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COMPUTATIONS UNDERLYING
THE MEASUREMENT OF VISUAL MOTION
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ABSTRACT: The organization of movement in a changing image provides a valuable source of
information for analyzing the environment in terms of objects, their motion in space. and their
three-dimensional structure. This movement may be represented by a twe-dimensional velocity field
that assigns a direction and magnitude of velocity to clements in the image. This paper presents a
method for computing the velocity ficld, with three main components. First, initial measurements
of motion in the image take place at the location of significant intensity changes, which give rise
to zero-crossings in the output of the convolution of the image with a V¢ operator. The initial.
riotion measurements provide the component of velocity in the direction perpendicular to the
local orientation of the zero-crossing contours. Sccond, these initial measurements are integrated
along contours o compute the two-dimensional velocity ficld. Third, an additional constraint of
smoothness of the velocity field, based on the physical constraint that surfaces are generally smooth,
allows the computation of a unique velocity field. The details of an algorithm are presented, with
results of the algorithm applied to artificial and natural image sequences.
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1. INTRODUCTION

The organization of movement in a changing two-dimensional image provides a valuable
source of nformation for analyzing the environment in terms of objects, their motion in spacc; and
their three-dimensional structure. 1Cis not surprizing, therefore, that the analysis of motion plays a
central role in biological vision systems, and in recent years, has played an increasingly important
role in computer vision systems as well. For biological systems, the analysis of movement is crucial
for such basic tasks as detecting and tracking prey, responding quickly to an approaching predator,
and guiding locomotion through a complex environment. Perhaps the most remarkable use of
visual motion is the recovery of three-dimensional structure from the changing two-dimensional
projection that a moving surface casts onto the cye. The ability of the human visual system to
- perform this recovery was first demonstrated in the studies of Wallach and O’Connell (1953) and
Johansson (1973, 1975). For animals without binocular vision, motion is a primary cue to the

three-dimensional structure of the world around them.

The extensive use of motion by biological systems, and in particular the human visual system,
demonstrates the feasibility of carrying out certain information processing tasks and helps to
establish specific goals for the analysis of movement in time-varying imagery. This analysis divides
naturally into two parts. The first is the measurcment of motion; for example, the assignment
of direction and magnitude of velocity to elements in the image, on the basis of the changing
intensity pattern. The second is the use of motion measurements; for example, to scparate the

scene into distinct objects, and infer their three-dimensional structure,

This paper presents a computational study of the measurement of visual motion. It is a
problem that was found to be surprizingly difficult, both in computer vision, and in modelling
biological vision systems. The main theoretical problems posed by this measurement are introduced
in Section 2. Section 3 presents a particular formulation of the input and output representations
for the underlying computations. A theoretical analysis of the computation is then presented in
Scction 4, followed by the discussion of a specific algorithm in Scction 5. Examples of the results
of the algorithm suggest that the proposed computation is feasible for computer vision systems,

and also yields solutions that are consistent with human motion perception.
2. WHY IS THE MFASUREMENT OF MOTION DIFFICULT?
The changing image may be represented by a two-dimensional array of time-dependent light

intensities, I(x,y,t). Motion in the image may be described by a two-dimensional vector field

V(z,y,1) that specifics the direction and magnitude of velocity at points with coordinates (z, y) at




Figure 1. A velocity field. The black lines represent local velocity vectors, displayed at evenly spaced
points over the original image.

time t. The measurement of visual motion may then be formulated as the computation of V(z,y,t)
from I(z,y,t). Figure 1 illustrates a velocity ficld that was computed from a sequence of aerial
photographs, using the algorithm that is developed in this paper. In the background, a single image
is shown with reduced contrast. The superimposed black lines represent local velocity vectors that
describe the movement of features in the image, as the plane flics over the scene. For some visual
tasks, it may be sufficient to compute only certain propertics of the velocity ficld; for example, to
respond quickly to a moving object, motion must be detected, but not necessarily measured. Other
tasks, such as the recovery of three-dimensional structure, require a more complete and accurate
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Figure 2. The aperture problem. (a) An operation that views the moving edge E through the local aperture
A can compute only the component of motion ¢ in the direction perpendicular to the edge. (b) and (c)
The perpendicular components of velocity for a translating cir;le and square.

computation of the velocity ficld, as illustrated in Figure 1 (Ullman 1979a, 1983a, b; Clocksin
1980; Prazdny 1980; Longuct-Higgins 1981; Longuet-Higgins and Prazdny 1981).

