --- local failure of function --- encountered a contradiction, we surrendered
the assumption that the schematic was correct and considered one additional path, bridges.
This staged relaxation of assumptions permitted a constrained generation of hypotheses.
Within the bridge fault category, additional restriction was then provided by using
constraints associated with both the physical and functional representations.

Drawing back from this specific example, we explored several possible
generalizations of the work. We found applicability in- software, for example, for the notion
of enumerating the assumptions in the representation and using this to generate categories
of failure. While the particular pathways of interaction were different, the technique
appears to phrase a relevant set of questions. We found that some errors in software are
usefully thought of in terms of a set of pathways of interaction from that domain.

Our overall approach also suggests that part of the expertise of a domain lies in
knowing - how to simplify a probiem, i.e., knowing what simplifying assumptions can be
made, recognizing when an assumption has failed to help, and knowing how to recover
and get the solution back on course. Enumerating and ordering the categories of failure
provides one simple mechanism for expressing such knowledge.

A further generalization of this work came from examining the difficulty involved in
dealing with bridge faults. We found that an important property of a representation is its
definition of adjacency. In this view bridge faults are difficult because they are simple and
local changes to the physical representation, but neither simple nor local in our original,

DAVIS

o
L9

DIAGNOSTIC HE ASONING BASLD ON STRUCTURE AND BL HAVIOR

functional representation. We started with the functional representation because we were
presented with behavioral manifestations of a fault, and hence needed to reason from a
representation organized according to behavior. But this proved to have an inappropriate
definition of adjacency for the problem at hand, so we shifted representations. This in
turn lead us to a useful guideline in choosing representations for diagnostic reasoning: we
should attempt to find a representation in which the suspected change can be viewed as
a compact modification affecting adjacent devices.

The underlying rationale for focusing on defining adjacency is a belief that faults
manifest through processes that act locally, i.e., there is no action at a distance. We then
found that we could define a number of useful kinds of adjacency by considering the
paths of interaction. Each of these defines a different metric (Euclidean, thermal,
electromagnetic, etc.), each generating a different representation.

We pursued this one additional step, asking why we believe there will in fact be
some representation in which the fault can be seen as compact. The belief ‘appears to
rest on the heuristic that a malfunction in. a previously operational device often results from
a single cause rather than a number of independent events. Like any heuristic, this may
not always be correct, since muiltiple, independent failures do occur. But it is true often
enough and there are substantial advantages to choosing a representation with a good
definition of adjacency.

Because our basic representation machinery employs little more than the traditional
black box notion of information transmission, we suggest that some of the central concepts
in this work may have relevance of considerable breadth. The examination of assumptions
underlying the representation and constraint suspension, for instance, appear to be
applicable in a number of different areas. We noted above the potential use in software
of examining underlying assumptions. We conjecture that both techniques may apply to to
any system that might be modeled in terms of information transmission, ranging from
hardware, to software, to organizations. Organizations may have pathways of interaction
other than those on the personnel chart, for example, and we might consider "organization
troubleshooting™ via constraint suspension.

Finally, we observe that there has been growing focus on the power contributed by
choosing a "good" representation and the utility of multiple representations. We suggest
that one of the characteristics of a good representation is that it provides a definition of
adjacency that makes the fault appear compact, and that the utility of multiple
representations arises in part from the multiple different definitions of adjacency they
provide.

DIAGNQS TIC REASONING BASLD ON STHUC TURE AND BEHAVIOR 53 DAVIS

Acknowledgments
Contributions to this work were made by members of the Hardware Troubleshooting project
at MIT, including: Howie Shrobe, Walter Hamscher, Mark Shirley, Harold Haig, Art Melior,
John Pitrelli, and Steve Polit.

Some of the initial inspiration for this work came from conversations with Ed Feigenbaum;
periodic arguments with Mike Genesereth have helped sharpen vague intuitions and were
an early source of specific examples. The presentation in this paper was improved by
comments from John Seeley Brown, Johan deKleer, Mark Shirley, and Patrick Winston.

REFERENCES
[1] Abramovici M, Breuer M A, Fault 'diagnosis in synchronous sequential circuits based on
an effect-cause analysis, IEEE Trans. on Computers, Vol. C-31, No. 12, December. 1982, pp.
1165-1172.

[2] Barbacci M R, Instruction set processor specifications (ISPS): The notation and lits
applications, Carnegie Mellon University Technical Report CMU-CS-79-123, May 1979.

[3] Batali J, Hartheimer A, The design procedure language manual, MIT Al Memo 598,
Sept. 1980.

