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1.INTRODUCTION

1.1. The Find-Path Problem in the Plane

This paper addresses the problem of planning collision-free paths for a moving
robot in a planar workspace cluttered by known obstacles. The goal is to build a

Path Planner which:

* takes as inputs known positions of the obstacles in the workspace, and the
start and goal configurations of the moving robot,

* then outputs a collision-frec path of the robot betwcen the start and goal
configurations. ’

Figures 1.1 illustrate paths computed by the Path Planner. The planar
workspace is bounded by four walls, and has five obstacles inside it. The paths are
shown by displaying consecutive configurations of the moving robot. The starting
and ending configurations of the robot are shown bold. With each path, we also
display the trace of the center of the robot. You are invited to follow this trace to
find out which translations and rotations the robot has made.

We assume that the moving robot is convex. A non-convex robot can be
approximated by its convex hull [7]. All the obstacles are also assumed to be
convex and non-overlapping. This is not a severe restriction since we can eliminate
concavities in an obstacle by splitting it into smaller convex obstacles, or by taking
its convex hull. We consider the workspace boundary as the juxtaposition of four
separate walls, otherwise the square boundary would be a concave obstacle.

1.2. How the Path Planner Worl;s

The Path Planner proceeds in two main steps:
1. Model the moving robot and describe the free space between the obstacles.

2. Compute a collision-free path.
The description of the robot and the free space can be seen as a preprocessing step

for the second step.

Model the Robot
We are motivated by the belief that the shape of the moving robot gives useful

hints to the computation of paths. By modeling the moving robot, we find salient
features such as the sliding edges, and the head and tail points of rotation. In figure
1.2.a, the sliding edges s, and s in some way capture the long-versus-narrow shape
of the moving robot M. The two sliding edges s; and s, suggest a useful range of
orientation [0, 6] for which the robot M aligns itself with the length of the cone
C. Sec figure 1.2.b. The range [0y, 02] is called the alignment range of the robot
inside the cone C. The robot will translate inside the cone at any orientation inside
the alignment range.

Next, the rotation of the robot inside the cone is done about two points I{ and
T called the head and tail of the robot. The points H and T" arc centers of the two
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INTRODUCTION

Figures 1.1 Some example paths between different start and final configurations of the robot.
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Figures 1.2 The shape of the mdving robot hints the set of valid motions inside a cone.

a. The sliding edges of the moving robot pinpoint the alignment range inside a cone. The robot
will rotate about point H/T when it is inside a cone.

b. The set of valid motions of the robot inside a cone is composed of all rotations inside the
alignment range, and all translation inside the translation polygon.

N—.
PSR

< __/

—

\

-

=7

\
/
\

-

(

ree Convex -
O
APd!?\ .

-
-
-
- , -

\f Commo -7

Figures 1.3 Describing the free space as a network of linked cones.

a. The set of overlapping cones captures the free space between the obstacles.

b. Links capture the connectivity between the cones. Two cones are linked if they share a common
vertex, or a4 common cdge, or if they are part of a same free convex region, or a same star- shaped

intersection.
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INTRODUCTION

the alignment range of the robot inside the cone . The robot will translate inside
the cone at any orientation inside the alignment range.

Next, the rotation of the robot inside the cone is done about cither of the two
points Il and T, called the head and tail of the robot. The points I/ and T are
centers of the two circles tangent to the shiding edges. See figure 1.2.a. They are
also points for which the annulus swept by the robot (from 8 to 0.) is small. In
figure 1.2.b, the robot is shown rotating and translating inside a cone C. Rotation
is donc about the tail 7" and within the alignment range [0, 02]. Translation is such
that the tail T is within the shaded region, called the translation polygon T(C).
The sliding edges and the head/tail point of rotation capture a good range of valid
configurations of the robot inside the cone C.

Describe the Free Space between the Obstacles

We believe that the free space between the obstacles gives useful hints to the
computation of paths. The free space between the obstacles is described by a set
of overlapping cones. A cone captures a freeway between two facing edges [1], or
a bottle-neck between an edge and a facing corner. In figure 1.2.b, the cone C
describes the freeway between the facing edges e; and es. A cone is bounded on the
two sides by the two obstacle edges, and at the two ends either by two arcs of circle,
or by two approximating straight lines. Figure 1.3.a shows all the overlapping cones
which capture freeways and bottle-necks in the example free space. A freeway is
pictured by a bisecting segment between the facing edges. Similarly, a very short
segment pictures a bottle-neck between an edge and a facing corner.

These overlapping cones are linked into a graph. While a cone captures a
convex local region, a link captures the connectivity between two nearby cones. Two
cones are linked if they share a common edge, or a common corner. See figure 1.3.b.
A common-edge link suggests a sliding motion of the robot inside some freeway
along the common edge. This freeway is deducible from the free space description.
A common-corner link suggests a rotation about the common corner, and inside
some V-shaped region around the corner. The V-shaped region is computable from
the free space description.

Two cones can also be linked if they are part of the same free convez region
or the same star-shaped intersection.® A free convex region describes a local space
in between many edges at a time. Figure 1.3.b illustrates a free convex region
bounded by five facing edges. A path of the robot through a common free convex
region consists generally of a realignment, followed by a translation inside the
common convex region. A star-shaped intersection captures a region in between
many vertices. It can be considered as the dual of a free convex region. In figure
1.3.b, we have an intersection bounded by four facing corners. The path of the
robot through a star-shaped intersection is broken into paths about the two nearest
vertices, and a path inside the intersection. We'll see in chapter 3 that the above
two links are respectively the extension of common-edge and common-vertex links.

3Sce section 3.3, 3.4 for formal definitions of free convex regions, and star-shaped intersections.
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INTRODUCTION

The free space between the obstacles is desceribed by a network of linked cones.
The network of linked cones corresponds closely to the Voronoi diagram [5] for the
same free space. We'll search this network of linked cones for a short path of the
moving robot.

Compute a Path Using Four Experts and an A*-Search

The path of the moving robot is composed of paths inside the cones and paths
along the links which connect nearby cones. Paths inside a cone are composed of all
rotations ‘inside’ the alignment range, and all translations ‘inside’ the translation
polygon. Paths along the links are computed by four experts corresponding to the
four types of links. To move along a link between two cones, the robot typically:

* from the current cone, enters the transition region described by the link,

* translates and rotates inside the transition region aiming towards the next
cone,

* from the transition region, enters the next cone.

The computation of a path along a link between two cones proceeds in three
steps: _ ,
1. Find the transition region from the free space description.

2. Compute the set of valid configurations of the robot inside the transition
region, and inside the next cone. We’ll call CC;, CCy, and CRjs, the set of
valid configurations, or valid configuration volumes of the robot in respectively the
current cone, the next cone, and the transition region.?

3. Find a path of the robot by doing a search for the nearest intermediate
configurations. The intermediate configurations are found by intersecting CC; with
CRy9, and CRyy with CCy. The path of the robot between two intermediate
configurations is a straight-forward translation and rotation.

Figure 1.4.a illustrates a path along edge e from cone C; to cone Cs. Inside
the cone Cy, the moving robot rotates to the nearest orientation #;2, and translates
until it is inside the transition cone C12. Then, the robot translates inside the cone
C12 until it is completely inside the next cone Cs. In our example, the free space
for transition is the bottle-neck between edge e and corner v. This bottle-neck is
described by the cone Cj2 which is found by finding the most constraining cone
between the two cones C; and Cy. Since the two cones C; and C9 share a common
edge, there exists always an orientation 6;3 common to the two alignment ranges
of CC; and CCy. CRy» is in this case the set of valid positions of the robot at
that common orientation €2, and inside the transition cone Cj3. We are thus
reduced to intersecting the three translation polygons of CC,, CRys, and CCs.
This intersection gives us the intermediate configurations of the robot, and specifies
a short path from C to Cs.

4CC is the short for configuration cone, which is the valid configuration volume of the robot
inside some cone. Stmilarly, CR is the short for the valid configuration volume of the robot inside
a transition region. '
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Figures 1.4 Experts compute local paths from one cone to the next.

a. A path along an edge and through a bottle-neck.

b. A path around a corner.
c. A path through a free convex region.

d. A path through a star-shaped interscction.




INTRODUCTION

Figure 1.4.b pictures a typical path around a corner V. First the robot
approaches the corner V. Next, it rotates about V and some point on its sliding
edge until it is in the nearest orientation valid in the cone Cy. Finally, it departs
from the corner, and translates until it is completely iuside the cone Ca. The free
space of transition is the V-shaped region. This V-shaped region can be computed
from the vertices and edges facing to corner V, and ‘between’ the cones ') and
C>. The V-shaped region serves as transition medium connecting C; to Cs.

Figure 1.4.c shows a path through a free convex region R. The robot rotates
to the nearest orientation ¢;» common to both alignment ranges of CC; and CCs.
Then it translates inside the convex region R until it is completely inside the next
cone Cy. The convex region R is previously computed by the free space description,
and so can be retrieved from the link. We demonstrate in chapter 4 that the
common orientation 0o always exists unless one or both the two configuration
volumes CCy and CCy are empty. The computation of a path through a free convex
region proceeds exactly as the computation of a path along a common edge and
through some transition cone.

Figure 1.4.d shows a path through a star-shaped intersection I. The robot goes
around vertex a and partially enters the intersection I. It then translates within
the convex region formed by the cone Cy and the intersection I until it reaches the
next cone Cy. The free space of transition is the fake cone Cjy which describes the
freeway linking the facing ends of the two cones C; and C,. The path is composed
of:

* a subpath from cone C to the fake cone Ci3 going around the fake corner a

* a subpath from the fake cone Cj2 to the cone Cy going through the fake
convex region K formed by the union of Cy and I.

Paths between linked cones are computed by the four experts. A path between
two arbitrary configurations is found by an A*-search [13] which probes the network
of cones, and computes paths between successive linked cones. In figures 1.1, we
have displayed the intermediate cones and the start and final cones for each path.
You are invited to decipher from these cones the type of link, and the identity of
the expert used.

1.3. Main Features of the Path Planner

1. A good description of the free space between the obstacles. Cones, free
convex regions, star-shaped intersections, and V-shaped regions aim at describing
the local constraints of the free space. They capture large regions in which the
robot can move. We have here a 2D description of the free space instead of the
complete 3D description in the configuration space.

2. The matching of the features of the robot and of the free space results
in good configuration volumes. Paths are found relatively fast by intersecting the
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INTRODUCTION

valid configuration volumes of the robot inside convex regions. Dealing with non
convex regions such as V-shaped regions, is however diflicult.

3. The Path Planner can find paths in very cluttered environments. Sce figure
5.7. In cluttered workspaces, cones are more uscful than free convex regions, or
star-shaped intersections. Paths along edges, and around corners are more crucial
than paths through a convex region or star-shaped intersection. The reverse holds
for sparse workspaces.

1.4. Relation to Other Work

We can distinguish the different algorithms® for solving the Find-Path problem
based on:

1. The range of application. — The obstacles and the robot can be planar or
spatial. The moving object can be an articulated arm or a moving robot.

2. The nature of the ‘free space’. — In the literature, ‘free space’ can be the free
multi-dimensional volumes of the configuration space, or the free planar/spatial
regions between the obstacles.