The measurement of motion poses significant theoretical problems for a computational study.
First, local motion measurements, obtained directly from the changing image, in general only
provide one component of local velocity. This is a consequence of the aperture problem, illustrated
in Figu}e 2(a) (Wallach 1976; Fcnnema and Thompson 1979; Horn and Schunck 1981; Marr and
Ullman 1981; Adeclson and Movshon 1982). If the motion of the edge E is to be measured by a
local motion dctector that examines only an arca A that is small compared to the overall extent of
the edge, the only motion that can be extracted is the component ¢ in the direction perpendicular
to the local orientation of the edge. A local detector cannot distinguish between motions in the

directions b, ¢ and d in Figure 2(a). In Figurces 2(b) and 2(c), a circle and square undergo pure
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Figure 3. Ambiguity of the velocity field. (a) The arrows represent two possible velocity fields that are
consistent with the changing image. (b) The curve C, rotates, translates and deforms over time to yield the
curve C.. The velocity of the point p is ambiguous.

translation in the directions given by the vectors at the center of the figures. The vectors along the
contours represent the local perpendicular components of velocity that can be obtained directly
from the changing image. To compute the truc motion of the figure, a second stage of analysis is

required, that combines these local measurements.

This combination stage faces a decper theoretical problem, however; the movement of
clements in the image is not determined uniquely by the pattern of changing intensities. Thus,
the true velocity field is not determined uniquely from the initial local motion measurements.
Two factors contribute to this ambiguity of motion. The first is the loss of information due to
the projection of the three-dimensional world onto a two-dimensional image; multiple surfaces,
undergoing different motions in space, may project to the same two-dimensional image. The
second factor is the loss of information due to the projection into a pattern of changing intensity.
The image that a surface projects onto the eye may not be sufficient to determine its movement
in space. As an extreme example, a matte white sphere, rotating about a central axis, cannot be

determined as such, on the basis of its projected image.

Figure 3 presents two simple examples that illustrate the ambiguity of the velocity field. In
Figure 3(a). the solid and dotted lines represent the image of a moving circle, at different instants
of time. In the first frame (solid line). the circle lics parallel to the image plane, while in the
sccond frame (dotted line), the circle is slanted in depth. One velocity ficld that is consistent with
the two frames is derived from pure rotation of the circle about the central vertical axis, as shown

to the left in Figure 3(a). (The arrows represent a sample of the local velocity vectors along the




circle.) There could also be a component of m(;ulﬁm in the planc of the circle, about its center, as
shown to the right in Figure 3a). In addition, this changing image might represent the projection
of a different three-dimensional curve that is deforming over time, giving rise to yet another
projected velocity field. This ambiguity is not pcéuli;u: o symmetric figures such as circles; it is a
fundamental problem that is always present. In Figure 3(b). the curve €, rotates, translates and
deforms over time, to yicld the curve €. The motion of points from Cy to €y is again ambiguous
(consider. for example, different possible velocities for-the point p). In general. there are infinitely

many two-dimensional velacity ficlds that are consistent with the changing image.

To bcomputc motion uniquely, additional constraint is therefore required, in the form of
basic assumptions about the physical world that generally hold truc. The main focus of this
paper 1% the dérivation of a particular constraint, the smoothness constraint, which relies on the
physical assumption that surfaces are generally smooth, compared with their distance from the
viewer. A smooth surface usually generates a smoothly varying velocity ficld when it moves. Thus,
intuitively, we seck a velocity field that is consistent with the changing image, and varics smoothly.
Unfortunately, there are still infinitely many possibilitics. A single solution may be obtained,
however, by finding the velocity field that exhibits the least amount of variation. In Section 4.3,
this constraint is formulated more precisely, in a way that yiclds a velocity ficld solution that is

mathematically unique and physically plausible.

3. THE INPUT AND OUTPUT REPRESENTATIONS

The measurement of motion has been formulated as the computation of an instantaneous
two-dimensional velocity ficld; such a formulation requires that motion in the image be roughly
continuous. There arc alternate representations of visual motion that are not so restricted. For
example, motion can be described by an explicit correspondence over time, between elements in the
image that represent the same physical feature under motion (Ullman 1979a). Motion measurement
in this case requires locating identifiable elements in the changing image, and matching them
over time. The input for a correspondence scheme may consist of a sct of discrete frames, with
large spatial scparations between corresponding clements. The perception of motion by the human
visual system also does not rcquire that a stimulus move continuously across the visual field.
With appropriate spatial and temporal presentation parameters, a stimulus presented scquentially
can produce the impression of smooth, uninterrupted motion, as in motion pictures (Wertheimer
1912). Why, then, have we chosen a formulation of the motion measurement problem that relies

on roughly continuous motion?

