MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A. I. MEMO 759 . December, 1983

Automatic Synthesis of Fine-Motion Strategies for Robots

Tomés Lozano-Pérez
MIT Artificial Intelligence Laboratory

Matthew T. Mason
Carnegie-Mellon University

Russell H. Taylor
IBM T. J. Watson Research Center

Abstract

The use of active compliance enables robots to carry out tasks in the presence
of significant sensing and control errors. Compliant motions are quite difficult for
humans to specify, however. Furthermore robot programs are quite sensitive to
details of geometry and to error characteristics and must, therefore, be constructed
anew for each task. These factors motivate the need for automatic synthesis tools
for robot programming, especially for compliant motion. This paper describes a
formal approach to the synthesis of compliant motion strategies from geometric
descriptions of assembly operations and explicit estimates of errors in sensing and
control. A key aspect of the approach is that it provides correctness criteria for
‘compliant motion strategies. '

Acknowledgements. This report describes research done in part at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support for
the Laboratory’s Artificial Intelligence research is provided in part by the System
Development Foundation, in part by the Office of Naval Research under Office of
Naval Research contract N00014-81-K-0494 and in part by the Advanced Research
Projects Agency under Office of Naval Research contracts N00014-80-C-0505 and
N00014-82-K-0334. R. H. Taylor was funded in part by IBM while on sabbatical
at MIT.

(© Massachusetts Institute of Technology 1983

1. Introduction

The central robot programming problem lies in achieving tasks in spite of
uncertainty in the robot’s position relative to external objects. The use of sensing
to reduce uncertainty significantly extends the range of possible tasks. Sensor-based
robot programs are very difficult to write, however, as there is little theory to serve
as a guide. To make matters worse, programs written for one task are seldom,
" if ever, applicable to other tasks. These two points make the development of an
automatic synthesis strategy for sensor-based robot programs a key priority.

In this paper, we propose a formal approach to the automatic synthesis of a
class of compliant fine-motion strategies applicable to assembly tasks. The approach
uses geometric descriptions of parts and estimates of measurement and motion
errors to produce fine-motion strategies. Although our description of the approach
will be in the form of an abstract algorithm, no implementation of this approach
exists at present (although implementation is in progress). The formalism provides
a structured way of thinking about fine-motion strategies and, therefore, may be
helpful to human programmers of fine-motion strategies. :

1.1. Fine-motion strategies

 One important source of the difficulty in robot programming is that the
programmer’s model of the environment is incomplete and inexact as to the shape
and location of objects. Vision may be used to determine the approximate shape
and positions of objects, but generally not with sufficient accuracy for assembly
by pure position control. Knowing the object shapes and positions to sufficient
accuracy is not enough, however. Positioning errors inherently limit the tasks
achievable by strict position control. Increasing the mechanical accuracy of robots .
to the levels required for assembly is expensive and ultimately stifling. Instead, one
must abandon the paradigm of pure position control for tasks where the allowable
motions are tightly constrained by external objects, as they are in mechanical
assembly. '

The basic method for achieving constrained motion in the presence of position
uncertainty is by the use of controlled compliance (see [Mason 83] for an overview
of compliance research). Compliant motion meets external constraints by specifying
how the robot’s motion should be modified in response to the forces generated
when the constraints are violated. Contact with a surface, for example, can be
guaranteed by moving so that a small force normal to the surface is maintained. -
Using this technique, the robot can achieve and retain contact with a surface that
may vary significantly in shape and orientation from the programmer’s expectations.
Generalizations of this principle can be used to accomplish a wide variety of tasks
involving constrained motion, e.g., inserting a peg in a hole and following a weld
‘seam. ,

The specification of particular compliant motions to achieve a task requires

knowledge of the geometric constraints imposed by the task. Given a description of
the constraints, choices can be made for the compliant motion parameters, e.g., the

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 1. Some possible initial configurations for peg-in-hole insertion

<&
(i

motion freedoms to be force controlled and those to be position controlled [Mason
81, Paul and Shimano 76, Raibert and Craig 81}, or the center of compliance and
axis stiffnesses [Hanafusa and Asada 77, Salisbury 80, Whitney 83]. It is common,
however, for position uncertainty to be large enough so that the programmer cannot
unambiguously determine which geometric constraint holds at any instant in time.
‘Figure 1, for example, shows some different initial conditions that can hold in
two-dimensional peg-in-hole insertion. Under these circumstances, the programmer
must employ a combined strategy of force and position control that guarantees
_reaching the desired final configuration from all of the likely mltlal configurations.
We call such a strategy a fine-motion strategy.

One of the most widely studied tasks in robotics is the two-dimensional
peg-in-hole task. Detailed analyses have been carried out to determine strategies
that guarantee successful insertion once the peg is partly in the hole [Drake 77,
McCallion and Wong 75, Ohwovoriole and Roth 81, Simunovic 75, Whitney 82].
When the initial uncertainty in position is large enough, a strategy must also be
~ devised to ensure that the peg can find the hole [Inoue 74, McCallion and Wong
75]. We can illustrate a variety of strategies for one task by considering the ways
this problem has been addressed: -

1. Chamfers: Chamfers on the hole entrance and/or the peg tip increase
the range of relative positions where the peg can fall into the hole, at
least partway. This technique is especially effective if the peg support has
lateral compliance [Drake 77, Whitney 82].

2. Tilting the peg: Tilting the peg slightly also increases the range of relative
positions where initial entry into the hole is guaranteed [Inoue 74]. In fact,
the geometric effect of tilting the peg is almost identical to providing a
chamfer (see Section 2.6).

Automatic Synthesis of Fine-Motion Strategies for Robots

3. Search: The simplest strategy is a search by sliding along the top surface
until the peg falls into the hole. In general, the search will have to pick an
initial direction of motion and, possibly, back up if the hole is not found.

4. Biased Search: A slight modification to the search strategy is to introduce
a bias into the initial position of the peg [Inoue 74]. This strategy reduces
the chances of initial entry into the hole, but it guarantees that the peg
will be to one side of the hole.

In this paper we will be interested in strategies such as tilting the peg and
biased search. These are simple strategies employing compliant motion that do not
require modifying the task geometry or complicated control structures.

1.2. Previous work

In this paper we present an approach to the automatic synthesis of a class
of fine-motion strategies. We are aware of no previous work with the same goal.
There are, however, several bodies of work relevant to this goal. The first of these
deals with analyses of geometry and statics of tasks so as to develop conditions
that successful fine-motion strategies must satisfy. The second is Simunovic’s
“information approach”. The third group deals with attempts to derive strategies
starting from partially specified strategies, known as skeletons or plans. The fourth
group deals with attempts to have the robot “learn” strategies from experience and
partial task information.

- Quite a few authors have analyzed the peg-in-hole assembly task in detail
[Drake 77, Laktionev and Andreev 66, Andreev and Laktionev 69, Gusev 69,
McCallion and Wong 75, Ohwovoriole, Roth, and Hill 81, Ohwovoriole and Roth
- 81, Simunovic 75, Whitney 82]. In most of the analyses, the assumption is that

the peg is initially partly in the hole, possibly at a chamfer. Two important failure
modes during insertion have been identified: jamming and wedging. Jamming is
due to misproportioned applied forces; wedging is due to geometric conditions that
arise when the parts deform slightly. These analyses have led to the formulation of
conditions for successful insertion involving applied forces to relative positions of the
peg and hole. As a result, a mechanical device (called the RCC [Drake 75, Whitney
- 82]) has been built that applies the correct forces in response to small initial errors

between the peg and hole. A number of heuristic strategies for peg-in-hole insertion
‘have also been formulated, based on more fragmentary analysis. These heuristic
strategies have been used successfully in practice [Inoue 74, Goto, Takeyasu, and
Inoyama 81].

Mason’s [82] detailed analysis of pushing and grasping operations in the
presence of friction also leads to conditions for successful task completion. These
conditions provide the basis for synthesis of operations that succeed in the presence
of uncertainty (without requiring sensing).