3. How the constraints on motions are expressed. — Constraints can be
expressed by capturing the C'O or CI volumes in the configuration space. The CO
volumes are also called grown obstacles. They describe the forbidden volumes for
which the robot collides with the obstacles. C'I volumes represent the configuration
volumes for which the robot is collision-free. '

Udupa’s algorithm [20] is designed for the Stanford arm. To compute the CO
volumes, Udupa approximates the boom and the forearm by cylinders. He then
tesselates the joint space of the arm into collision-free regions. A path is found by
recursively modifying the straight line path until it totally lies in the free joint
space.

Moravec [12] bounded all the obstacles and the moving robot by circles. The
moving circle is shrunk to its center and the obstacle circles are inversely expanded.
The problem is reduced to finding the path for the center of the moving circle
staying outside of the grown circles. Rotations are in this case ignored.

Lozano-Pérez and Wesley [11] find paths for cartesian manipulators and moving
robots. The CO-obstacles represent the exact constraints on the position of the
robot [9, 10]. In three dimensions, paths with translation only are found by
searching through the free polyhedral cells which tesselate the zyz-space outside
of the CO-obstacles. For the planar case, paths are searched through a Visibility
graph connecting all the vertices of the CO-obstacles which ‘see’ each other. For
paths with rotation, Lozano-Pérez splits the rotation range into a fixed number of
slices, and within each slice compute the grown obstacles. These CO-obstacles are
used to define several free space descriptions.

SA more detail overview of the mentioned algorithms can be found in (8]
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Recently, Brooks and Lozano-Pérez [3] developed a subdivision algorithm for
computing with the curved surfaces of the grown obstacles. The algorithm is
general, and can find hard paths for 2D moving robots.

All the above algorithims partition the configuration space at different degree
of complexity. Instead of tesselating the configuration space, Donald [4] divides the
free space between the obstacles into non-overlapping regions. From these regions,
a channel is suggested and a path within this channel is rectified and interpolated
until it lies outside all the CO-obstacles.

Brooks [1] captures good frecways between the obstacles by overlapping
generalized cones. Along the spine of a cone, a restricted range of orientation and
translation of the moving robot is computed. This range of valid configurations of
the moving robot is a restricted subset of the C'I-volume of the robot moving inside
the cone. The planar path is composed of translation along the spines of the cones,
and rotation at the intersections of these spines.

Brooks [2] uses cones to find quick paths for the Puma arm. Cones describe
freeways for the hand and payload ensemble, and the freeways for the upperarm
in the configuration space. A path is found by concurrently searching the two
freeway-spaces when the forearm is moved.

Schwartz and Sharir demonstrate the existence of a polynomial time algorithm
for planning the path of a planar moving robot [15], and of a general hinged device
(16].

Our work is the extension of Brooks’ find-path algorithm using generalized
cones. We aim at:

1. Capturing more and larger CI-volumes of the robot. To this end, we devise
an elaborate description of the free space between the obstacles. The network of
linked cones has many features of the Voronoi diagram of the same free space.
There are many more CI-volumes because the local regions are multiply described
by overlapping cones, free convex regions, V-shaped and star-shaped regions. The
ClI-volumes are larger because the features of the moving robot ‘match’ the features
of the free space. An example of such match is the alignment range of the robot
inside a cone.

2. Capturing a larger set of motions by using four different path experts. The
experts ‘match’ the path computation and the free space of transition along a link.

.




MODELING  THls ROBOT

2. MODELING THE ROBOT

2.1. The two Sliding Edges and the Main Axis

Definitions

The two sliding edges are the two edges perpendicular to which the robot M
has the two smallest cross sections. The main axis is chosen to be the bisector of
the small angle between the two sliding edges. This axis will be the z-axis of a
frame F fixed to the moving robot. The z-axis is oriented from the small end to the
big end of M. The y-axis will be the other perpendicular axis which goes through
the center of the smallest enclosing circle. Figure 2.1.a illustrates.

The Sliding Edges Pin-point the Alignment Range Inside a Cone
Since the cross-section of M is one of the two smallest cross-sections along the
sliding edge, we have the following corollary:

, Corollary: For fixed translation, the robot sweeps one of the two smallest
spaces if and only if one of its sliding edges is parallel to the direction of translation.

A cone C is assumed to be narrower between its two facing edges e; e2 than
between its two ends. We deduce that when M is inside a cone, M is constrained
more on the two sides by the two edges of cone C than at the two ends, by the
length of the cone, so M ‘should align itself’ with the spine of the cone. Moreover,
it is desirable that robot M traverse the cone C from one cnd to the other. So from
the above corollary, M should translate with one of its sliding edges parallel to the
facing edge e; or es of C, or parallel to any direction in between edges e; and es.
This gives a heuristic range of orientation [0y, 0] called the alignment range, and
has the effect of aligning the long robot M with the length of the cone C.

Sliding Heuristic: Inside a cone, the robot should align itself with the length
of the cone. The alignment range [0, 02] is such that for orientation 6; or 6, the
moving robot has one of its sliding edges parallel to one of the two facing edges of
the cone.

Figure 2.1.b illustrates the alignment range of M inside a cone C. Figure 2.1.c
shows an example where the Sliding heuristic helps find good paths. The two sliding
edges can be computed in O(|vertices(M)|) time using Shamos’ diameter algorithm
[17].

2.2. The Head and Tail Points of Rotation

Definitions

We designate by head (resp. tail) the big (resp. small) end of the moving robot.
The head (resp. tail) also designates the point H (resp. T') about which the robot
is rotating inside a cone. The points H and T are centers of two small arcs of circle
which are tangent to the sliding edges and enclose the robot. We call these arcs the
head and tazl bounding arcs. See figure 2.2.a. If and T are also points for which the

I
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Figures 2.1
a. The two sliding edges along which the robot has the two smallest cross sections

b. The sliding edges and the alignment range of the robot inside a cone.

c. An example path of the robot sliding along an edge of an obstacle.
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MODELING  THE ROBOT

annulus swept by the robot (from ; to 0.) is not only casy to compute but also
has a small convex hull.

Head-Tail Heuristic: Cones usually have a small end. To maximize the
ability of the robot M to ‘sneak through’ this small end, the robot A should rotate
about a point at one of its two ends. We choose these points of rotation to be the
centers of the head and tail bounding arcs.

The sliding heuristic and the head-tail heuristic result in a combination of an
alignment range [0y,02] and a translation polygon T(C). This combination turns
out to be a simple and powerful expression of the range of configurations (z,y, )
of robot M in a cone C. Sce figure 2.2.b. The head and tail points of rotation can
be computed in O(|vertices(M)|) by finding the circles which are tangent to the
sliding edges, and which go through the vertices of the robot. The tail/head point
of rotation corresponds to the circular arc which includes the tail/head end of the

robot.

2.3. Points of Rotation on the Sliding Edges

Navigation Around a Corner

A convex corner can be seen as a break® between two convex regions in which
the planning of translational paths is relatively easy. The break becomes obvious
from the fact that the two alignment ranges [0}, 62] in the two nearest cones linked
by the corner typically do not overlap. So circumventing a convex corner generally
requires rotation of the moving robot from one range to the other. A simple
approximation to the free space around the corner is a disc segment centered on
that corner. Figure 2.3.a illustrate the approximation of the free space around a
corner by a disc segment. For the same amount of rotation, we intuitively favor a
rotation about the corner and some point on the sliding edge of M over a rotation
about the center of the smallest enclosing circle. We conclude that rotation of M
should be allowed about the corner and some point on the sliding edge of M. We’ll
accept this as the Corner heuristic.

Corner Heuristic: Navigation around a convex corner should be achieved
with a rotation about the corner and some point on the nearest sliding edge of the
robot.

Figure 2.3.a illustrates an example of cornering about a vertex V. The transition
path has a rotate-slide-rotate flavor. The robot corners the vertex V by first rotating
about V and a point on the sliding edge, then it slides with the corner V in contact
with the sliding edge, and finally rotates once more about V and a second point on
the sliding edge.

€From another point of view, Lozano-Pérez [3, 9] differentiates two types of constraints. Type A

constraint is the interaction of an edge of the moving robot with a corner of the obstacle. Type
B constraint is the interaction of a vertex of the robot with an edge of the obstacle. So, a convex
corner is a type A constraint ‘scparating’ two type 13 constraints.

13
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Figures 2.2
a. The head and tail bounding arcs.

b. The configuration volume of the robot inside a cone is a combination of an alignment range
and a translation polygon.
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disc Seq ment

Figures 2.3
a. The robot rotates, slides, and then rotates about a convex corner.
b. The Free Space determines the points of rotation on the two sliding edges.

c. The centers of the two smallest bounding half circles.
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The Disc Segment About the Corner Pinpoints the Point of Rotation

The points of rotation on the sliding edge can be computed from the disc
segment around the vertex in O(Jvertices(M)|) time. Let 7 be the radius of the disc
segment which captures the free space around the vertex V. Ior each vertex v; of
M, we find on the sliding edge the center O; of a circle having radius r, and going
through v;. Then we choose as the point of rotation the center of the half-circle
which totally encloses the head (or tail) of M. See figure 2.3.b.

We can also enclose the robot by two smallest bounding half circles. The
centers O and O, of these half circles will be points of rotation for easy cornerings.
Figure 2.3.c illustrates.

16
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3. DESCRIPTION OF THE FREE SPACE

3.1. The Voronoi Diagram Describes the Free Space

This section presents the Voronoi diagram which is well known in Computational
Geometry as the mathematical description of the free space between points and
obstacles. Since we deal with 2D-obstacles, we’ll consider the generalized Voronoi
diagram [5] instead of the regular Voronoi diagram of a sct of points. |

Definition of the Voronoi Diagram

The Voronot diagram of a sct of convex obstacles is a decomposition of the free
space between these obstacles into Voronoi regions R;, such that each point in the
interior of R, is nearest to exactly one obstacle. Each Voronoi region is bounded on
the outside by Voronoi edges, and on the inside by edges of the enclosed obstacle.
All Voronoi regions are bounded because our workspace is bounded.

Figure 3.1.a illustrates the Voronoi diagram for our workspace example. The
Voronoi edges are shown with curved lines, and can be seen as spines of the
free space between the obstacles. The Voronoi diagram is sometimes viewed as
describing the paths of maximal clearance for a2 point between the obstacles.

Characteristics

1. Each Voronoi region is closed and the boundaries of the Voronoi regions
are connected. This results from the fact that we have a partition of a bounded
workspace.

2. The interactions between edges and vertices produce three types of Voronoi
edges. See figure 3.1.a.

a) ee-bisector, or bisecting segment between two facing edges. — Each point
on the bisecting segment is equidistant and nearest to two points respectively on
the two facing edges. The ee-biscctor splits the freeway between the two edges into
two regions, each closest to one of the facing edges.

b) wv-bisector, or perpendicular bisector between two vertices. — The vv-
bisector splits the frce space around the two vertices into two regions closest to one
vertex at a time.

¢) ve-bisector, or parabolic arc between an edge and a facing corner. — The arc
of the parabola has an axis of symmetry going through the vertex, and perpendicular
to the facing edge. We’ll call an arc of a parabola which cuts its symmetry axis,
that is, has arcs on both sides of its symmetry axis, a 2-sided arc of parabola. A
parabolic arc which does not cut its symmetry axis is called 1-sided arc of parabola.