Recent psychophysical investigation has suggested that in the human system, motion may




Figure 4. Initial processing of an image. (a) The original image, containing 320 x 320 picture elements.
(b) The convolution of the image with a V> operator. (¢} The resulting zero-crossing conlours.

be analyzed by two different systems, termed short range and long range processes by Braddick
(1974, 1980). It has been proposed that the short range process analyzes continuous motion, or
motion that is presented discretely, but with spatial displacements at most 10’ — 15’ of visual arc,
and temporal intervals up to 60 — 100 milliscconds. The long range process would then analyze
motion over larger spatial and temporal intervals. The ability of the human visual system to
infer motion from the discrete displacement of image clements, over considerable distances and
temporal intervals, suggests an underlying correspondence computation. Under these conditions,
there is no continuous motion of elements across the image to be measured directly. Short range
motion is roughly continuous, however; we propose that the measurement of motion by the short
range process may be appropriatcly formulated as the computation of an instantaneous velocity
field.

With regard to the input representation for the velocity field computation, in order to detect
movement in a changing image, there must be a variation of intensity over space and time;
the combination of the two variations can be used to measurc the direction and magnitude of
velocity. The explicit comparison of spatial and temporal derivatives of intensity formns the basis of
a class of motion measurement schemes rcferred to as gradient schemes (L.imb and Murphy 1975;
Cafforio and Rocca 1976, Fukinuki er al. 1976; Fennema and Thompson 1979; Horn and Schunck
1981; Marr and Ullman 1981). In principle, motion mcasurcments may be obtained wherever
intensity varics. Marr and Ullman (1981) proposed, however, that initial motion mcasurements
in the human system are made only at the locations of significant intensity changes. To detect

these intensity changes, Marr and Hildreth (1980) proposed that a powerful operator for the initial




Figure 5. Decomposition of velocity. uL(s) and uT (s) are unit direction vectors. perpendicular and tangent
to the curve. and v1(s) and v (s) are the two velocity components.

filtering of an image is the Laplacian of a Gaussian, V2G (approximated in shape by the difference
of two Gaussian functions). The clements in the output of an image convolved with V2G, which
correspond to the locations of intensity changes, are the zero-crossings (Marr and Poggio 1979).
Figure 4 shows an image that has been convolved with a V2G operator, and the resulting
zero-crossing contours, Marr and Ullman (1981) proposed that initial motion measurements take
place at the locations of these zero-crossings, using a mechanism that combines spatial and temporal
gradients of the filtered image. Further motivation for this input representation can be found in
Hildreth (1984a).

In two dimensions, the initial measurements face the aperturc problem. For the case of
contours, local motion measurements provide only the component of motion in the direction
perpendicular to the orientation of the contour. The component of velocity along the contour
remains undetected. More formally, the two-dimensional velocity field along a contour may be
described by the vector function V(s), where s denotes arclength. V(s) can be decomposed into
components tangent and perpendicular to the contour, as illustrated in Figure 5. uT(s) and u-L(s)
are unit vectors in the directions tangent and perpendicular to the curve, and vT(s) and v-Li(s)

denote the two components:

V(s) = v T (a)u T (s) + vL(s)ul(s). (1)

The component v-L(s), and dircction vectors uT(s) and u-l(s), arc given dircctly by the initial
measurements from the changing image. The component vT(s) is not, and must be recovered,




to compute V(s). Intuitively, the set of measurements given by o ! (s) over an extended contour
should provide considerable constraint on the motion of the contour. Additional constraint is still

required, however, to determine this motion uniquely.

4. ADDITIONAL CONSTRAINT FOR MOTION MEASUREMENT

In this section, the computation of the velocity field is discussed from a theoretical viewpoint.
The section is organized by the type of additional constraint that is used for this computation,
Three types of constraint are considered: (1) velocity is constant over an arca of the image: (?_)
the velocity field is consistent with rigid rotation and translation of objects in the image plane;
and (3) the velocity ficld is smooth, and exhibits the least variation among thé set of velocity fields

consistent with the changing image.