- Simunovic [79] formulated the “information approach” to fine-motion based
on the principle that assembly is purely a relative positioning task. From this
premise he argues that the role of an assembly program is to determine the relative

Automatic Synthesis of Fine-Motion Strategies for Robots

positions of parts during an assembly and to issue position commands to correct the
“errors. He developed an estimation technique to infer, from a series of noisy position
measurements and using knowledge of the geometry of the parts, the actual relative
positions of the parts. One problem with this approach is that it requires a very
large amount of on-line computation, although this could be solved with special
purpose electronics. A more fundamental problem is that the approach assumes
only position control and a robot capable of making fine incremental motions. This
need not be the case for assembly; by exploiting compliant behavior the robot can
achieve high accuracy tasks even with low accuracy position control, for example
following a surface by maintaining a downward force. Another problem is that
Simunovic’s estimation technique requires knowing which surfaces are in contact.
This limits the method to situations with relatively small errors; in more general
cases, the identity of the contact surfaces will not be known. Our approach is based
on a different view of assembly: that the geometric constraints should “guide” the
parts to their destination without necessarily having to know exactly where the
parts are relative to each other. ' .

One of the earliest explorations in the area of automatic synthesis of fine-
motion strategies from strategy skeletons was by Taylor [76]. Taylor developed a
technique for propagating the effect of errors and uncertainties through a model of
a task. These error estimates were used to make decisions for filling-in the strategy
skeletons. For peg-in-hole insertion, for example, the decision whether to tap the
peg against the surface next to the hole was based on whether the error estimate
for position normal to the surface exceeded a threshold.

Lozano-Pérez [76] also proposed a method for selecting the motion parameters
in strategy skeletons. Each motion in a skeleton was specified symbolically by the
relationship among parts that it was designed to achieve. The expected length of |
guarded moves and their force terminating conditions were then computed from
the ranges of displacements that achieved this relationship (taking into account
uncertainty in position). :

~ Recently, Brooks [82] extended Taylor’s approach by making more complete
use of symbolic constraints in the error computations. The resulting constraints can
" be used in the “forward” direction to estimate errors for particular operations. But,
importantly, they also may be used in the “backward” direction to constrain the
values for plan parameters, such as initial positions of objects, to those that enable
the plan to succeed. When no good choice of parameters exists, the system chooses
appropriate sensing operations (such as visual location of parts) that reduce the
uncertainty enough to guarantee success. ’

Another line of research has focused on building up programs automatically
from attempts by the robot to carry out the operations. Dufay and Latombe [83]
describe how partial local strategies (“rules”) for a task can be assembled into a
complete program by processing the execution traces of many attempts to carry out
the task. The method, however, requires knowing the actual relationship between
parts achieved by each motion, e.g., which surfaces are in contact. This information
can be obtained, in many cases, from careful analysis of the forces and positions

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 2. Variations of peg-in-hole require different strategies

L] _J]
[

L —
T
B

but, in general, the information is ambiguous in the presence of measurement and

control errors. Moreover, the rules used by the system are specific to tasks and
‘must be provided by the user.

A related approach to deriving a strategy from “experiments” is based on the
theory of stochastic automata [Simons, et al. 82]. The goal is to have the robot learn
~the appropriate control response to measured force vectors during task execution.
The method requires a task-dependent evaluation function so as to judge progress
towards its goal.

These previous approaches to fine-motion synthesis are based on the assumption
that there is a basic repertoire of operations, such as peg-in-hole insertion and
block-in-corner; whose geometric structure is known a prior:. In this view, the task
of a synthesis program is to make some pre-defined set of choices among alternative
actions, select the values of some parameters, and, possibly, select the order of
operations. In fact, small changes in the geometry of parts can have significant
impact on fine-motion strategies. The different operations shown in Figure 2, for
example, can all be classified as peg-in-hole and, yet, they require substantially
different programs to insure reliable execution. Similarly, differences in expected
position errors will call for different strategies for the same task.

Our approach is motivated by the belief that the set of possible geometric
interactions in a task should directly determine the structure of the fine-motion
strategy for the task. Thus, for example, the presence of additional surfaces within
~ the region of possible initial contact typically requires a change in the structure of a
strategy. The approach we describe in this paper proceeds directly from geometric
descriptions of the parts to a strategy.

Automatic Synthesis of ' Fine-Motion Strategies for Robots

Figure 3. Peg-in-hole: (a) original formulation (b) transformed to point problem

L .

7 ”A”/ 77757777

B D

/G

B, - B.
2. Overview of the approach

In this section we informally outline our approach to fine-motion synthesis
using a progression of simple examples. In section 3, we provide a more formal
characterization of the approach.

2.1. The basic strategy

Consider the simple task of moving the point p from its initial position to
any one of the positions in G (see Figure 3(b)). This is a simplified problem but
not a completely artificial one. It is equivalent to the two-dimensional peg-in-hole
problem in Figure 3(a) when the axes of the peg and hole are constrained to be
parallel. The position of p determines the position of the peg. The boundary of
the shaded area represents the positions of p where the peg would be in contact
with an obstacle. The transformation from Figure 3(a) to Figure 3(b) corresponds
to shrinking the peg to a point and expanding the obstacles accordingly. Note that
the sides of the hole have each been moved towards each other by half the width
of the peg. In this case, the transformation produces an equivalent problem. We
postpone a more general discussion of this type of transformation until section 2.6.
It is the case that problems of moving rigid objects among other rigid objects can be
reformulated as equivalent problems of moving a point among transformed objects
in a higher dimensional space, called the configuration space [Lozano-Pérez 81,
83].

The basic step in our synthesis approach is to identify ranges of positions from
where p can reach G by a single motion. The directions of such motions can be
represented as unit velocity vectors, v,. For each v;, we can compute all those
positions, P;, such that a motion along v, from that position would reach some
point of G (see Figure 4). We call this range of positions that can reach the goal
by a single motion along a specified velocity the pre-image® of the goal (for that
velocity). All we need do to guarantee that p reaches G from any point in any of
the P; is to execute a motion with commanded velocity along v;.

1The rationale for this name stems from viewing motions as mappings from pairs of initial
positions and velocities into points along the resulting path.

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 4. Pre-image of the goal for different v;.

If no pre-image of G contains the peg’s current position, then we can apply
the same pre-image computation recursively using each of the existing pre-images
as a possible goal. This recursive process is an instance of the problem solving
strategy known as backward chaining [Nilsson 80]. Each pre-image of G, P;, serves
to define a new goal set G} (the superscript indicates the “recursion level”). This
process is repeated until some pre-image P’c contains the current position of p (see
Figure 5). From this chain of pre-images sz P1 Pk we can construct a motion
strategy. The two components of the strategy are a sequence of velocity vectors and
a sequence of associated termination predicates. Therefore, the strategies may be
construed as a sequence of guarded motions [Will and Grossman 75]. Each velocity

vector v, defines a motion that moves from anywhere in P’ to GJ _,- Whenever p
reaches one of the goal regions, the velocity command needs to be changed to that
appropriate for the new region, e.g., from v;, to v;,_;. The role of the termination
predicates is to detect the arrival of p into a goal reglon In the simple case we have
been discussing, termination predicates simply test to see whether the position is
in the goal region. Termination predicates are much more difficult to construct in
the presence of position uncertainty. We will discuss this issue further in section
2.2 and section 3.

In summary, our basic approach to fine-motion synthesis is to chain backwards
from the goal towards the current position, characterizing at each step the range
of positions that can reach the current goal in one motion, i.e., the pre-image
of the goal. It remains to show how this simple approach is applicable to more

~ realistic assembly problems. Our first step towards this goal will be to discuss the

role played by uncertainty in position and velocity. The second step will be to -
introduce compliant motions. The next step will be to illustrate how friction can
be handled. The last step is to show how the notion of configuration space reduces
assembly problems for solids into protlems involving a point and surfaces in a
higher-dimensional space.

2.2. The effect of uncertainty

We have assumed thus far that p’s position is known exactly at all times and
that its direction of motion can be specified exactly. In this section we explore the

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 5. Backward chaining of pre-images

Weak Pre-Image Strong Pre-Image

effects of relaxing these assumptions.'