3. We have six types of intersections from the pairing of the Voronoi edges. See
figure 3.1.a. for illustrations of the different types of interscction points: a, ..., f.

a) Intersection between two ee-bisectors. — This type of point tells us the
presence of a convex region partially constrained by the corresponding facing edges.

17
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Figures 3.1

a. The Voronoi diagram decoinposes the free space into regions closest to various obstacles.

b. The Voronoi diagram hints at a path for a disc.

18

IRk

SPACE

s




DESCRIPTION  OF  THE FREE  SPACHEK

The most characteristic example is the intersection of the ee-bisectors of three
facing edges. The point of intersection is the center of gravity of the triangular
region enclosed by the three facing edges.

b) Intersection between two vv-bisectors. -~ This type point indicates the
presence of a star-shaped intersection, very much like a street intersection. The
simplest example is the intersection of vv-bisectors from three facing vertices.

c) Intersection between an ee-bisector and a ve-bisector. —- Since the Voronoi
boundaries and the obstacles are connected, we deduce that there must be a
common edge. As we go through the intersection point, from the ce-bisector to the
ve-bisector, we are constrained on one side by the same edge.

d) Intersection between a ve-bisector and a vv-bisector. — There must be a
common vertex for the same reason as above. The picture is a transition from the
vv-bisector to the ve-bisector via a common vertex.

e) Intersection between two ve-bisectors. — We can similarly prove that there
must be either a common vertex or a common edge.

f) Intersection between an ee-bisector and a vv-bisector. — We can prove that
the vertices must be on the corresponding edges. This intersection point can be
seen as a superposition of a point of type c) and a point of type d).

The Voronoi Diagram as a Criterion for a Free Space Description

The set of Voronoi edges forms a network of legal paths for a disc staying
as far away from the obstacles as possible [14]. We can plan path for a disc by
sliding the center D of the disc on the Voronoi edges. See figure 3.1.b. The Voronoi
diagram reduces the representation of the 2D-space between the obstacles to the
representation of the 1D-space along the Voronoi edges. Associated with each
Voronoi edge is a minimum free radius. This reduction is suitable only for discs
because they are rotationally symmetric.

We can approximate a polygonal robot by a disc, and so plan the path of that
disc along the edges of the Voronoi diagram. But still, the Voronoi diagram is of
limited utility not only because of its severe limitations when the moving robot
is long, but also because of its expensive computation,’ and its high sensitivity to
small local variations.® So, the Voronoi diagram will serve not as a direct description
of the free space, but as a goal for any high level description of the free space. The
following sections develop a description of the free space as a network of linked
cones which functionally captures local regions of the free space, and most of the
features of the Voronoi diagram.

"The Voronoi Diagram costs O(n logn), but the constant terms are high.[5)

8Cones arc also sensitive to small variations although to a lesser degree. In these cases, cones
are less useful than free convex regions and star-shaped intersections which describe clusters and
branchings of small cones.
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3.2. Cones Capture Freeways or Bottle-Necks in the Free Space

The cone is the most basic unit in our representaticn. It represents a convex
local region of free space known as a frecway (1] or botlle-neck.

Definitions ,

An edge e divides the plane into two half-planes. One of the half-planes is
outside of the obstacle which has edge e. We call this half-plane the free half-plane
of edge e. The normal of edge e points outward to the free half-plane of e. Two
edges e; and e» face one another if and only if part of e; is in the free half-plane
of ey and vice versa.

A cone C is a region of free space constrained by two facing edges e and es.
These edges are called generating edges of the cone. If the two generating edges are
not parallel, they will intersect at a point called the peak of the cone. The peak
is chosen arbitrarily far on one side if the two generating edges are parallel. Each
cone has an axis or spine § which bisects the angle between the two generating
edges e, e, and is inside cone C. We choose to orient the spine é from the small
end, or peak, to the big end of the cone. A cone is bounded on the two sides by the
lines which extend the two generating edges, and at the two ends by two bounding
arcs of circle centered on the peak. These two arcs are computed by pruning (see
below) the cone with all nearby obstacles. See figures 3.2.

With the generating edges and the peak known, the cone region is completely
specified by [rj,r2], where r1 and 72 are the radii of the two arcs at the two ends
of the cone. When the disk segment in between the two generating edges intersects
with an obstacle, we compute the segment [p;, p2] characterizing the annulus which
overlaps with the obstacle. Then, we delete the segment [p;, po] from the cone
region [ry,7g]. This is called the pruning of the cone with the obstacles.

We make the annular cone region convex by replacing the small arc of radius
r1 by a segment perpendicular to the spine 6 and going through the point where
the small arc cuts the spine. We can further make this convex boundary polygonal
by replacing the big arc of radius 7 by one or two segments.

Properties

1. The two generating edges, e; and eq, enclose a free region in between them. —
The region has the shape of an annular segment centered at the peak. The annulus
is bounded by e; and ey, since there are portions of e; and ey on its boundary.
After the pruning operation, this annulus is guaranteed to be obstacle-free.

2. The projections of the two generating edges on the spine of the cone overlap.
— We project the edges ey and ey along a direction perpendicular to the spine 6.
The overlap of the projections guarantees the existence of points on spine § which
are equidistant to points on the edges e; and es. The existence of the overlap is a
criteria for discarding irrevelant cone regions. In figure 3.2.a, the annular segment
on the far right is completely irrclevant, although obstacle-free. It can be shown
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Figures 3.2
a. A cone describes a freeway between two facing edges.

b. A cone describes a bottle-neck between an edge and a facing corner.
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that the set of ‘freeway cones’ which satisfy this overlap property describes all the
ee-bisectors in the Voronoi diagram.

3. There is at least one point PP on the spine of the cone ' and inside C for
which the distance from point > to one of the generating edges is less than the
distance from P’ to the nearest bounding arc. In common terms, we can say that
it is tighter between the generating edges than between the two ends of the cone.
This will be known as the ‘Narrowness Property’.

4. There is a special case of a cone between an edge and a facing vertex. —
This is a bottle-neck between the edge e and the vertex v. We see the vertex v as
the limiting case of an edge e, parallel to the edge e, with length shrinking to zero.
From that observation, we create a fake generating edge e, with almost zero length
and direction parallel to the facing edge e. A cone is then built between the two
generating edges e, and e. It can be proved that the ‘bottle-neck cones’ capture all
the 2-sided arcs of parabola in the Voronoi diagram.

Finding All Valid Cones in the Free Space
Algorithm:

¢ Cones between pairs of facing edges. — For each pair of obstacle edges ey, ey
do:

1. Check that edges e;, es face one another.

2. Compute the axis § bisecting the angle between €; and e, and check that
the projections of e; and e2 on the spine § overlap. We then build a cone C with
the two generating edges ej, es, and axis 6.

. 3. Prune cone C with all other obstacles. Each time, calculate the new bounding
arcs centered at the peak of C.

4. If the region bounded between the small and big arcs is non null, output C.

¢ Cones between an edge and a facing vertex. — For each pair of vertex v, edge
e do:

1. Check that the vertex v is in the free half-plane of edge e. Then, look at
the edges linked by vertex v, and check that we have a bottle-neck between edge e
and vertex v. A simple check ensures that the dot product of the normal of edge e
with the left directed edge e; be negative. Similarly, the dot product of the normal
of e with the right directed edge ey must be positive.

2. Create a very short fake edge e, going through vertex v and parallel to
edge e. Build a cone C with generating edges e, e,, and axis é parallel to e and in
between e and e,.

3. Prune cone C and output it as in the two edge cone case. §

Complexity: Let n be the number of edges. There are also n vertices. There
will be () cdge-edge or edge-vertex pairs. For each pair, the pruning of the cone
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with all other edges costs O(n) time. So the above two algorithms have O(n?) time
complexity.

In addition to finding cones as in the above algorithm, we use a heuristic
implementation of the Narrowness property to reduce the number of cones, while
keeping most of the cones corresponding to Voronoi edges. Our implemented version
compares the small end of the cone with the length of the cone. If the length of
the cone is less than half the smallest distance between the overlapping segments
of the generating edges, then the cone is discarded. This loose heuristic reduces the
- number of cones by a third in this example.

Figures 3.3.a shows all the regular cones between facing edges after the
application of the above heuristic implementation of the Narrowness property.
Figures 3.3.b shows all the cones between edges and facing vertices. Each cone is
shown by displaying the overlap of the generating edges when projected on the cone
axis. The top of figures 3.6 shows all the valid cones. This set of cones coincides
closely to the exact Voronoi diagram in figure 3.1.a.

3.3. Convex Regions Capture Clusters of Overlapping Cones

Definitions

1. A free convez region is a region R of the free space, limited by a closed
convex polygonal boundary and having no obstacles in it. Each edge of the convex
boundary must overlap with some obstacle edge. We call each such obstacle edge,
a constraining edge of the free convex region R.

2. We can alternatively define a free convex region R as the intersection of the
free half-planes of facing edges. This intersection of the free half-planes must be
bounded, and must contain no obstacles.

Characteristics

1. A free convex region is a region of the free space bounded by a mazimal
set of facing edges. Any two edges in this set must face one another. The set S of
facing edges delimits a convex boundary B which overlaps with all the facing edges
in S. This set S is maximal in the sense that any other obstacle edge not in § will
not intersect with the convex boundary B.

Combining this characteristic and definition 2, we observe that a maximal set
of facing edges defines a free convex boundary if it includes no obstacles.

2. A free convex region includes multiply overlapping cones. — A cone C is a
member cone of a convex region R, if 1) the cone region of C overlaps with R, and
2) both of the generating edges of C are also constraining edges of R. In figure 3.4,
the convex region R’ captures a cluster of three highly overlapping cones.

3. A free convex region provides an eztension for its member cones. — The
cone is good for capturing the tightest local constraints on the moving object by
its two generating edges. To ensure that we have a closed and free region, we
have arbitrarily bounded the cone with two arcs. This bounding operation at times
drastically reduces the cone region. The cone region may be too small to enclose
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Figure 3.4 A convex region encloses multiply overlapping cones.
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Figure 3.5 A star-shaped intersection captures the branching of cones.
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the moving robot M, and is therefore useless. In this case, we can extend the cone
region beyond its larger arc by the overlapping free convex region.

4. A free convex region can correspond, on the Voronoi diagram, to an
intersection of two or more ce-bisectors. The convex region IR’ in figure 3.4
corresponds to an intersection of three ee-bisectors.

Convex Regions Localize the Search for Cones

From the second definition of a convex region, we note that in some way,
a convex region is a ‘maximal’ set of facing edges. A cone has only two facing
obstacle edges, and can be considered as a ‘minimal’ set of facing edges. This strong
relationship between cone and convex region motivates a search for cones which
are local to some convex region only.

In our implementation, all the convex regions are found first. Then, we find a
conc from each pair of facing edges belonging to some convex region. This locality
property has proved very useful. As example, in figure 3.3.a, we nicely eliminate
the possibility of a cone between the middles of the two vertical boundaries.

Finding All Free Convex Regions

For each obstacle edge e, the idea is to do a depth-first search for all convex
boundaries starting from edge e. If the convex boundary includes an obstacle-free
region, then it defines a free convex region. The depth-first search has exponential
growth in the number of edges of the workspace W, because the search tree has

order O(ledges(W)|!) leaves.