The discussion of the constant velocity assumption, in Section 4.1, is primarily a review of
previous work on motion measurement, as this assumption underlies most methods that have been
proposcd, both for computer and biological vision systems. The class of rigid motions in the image
planc has been addressed in correspondence schemes for motion measurement. In Section 4.2,
we present a scheme for analyzing the instantancous velocity field for this class of motions. The
constraint on smoothness of the velocity field, discussed in Section 4.3, was motivated by the work
of Horn and Schunck (1981) on the optical ﬁow computation, and allows the analysis of more

general classes of motion.

4.1 The Constant Velocity Constraint

Much of the previous work in motion analysis has assumed that velocity is constant, at least
over small areas of the image. If the projection of the scene onto the image plane is orthographic,
the constant velocity constraint is strictly valid only when objects undergo pure translation.
Examples of methods that usc this constraint include those based on the cross-correlation of
intensity, used both in computer vision (Leese ef ¢l 1970; Lillestrand 1972; Smith and Phillips
1972; Wolferts 1974) and in modeclling biological vision systems (Reichardt 1961; Lappin and Bell
1976; Petersik, Hicks and Pantle 1978; Anstis 1980), and correspondence schemes (Potter 1975,
1977; Mutch and Thompson 1982; Lawton 1983). In addition, most gradient schemes assume that
velocity is constant over an area of the image (1.imb and Murphy 1975; Fennema and Thompson
1979; Thompson and Barnard 1981; Marr and Ullman 1981). For gradicnt schemes, the constraint
on velocity imposed by a single measurement of v-1(s) can be illustrated graphically in velocity
space, a space in which the z and y axes represent the = and y components of velocity, which we

denote by V, and V,. This is shown in Figure 6. When mapped to velocity space, the velocity
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Figure 6. Velocity constraints in velocity space. v-1(s) is the perpendicular component of velocity, and
ul(s) is the unit direction vector, at a point p on the image curve. The velocity vector at p must project
to the line I; examples are shown with dotted lines.

vector at a point on the contour must terminate along the line ! perpendicular to the vector
vl (s)ul(s); examples are shown by the dotted arrows. For the case of uniform translation, the
lines of constraint formed by multiple measurements of v-1(s) along a contour intersect at a single

point in velocity space, corresponding to the endpoint of the truc velocity vector for the contour.

Some gradient schemes for motion measurement make explicit use of this intersection point
(Fennema and Thomspon 1979; Thompson and Barnard 1981: Adeclson and Movshon 1982).
Marr and Ullman (1981) proposed a zero-crossing based scheme, in which each local motion
measurement restricts the true direction of velocity of a patch to lie within a 180° range of
dircctions to one side of the zero-crossing contour. A set of mecasurements taken at different
oricntations along the contour further restrict the allowable velocity directions, until a single

dircction is obtained, which is consistent with all the local measurcments.

In many natural dynamic scenes, particularly those arising from motion of the observer, the
velocity field can be approximated locally by pure translation. Most of the above schemes involve
local operations for computing displacements or velocities, and can be cffective for analyzing this
type of motion. In more general situations. for example, when a nearby surface rotates in depth

and dcforms, the assumption of local translation is no longer sufficient,
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4.2 Rigid Motion in the Image Plane

Some motion measurement schemes allow objects to undergo rigid rotation and translation
in the image planc. For example, Davis e ol (1983) present an iterative gradient scheme that
combines motion constraints along contours, starting from points of known velocity, and utilizing
the perpendicular components of velocity. Several correspondence schemes also allow the analysis
of this class of motions (Ullman 1979a: Aggarwal and Duda 1975; Chow and Aggarwal 1977;
Barnard and Thompson 1980; Nagel 1982).

In the remainder of this scction, we analyze the instantancous velocity ficld for this class of
motions, and present a simple geometric construction for computing the velocity field. Suppose that
a rigid curve undergoes gencral motion in space. Its instantancous motion may be described as the
combination of: (1) a rotation with angular velocity w about a single axis in space, which we denote
by the unit vector n = [nz,ny,nz]T (T denotes the transpose of a vector), and (2) a translation,
which we denote by the vector t = [t,,t,,¢.]7. Let the curve be given by C = (z(s), y(s), 2(s)),
where s denotes arclength. The location of a point on the curve may be given by the position
vector I == [z(s), y(s), z(s)]T. If it is assumed that the axis of rotation passes through the origin
of the coordinate system, the velocity of a point given by the position vector r is equal to the
cross product of r with the vector wn. If we then let the optical axis lic along the z-axis (with
the positive z-axis directed toward the viewer), and let the projection of the curve onto the image
plane (the (z,y) plane) be orthographic, then the two-dimensional velocity ficld V(s) along the

contour is given by:

V(s) = M(r X wn +t) = —wz(s)[ " } - wnz[_y(s)} + [t] 2)

—ng () ty

M denotes the matrix that perfoi‘ms the orthographic projection. The first term in the resulting
expression describes the component of the velocity field due to rotation in depth about an axis
parallel to the image plane (the axis n = [nz,ny,O]T); the second term is the component due
to motion in the image plane (rotation about the axis n = [0,0, n,]T), and the third term is the

translation component.