Let us assume that there is error between the actual and the commanded
velocity, bounded by €,. The actual velocity is within a ball of radius €, in velocity
space (the ball of velocities centered on v is denoted B(v)). Therefore, the path
of p is constrained to be within a semi-infinite cone centered on the commanded
path and whose apex is the initial position. The angle between the actual direction
of motion and the commanded direction is constrained to be less than or equal to
sin"!e,, which will be approximately €, for small enough e,.

The synthesis approach above is based on computing the pre-images of goal
regions for particular values of commanded velocity. These are locations from which
the goal can be reached by a single motion. In the presence of uncertainty in the
actual velocity, we define two alternative pre-images (see Figure 6):

1. Weak pre-image - locations for which some motion within the range of
velocity uncertainty may reach the goal. '

2. Strong pre-image - locations for which all motions within the range of

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 7. Positions reachable by commanded motion with uncertainty

~
~.
-
-

~

-~

<

o
et —¢-—

—

velocity uncertainty will reach the goal.

Note that the strong pre-image is a subset of the weak pre-image. In what
follows, we will use the term pre-image to mean strong pre-image.

In addition to uncertainty in the actual velocity along a motion, there is
uncertainty in the position of p. One source of position uncertainty is due to
imperfect knowledge of the initial position of the objects in the workspace. Another
source of error is due to inherent limitations in the robot’s position sensors. For the
sake of simplicity, we will lump these two types of uncertainty into a single upper
bound on position uncertainty. This assumption does not affect correctness of any
derived motion strategies, but might lead to less efficient strategies. In practice, the
two sources of uncertainty should be treated differently.

We assume that the actual position is always within a ball of radius €. centered
at the position observed by the robot. All possible observed positions are within a
similar ball centered at the actual position. The ball of possible observed positions
centered at a position p is denoted B(p). The range of positions potentially traversed
by a motion from an observed position along a commanded velocity is depicted in
Figure 7.

Position uncertainty makes it difficult to define termination predicates for
motions. A predicate that simply compares the observed position of p against the
boundaries of G* could terminate a motion prematurely. The actual position of p
could be anywhere within a ball of radius €, from the observed position. In order to
guarantee success all possible positions of p must be within the goal. We can think
of this effect of position uncertainty as “shrinking” the goal by ¢, for purposes of
detecting entry. Shrinking G* removes from G* any point at a distance less than
~ or equal to ¢, from any point in free space not in G*. This removes from G* any
point that is ambiguous. In many cases, this means that no part of the goal is
unambiguously identifiable on the basis of position. We will have to rely on the
effects of collisions with surfaces or on previous history to identify entry into a goal
region. This issue is quite subtle; it is the subject of section 3.1 (also see section
2.5).

Automatic Synthesis of B Fine-Motion Strategies for Robots

2.3. Compliant Motion

The example above dealt only with position controlled motions. Due to
uncertainty in p’s position and velocity relative to the task, this type of motion
often leads to empty pre-images. This indicates that the position accuracy is not
sufficient for the task. We mentioned earlier that the alternative motion regime is
compliant motion. We can visualize the effect of compliant motions as producing
sliding on the constraint surfaces derived from the obstacles. Sliding means that
the moving object confines its motions to be tangent to the constraining surface(s)
[Mason 81]. When not in contact with a surface, the motion will be along the
commanded velocity (to within the velocity uncertalnty)

The generalized damping model [Whitney 76] can be used to implement
compliant motions with the properties described above. The desired motion 1s
determined by the following relationship

f = B(v —vq)

where f is the vector of forces acting on the moving object, vy is the nominal
velocity vector, and v is the actual velocity vector. In what follows, B is a diagonal
matrix. The role of B in our usage is primarily to relate the units of force to those of
“velocity. We assume that the control system ensures that the dynamics of the robot
and moving object can be adequately approximated as a damper (for some limited
range of operating velocities). The Appendix provides a more detailed treatment of
the behavior of a generalized damper.

In practice, because of measuring and implementation errors, there will be
a difference between the commanded behavior and the actual behavior of the
damper. We summarize these differences by introducing the distinction between the
actual nominal velocity, vy, and the commanded nominal velocity, denoted v; ,
Throughout the paper, the asterisk will denote measured or commanded quantltles
that differ from the actual ones because of the presence of error.

The definition of the pre-image of a goal as the set of positions that can reach
the goal with one commanded velocity can be retained for generalized damper
motions. Under compliant motion, however, the moving object may reach the
goal indirectly by sliding on intervening surfaces. Therefore, compliant motions
typically produce larger pre-images than pure positioning motions. The increased
pre-image indicates less sensitivity to uncertainty (compare Figures 8(a) and 8(b)).

2.4. Friction

A crucial consideration in the analysis and synthesis of fine-motion strategies
is the effect of friction. A simple model of friction for planar motion without
rotation is as follows. We assume that the objects are of a single material with
equal coefficients of static and sliding friction, u. The reaction force from contact
at a point on a surface will lie within a frzctzon cone with apex at the point of
contact and center line along the surface normal. The angle between the normal
and the sides of the cone is the friction angle, ¢ = tan™! u. If the applied force
points into the friction cone, i.e., if the angle of the force vector to the surface

10

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 8. Pre-images for position control vs. generalized damper

v
-

/
//\l\\/l ,’\
/
N SN
AN)
N N
A N
Position control Genera] szed damper

(a)

Figure 9. Friction cone

Q= atan
\ 4 / sticks

A ™ slides
\NY;
\V

normal is less than ¢, then no motion will result. If the angle of the force vector to
surface normal is greater than ¢ sliding will result (see Figure 9).

This model of friction can be extended to include rotations and moments, but
the details are beyond the scope of this discussion (see [Erdmann 83]). In what
follows, we need only assume that some nominal velocity vectors will cause sticking
on a surface and others will cause sliding. We assume, furthermore, that the range
of nominal velocity vectors that cause sticking for a surface can be conservatively
bounded by a cone. The computation of pre-images must take into account the
possibility of “sticking” on a surface. In particular, assuming the motion is generated
by a damper (with B = bI), if the range of nominal velocities for the pre-image
contains nominal velocities whose angle to the normal of some surface is less than
the friction angle, @, then the motion will stop at that surface (see Figure 9 and
the Appendix).

2.5. Examples

We now have the conceptual tools necessary to synthesize a strategy for the
simple example of Figure 3. In this section we illustrate one particular approach
to synthesis of strategies based on the use of pre-images. The method used in this
section is a subset of the general approach described in Section 3. ’

Our goal is to identify some sub-region P of the free space C and a command
nominal velocity vg such that P is the strong pre-image, under vy, of the goal
surface. Equivalently, P must not overlap the weak pre-image of any surface where

11

Automatic Synthesis of . Fine-Motion Strategies for Robots

motion along vo may stick or not reach the goal. We will use this constraint to
drive a simultaneous search for P and vy.

The key problem is in discovering vo. Our approach here is to narrow in on
feasible values of vy by progressive refinement. We start with the complete range
of possible vg’s and remove from that range any values that can possibly lead
to failure (by sticking or not reaching the goal). At each step of the algorithm,
we compute the strong pre-image of the goal for the current range of vg’s. The
strong pre-image for a range of command velocities is the intersection of the strong
pre-images for each of the velocities. These are the positions guaranteed to reach
the goal for all the velocities in the range?. This is the same definition that we saw
in section 2.2 for the strong pre-image in the presence of velocity error. In fact, as
long as the velocity ranges used to compute pre-images are greater than 2¢,, we
need not concern ourselves further with velocity uncertainty. Once the algorithm
has chosen a final velocity range, we can pick a specific velocity from the range
such that all velocities within the velocity error fall in the chosen velocity range.
Narrower velocity ranges will not yield such a safe velocity.

~ For now we will ignore the need for backward chaining and sketch an algorithm
for synthesizing single motions. We will deal with backward chaining presently.
The basic algorithm steps are as follows:

1. Compute P, the strong pre-image of the goal surface, for the current
range of commanded velocities. If the current range of velocities is split
into disjoint sub-ranges, then Steps 1 and 2 should be repeated for each
sub-range (see Figure 10).

2. If P includes an uncertainty ball centered at some starting position, then
return P and the current velocity range.

3. Pick z to be a surface (other than a goal) where the robot may “stick”,
i.e. such that some velocity in the current velocity range points into the
surface’s friction cone. If no such surface exists then stop.