[4] Bell G, Newell A, Computer Structures: Readings and Examples, McGraw-Hill, 1971.

[5] Breuer M, Friedman A, Diagnosis and Reliable Design of Digital Systems, Computer
Science Press, 1976.

[6] Brown J S, Burton R, deKleer J, Pedagogical and knowledge engineering techniques in
SOPHIE |, I, and lll, in Sleeman and Brown, eds., Intelligent Tutoring Systems, Academic
Press, 1982. :

[7] Davis R, et al.,, Diagnosis based on structure and function, Proc AAAI-82, August 1982,
pp. 137-142.

[8] Davis R, Reasoning from first principles in electronic troubleshooting, /ntl Journal of
Man-Machine Studies, 1983, 19:403-423.

[9] Davis R, Buchanan B G, Shortliffe E H, Production rules as a representation in a
knowledge-based consuitation system, Artificial Intelligence, 8:15-45, February 1977.

[10] Davis R, Shrobe H E, Rebresenting structure and behavior of digital hardware, /EEE
Computer, Sept. 1983, pp. 75-82.

[11] deKleer J, Local methods for localizing faults in electronic circuits, MIT Al Memo 394,
November 1976.

[12] deKieer J, The origin and resolution of ambiguities in causal arguments, Proc 6th
IJCAI, August 1979, pp. 197-203.

[13] deKleer J, Brown J S, Assumptions and ambiguities in mechanistic mental models,
Xerox PARC Report CIS-9, 1982,

[14] deKleer J, Brown J S, Naive physics based on confluences. Xerox Parc Report, 1983.

[15] Doyle J, A truth maintenance system, Artificial Intelligence, 12, 1979.

DIAGNOSTIC REASONING BASLED ON STRUCTURE AND BEHAVIOR -54- DAVIS

[16] Estrin G, A methodology for design of digital systems --- supported by SARA at the
age of one, Proc NCC, 1978, pp 313-324.

[17] Gaschnig J, Preliminary evaluation of the performance of the PROSPECTOR system for
mineral exploration, Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 308-310, 1981.

[18] Genesereth M, The use of hierarchical models in the automated diagnosis of computer
systems, Stanford HPP memo 81-20, December 1981.

[19] Kelly V, Steinberg L, The CRITTER System - Analyzing digital circuits by propagating
behaviors and specifications, Proc AAA! Conference, pp. 284-289, August 1982.

[20] Lenat D, Heuretics: theoretical and experimental study of heuristic rules, Proc National
Conf on Al, 1982, pp 159-163.

[21] Lim W Y-P, HISDL --- A structure description language, CACM 25:823-830, Nov., 1982.
[22] Newell A, Simon H, Human .Problem Solving, Prentice Hall, 1972,

[23] Patil R, Szolovits P, Schwartz W, Causal understanding of patient illness in medical
diagnosis, Proc. IJCAI-81, August 1981, pp 893-899.

[24] Pople H, Heuristic methods for imposing structure on ill-structured problems, in
Szolovits (ed), Artificial Intelligence in Medicine, AAAS Selected Symposium 51, 1982.

[25] Reiger C R, Grinberg M, A system for cause-effect representation and simulation for
computer-aided design, in Latombe (ed.), Artificial Intelligence and Pattern Recognition in
Computer-Aided Design, North-Holland, 1978, pp. 299-334.

[26] Roth J P, Diagnosis of automata failures: a calculus and a method, /BM J Res. and
Devel, pp. 278-291, 1966.

[27] Shirley M, Davis R, Digital test generation from hierarchical models and symptom
information, Proc. IEEE International Conference on Computer Design, Nov. 1983.

[28] Shortliffe E, Computer-Based Medical Consultations: Mycin, American Elsevier, 1976.

[29] Stallman R M, Sussman G J, Forward reasoning and dependency-directed backtracking
in a system for computer-aided circuit analysis, Artificial Intelligence, 9:135-196, 1977.

[30] Steele G, The definition and implementation of a computer programming language
based on constraints, MIT TR-595, August 1980.

[31] Sussman G J, Slices: at the boundary between analysis and synthesis, in Latombe
(ed.), Artificial Intelligence and Pattern Recognition in Computer-Aided Design, North-Holland,
1978, pp. 261-299

[32] Sussman G, Steele G, Constraints - a language for expressing almost-hierarchical
descriptions, A/ Journal, Vol 14, August 1980, pp 1-40.

[33] vanCleemput W M, An hierarchical language for the structural description of digital
systems, Proc 14th Design Automation Conf, pp 377-385.

[34] Winston P, Artificial Intelligence, Addison Wesley, 1984, second edition.