Finding convex boundaries or maximal sets of facing edges is an instance of
the Clique problem. So, the finding of convex boundaries is NP-complete. The set
of free convex regions is included in the set of legal convex boundaries. Whether
the finding of free convex regions is also NP-complete remains an open question.

3.4. A Star-Shaped Intersection Captures Branching of Cones

Definitions
A vertex faces an edge if and only if the vertex is in the free half-plane of the

edge. Two vertices v; and v2 face one the other, if and only if vertex v; faces either
of the two obstacle edges connected by vy, and vice versa.

A star-shaped intersection I is an obstacle-free convex region whose vertices
all face each other. This convex region I is bounded by artificial edges joining
consecutive corners. These corners are called constraining corners of the star-shaped
intersection I. Since we build our free space description based on cones, we restrict
ourselves to finding star-shaped intersections that have a cone branching out of each
of its artificial edges. These cones are member cones of the star-shaped intersection.
The member cones branch-out from the intersection in a star-like fashion, and this
motivates the name star-shaped intersection. In figure 3.5, the member cones are
C1, Co, C3 and Cjy; these cones branch out of a four-vertex star-shaped intersection.
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Characteristics

1. A star-shaped intersection is a convex region of the free space bounded by a
marimal set of facing vertices. Conversely, a maximal set of facing vertices delimits
a star-shaped intersection only if the vertices enclose an obstacle-free convex region.

2. A star-shaped intersection includes the ends of each of its member cones. We
need star-shaped intersections, because a cone can be very poor at capturing the
free space at its two ends. As an example, the small end of cone €y is determined
not by the obstacles at that end, but by the imaginary extensions of the generating
edges. We note also that only the concept of star-shaped intersection captures
possible transitions between the cones Cy, and C3 and between the cones C., and

Cy.

3. A star-shaped intersection can correspond to a point on the Voronoi diagram,
where at least two vv-bisectors intersect. The star-shaped intersection I in figure
3.5 corresponds to two intersection points, each point is the intersection of three
vv-bisectors.

The finding of all star-shaped intersections is similar to the search for all free
convex regions.

3.5. Capturing the Connectivity of Free Space by Links

A cone captures local constraints of a region by means of its two generating
edges and two bounding arcs of circle. In the two previous sections, we saw that a
convex region captures a cluster of overlapping cones, and its dual, a star-shaped
intersection captures a branching of cones. This section shows how global features
are captured by building a network of linked cones. Two cones are linked if they
share a common edge or corner, or if they are part of a same convex region, or if
they branch out from a same star-shaped intersection. The top figure 3.6 illustrates
the complete set of overlapping cones. Note how well cones capture the freeways
and bottle-necks of the free space between the obstacles. The bottom figure shows
one of each of the four types of links.

3.5.1. Two Cones Sharing a Common Edge

Alignment of the Robot with the Common Edge.

Theorem: Let C; and Cs be two cones which share a common generating
edge. The two alignment ranges of robot M in the cones Cy and C; always overlap,
unless one of the ranges is null.

Proof: The common orientation is such that the common edge e is parallel to
the nearest facing sliding edge of M. See figure 3.7.1

Details of how M moves from C| to C» are dclayed until section 5.2. For the
moment, we say that a common-edge link between two cones suggests that M be
‘aligned’ with the common edge, and slid along that edge. The common-edge link
is very useful when the workspace is cluttered with long obstacles. In our example,
it 1s most useful for sliding along the boundaries of the workspace.
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The Freeway Along the Common Edge

Theorem: lLet C; and Cy be two cones which share a common generating
edge e. Assuming that obstacles do not overlap, one of the followings is always
true: ‘

— The two cones C; and Cb share a common convex region.

—- There is a tight freeway ‘between’ the cones Cy and Cy. This tight freeway
is described by a cone.

— There is an obstacle ‘between’ the cones C) and Cs. This obstacle touches
’Lhe common edge e.

Proof: Remember from the end of section 3.3, that the search for cones is
done local to some convex region. So, cone Cy (resp. C2) must belong to a convex
region R (resp. Ry). Two cases can arise:

1. The two convex regions R; and Ro are the same. In other words, the two
cones share a same convex region.

2. The two convex regions are different. These two regions can either overlap
or not.

Consider the case when the two regions R; and R. overlap. Since both R
and R, are maximal and distinct convex regions, the overlap is not equal to either
the region R or region Rs. The union of the two regions R; and Rj is connected
and non-convex. The union has at least one concavity at the place where the two
convex regions meet. Either a corner v’ or an edge e’, facing the common edge
e, causes the concavity at the overlap. Between this facing corner v’ or edge ¢’
and the common edge e, there must be a cone C, since we have here respectively
a bottle-neck or a narrow freeway connecting Cy and Cs. Figure 3.7.a illustrates
the case of a bottle-neck cone C describing the concavity between the two convex
regions K and K.

Next, consider the case when the two regions R and Rs do not overlap. Since
the search for convex regions which have edge e as constraining edge is complete,
one of the two following subcases must be true:

a. There is an obstacle in between the two convex regions R; and Ry, and this
obstacle touches the edge e. See figure 3.7.b

b. There is at least one convex region R' between R| and Ry. These convex
regions R', Ry and Ry may or may not overlap. If they overlap, there will be
more than one cone. From these cones, we choose the one which has the smallest
cross-section perpendicular to edge e. If the union of the regions R’s with R; and
Rs, is not connected, then there must be at least one obstacle which touches edge
el

For later path computations, we order the cones C, along edge e. A cone C
is ordered before cone Cy, if as we walk on edge e, keeping the free half-plane of e
on our right, the motions of robot M will be constrained by the generating edges
of Cq before those of C5.
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Figure 3.7 A cone describes the free space along a common edge.
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3.5.2. Two Cones Sharing a Common Corner

Take as an example figure 3.8. The two cones 'y, Cy are connected through
a common corner V. Because the corner V' ois convex, the two alignment ranges
of M in C; and Cy often do not overlap. Furthermore, the two regions of Cy, Cy
often do not intersect. Even if the two cone regions do intersect, the intersection
is generally not big enough to contain the robot. So, not only is there no common
orientation of M, but also the free space around a corner is poorly described by
the intersection of the cone regions. This is a limitation of using cones to find paths
around a corner. The convexity of the corner is responsible for that limitation, and
in some sense is a break between the cones.

V-shaped Region Around a Corner

We capture the free space around the corner by a V-shaped region. The
V-shaped region connects the two cones, and is bounded on the outside by a convex
boundary. From the edges which face the convex corner V, we use a depth-first
search to find a convex boundary which connects the outside edges e; and es of the
two cones. The depth-first search is similar to the one which finds all the convex
regions by looking at the facing edges.

3.5.3. Two Cones Included in the Same Convex Region

Common Orientation in a Convex Region. ,

Theorem: Let C; and Cs be two cones which share a common convex region
R. The two alignment ranges of robot M inside the cones C; and C; always overlap,
unless at least one of the two ranges is null.

Proof: For illustrations, please refer to figures 3.9.

1. Since the region inside the boundary of R is convex, the segment joining
any two points which are inside the convex region R, is totally inside R. Let TH
be a moving segment. We rotate TH around its two ends T and H. Choose any
two points P @ inside R. If the ranges of rotation of TH around T-P, and H-Q
are non null, they always overlap since the longer of the segments PQ and TH is
inside the convex region. See figure a. There is no common orientation when the
matching of the points of rotation T" and H on the robot and P and @ reverses, or
when M does not fit inside R.

2. Now, consider a rectangular robot M. We can shrink the rectangular robot
to the segment TH between the tail T and head H of M. We also shrink the convex
region R by half the width of M. This case of a rectangular robot thus reduces to
the previous case of a segment TH. See figure b.

3. Finally, consider the case of an arbitrary convex robot with its head H
and tail T. Let’s call 8, the angle between the two sliding edges of the robot M.
The robot M can be bounded by the two sliding edges and the two bounding arcs
centered at T and H, of radius r7 and rj;, and tangent to the sliding edges. From
this bounded shape, we have two rectangular robots M7, M;; with same tail T and
head H, and with respective width r7 and r;;. See figure 3.9.c.
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Figure 3.8 A V-shaped intcrsection describes the free space around a convex corner.
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" Figures 3.9 The alignment ranges of the robot inside two cones which share a same free convex

region always overlap.
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Let I (resp. I») be the orientation range of the rectangular robot My
(resp. My;) about P-T (resp. Q-11). Similar to the above, we can shrink the two
rectangular robots to the segment TIl, and correspondingly shrink the convex
region I?. The overlap between the ranges IT and I thus becomes obvious. Each of
these ranges is a connected interval, and so can be represented by a segment. Sce
figure d.

- We remark that with the real robot M, the range I, is larger. More concretely,
the two leftmost and rightmost ends of the interval I» move ‘outward’ respectively

by —6/2 and 6/2. This new alignment interval I’y includes the old interval I,, and

remains connected.

- For the alignment range J;, its two leftmost and rightmost ends move ‘inward’
respectively by 6/2 and —0/2. This new interval I’| remains non null and connected.

~ Figures d show the three cases based on the assumption that the ranges
I, and I originally overlap. In all three cases, we can always find an orientation
common to the shifted ranges I'; and I's. So, the two alignment ranges I’; and I’y
overlap. g

3.5.4. Two Cones Branching from the Same Intersection

The link between two adjacent cones branching from a same star-shaped
intersection is already captured by the common-vertex link. We need only link
two cones that share with the star-shaped intersection four different constraining
corners. The free space in the star-shaped intersection which is constrained by
these four facing corner can be described by a cone. Cone Cij3 in figure 3.10 is an
example of such cone linking the two member cones C; and C3. We’ll use cone
C\3 as an intermediary cone to find path from cone C; to cone C3 through the
intersection.

3.6. Is the Network of Linked Cones Voronoi-Complete?

Voronoi-Completeness

The description of a region is Voronoi-complete if the description captures all
the features of the Voronoi diagram of that same region. By features of the Voronoi
diagram, we mean the Voronoi edges and the Voronoi points of intersection. From
a point P on a Voronoi edge, we can find all the points on the obstacles which are
closest to P. Loosely, we say that a Voronoi-complete description captures all the
closest obstacle feature for a point.

Cones Capture some of the Voronoi Edges

The algorithm presented in section 3.2 can find all the ee-bisectors between
facing edges. The algorithm in section 3.2 can also find all the 2-sided parabolic
arcs between an edge and a facing corner.® The requirement that the corner and
the edge form a bottle-neck is the necessary condition for the existence of a 2-sided
parabolic arc. The overlap on the spine of the cone is another necessary condition

9The algorithim can fail to capture an ec-hisector, or a 2-sided parabolic arc only because of the
heuristic implementation of the Narrowness property.
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Figures 3.10 The free space in a star-shaped intersection is captured by a fake cone.

35




DESCRIPPION  OF  THE  FREE  SPACE

for the parabolic arc to cut its symmetry axis. Cones also capture a few I-sided
parabolic arcs when these arcs are continued by an ee-bisector.

Only vv-bisectors do not always have corresponding cones. In our opinion, this
makes perfect sense since the direction of translation is not constrained by the two
facing vertices. The region associated with a vv-bisector is captured partly either
by the extension of a neighboring cone or by a star-shaped intersection.