4. Remove from the range of commanded velocities any velocity pointing
into the friction cone of z.

5. Go to Step 1.

We can illustrate the operation of this algorithm on our example as follows.
Construct a directed graph with nodes for each of the surfaces in Figure 3 and one
node representing free space (C). A link is directed from node m to node n in the
graph if m and n are direct neighbors and m is in the weak pre-image of n for
the specified velocity range. That is, there is a link from m to n if some velocity
in the current range may cause the robot to move from some point in m (which is
not in n) to some point in n (which is allowed to be at the intersection of m and
n) without going through points in any other node. In principle, the graph should
have nodes representing the vertices; we have left them out for simplicity. This

2Note that the weak pre-image for a range of velocities is the union of the weak pre-images for
velocities in the range, i.e., positions that may reach the goal for some velocity in the range.

12

. Automatic Synthesis of Fine-Motion Strategies for Robots

simplification introduces the need for the phrases in parentheses. See, for example,
the link between A and B and B and G (but not viceversa) in the first example.
We will call this the reachability graph for that range of commanded velocities.
The reachability graph plays a key role in algorithms for computing the strong
pre-image of the goal.

In our example, we start out with a range of commanded velocities including
any velocity with a y component less than or equal to zero (we diagram ranges
of commanded velocities as sectors of a circle). These are the velocities that will
move p from nearby points onto the goal surface G. The reachability graph for
this range of velocities is shown at the top of Figure 10. In this figure, we have
indicated those surfaces where the moving object may stick (using the electrical
ground symbol). The (potentially) sticking surfaces are those whose friction cones
overlap the current velocity range. For simplicity, we assume that the contact on
surfaces B and D are point contacts.

Figure 10 illustrates the reachability graph and pre-image of the goal each
time Step 1 is executed. The surfaces used to constrain the range of commanded
velocities (Step 3) were chosen in the following order: B, D, A, E. The particular
order does not affect the final result in this case. The algorithm terminates at the
fourth cycle. In Figure 10(d), we have shown only one of the two velocity ranges
(and corresponding P’s) that result from discarding velocities that may stick on A
or E. The remaining velocity range leads to a pre-image that is the mirror image
(about the hole axis) of the one in Figure 10(d). Any commanded velocity within
either of these remaining velocity ranges will reach the goal from any position
within P. Note that the single motion strategy developed by this approach is a
biased search (see Section 1.1). This is a good choice since we have not lncluded
chamfers or rotation in our problem definition. '

" The example above can be done with a single motion (because the friction
cones of the horizontal and vertical surfaces do not overlap). We did not require the
use of backward-chaining. After Step 2 of the algorithm we have a choice of refining
the range of directions or of using the current P as the goal for a recursive call to the
same algorithm. In principle, we can follow these two paths non-deterministically.
In practice, this requires a search guided by considerations such as: the number of
motions in the strategy thus far and the size of P.

The example in Figure 11 illustrates the use of backward-chaining to develop
multi-move strategies. In this example, we assume that the first four steps proceed °
essentially as in the example in Figure 10. The final pre-image of the first example
now becomes G, the goal for the next recursion level. The method applies as before
and generates a new pre-image and velocity range. The strategy, then, consists of
choosing some velocity from this range, moving until transition into G is detected,
and changing the commanded velocity to one of those from the range obtained in
the first example. :

We noted earlier that, for each commanded motion in a strategy, it is necessary
to define a predicate which indicates that the goal has been reached. In multi-move

13

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 10. Single move peg-in-hole strategy synthesis

(@]

e__*';\
7

) €t

Y

Y

AV
e
\

/ h
o €17
‘I')

wp

<
N -
— s
N

y
N\

D«

2]
nh-

(2]

<
=
“
AAN
/\
N

N

[»]
WO <

(@]

™
(=]
w

-
A
VAR

A

14

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 11. Multi-move peg-in-hole strategy synthesis

hod
o

e

1y

W

ok /\
$
22,
2
2NV
e

|

W

<m ~
2
2NV,
et
SN
o

oy

VRN

) €171

)

RN

Automatic Synthesis of Fine-Motion Strategies for Robots

~strategies, this condition signals that another motion should be commanded. Three
types of pasic termination conditions are available: : S

1. Position termination: Terminate if the measured position of p is such °
that all possible actual positions consistent with the measurement are
within the goal region. o

2. Velocth (force) termination: Terminate if the observed velocity of p is
such that all possible actual velocities consistent with the measurement o

" can only occur within the goal region. Note that since motions are "
generated by a generalized damper, the difference between actual veldcity ‘
and commanded velocity provides information about reactlon forces, eg., .

contact with a surface. e

3. sze termination: Terrnmate if the elapsed time is such that all posmlons ;
consistent with the commanded motion and observed data are within the .

goal.

Position termination requires that all actual posmons consistent with the
measured position be within the goal. This is equivalent to the measured position
being in the goal after shrinking it by €, along its boundary to free space. If any
of the dimensions of the goal region are less than ¢, then position feedback is not
a reliable indicator of reaching the goal. When the goal is a surface, for example,
shrinking will cause the goal region to vanish. In these cases, we must rely on
velocity termination which requires that the observed velocities, e.g., when landing
on or leaving from a surface, be unambiguous relative to surfaces that may be
confused with the goal due to position measurement error. Time termination is also’
useful, when applicable, as it is much simpler to test than position termlnatlon

Velocity termination is the most useful termination condition when faced thh,‘
large position uncertainty. The strategy synthesized from the example in Figure 11.
illustrate this. The first motion required by the strategy can be terminated when
the 2z component of observed velocity is zero, i.e., when p strikes one of walls on the
right of the hole. The second motion can be terminated when either the z and/or
y components of the observed velocity are zero, i.e., when p is at the left bottomf
corner of the hole.

- These two examples illustrate the class of ﬁne-motion strategies we Wish to
consider. The strategies operate over a wide range of uncertainty without explicitely
computing where the parts are relative to each other. The strategies do not keep
any explicit-history of prev1ous events although, we will see later, history is implicit -
in the strategies.

2.6. Configuration Space.

The basic operation in the ‘'synthesis method described above is computing
the strong pre-image of a goal. To do this, we first transform the input problem,
~ involving a moving object and stationary obstacles, into an equivalent problem
involving a point and transformed obstacles. This transformation has a number
of advantages. One is that it enables us to represent the pre-images as areas in

16

Automatic Synthesis of Fine-Motion Strategies for Robots -

Figure 12. C-space representations make motion constraints explicit

UL
nie

Cartesian input

e G

C-surfaces

the transformed space. The key advantage, however, is that this transformation
makes the constraints on motion explicit. This is illustrated in Figure 12 where
an upright peg and chamfered hole are shown to lead to transformed obstacles
similar to those of a chamfered peg and unchamfered hole and to those of a tilted
peg and unchamfered hole. The transformation has served to make explicit the
underlying similarity of motion constraints in these tasks. In fact, the transformation
reduces tasks involving “arbitrary” geometric interactions between objects to the
interactions possible between a point and a set of surfaces.

We have in this paper limited ourselves to two-dimensional translation. It is
possible, however, to extend the transformation approach to more general motions
using the configuration space of a task [Arnold 80, Lozano-Pérez 81, 83]. A
configuration of an object is the set of parameters needed to completely specify
the position of all points of the object. The configuration of a rigid two-dimensional;
object, for example, can be specified by two displacements and an angle, that of
a rigid three-dimensional object by three displacements and three angles, and that
of a robot arm by its joint angles. For concreteness, we will be dealing exclusively
with cartesian configurations, e.g., (z,y,6) for objects in the plane, and not joint,
angle configurations. The space of all possible configurations for an object is known
as the configuration space (C-space) of that object. An object A is represented as a
point in its C-space; the coordinates of that point are the configuration parameters
of A.

Stationary obstacles in the environment of a moving object A can be mapped
into the configuration space of A. The resulting C-space obstacles are those
configurations of A which would lead to collisions between A and the obstacles.
Configurations on the surface of the C-space obstacle due to B are those where some
surface of A is just touching a surface of B. If A and B are both three-dimensional
- polyhedra, the surfaces of the C-space obstacle for B arise from each of the.
feasible contacts between of vertices, edges, and faces of A and B (see Figure 13)
[Lozano-Pérez 83]. Thercfore, each face of a C-space obstacle represents a particular
type of geometric constraint on A. A range of positions (and orientations) of A can

17

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 13. Geometric conditions giving rise to C-surfaces

? : / % :
B B
B
f_B. _ :

C.

A.

Figure 14. Cross sections of peg-in-hole C-surfaces: (a) no chamfer (b) chamfer

be represented as a volume in the C-space of A and a motion of A is a curve in the
C-space. . |
As an illustration of the use of C-space surfaces, consider the familiar
- two-dimensional peg-in-hole problem from Figure 3. We can construct a three-
dimensional C-space of (z,y, 6) configurations of the peg. In this space, the hole
defines an obstacle (see Figure 14(a)). Note that although the resulting surfaces are
‘curved, for each value of 9 the (z, y) cross section of the C-space surfaces is polygonal.
The surfaces represent one-point contacts and the edges at the intersections of
surfaces represent two-point contacts. Line-line contacts also give rise to edges at
the intersections of one-point contact surfaces. Figure 14(b) shows cross sections
for a peg and chamfered hole.

The C-space representation can be extended to more general kinematic
situations. In general, motion subject to geometric and kinematic constraints can
be defined as collections of equalities and inequalities that must hold among the

18

Automatic Synthesis of Fine-Motion Strategies for Robots-

parameters that determine the configurations of the robot and the objects in the
‘task. These inequalities represent C-surfaces [Mason 81]. Take the constraint that
a robot hand remain in contact with a crank handle as it rotates. The constraint
relating the position of the hand, (z,y), to the position of the crank (a constant)
and its current angle, o, is a curve (one-dimensional surface) in the configuration
space of the task, i.e., the (z,y, @) space.

Our goal is to make the detailed analysis of assembly operations algorithmic by
casting it in terms of C-surfaces. The purely geometric aspects of the analysis have
been exploited in earlier work on obstacle avoidance [Brooks and Lozano-Pérez
83, Lozano-Pérez 81, 83]. C-surfaces also share many of the characteristics of
“real” surfaces with respect to force analyses. This was exploited by Mason [81] to
synthesize compliant motions. The synthesis approach described here also requires
a mechanism for computing the effects of friction. Recent work has developed a
definition of friction cones for C-surfaces [Erdmann 83]. Work is under way to show
that conditions for avoiding jamming for the peg-in-hole can be re-stated in terms
of the relationship of applied forces to these C-space friction cones.

3. A General Framework

In the previous section we illustrated an abstract planning algorithm for
fine-motion strategies. Although that algorithm is representative of our approach
to fine-motion synthesis, it is not the most general formulation of the approach.
In particular, that algorithm embodies a restrictive assumption on the class of
single-motion strategies. It only considers strategies obtained by discarding all
velocity vectors that point into the friction cones of some subset of the task
surfaces. In some cases, further restrictions of the class of velocity vectors would .
produce a better strategy. The algorithm of the previous section does not provide
a mechanism for further restricting the range of velocities. More significantly, we
have not provided a criterion for defining what a “better” strategy might be.

In this section we will present a more general framework for our approach to
fine-motion synthesis. Although the description of this approach takes the form
of an algorithm, it is not detailed enough to be considered an effective procedure.
Our goal here is to formulate the correctness conditions for a class of synthesis
algorithms. This framework can be used to elucidate to what extent particular
synthesis methods (for the class of fine-motion strategies we are considering) are
“optimal.” In particular, we are interested in strategies that make the best possible .
use of sensory data.

Development of the general framework begins with a description of the form
of termination predicates for motions, followed by a discussion of the pre-image
definition, and of the necessity of passing multiple subgoals to recursive calls of the
planner. The rest of the section consists of a formal description of the framework,
expressed as an abstract algorithm, and an extended example of its application to
the peg-in-hole problem of section 2.

19

Automatic Synthesis of Fine-Motion Strategies for Robots

3.1. Termination Predicates

Much of the burden of interpreting uncertain information falls on the
termination predicate, which must decide when the current goal has been achieved.
It is obviously important that termination not be premature; otherwise subsequent
motions will proceed on a false assumption. On the other hand, failure to
terminate the motion when the goal is demonstrably attained is also bad; the
missed opportunity could prevent successful completion of the task. Hence it is
important that the termination predicate make the best possible use of the available
information.

One restriction is placed on the form of the termination predicates: we will
exclude predicates which record sensory data for later use. The decision to terminate
the motion must be made based on current sensor readings alone. As we shall
see, there is another mechanism which encodes some history, so this constraint is
not as debilitating as it may first appear. If later developments suggest that this
‘restriction should be relaxed, the framework can be modified by allowing a state
function to be defined along with each predicate.

The form of the termination predicate will be introduced first with the
assumption of perfect sensing and control. Consider the situation just after a
command has been issued. Given perfect knowledge of the initial position and a
perfect controller, and assuming good dynamic models, the planner could predict
the subsequent trajectory of the robot. If the position and force sensors were perfect,
it would be a simple matter to watch the sensors, or ’ohe time, and halt the motion
when the robot reaches a goal. - ‘

To address more realistic problems, we will first relax the assumption of perfect
sensing. The planner still knows what trajectory the robot will follow, but the
sensing information cannot be taken at face value. It is necessary to construct an
interpretation of the sensory data, which will be the set of all positions/velocities
- consistent with the sensory data and with the trajectory. Once this is accomplished,
termination is again simple—if this interpretation of the sensory data is a subset
of a goal, the motion is terminated.

The final step is to relax the assumption of perfect control and known initial
position. Suppose we have a set of possible initial positions, and a set of possible
nominal velocities. Each different combination of initial position and nominal
velocity will give a different robot trajectory. Without knowing which trajectory is
the “real” one, the predicate must terminate the motion with a guarantee of being
~ in a goal. To see how this is done, imagine that there is a different robot for each
trajectory, i.e. that all of the trajectories are being executed simultaneously. For
each robot, we can apply the procedure of the previous paragraph: form the set
of positions/velocities consistent with sensory data, intersect with the trajectory,
check for inclusion in a goal. If the robots all agree that a goal has been achieved,
the motion is terminated. This approach guarantees that for any initial position
- and nominal velocity consistent with the robot’s information, and for any position

and velocity consistent with observations, termination will occur only if a goal is
attained. :

20

Automatic Synthesis of : Fine-Motion Strategies for Robots

~ Figure 15. Some histdry is required to proceed into the hole
. R N
| 5
| /)’// >
/

G

When the termination predicate is constructed, it is important to bring all
possible information to bear, so that the set of “virtual robots” may be made as
small as possible. Thus far we have concentrated on the information encoded in
the sensory data, but there is another important source of information. When we
formulate a subgoal R and call the planner recursively, there are two important
effects. First, the robot will be moved to R. But second, and more to the point,
is that when the recursive call returns and the motion is executed, the planner
knows that the robot is in R. To illustrate the distinction, consider a robot lightly
touching a vertical wall, and suppose that the subgoal R is the wall. Although the
robot is in R, this fact might not be apparent to the robot if the contact force is
small and if the position sensors are noisy. Hence the planner is called recursively
to “move” the robot to the wall. Presumably the planner will plan a horizontal
motion into the wall. When the motion command is executed the robot will not
move, which the termination predicate will interpret as evidence that the “motion”
was successful. When the recursive invocation of the planner returns, it will have
accomplished its mission, even though it did not move the robot at all.

Another, more familiar, example illustrates the use of this information to
construct the termination predicate. Suppose the planner is applied to the point-
in-hole problem, with the position sensor giving a position at the lip of the hole
(Figure 15). Using the position sensor alone, the planner would have to admit
the possibility of the robot being positioned anywhere inside the disc centered on
the sensed position. To attain the goal with a single motion would be impossible.
However, if the accomplished subgoal R is also consulted, the set of possible initial
positions is reduced—the robot must be in the intersection of R with the disc.
Starting from this smaller set of possible initial positions, with a command nominal
velocity down to the right, it is easy to confirm that all the virtual robots will
achieve the goal.