Links Describe some of the Voronoi Intersections

The correspondence between links and Voronoi intersection points is weaker
than the correspondence between cones and Voronoi edges. There are two reasons:
the incomplete description of Voronoi edges by cones, and the approximation of
Voronoi edges by spines of cones. However, there exists a close correspondence
between free convex region and intersection of at least two ee-bisectors. Similarly,
star-shaped intersection corresponds closely to intersection of at least two vv-
bisectors. Common-corner and common-edge links describe some of the other types
of intersection points.

The free space between five obstacles is transformed into a network of linked
cones in about 40 seconds, on a single user Lisp machine. As the number of obstacles
gets larger, the time spent grows rapidly because of the depth-first search which
finds all the free convex regions. A better algorithm is needed. This depth-first
search takes 15 seconds for our workspace example. But after we have found all the
convex regions, the search of cones and star-shaped intersections, and the linking
between pairs of cones are done locally. Cones are found only among edges that
form some convex region. Star-shaped intersections are found only by searching
among cones that are already linked by their vertices.
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4. CONFIGURA'IONS OF THE ROBOT

1.1. Configuration Space and Volume

We call the triple (z,y,0) the configuration z of the robot . Since the robot M
will be rotating about different points, the triple (z,y,0) is associated with some
point of rotation O fixed to M. (M), denotes space occupied by the robot M in
configuration z. A configuration z is said to be valid (resp. forbidden) if the robot
M in configuration z, (M)., does not (resp. does) intersect with the obstacles.

The space of configurations of M is called the configuration space, or CSpace.
This space has three dimensions z, y, and 6 corresponding respectively to two
degrees of freedom for translation, and one degree of freedom for rotation. A
f-plane is the plane which is parallel to the zy-plane and cuts the 8-axis at 6. If the
workspace of the moving robot M is bounded, the CSpace is also bounded. If we
cut this bounded CSpace by a 6-plane, we will get a bounded planar 6-cross-section.

We call configuration volume a bounded volume of configurations of M in
CSpace. A configuration volume is said to be valid if and only if all configurations
in the volume are valid. Examples of configuration volumes are:

— a segment I(6;, ;) representing the range of orientation of M about a fixed
point O coinciding with some point P in the workspace. See figure 4.1.b.

— a planar convex polygon T representing the translation polygon of M at
some fixed orientation 6 in a cone C. Figure 4.1.b illustrates.

The range of orientation is denoted by I. We need to specify the point P in the
workspace which coincides with reference point O when M rotates. We sometimes
write O-P, the point about which M rotates. A range of orientation I is represented
by as a set of non-overlapping intervals between 0 and 27.

The transtation polygon is denoted by T'. Since a translation polygon limits a
convex region, it is represented as a circular list of vertices {Py,..., P;}.

4.2. The Slice Projection Method Favors Translation

Capturing the Constraints with CI and CO
We recall two constructs from Lozano-Peréz’s Slice Projection method [10, 11],
and two important theorems:
e The CSpace interior to B, denoted CI(B), is the set of configurations z of M
for which (M); is completely inside the convex region B.

CI(B) = {z€ CSpace| (M), C B}. (1)

e The CSpace obstacle due to B, denoted CO(B), is the set of configurations z
of M for which (M), either touches or overlaps with B.
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Figures 4.1
a. The point of rotation O on the robot is used as reference point for computing configurations.

b. Configuration volumes capture sets of valid motions, Alignment interval and translation polygon
are examples of valid configuration volumes.
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CO(B) = {z€ CSpace| (M).[\B#0}. (2)

In general, the CI and CO are some three dimensional non convex volumes
with curved surfaces. However, if the obstacles and the moving robot are convex,
it has been demonstrated that the CI and CO always have convex polygonal
0-cross-sections. In other words, for fixed orientation 0 of the robot M, the
valid /forbidden ranges of translation of M can be expressed exactly by a set of
convex polygons. See figure 4.2.a.

Theorems:

If the boundary of region B and the moving robot M are convex polygons, the
CSpace of the robot M interior to B, denoted CI(B), always has bounded convex
polygonal §-cross-sections.

If the obstacle B and the moving robot M are convex polygons, the CSpace
obstacle of the robot M due to B, denoted CO(B), always has bounded convex
polygonal 6-cross-sections.

Corollary: Let z; and 22 be two configurations of robot M for which (M),
and (M),, are completely inside the convex region R. If the two configurations
z; and 29 have the same orientation 6, then the translation of M between the
configurations z; and 2z, is collision-free.

There are efficient algorithms [9] which compute the COy(B) in O(n) time.
ClIy(B) can be computed in O(nlogn) time, where n is the number of edges of M
and B.

Paths with Translation Only are Easy

At fixed orientation @ of robot M, the CI of M inside the workspace boundary
and the CO of M due to the convex obstacles result respectively in valid and
forbidden convex polygons. For the path of the robot M to be collision-free, the
point O of M has to be at all times inside the CI-polygon, and outside of all
the CO-polygons. In the literature, the CO-polygons are called grown obstacles,
because we shrink the moving object M to its reference point O and inversely grow
the obstacles. This is the exact description of the constraints on the translation of
M at fixed orientation 8 [9].

We can connect all pairs of vertices of the CO-polygons which ‘see’ each other.
By ‘see’, we mean that the line segment which joins the two vertices does not cut
any CO-polygon, and the two vertices are inside the CI-polygon. We now have a
graph connecting all visible vertices of the grown obstacles. Lozano-Peréz calls such
graph a Visibility graph.

Finding a shortest safe translational path of M is equivalent to searching a
path of point O through the above Visibility graph. We have thus reduced the
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a. Finding translational path for a robot is reduced to finding path for a point outside of the
grown obstacles. '

b. An example path found by the Slice projection method in C-Space. (reprinted from [11]).
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problem of planning collision-free translational paths for M into the equivalent
problem of scarching for a path of O through a graph [9, 10, 11].

Dealing with rotation turns out to be difficult beeause of the shape of the 3D
CI and CO volumes. — A previous approach was to split the range of rotation
[0, 27] into a fixed number of slices [10, 11]. Within each slice, we find the bounded
robot, and use it to grow the obstacles. In the CSpace, a slice [0y,0,] is bounded
by two parallel 6;- and 6.-planes. There will be paths of O inside ecach slice, and
paths between two consecutive slices.

To compute the CI and CO for a small orientation range, we can equivalently
cut a slice from the CI and CO volumes. Then, we project everything in the
slice onto a common 6-plane, and take the union of all projections. This process
motivates the name of Slice Projection method in CSpace. The slicing of the
orientation range looks more like a fix-up than an effective method for planning
paths with rotation. The Slice Projection method still has a ‘translation-flavor’. In
figure 4.2.b, the slice is the range between thc two orientations 6;, and 65.

A recent method finds paths with rotation by computing exactly the CI and
CO volumes for a given resolution. Lozano-Peréz and Brooks avoids the difficulty
of representing curved surfaces by subdividing the CI and CO volumes into
rectangloid cells [3]. This method is general but slow.

Both methods can be slow, although given enough time and space, they can
refine the slicing and the subdivision of the cells to find a path if one exists. More
importantly, both methods approach the Find Path problem by subdividing the
search space, rather than trying to exploit the features of the free space and of the
moving robot to find paths. We aim neither for generality, nor for completeness of
paths. We aim to use the description of the free space and of the moving robot to
find paths quickly.

Capturing Good Configuration Volumes
With our aim set at using the features from the free space and from the moving
robot to find paths, we remark that:

1. We can approximate the CI and CO volumes by straight parallelepipeds
which have constant 0-cross-section over a certain range of orientation of M. With
such straight parallelepipeds, the range of orientation is rendered independent from
the range of translation. This is exactly the slice projection, except there is only
one slice, and the slicing interval is determined by the free space and the robot.

2. We can capture a good configuration volume in one slice because the
compactness of the exact CI and CO volumes depends heavily on the choice of the
reference point.

The above two observations confirm that we need to ‘somehow’ find some
appropriate reference point O on M, such that the CI and CO are well approximated
by nice straight parallelepipeds. Looking ahead, figure 4.4.b illustrates a restricted
configuration volume of the robot inside a cone. This volume represents the valid
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configurations for which M does not collide with the boundaries of the cone C.
This restricted volume is a good approximation to the real 3D Cl-volume. From
this point on, we always denote by configuration volume some restricted straight
parallelepiped approximating the exact 3D volume. We also deal exclusively with
valid configuration volumes.

4.3. The Radius Function Method Favors Rotation About a Point

The Radius Function Finds the Shift Distance

The radius function R(€) [1] is the minimum distance from center of rotation
O-P to some wall w with inward normal orientation £, such that M rotates about
O- P without bumping into w. The radius function can also be defined as:

R(6,¢) =  Jax d; cos|(0 + ;) — £]. (3)

where 6 is the orientation of M relative to the world frame W, £ is the angle of the
inward normal of wall w relative to W, d; is the length of the ray from O on M to
a vertex v; of M, and 7; is the angle of that ray with the z-axis of M. Figure 4.3
illustrates.

An interesting point is that the angles £ and @ just offset the angles 7, of
the rays of M. Such offset operation does not depend on the number of vertices
of M, and so has constant time complexity. Computing the radius function has
O(Jvertices(M)|) time complexity.

The radius function is the solution to the problem of determining the minimum
free half plane which the robot M can occupy. The radius function is related to
the support function [17] of a convex polygon, and to the shift distance of edges in
the computation of the grown obstacles. :

To see the concept of shift distance, let’s slide robot M along the wall w,
keeping M at fixed orientation 8. The reference point O draw a line parallel to
the wall, distant from the wall by R(6, £). We call the distance R(6, £), the shift
distance due to wall w. In some way, the reference point O feels an imaginary wall
w’ translated by the shift distance R(6, £).

We now slide M along the wall w, and allow M to rotate within some constant
interval I equal to [0}, 2] See figure 4.3.b. We get the shift distance for the bounded

moving object as:

2 d; cos[(0 +1,) — €] “

The costne function is monotonically decreasing over [0, 7], and monotonically
increasing over |7, 27]. So the maximum of the cosine function in an interval can
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Figures 4.3 .

a, b. The Radius function finds the shift distance. The inverse radius function finds the range of
rotation about a point.

c. The range of rotation of the robot inside a convex region.

d. The range of rotation of the robot outside a convex obstacle.
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be computed in constant time. The shift distance of the bounded moving robot
R(I, €) is therefore computable in O(|vertices(M)|) time.

The Inverse Radius Function Finds the Orientation Range

In figure 4.3.a, the robot M rotates about point O-F. The robot is constrained
on one side by an infinite wall w with inward normal orientation €. The reverse
problem of finding the valid range of orientation 6 of M can be formulated with
the inverse radius function [1] as follows:

R7(r) = {0] R(6,6) <r}. (5)

where r is the distance from point O-P to wall w.

Brooks [1] noted that R~!(r) can be easily found by computing for each vertex
vj of M, the interval [—n; — |cos™!(r/d;)|,—n; + |cos™1(r/d;)|], and removing it
from the interval [0,27]. Then we offset the resulting interval by ¢. The resulting
interval of orientation is denoted I{w).

I(w) = R™(distance(P,w)). , (6)

There are m vertices for M and in the worst case, we may have to delete the
newly found interval with (m — 1) other disjoint intervals. So the inverse radius
function R~1(r) has complexity O(m?). I(w) has at most m disjoint intervals.