Thus the history of the robot, represented By the accomplished subgoal R,
must be taken into account to construct the termination predicate. When the set
of feasible trajectories is constructed, initial positions outside the subgoal R should

Automatic Synthesis of : : . Fine-Motion Strategies for Robots

be excluded. That the termination predicate is dependent on the accomplished
subgoal R is an important observation, which profoundly affects the ultimate form
~ of the planning algorithm.

3.2. Definition of Pre-image

The fundamental element in our approach to planning is the ability to construct
a pre-image: a set of points from which the goal can be attained in a single motion.
In section 2, the pre-image depended on the goal G and a range of command
nominal velocities. By proceeding more formally in this section, we find that the
pre-image need not depend on the command nominal velocities, but that it does
depend on the accomplished subgoal R.

Conceptually, we can approach this problem as follows: For goal G, and for
every possible observed initial position c;,; and accomplished subgoal R, construct
the set S(c.,;;, R, G) of all command nominal velocities such that the termination
predicate, constructed as in section 3.1, is guaranteed to terminate the motion. If
S(c:nit,R,G) is empty, there is no single motion that can be guaranteed to work
for accomplished subgoal R and observed initial position C:Mt. If S(c:m-t,R, Q) is
non-empty, then any element of S(ci,;,;, R, G) is sufficient to attain the goal. Now
if the actual initial position of the manipulator is ¢;,;;, the observed initial position
cin:s could be anywhere in the sphere B(cingt) centered on cjni; with radius equal
to the tolerance on the position sensor. c¢;n;; should be in the pre-image if and only
if every possible ¢, gives a non-empty S(cinis) R, G). Hence we can define the

pre-image Pr(G) of a goal G:

Pr(G) = {cinit € R | Y ciniz € Blcinit), S(cinirs R, G) 7 0.
The subscript R is used as a reminder that the pre-image depends on R. Note also
that the definition of Pr(G) excludes points outside R. To have a point in Pr(G)
but not in R wouldn’t make much sense—such a point would be a good place for
the robot to be, provided that it is somewhere else!

3.3. Recursive Calls and Multiple Goals

When the planner is first called, the robot could be anywhere in configuration
- space C. If the set of strategies guaranteed to attain the goal G from any point
in configuration space S(c,;,C,G) is non-empty, then the planner can choose
and execute one of these strategies. If S(cl,;,C,G) is empty, the planner must
construct suitable subgoals and initiate a recursive call to the planner to achieve -

these subgoals.

Clearly, the planner should specify as subgoals only those sets from which it
can achieve the goal, otherwise a recursive call will serve no purpose. To characterize
‘these subgoals more precisely, let us look ahead a bit, and imagine that the recursive
call to the planner has just returned. The recursive call guarantees that the the
robot’s position is now in R. Thus the planner must plan a single motion, from initial
position ¢;n: in R, which attains the goal G. By construction of the pre-image,
such a motion exists only if ¢;ys1 is in the pre-image Pr(G). This observation serves

22

Automatic Synthesis of Fine-Motion Strategies for Robots

to define suitable subgoals—R should include only those points which are also in
Pr(G), i.e. R C Pg(G). Since, by construction, R D Pr(G), we can restate this
observation: R is a suitable subgoal if and only if R = Pg(G).

Thus, any set satisfying the equation R = Pg(G) is a suitable subgoal. In
general, there are a multitude of sets which satisfy this equation. For instance, if R
satisfies the equation, so does any subset of R. The question is what to do with this .
multitude of subgoals. Do we pass them to recursive calls one at a time? Needless
to say, the branching factor in this search can be rather large. However, another
issue takes precedence. Situations occur for which the planner can be certain to
attain one of two goals, but cannot be certain in advance which of the two goals
it will attain. If the planner were passed either one of the two goals individually, it

" would fail to find a predicate guaranteed to terminate the motion. With both goals

in hand simultaneously, it can plan a motion with confidence that it will ultimately
be able to report which of the goals was attained. Hence we will pass all subgoals to
the recursive call. This suggests that the approach be implemented without search,
but we are not certain whether such an implementation will be possible.

Since the planner will be passed multiple goals rather than a single goal, some
adjustment of the notation is required. The set of goals will be written {G,}, the
set of strategies guaranteed to attain one of the goals for given observed initial
position c,, . and accomplished subgoal R will be written S(c:nit, R,{G,}), and the

int

pre-image will be written Pr({Ga}).

3.4. A Formal Statement of the -Framework.

3.4.1. Nomenclature

¢ configuration ‘

Cinst configuration at beginning of a motion
v velocity

Vg nominal velocity

¢* observed configuration

Ciss Observed configuration at beginning of a motion
v" observed velocity

vy commanded nominal velocity

t time

c vC»’space, i.e., the set of all configurations

B(c) the “uncertainty ball” of configurations; i.e., the set of all configurations whose
distance from c¢ is within the tolerance of the position sensor.

B(v) the “uncertainty ball” of velocities.

B(vg) the “uncertainty ball” of nominal velocities.

- 23

a

- Automatic Synthesis of Fine-Motion Strategies for Robots

{G4} current goal set. We wish to move the robot to one of the goals and return
the identity of the goal. '

p(c”,v",t) the termination predicate. For each goal in {G,} it returns one of: “BUG?”,
indicating that no possible trajectory is consistent with any interpretation of the
sensory data; “CONTINUE”, indicating that at least one possible trajectory
exists, consistent with the sensory data not just at the goal, or “WIN”,
indicating that all possible trajectories consistent with the sensory data are in
the goal.

S(ci i, R, {Gq}) is the set {(vy,p(c’,v",t)) | p terminates}. By construction of the
predicates, guaranteed termination implies guaranteed attainment of a goal.
So for a given observed initial configuration and accomplished subgoal R, this
gives the set of all winning strategies, where a strategy comprlses a command
nominal velocity and a termination predlcate

Pr({G4}) is the pre-image {cinit € R | ¥ iz € B(Cinit), S(Cinsts By {Ga}) # 03}.
{Rg} The sets of configurations R such that the pre-image Pr({G.}) includes all

of R, i.e., Pr({Gs}) = R. This is the subgoal set—satisfaction of an element
of this set by a recursive call will allow us to satisfy the current goal set.

R the subgoal attained by recursive call to the planner.

MotorCommand ('v;) execution of this program statement transmits the commanded
nominal velocity to the controller, causing the manipulator to execute the
planned generalized damper strategy.

D; ;(t) the actual trajectory; it returns (c, v) - the actual configuration and velocity
at time ¢ - for initial position c;n;;,; and nominal velocity g ;.

3.4.2. Algorithm
Procedure FM({G,}) o e

Compute {Rg}
If C is in {Rg}
Then R <~ C
Else R <- FM({Rg})
(vy, P) <~ choose (S(cin, R, {Ga}))

t<-0
Motor Command (vg) . e
L {Va} <= plc’,v,t)

BUG Then Error
WIN Then Return(G,)

ForEach a Do If V,
ForEach a Do If V,
Increment ¢

Go L

End FM

24

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 16. Task illustrating construction of p.

3.5. Example

This section applies the algorithm to the two-dimensional peg-in-hole problem
(Figure 16). FM is called with an initial goal set containing the single element G:
the bottom of the hole. Let D; ;(t) denote an actual trajectory; it returns (c, v) - the
actual configuration and velocity at time ¢ - for initial position cins; and nominal
velocity vy ;. :

First we construct an example illustrating construction of the termination
predicate p(c*,v",t). Such a predicate must be constructed for each (Cimitr Vo» R)-

Here is the predicate for (c:m-t’z, v;,z,R), assuming that R includes B(C:nit,2)‘

Procedure pz,g(c*, v, t)
Flag <- False
For all (Cinits, vo5) € B(C:nit,Z) X B(Ug,z)
(c,v) <- Di,J'(t)
1t (c,v) € B(c') X B(")
' Then If ¢ € G
Then Flag <~ True
Else Return(CONTINUE)
If Flag Then Return(WIN)
. Else Return(BUG)
S(Cinier R, G) is the set of all (vg,p) which are guaranteed to win if executed at a
point in B(c,,;) N R. For our example point, this set is empty. For example, the
command nominal velocity vé,z is not in S(c:nii,R, G) because trajectories from the
left and right edges of B(c,,;,) will never reach the goal.
The example predicate will give the behavior specified in sections 3.1 and 3.4,
and is therefore “correct”. However, the form of the predicates is not completely
satisfactory. The test for goal attainment is done simply by testing whether all

25

Automatic Synthesis of . Fine-Motion Strategies for Robots

Figure 17. Singleton R’s

4 2€C /
[
~ 1\ \’ s /
g\ /
AR
I \
/ \
< 14’

possible predicted trajectories have attained the goal. This satisfies the requiremeribs
of the formalism because of the way control error is modeled—we have assumed
that the control error is constant during a trajectory. A more realistic model of
error would yield more robust predicates, combining position, velocity, and time
information to detect presence at the goal. '

The first step in the algorithm is to compute a set of subgoals {Rs}. Reca.ll
that each element R of {Rg} is a set giving a pre-image Pr({G.}) which is equal
to R. The simplest way to begin is to construct the sets consisting of a single
configuration. Such a set R = {c} is valid if and only if it gives a pre-image
P;1({Ga}) equal to {c}. Suppose the recursive call reports the manipulator is at c,
then the question is whether a single motion command ‘can move the manipulator
to the goal G. This is possible for all configurations ¢ in the shaded region of Figure
17. This region is the union of two half-planes and a circular disk [Turk 1983]::A
point in one of the half-planes, such as c3, can move to the hole by selecting a
velocity which is guaranteed either to fall to one side of the hole and slide in, or hit
the hole directly. A point in the circular region, such as c4, can move to the hole
by selecting a velocity which is guaranteed to hit the hole directly.

Any set R satisfying R = Pr({G.}) must be a subset of the region indicated
in Figure 17. However, the shaded region does not itself constitute a good R. For
instance, as in the earlier example, the planner might be unable to tell whether
the robot is to the left or the right of the hole. Hence we must look for subsets
R of the shaded region, each of which is equal to the corresponding pre-image
Pr({G.}). Three different such subsets are shown in Figures 18(a) through 18(c).
As an example, consider the set shown in Figure 18(c). There are three different,
regions in this set: one region to the left of the hole, one region to the right of
the hole, and one region in the hole. We can demonstrate that this R is equal to
the corresponding Pr({Ga}) as follows: Suppose that a recursive call has reported

26

Automatic Synthesis of Fine-Motion Strategies for Robots

that the manipulator is in R. We now consult the position sensor. If ¢, is to the
right of center, the manipulator cannot be in the left region, and the left-sliding
command shown for point c3 in Figure 17 will work. Similarly if c:m-t is to the left of
center, a right-sliding motion will work. This set works because any “incompatible”
subsets—the left and right regions in this case—are separated by a distance of at

least 2e,.

The sets shown in Figure 18 are maztmal—they are not subsets of any other
subgoals. Since the subset of any valid subgoal is itself a valid subgoal, it would
make sense to pass only the maximal sets to the recursive call. However, situations
do occur for which maximal sets do not exist, so we will simply pass all valid
subgoals to the recursive call.

Once the subgoal set {Rg} has been determined there is a recursive call to
FM. As in section 2.1, we will use a superscript numeral to indicate the “recursion
level”. Thus we write that the recursive call’s goal set is the original call’s subgoal
set by writing {G1} <- {R%}. Construction of a predicate for a multiple goal set
is a simple variation of the predicate constructed earlier.

Procedure leﬁf,v*,ﬂ
Flag <- FALSE
For All a Win, <- TRUE
For ALl (Ciniti, v0;) € (B N B(Cinir1)) X Blvgy)
(c,v) <= Dj (t) .
If (c,v) € B(c") X B(")
then Flag <- TRUE = : .
For All a If ¢ ¢ G, Then Win, <- FALSE
If Flag Then If For Some « Win, = TRUE
- Then Return(WIN)
Else Return(CONTINUE)
Else Return(BUG) :

Now the recursive call must construct subgoals. In this case, the set of all
configurations C' is a valid subgoal. No further recursion is necessary, because
one of the goals can be attained from any configuration whatever using a single
motion command. The recursive call may immediately choose and execute a motion
command. When the predicate terminates the motion, the identity of the subgoal
attained is returned to the original call, which then chooses and executes a motion
command carrying the manipulator to the bottom of the hole.

4. Conclusion

This paper has presented a formal approach to the synthesis of a class of
fine-motion strategies. The approach operates directly from geometric descriptions
of the task and explicit bounds on errors in sensing and motion. The basic method
is structured around the computation of the pre-image of a goal region, i.e, set of

27

Automatic Synthesis of - Fine-Motion Strategies for Robots

~ Figure 18. Maximal R’s

. /\
S AN 2¢,
N
. AN
AN
. /

S o G B o
N %
N 7
N
N //
N s
/
ZGC//
B. iei-s 7 - //
| \
/ \
/ / \
G o I _

——— G I

28

Automatic Synthesis of Fine-Motion Strategies for Robots

configurations that can reach the goal using a single compliant motion. We saw
that the presence of errors in motion and sensing gives rise to a number of difficult
problems in specifying motions and in deciding on termination conditions. Further
work is in progress. o '

Beyond presenting a specific synthesis approach, the paper has attempted

"1, to illustrate the usefulness of modeling comphan’o fine-motion strategies
as generalized damper motions that “slide” on C-surfaces (correspondlng
to geometric constraints), and - S : - '

2. to establish correctness condltxons for fine-motion programs operatlng
under error in sensing and control.

_ Our approach to these issues prov1des the foundation for our synthes1s method.
Moreover, we hope it may be useful to human programmers engaged in ﬁne-motlon
synthesis. T SR T o

The approach in this paper is part of an attempt to develop a urxiﬁed approaeh
to robot motion planning, spanning obstacle avoidance [Brooks and Lozano-Pérez
83, Lozano-Pérez 81, 83|, compliant motion [Mason 81], pushing [Mason 82],
grasping [Lozano-Pérez 81, Mason 82], and (now) fine-motion strategies. We believe
that if sophisticated sensor-based motion strategies are to be routinely used'in
robotics, the analysis and synthesis of these strategies cannot (or should not have
to) be done by human programmers on a task-by-task basis. Moreover, we are in,
need of a theoretical basis for the development of the programming and control
mechanisms best suited for sensor-based motion. For these reasons, there is a vital
need for a unified (prefera.bly mechanizable) approach to analysis and synthes1s of
robot motxon This paper is a step towards thls goal '

L

Appendix: Compliance via Generalized Damping

Generalized damping is a very simple and flexible mechanism for implementing
active compliance® [Whitney 77]. The basic approach is to define the desired
behavior of the robot by the following relation: :

f= B(V —-Vo)

where f is the vector of forces acting on the moving object, vg is the nominal velocity
vector, and v is the actual velocity vector. In general, f is a vector of six cartesian
forces and torques and v and vg are vectors of six linear and rotational velocities.
~ In our examples here, we limit ourselves to forces and linear displacements in the
plane.

Allowing the damping matrix B to be an arbitrary matrix can produce
unusual behavior. One popular example is to relate forces in the —z directions to
displacements in the -}y direction so that the robot will climb over obstacles. We

» 3See |[Mason 83] for a discussion of generalized damping versus the generalized stiffness and
hybrid control approaches to compliant motion.

29

Automatic Synthesis of Fine-Motion Strategies for Robots

Figure 19. Geometry for generalized damper analysis

X 1\ X{g:___
9
<

will, however, limit ourselves to simple damping matrices. In particular, we assume
B to be the a diagonal matrix bI, with b > 0. Note that the damper equation is
now 'simplified to

= b(v—vp)

or alternatively

V=Vo+%f

Consider an object controlled by a generalized damper with vg (at an angle
6 below horizontal) on a rigid surface whose normal points along the y axis (see
Figure 19(a)). When the object strikes the surface, three possibilities exist: (1)
the object slides to the right; (2) the object slides to the left; or (3) the object
remains motionless. We can use Coulomb’s law to determine which of these three
possibilities will occur. S

First consider case (1); the object slides to the right, so the velocity v is
horizontal. Coulomb’s law dictates that the contact force f will make an angle
¢ = tan"lu with the surface normal. Using the damper equation in a simple
construction in velocity space (Figure 19(b)) we see that the nominal velocity angle
 must be less than § — ¢. Case (2), with the object sliding to the left is quite
similar and yields the constraint that § must be greater than % - ¢.