This algorithm only holds for a convex robot and infinite wall, in which case
the robot M touches the wall w if and only if at least one of its vertices touches
the wall w. If the wall w is finite, or if the robot M has a concavity, M can collide
the wall w with one of its edges, and the range I(w) might be larger.

Robot Constrained by an Enclosing Convex Region
Theorem: The range of orientation of robot M rotating about a fixed point
O-P and remaining inside a convex region B bounded by n walls wy,...,w, is

the intersection of m intervals I(wi),...,I(ws), respectively being the range of
orientation of M about O-P not bumping into walls wy,...,wy.
n
La(B) = ) I{w;). (7)
1=1

Proof: The space inside a convex region B bounded by m walls wy,...,wy
is the intersection of their respective n free half-planes. So, M can rotate without
colliding inside B if and only if M can rotate in all the n free half-planes.

The robot M touches the boundary of the convex region B if and only if at
least a vertex of M touches some wall w; of B, because both the robot M and
the region B are convex. In other words, the collision of the robot M with the
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boundary of B is equivalent to the collision of some vertex of M with some infinite
wall of B. So, the range of rotation of the robot can be calculated by looking at
the vertices of the robot, and by using the inverse radius function R '. The ranges
of orientation are I(w;), where w; is an infinite wall of the convex region I3. See
figure 4.3.c.8

The computation of the n intervals I(w;) costs O(n.m*) time. The intersection
of the n intervals, each having at most m disjoint subintervals, costs O(n.m) time.
So the range I;,,(B) costs O(n.m?) time. ’

Robot Constrained by a Nearby Convex Obstacle

Theorem: The range of orientation of robot M rotating about a fixed point
O-P and being outside a convex obstacle B formed by n edges by,...,b, is the
union of:

1. n intervals I(by), ..., I(b,), respectively being the range of orientation of M,
rotating about O, whose vertices do not bump into the infinite lines containing the
edges of B, by,...,b,.

2. m negated intervals I(ey),...,I(en), respectively being the negated range
of orientation of B, rotating about P whose vertices do not bump into the infinite
lines containing the edges of M, ey,...,em.

m

Lu®) = (U 163] U U ~U(e)- ®)

i=1 7=1

Proof: We view the space outside a convex obstacle B bounded by n edges
by,...,b, as the union of n corresponding free half planes. So, M can rotate outside
of B if and only if M can rotate in one of the n free half-planes. This proves the
three union signs.

However, because the edges b; are finite, M can have one of its vertices touching
an edge of B, as well as having one of its edges touching a vertex of B. See figure
4.3.d. The first type of collision corresponds to vertices of M touching infinite edges
of B. This type of collision is responsible for the first union in equation (8). To
sce the meaning of the second union, we fix the robot M and rotate the obstacle
B about P. The rotation of B stops whenever a vertex of B touches an infinite
edge of M. We also have to negate the second set of intervals because the relative
rotation between M and B is reversed. i

The computation of the n intervals I(w;) costs O(n.m?) time. The union of
the n intervals, each having at most nm disjoint subintervals, costs O(n%.m) time.
So the range I,y (B) costs O(n?.m?) time.

Configuration Range of the Robot Rotating About a Point
The Configuration Range of the robot M rotating about a point P, and
constrained by B is denoted by CP(B). CP(B) is the set of valid configurations
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of robot M, for which M does not collide with I3 when it rotates about O-. I3
can be an infinite wall, a convex boundary, or a convex obstacle as above. CP(B)
is specified by a range of orientation I(13), and a single vertex polygon {P}. I(B)
is computed as in equations (6), (7), (8).

In the CSpace, the configuration rangc'CP(I'}') is picLured by a segment parallel
to the 0-axis going through point P.

4.4. Configurations of the Robot Inside a Cone

This section combines the results from the previous sections, with the heuristics
from chapter 2 and 3, to build a new type of configuration volume called a
Configuration Cone. A Configuration Cone is a restricted configuration volume
which captures a large range of translation and rotation of the robot M inside a
cone. Refering to figure 4.4.a, the valid motions of M inside cone C are characterized
by the alignment range [0;,602], and the translation polygon {Py, Py, P;, Py, }. The
point of rotation on the robot is T, the center of the tail bounding arcs. Inside cone
C, the robot can rotate between 6; and 6, while its point T can translate to any
point inside the polygon {P;, P», P3, P4, }.

Alignment and Rotation Point Inside a Cone

The Sliding heuristic of chapter 2 pinpoints the two orientations 6;, 62 of
robot M, for which a sliding edge of M is parallel to the nearest corresponding
generating edge e; or es of cone C. The Narrowness property of chapter 3 observes
that a semi-Voronoi cone C is narrower between the two generating edges e, es,
than between the small and large bounding arcs. So, for robot M to be inside and
translate through the narrow cone region, M should align itsell with the spine of
C. The Sliding heuristic and Narrow property support the need for the alignment
range [6;,02] as the range of orientation of M inside cone C.

I(C) = [61,62]. (9)

If the two sliding edges of M are already known, the computation of the
alignment range I(C) does not depend on the number of vertices of M. So, the
computation of I(C) is done in constant time.

Translation Polygon Inside a Cone

The Head-Tail heuristic of chapter 2 observes that the small end of the cone
can be easily sneaked through if robot M rotates only about its head or tail ends.
We choose either H or T depending on which is ncarer to the small end of the

cone.

Figure 4.4.a shows a cone C bounded by four segments. The bounding arc at
the large end of the cone is approximated by one segment. As the moving robot
M rotates from 8 to 8y, it sweeps some volume which can be bounded by taking
the convex hull. See figure 4.4.b. We use this convex bounded robot to compute the
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Figures 4.4
a. The alignment range and the translation polygon of the robot inside a cone.

b. The configuration cone of the robot is a good approximation to the real CI-volume.
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CI inside the restricted cone region 1. Such C'T operation is equivalent to shifting
the edges of I2 by the shift distance calculated over the alignment range I(C). The
result is a convex polygon of translation constraining where the reference point T
of M can be.

T(C) = CIC). (10)

where the moving robot is the bounded sweep of M in the alignment range I(C).

Since the shift distance can be computed in O(|vertices(M)|), and the cone
region I is chosen to have from three to five vertices, the translation polygon T'(C)
is computable in O(|vertices(M)|) time.

Theorem: The robot M is collision-free inside cone C, if its orientation 0 is

inside the alignment range I(C), and if its reference point is inside the translation
polygon T(C). Both I{(C) and T(C) are constructed as above.

Configuration Cone

Definition: The Configuration Cone of robot M, rotating and translating
inside a cone C, denoted CC(C), is specified by an alignment range I(C), and a
convex translation polygon T'(C). The reference point on the robot M is either H,
or T, the center of respectively the head or tail bounding arcs.

ce(e) = {1(c0), T(O)}- (11)
In the CSpace, CC(C) is the sweep of the translation polygon T(C) along
I(C). Configuration cone captures a good slice of the CI-volume CI(C).

The alignment range I(C) is computable in constant time. The translation
polygon is computable in O(|vertices(M)|) time. So, the Configuration Cone CC(C)
is computable in O(|vertices(M)]) time.
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5. EXPERI'S COMPUTE LOCAL PATHS

For each type of link, there is an expert which plans paths between linked
cones. Roughly, cach path expert works as follows:

1. From the starting and ending cones C} and C4, the expert computes the
two configuration cones C'Cy and C'Cy. From the free space description, we retrieve
or compute the transition region describing the link between C| and Cy. From this
transition free space, the expert computes some valid configuration volume CC)a.

2. The path expert finds local paths of robot M along the link between C; and
C. by intersecting successive pairs of configuration volumes: CC) with CCyy, and

CCys with CCs.

3. The intersection of two valid configuration volumes gives an infinite number
of valid paths. The path expert chooses one path by using a local search which
looks first for the smallest rotation, then for the smallest translation.

As an example, let’s consider the path of the robot M through a convex region
R, illustrated in figure 5.1.a. The configuration cones CC; and CC, describe all the
rotations and translations of M inside the cones Cy and Cj. The transition region
here is the convex region R. From the convex region R, we compute the CI of M
inside R, and at some fixed orientation common to both the alignment ranges of
C(C and CC7. The intersection of CCy and CI gives the intermediate configuration
of M, and specifies the rotation about O;-P; in cone C;. The intersection of CI
with CCy gives the final configuration of M in cone C5, and specifies the translation
from Cj to Cy. Note that we have opted for the smallest rotation in Cj, then the
shortest translation from Cj to Ca.

Local paths of the robot are computed by the four experts. The whole path
between two arbitrary configurations of the robot is found by an A*-search [13].
The A*-search probes the network of linked cones, and uses the four experts to
plan paths along the links between the cones. From the search point of view, cones
are ‘nodes’, and links are ‘edges’ between the nodes.

5.1. Traversing a Free Convex Region

Using the Free Convex Region as a Transition Medium

Figure 5.1.a illustrates a path through a free convex region which does not
totally contain the two linked cones. From cone C), the robot gets inside of the
free convex region R, then translates inside R to reach cone Cj.

The path between the cones C; and Cj through the convex region R is
composed of:

1. A rotation about the current point OpP; to the nearest orientation 62
common to the two alignment ranges I{C), I(C,).
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Figures 5.1 Traversing a convex region.
a. A path between two cones partially wrapped by a convex region.

b. Find the translation by computing the CT of the robot inside the convex region.
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2. A translation inside cone C; to some nearest point Pjs, such that for
configuration zy», (M).,, is not only inside the cone Cy, but also inside the convex
region K. In our example, P2 coincides with Pj.

3. A translation inside the convex region R to some nearest point I, such that
for configuration z», (M), is not only inside the convex region R, but also inside
the cone Cy.

Proof: We prove that the above path is collision-free.

1. Since the alignment range I(C)) is a connected interval, and since before
and after the rotation of M, the orientation of M is both inside I(C}), the rotation
is collision-free.

2. The two points P; and Pjo are both inside the translation polygon T(C).
So the translation inside cone C) is collision-free.

3. The robet M is completely inside the convex region R, and has the same
orientation in both configurations z;2 and 29. From the corollary in section 4.2, the
translation inside the convex region R is collision-free.

Computation: We show how the points Pj; and P, are determined.

Call CI,, the shrunk convex region obtained by taking the CI with M at fixed
orientation § and inside convex region R. The overlap of the translation polygon
T(Cy) and CI, is a convex polygon, representing the set of points Pjgs for which
(M).,, is both inside the cone C; and inside the convex region R. From this overlap,
we can choose the point Pjs which is nearest to point P;.

We find point P» similarly. Also, we don’t need to shrink the convex region
again, because CI; is the region CI; translated by the vector connecting the points
of rotation Oy, O2 when M is at orientation 6;s.

Complexity of Finding a Path Through a Convex Region
Assume that the robot and the workspace has O(n) edges. — The CT operation
can be done in O(nlogn) time. The shrunk convex region CIp has O(n) edges.

— The intersection of two convex n-gons can be computed in O(n) time. Since
the translation polygon T(C) has at most five edges, the overlap between T(C) and
the CIy is computable in O(n) time.

So the path through a convex region is computable in O(nlogn) time.