Finally consider case (3); the object sticks, i.e. the velocity v is zero. Coulomb’s
law gives a constrdint on the force:

U T
S—¢<a<i+d

where « is the angle which the force f makes with the horizontal. Again, the damper
equation implies a corresponding counstraint on 8:

T T
§—¢_<.9S‘2‘+¢-

The analysis above yields constraints on the nominal velocity vg given the motion
of the object. We are also interested in the opposite: given the nominal velocity vy,

30

Automatic Synthesis of Fine-Motion Strategies for Robots

what will be the resultant motion. In the present analysis this is easily obtained.
If the nominal velocity angle 6 is less than § — ¢, only case (1), right-sliding,
can occur. If the nominal velocity angle § is greater than § - ¢, only case (2),
left-sliding, can occur. If the nominal velocity angle 8 is in the interior of the friction
cone, i.e. if

T ' T
§—¢<0<‘§+¢,

then only case (3), sticking, can occur. The only ambiguous cases occur when
6 = % + ¢ or when & = § — ¢. These cases are ofben referred to as “impending
motion”.

 Thus the class of nominal velocities which give a desired motion on a given
surface is easily characterized in terms of the friction cone of the surface, making
the generalized damper an ideal control function for synthesis of fine motions.

Acknowledgments

We would like to thank Rodney Brooks, Steve Buckley, and Mike Erdmann
for their helpful comments on earlier drafts.

References

Andreev, G.Y., and N.M. Laktionev “Contact stress . dnring automatic
assembly,” Russian Engineering Journal 49, 11 (1969), 57.

Arnold, V. 1. Mathematical Methods of Classical Mechanics , Springer-
Verlag, New York, Heidelberg, Berlin, 1980.

Brooks, R.A. “Symbolic error analysis and robot planning,” Int. J. Robotics

~ Research 1, 4 (December, 1982b).

Brooks, R. A. and T. Lozano-Pérez “A Subdivision Algorithm in Configuration
Space for Findpath with Rotation,” Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Al Memo 684, December, 1982 (also IJCAI-83 Proceedings).

Drake, S. H. Using Compliance in Lieu of Sensory Feedback for Automatic
Assembly, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts
Institute of Technology, 1977. '

Dufay, B. and J. C. Latombe “An Approach to Automatic Robot Programming-

Based on Inductive Learning,” International Symposium on Robotics Research
, Bretton Woods, August, 1983. '

Erdmann, M. “On a Representation of Friction in Configuration Space,”
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, un-
published report, January, 1983.

Goto, T., K. Takeyasu, and T. Inoyama “Control algorithm for precision insert
operation robots,” IEEE Trans. Systems, Man, Cybernetics SMC-10, 1 (1980),

- 19-25.

31

Automatic Synthesis of Fine-Motion Strategies for Robots

»

Gusev, A.S. “Automatic assembly of cylindrically shaped parts,” Russian

Engineering Journal 49, 11 (1969), 53.

Hanafusa, H., and H. Asada “A Robot Hand with Elastic Fingers and its
Application to Assembly process,” IFAC Symposium on Information and Control
Problems 1n Manufacturing Technology , Tokyo, 1977, 127-138 (Reprinted in
Brady, M. et. al. (eds), Robot Motton, MIT Press, 1983.). '

Inoue, H. “Force feedback in precise assembly tasks,” Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, AIM-308, August, 1974
(Reprinted in Winston, P. H. and R. H. Brown (eds), Artificial Intelligence:
An MIT Perspective, MIT Press, 1979).

Laktionev, N.M., and G.Y. Andreev “Automatic assembly of parts,” Russian
Engineering Journal 46, 8 (1966), 40.

Lozano-Pérez, T. “The design of a mechanical assembly system,” Artificial
- Intelligence Laboratory, Massachusetts Institute of Technology, AI TR 397, 1976
- (Reprinted in part in Winston, P. H. and R. H. Brown (eds), Artificial Intellzgence
An MIT Perspective, MIT Press, 1979).

Lozano-Pérez, T. “Automatic planning of manipulator transfer movements,”
IEEE Trans. Systems, Man, Cybernetics SMC-11, 10 (1981), 681-689 (Reprinted
in Brady, M. et. al. (eds), Robot Motion, MIT Press, 1983.).

Lozano-Pérez, T. “Spatial planning: a configuration space approach,” IEEE
Trans. Computers C-32, 2 (February, 1983).

McCallion, H., and P. C. Wong “Some thoughts on the automatic assembly of
a peg and a hole,” Industrial Robot 2, 4 (1975), 141-1486.

Mason, M.T. “Compliance and force control for computer controlled manipulators,”
IEEE Trans. Systems, Man and Cybernetics SMC-11, 6 (1981), 418-432
(Reprinted in Brady, M. et. al. (eds), Robot Motion, MIT Press, 1983.).

Mason, M. T. “Manipulator Grasping and Pushing Operations,” Technical
Report, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
1982.

Mason, M. T. “Compliant Motion,” in Brady. M. et al. (eds), Robot Motion,
MIT Press, 1983.

Nilsson, N. Prmczples of Artifictal Intelligence , Tioga Publishing, California,
1980.

Ohwovoriole, M. S., and B. Roth “A theory of parts mating for assembly
automation,” Proc. Ro.Man.Sy.-81 , Warsaw, Poland, 1981.

Ohwovoriole, M. S., B. Roth, and J. Hill “On the Theory of Single and Multiple
Insertions in Industrial Assemblles,” Proc. 10th Int. Symp. Industrzal Robots ,
Milan, Italy, March, 1980, 545-558.

Paul, R.P., and B. Shimano “Compliance and control,” Proc. 1976 Joint
Automatic Control Conf. , San Francisco, 1976, 694-699 (Reprinted in Brady, M.
et. al. (eds), Robot Motion, MIT Press, 1983.).

32

Automatic Synthesis of Fine-Motion Strategies for Robots

Raibert, M.H., and J.J. Craig “Hyb'rid position/force control of manipulators,”
J. Dynamic Systems, Measurement, Control102 (June, 1981), 126133 (Reprinted
in Brady, M. et. al. (eds), Robot Motion, MIT Press, 1983.).

Salisbury, J. K. “Active stiffness control of a manipulator in Cartesian
coordinates,” IEEE Conf. Decision and Control , Albuquerque, New Mexico,
November, 1980.

Simons, J., H. van Brussel, J. de Schutter, and J. Verhaert “A self-Learning
Automaton with Variable Resolution for High Precision Assembly by Industrial
Robots,” IEEE Transactions on Automatic Control AC-27, 5 (October, 1982).

Simunovic, S.N. “Force information in assembly processes,” Proc. 5th Int.
Symp. Industrial Robots , Chicago, September 22-24, 1975, 415-431.

Simunovic, S.N. An Information Approach to Parts Mating, Ph.D. Thesis,
Department of Mechanical Engineering, Massachusetts Institute of Technology,
1979.

Taylor, R.H. “The synthesis of manipulator control programs from task-level
specifications,” Artificial Intelligence Laboratory, Stanford University, AIM-282,
July, 1976.

Turk, M. A. private communication, May, 1983.

Whitney, D.E. “Force feedback control of manipulator fine motions,” J.
Dynamic Systems, Measurement, Control (June, 1977), 91-97.

_ Whitney, D.E. “Quasi-static assembly of compliantly supported rigid parts,” J.
Dynamic Systems, Measurement, Control 104 (March, 1982), 65-77 (Reprinted
in Brady, M. et. al. (eds), Robot Motion, MIT Press, 1983.).

Will, P.M., and D.D. Grossman “An experimental system for computer
controlled mechanical assembly,” IEEE Trans. Computers C-24, 9 (1975), 879-
888. ' '

33