5.2. Sliding Along an Edge

Sliding Along an Edge and Going Through a Bottle-Neck

Figure 5.2.a shows a path along an edge and through a bottle-neck between
two cones. From section 3.6, we know that with proper matching of the points of
rotation on M, the two alignment ranges in the two cones always overlap. The
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common orientation is such that the common edge is parallel to the facing sliding
edge of the robot. The rotation inside the alignment range is collision-free.

Translation is harder because the cone regions often do not overlap, Even if
the cone regions do intersect, their union is generally non convex. The planning of
the path along an cdge proceeds in two steps:

1. Find the description of the frec space along the edge, and between the two
cones. — We look for the tightest freeway along the edge, or an obstacle which
touches the edge. In the figure, the tightest freeway is the bottle-neck I3, between
the edge e and vertex v. The bottle-neck B is used as transition medium between
the cones. If there is neither a tightest freeway nor a vertex touching the common
edge, then from the theorem in 3.5.1, the two cones must share a convex region.
This convex region is used as the transition medium.

2. Compute a path for the robot. — As in finding a path through a convex
region, from cone C; the robot first gets inside of the bottle-neck B, then it
translates inside the bottle-neck until it reaches the next cone C,. The path is
composed of the familiar one of a rotation, and two translations. In case the two
cones share a convex region, the path through that convex region is computed as
in the previous section.

We’ll concentrate our discussion to the first step. The second step is similar to
the planning of a path through a convex region. See section 5.1.

The Free Space of Transition Along the Edge

The theorem in section 3.5.1 tells us that the free spacc along an edge e is
completely described by the convex regions and the cones having e as generating
edge. In between the two cones C; and Cy, there is either a freeway, or an obstacle,
or else the two cones must share a convex region.

Computation: We recover the description of the free space between the two
cones C; and Cy as follows.

1. If the two cones C; and Cj share a convex region, then return the convex
region; else, continue with steps 1. and 2.

2. We find all cones C between the two cones C; and Cs. From these cones,
we find all the generating edges f which face the common edge e. Next, from these
edges, we find all of their vertices v; then for each vertex, we compute its distance
to the common edge e.

From the two vertices of the edge f; of Ci, and their corresponding distance,
we choose an end vertex vy which is nearer to e. Similarly, we find the end vertex
vy, which is the nearer vertex from the edge f2 of cone Co.

3. From the vertices v in between and including v{ and vy, a case analysis will
dispatch to either:
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Figures 5.2 Sliding along an cdge.
a. The robot slides along an edge and passes through a bottle-neck.
b. A freeway along the common edge and describing a bottle-neck in between the two cones.

c. An obstacle touching the common edge of the two cones.
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a. there is a corner v which is nearest to the common edge e, and is between!?

vy and ve. The free space of transition is the cone which describes the bottle-neck
between vertex v and edge e. See figure 5.2.b.

b. there is an edge f which is parallel to the common edge e, and nearest to e.
Both the vertices of this edge must be between the two end-vertices vy and vy. The
free space between C) and (b is the cone describing the freeway between f and e.

c. there is an obstacle which touches the common edge if there is a vertex
in between v; and wvo, whose distance to the common edge is zero. There is no
transition region, and no path. See figure 5.2.c.

Proof: We prove that the steps 2 and 3 effectively find a cone or an obstacle
in between two cones which share a common edge and have no common convex
region.

1. Remember that the cones which share a common edge e are ordered along
the edge e. From this ordered list, we can find all the cones C which are between
the two cones C7 and Cs. Among these cones Cs, we’ll prove that there must be at
least one cone which constraints most the translation along the common edge.

The theorem in section 3.5.1 says that there must be either a freeway or an
obstacle which touches the common edge.

a. If such a freeway exists, it must be described by some cone B since cones
capture all the freeways and bottle-necks in the free space. The cone B results
from the interaction of the common edge with either a facing corner or a facing
edge. The corner or the facing edge creates a concavity in between the two cones.
So, assuming that the ordering of the cones reflects the ordering of the constraints
along the common edge, the cone B which describes the break between the two
convex regions K; and Ro, must necessarily be in between C; and Cj.

b. If such.an obstacle exists, then there must be at least two cones between
the two edges of the obstacle and the common edge e. We have two convex regions,
which overlap the common edge on the two sides of the obstacle. Note that there
is always a cone between two consecutive constraining edges of a convex regions
if these two edges intersect. In figure 5.2.c, the two cones between the touching
obstacle and the common edge are denoted by C3 and C4. Once more, assuming
that the ordering of the cones along the common edge e reflects the ordering of the
constraints along this edge, the two cones between the obstacle and the common
edge must be in between the cones Cy and Cj.

2. The cone which captures the tightest constraint on the translation of M
between C; and Cy can be singled out by finding the edge or vertex nearest to the
common edge e. Since we assume the obstacles do not overlap, the detection of an
edge or a vertex nearest to a common edge can be done by looking at the vertices
between v; and vy only.

10:Botween’ means the projection of corner v on edge ¢ is in the segment formed by the two
projections of vy and vy on e.
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Complexity of Finding a Path Along an Edge

— The above scheme finds the free space along the edge e in time linear to
the number of cones Cs which share e as common edge. There are at most as many
cones which share a same edge as there are edges in the workspace. So, the above
scheme is computable in O(n) time, n is the number of edges in the workspace.

— Path computation through a common free convex region, or a transition
cone costs O(nlogn) time.

So, the path along an edge is computable in O(nlogn) time.

5.3. Circumventing A Corner

Approach, Rotate and Slide, then Depart
The planning of a path around a convex corner proceeds in two steps:

1. Find the description of the free space around the corner, and between the
two cones. From section 3.5.2, the free space around a convex corner is described
by a V-shaped region. This region connects the two cones, and has a concavity only
at the corner.

2. Compute a path for the robot. Because of the concavity of the V-shaped
region at the corner, the path around a convex corner is broken into three sub-paths:

a) Approach the corner. — Like previous paths, from the current cone, the
robot gets inside of the V-shaped region. Then, the robot translates inside the
V-shaped region, and approaches the corner.

b) Rotate and slide about the corner. — The robot rotates about the corner
and possibly slides on this corner. This rotation bridges the gap between the two
alignment ranges of the robot inside the two cones. After this step, the robot is in
some orientation which is inside the alignment range of the next cone.

c) Depart from the corner. — Like the reverse of the approach path, the robot
departs from the corner, then moves inside the V-shaped region until it is inside of
the next cone.

The complete path of the robot around the corner V is shown in figure 5.3.a.
The subpaths are shown in figures 5.3.b, and 5.4

Because cone poorly describes the free space around a corner, finding the
V-shaped region is not supported by the network of linked cones. We have used a
depth-first search to implement the search for a V-shaped region around a corner
v. From the edges and vertices which face corner v, the depth-first search finds a
convex boundary which connects the ends of the two cones.

Rotate and Slide About the Corner

Let s be the sliding edge that faces the convex corner. From the radius r of
the disc segment D, we can find the two points of rotation S; and S; on the sliding
edge s such that:
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Py
Figures 5.3 Navigating around a convex corner.
a. A path around a convex corner. From the current cone, the robot approaches the. corner,
rotates and slides about the corner, then it departs from the corner and enters the next cone.
b. The robot rotates and slides about the corner. The points of rotation are specified by the free —~

space around the vertex.
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—— The head (or tail) of the robot is collision-free inside the disc segment D,
when the robot is rotating about point S;-V.

— The tail (or head) of the robot is collision-free inside the disc segment D,
when the robot is rotating about point S,-V.

In figure 5.3.b, the point Sy (resp. S») corresponds to the head (resp. tail) of the
robot rotating freely in the disc segment D. The two points of rotation correspond
successively to one of the ends of the robot moving inside the disc segment. In the
computation of the points of rotation S| and S,, there arc three simple cases:

a. The radius r of the disc segment is smaller than the cross-section associated
with s. In this case, the disc segment is too small for the robot to sneak through
it. There is no point S; and Sy, and no path around the corner.

b. The radius r of the disc segment is greater than the radius of the half
bounding circle corresponding to the sliding edge s. In this case, the whole robot
can rotate freely inside the disc segment. The two rotation points S; and S coincide
with the center of the bounding half circle.

c. The radius r of the disc segment is greater than the cross-section, but
smaller than the radius of the bounding half circle. In this case, the disc segment
can contain only one end of the robot at a time. There are two different points of
rotation S; and S, on the sliding edge s. See figure 5.3.a.

Computation: Recall that the alignment ranges of the robot inside the two
cones often do not overlap. The gap between the two alignment ranges is bridged
by a simple rotation about S-V in case b, and by a rotate-slide-rotate motion in
case ¢. The rotate-slide-rotate motion is computed as follows:

1. Find the configuration range C P of the robot, rotating about S;-V, being
outside of the corner’s obstacle C, and inside of the convex boundary B of the
V-shaped region. Similarly, we find the configuration point CP; for the robot M
rotating about Sp-V. The range of orientation in CP; always overlaps with the
alignment range in CCj. There is always the obvious common orientation which
makes the sliding edge s parallel to the generating edge e; of the cone C;. The
same observation holds for the configurations CP, and CCs.

2. If the ranges of orientation in the two configuration ranges CP; and CP»
overlap, then the path of the robot is composed of:

— a rotation about S;-V from the current orientation of robot M to the
nearest orientation ;2 common to the two ranges orientation in CP; and CP;.

— a translation at orientation 62 until the point S» on M coincides with the
corner V. The vector of translation is the vector from point S; to point S; in the
current frame of the robot. In this translation, the robot ‘slides’ on the corner V.

— a rotation about Sp-V from orientation 6,2 to the nearest orientation in the
alignment range I(Cs).

Proof: The above path is collision-free.
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— The two rotations about S;-V, and S»-V is collision-free, because they are
valid motions respectively in the conliguration range CP; and CPs.

— The sliding of the robot on the corner V is also collision-free. To sce
this, we artificially create a region I bounded by the convex boundary B of the
V-shaped region and a line X\. The linec X\ extends the sliding edge s of the robot
at current orientation ;2. See figure 5.3.b. Since the obstacle C is outside of the
free half-plane of X\, and since the boundary B of the V-shaped region is convex,
the region R as constructed is convex. With such convex region R, the robot is
completely inside R before and after the translation. So, from the corollary in
section 5.1, the translation is collision-free. g

Complexity: The case c has the longest time.
— The convex boundary has O(n) facing edges and vertices.

- From section 4.3, the configuration range of the robot rotating outside of
an obstacle C is computable in O(n?®) time. The configuration range of the robot
rotating inside a convex boundary B is computable in O{n?) time. So, CP; and
CPy cost O(n3) time.

We deduce that, the ‘rotate-slide-rotate’ path about the corner is computable
in O(n®) time.

Approach and Depart from a Corner

We have seen how the robot can turn itself around the corner. From the current
cone Cy, we have some configuration cone CCj. From the rotation of the robot
about S;-V, we have a configuration point CP;. We now plan the approach path
which links the two configuration volumes CC; and CP;. We remember that the
alignment range in CC, always overlap the range of orientation in CP;. However,
the two translation polygons generally do not intersect. So, we need to translate the
robot through some region of transition. The transition region here is the V-shaped
region.

The path of the robot approaching a convex corner is broken into two subpaths:

1. From the cone C}, the robot gets inside of the V-shaped region. — First, the
robot rotates inside the cone Cj until it is in some orientation inside CP;. Then,
the robot translates inside the cone C; until it is completely inside the V-shaped
region.

2. The robot translates inside the V-shaped region until the point of rotation
Sy on its sliding edge coincides with the corner V.

The top of figures 5.4 shows an example of an approach path. The bottom
figure shows an example of a depart path. Depart paths are computed similarly to
approach paths

Computation:

1. The first subpath is very similar to the subpath the robot uses to get inside
a convex region from some current cone. To make the reduction, we construct a
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Figures 5.4 The robot approaches and departs from the corner.
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convex region Iy from the non convex V-shaped region. The convex region I is
called the approach region.

The approach region Ry is the intersection of the V-shaped region and the free
half-plane of edge ¢,. Iidge e; is the constraining edge of the cone Cy connected
by the vertex V. Because the V-shaped region is concave only at V, the approach
region R; as constructed is always convex. This subpath through the approach
region R is computed as in section 5.1.

2. Restricting the non convex V-shaped region to some convex region does not
work for the second subpath. However, a path with translation only can be easily
found by computing a three-point Visibility graph, (see below) and checking that
the robot does not collide with the obstacles.

Proof: We’ll show how the second subpath is contructed, and prove that it
is collision-free. Throughout the following discussion, the orientation of the robot
remains constant. Let’s O; be the reference point on the robot. We shrink the
moving robot to the reference point O), and inversely grow the boundary B of the
V-shaped region, and the obstacle C. The grown obstacles are computed by taking
the CI of the robot inside the convex boundary B, and the CO of the robot due
to the obstacle C. In figure 5.4, the reference point O; on the robot is chosen such
that the CO-obstacle has edge e; unshifted. The reference point O; describes a
valid configuration of the robot if and only if point Oy is outside of the CO-obstacle
and inside of the C'I-boundary.

‘The Visibility graph is fairly easy to compute. We want to link the current
position P; of point O; with its final position @, possibly through intermediary
via-points. ,

— The straight translation is represented by the segment P;@;. Since the
robot is collision-free when its reference point O; coincides with the points P; and
@1, the points P; and @) must be outside of the CO-obstacle and inside of the
ClI-boundary. Because the CI-boundary is convex, the segment joining P; and @,
is totally inside the C'I-boundary. We just need to check whether this segment cuts
the CO-obstacle. If P;@; does not cut the CO-obstacle, or equivalently does not
cut the edge e;, then the straight translation represented by the segment P;Q); is
collision-free.

— The interesting via-points are restricted to the shifted point V"’ of the corner
V due to the reference point O;. Due to our choice of Oy, the edge e; and the
vertex V are left unshifted. So, V’ coincides with the corner V. Since the point V
is already on the boundary of the CO-obstacle, it is a valid via-point if it is inside
the CI-boundary.

If V is inside the CI-boundary, then the segments P;V and V@, represent
collision-free translations inside the V-shaped region. To see this, we note that
the segment P;V is completely outside of the CO-obstacle because the segment
is inside the free half-plane of edge e, and this free half-plane does not intersect
with the convex CO-obstacle. The segment V@) is also outside of the CO-obstacle
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because the segment V@ is in the free hall-plane of edge s’ on the CO-obstacle.
Edge s’ is the segment drawn by the reference point O; when the robot slides its
sliding edge s on the corner V. Next, the two segments PV and VQ, are totally
inside of the CI-boundary, because 1) the C'J-boundary is convex and 2) all of
the end points of the segments are inside of the CI-boundary.

From the three points P, V, and @), we find the shortest translational path
for the robot. The above discussion suggests that we can avoid the computation of
the CI and CO, and just check that the robot is collision-free when its reference
point O; coincides with the corner V. Such check can be done in O(nlogn) time

(19]. n

Complexity: Like a path through a convex region, the first subpath costs
O(nlogn) time. For the second subpath, there is a collision check of O(nlogn)
time. So, the path of the robot approaching/departing from a convex corner is
computable in O(nlogn) time.

5.4. Going Through a Star-Shaped Intersection

An Example ,
Figure 5.5.a shows a path through the star-shaped intersection I. The planning
of a path through an intersection proceeds in two steps:

1. Retrieve from the description of the free space the intersection between the
two cones. In section 3.5.4, we have discussed that the free space between the two
branching cones C; and C; is captured by a fake cone C’. In figure 5.5.b, the fake
cone C’ is shown having generating edges ad and bc. Then, a case analysis classifies
the relationship between the cones C;-C’, and C’-Cs as:

— two cones sharing a fake corner. In the figure, the two cones C; and C’
share a fake corner a. This fake corner has on one side a fake edge ad, and on
the other side a real edge e4. The V-shaped region around the corner a is used as
transition medium for computing of a path from the fake cone C; to the next cone
C. ’

— two cones sharing a fake common convex region. In the figure, the two cones
C’ and C; share a fake convex region locally bounded by ad, be, ec, and ep. This
convex region is used as transition medium for computing a path from the fake
cone C’ to the next cone Cs.

2. Call the appropriate path expert to plan two subpaths: from the current
cone C; to the fake cone C’ of the intersection, then from the fake cone C’ to the
next cone Cy. Next, link the two subpaths to obtain the whole path going through
the star-shaped intersection. See figure 5.5.a.

We discuss only the case analysis in step 1, This case analysis aims at capturing
the local connectivity between the cones C;-C’, and between the cones C’-C5. For
the path computation in step 2, all the details can be found from the previous
sections. '
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b.

Figures 5.5 Going through a star-shaped intersection.
a. A path going through an intersection.

b. The free space in the intersection is described by a fake cone.
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Local Links between the Cones in an Intersection

Since the three cones Cy, C’, and Cy do not have any common edge the kinds
of link which may be relevant are: common convex region and common corner.
Either of the two links is decided from looking at the pair of constraining vertices
shared by the two consecutive cones. The case analysis is as follows:

1. If the two vertices form two concave corners, then the two cones share a fake
convex region. The fake convex region is formed from the four generating edges
of the cones. In figure 5.5.b, the vertex ¢ shared by the cones Cy and C’ forms a
concave corner between the edges ey and bc, bc is a fake edge. Similarly, the vertex
d forms a concave corner between the edges e;) and ad. The fake convex region R
is constrained by the two edges ec, e;) from cone Cy, and the two edges ad and bec
from the fake cone C’. The fake convex region R can have obstacles at the two far
ends of the two cones, but never in between the two cones.

2. if one of the two vertices form a convex corner, then the two cones share a
fake convex corner. In the figure, the two vertices a and b form two convex corners.
The vertex a is chosen as vertex of transition because a path around a is more likely
to be shorter. The V-shaped region describing the free space around the vertex A
can be found from the edges ep and bc, and the two cones C’ and Cj in constant
time.

Complexity of a Path Through an Intersection

Let n be the number of edges in the workspace. A subpath through a fake
convex region R can be computed in O(n log n) time. The V-shaped region describing
the free space about a fake convex vertex can be computed in constant time. A
subpath around a convex corner can be computed in O(n?) time. So, the path of
the robot through a star-shaped intersection is computable in O(n?) time.

5.5. The A*-Search Finds Global Paths

We have seen how the four experts compute local paths along the links between
the cones. These short pieces of path are linked from one to the other, as an
A*-search [13] probes the network of linked cones. In our search network, cones
are considered as nodes, and links as paths. Figures 5.6. shows two paths found by
the A*-search. The search for a collision-free path of the moving robot proceeds in
two steps:

1. Identify the start and final cones. The start (resp. final) cone is a cone
which totally encloses the moving robot when this later is in its start (resp. final)
configuration.

2. Search the network of linked cones, from the starting cone to the final
cone. This step is done by an A*-search, with a cost function depending both on
translation and rotation.

In the current Path Planner, the search for a path can fail when:
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Figures 5.6 Some cxamples of paths found by the A*-Search.
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Figures 5.7 Some paths in cluttered environments.
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— There is no identifiable starting (or ending) cone. In this case, the moving
robot M either overlaps with some obstacle, or overlaps with many cones without
being inside any of them. The validity of the starting (or ending) configuration can
be checked by intersecting the robot with all the obstacles in the workspace. If the
robot overlaps with many cones without being inside any of them, a local expert
can find a translational path, after which the robot is inside one of these cones.
This expert is not implemented in the current version.

— Some intermediary cones are too small, and the search gets lost. This is a
serious limitation of our method. Our method depends on capturing convex local
regions which are big enough so that we can find good sets of valid motions for
the robot inside these regions. A small cone which cannot contain the robot has
an empty configuration cone. In the search network, this corresponds to a node
through which there is no path. Fortunately, many of these cones can be extended
by the neighboring free convex regions. This kind of extension is provided directly
by the free space description. Free convex regions have proved to be a good back
up for small cones. But the free convex regions can also be many, and too small to
enclose the robot. We see this case when the obstacles have many small edges like
the teeth of a saw blade. It seems that a preprocessing step which smoothes out
small local variations is necessary.

Both the description of the free space and the search for path can be badly
fooled if the obstacles have many small edges and corners. In finding the convex
regions and cones, in computing the alignment ranges of the robot inside the
cones, we have relied on the edges of the obstacles. We have implicitly made the
assumption that the edges of the obstacles are good constraints for translation.
With the edges as good constraints for translation, a convex corner connecting two
edges is seen as a ‘break’ or ‘discontinuity’ in translational constraints. Many small
edges and corners means many cones, and many of them are too small to contain
the moving robot. The Voronoi diagram of the free space between such obstacles is
also fuzzy. The Voronoi diagram has a lot of short edges, and points of intersection.
However, we can always smooth out small edges and approximate the obstacles
with some fixed number of edges.

The transformation of the free space between the obstacles into a network of
linked cones takes about 40 seconds. The search for a path takes typically from
one to three minutes in compiled LISP on an MIT Lisp Machine.
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CONCLUSION
6. CONCIUSION

Problems for Future Research
1. Find efficient algorithms for finding the free convex regions, and the
star-shaped intersections, or prove that the problem is NP-complete.

2. Investigate the possibility of having a CO-type expert to compute the path
around a convex vertex. It seems that we have pushed too far the idea of capturing
simple convex regions and computing the CI of the robot inside these regions to
find paths.

3. Extend the obtained results to planning paths for moving robots, and
articulated arms in 3D.

Extensions to a 3D Path Planner

A generalized cone in three dimensions describes a freeway between two
‘opposite’ faces, or a bottle-neck between a face and an edge. A free convex region,
(resp. a star-shaped intersection) describes the convex polyhedral region between
many faces, (reps. edges). The four types of links can be generalized similarly.

In two dimensions, we observe that the sparser is the workspace, the more the
cones overlap one another, and the less useful are the paths along the edges and
around the vertices. From this observation, we predict that in three dimensions,
the cones will highly overlap one another, and that the common edge and common
face links will not be as useful as the other two links. In other words, the free space
between the obstacles should be described as the union of non overlapping cones
between faces. A cone can be extended by its adjacent neighbors, forming a channel.
The robot should translate in the middle of these channels rather than follow the
faces and go around the edges of the obstacles. Constraints in the C'Space should
be expressed by the CO-volumes, because the channels, or unions of the adjacent
cones, are generally non convex. This direction of research was investigated by
Donald [4].

We are confident that the description of the 3D space between the obstacles
as a graph of non overlapping cones will yield a faster Path Planner. Such graph
localizes the computation for paths.
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