Consider the restricted case of rigid motion in the image plane; the velocity field now

corresponds to the combination of a translation, and rotation about the axis n = [0,0, l]T. Thus,

Vis) = "w[“‘J(“’)] . H 3)

() ty

V(s) is simply a translation, rotation and scaling of the image curve («(s),y(s)). as illustrated in

V(s) is given by:

Figure 7. In Figure 7(a), the curve C; undergoes a small rotation and translation in the image

11




Figure 7. Velocity field for rigid motion in the image plane. (a) The image curve C, undergoes a small
rotation and translation in the image o yield the curve C.. (b) The velpci;y vectors drawn in velpcily space.

plane to yield the curve Cp. The arrows indicate a sampling of the local velocity vectors along
the curve. In Figure 7(b), these velocity vectors have been translated to a common origin in
velocity space. The curve in velocity space has the same shape as the image curve C,; its size is
proportional to angular velocity w, and it is rotated 90° with respect to C; (this relationship is also
used in kinematics (Hartenberg and Denavit 1964)). The additional translation of the curve in the
image yields the same translation of the curve in velocity space. In the case of pure translation,
the image of the velocity field in velocity space degenerates to a single vector. For the case of
discrete motion of a curve, a similar relationship exists between the shape of the image curve, and
its displacement field, the set of vectors that describe the discrete displacement of points on the
curve (Hildreth 1984a).

A simple geometric construction can be used to compute the velocity field, for the class of
rigid motions in the image plane. If the true direction of velocity is known at two points on the
contour, the direction of velocity can be computed cverywhere as follows: (1) construct the lines
perpendicular to the direction of velocity at the two known points, (2) compute the intersection

of these two lines, (3) from every point p; along the contour, construct the line to the intersection




Figure 8. Constructing the velocity field. The direction of velocity is known at points p; and ps, and is
computed for the point p.. using the construction scheme described in the text.

point; the true direction of velocity is perpendicular to this line. In Figure 8, the direction at p, is
derived, given known directions at p, and p;. This construction is simply locating the point about
which the motion can be described as pure rotation. For pure translation, the two lines, from
points of known direction of velocity, arc parallel, so the direction of motion everywhere is equal
to the direction of motion of the known points. Certainly, if both the dircction and magnitude
of velocity were known at two points on the contour, the global motion parameters, and hence
direction and magnitude of velocity everywhere, could be computed. From the direction of velocity
alone at two points on the contour, however, the direction of velocity can be obtained everywhere.
If, in addition, the perpendicular components of velocity are known, then both direction and

magnitude of velocity can be computed along the contour.

There are at least two sources for points of known velocity direction in the image. First,
identifiable features, such as points of high curvature, may be tracked in two dimensions (Lawton
1983). Sccond. points at which the perpendicular component of velocity is zero are constrained
to move along the direction of the tangent to the curve. For the case of a smooth, closed curve
derived from a single object moving rigidly in the image plane, there exists at least two points on
the curve for which the perpendicular component of velocity is zero (Hildreth 1984a). Suppose
the velocity field computation is focused at the locations of zero-crossings derived from the image.
Zero-crossing contours arc generally closed (cxcept at image boundaries), so there is usually

sufficient constraint from the image to compute the velocity field, for this simple class of motions.

‘The methods described in this scction, for computing the velocity ficld for the restricted
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class of rigid motion in the image plane, are not sufficient for general motion analysis; however,
they may be useful for the initial detection and rough measurement of motion in the periphery,
the analysis of motion during smooth pursuit eye movements, or the recovery of observer motion
from optical flow (Prazdny 1980; Longuet-Higgins and Prazdny 1981). In computer vision. there
arc restricted applications for these techniques, such as the tracking of objects, or computation of

camera motion (Bruss and Horn 1983; Lawton 1983).

4.3 The Smoothness Constraint

In this section we derive a more gencral constraint on the velocity ficld, that allows the
computation of the projected motion of three-dimensional surfaces that move freely in space, and
deform over time. We rely on the physical assumption that the real world consists predominantly
of solid objects, whose surfaces are generally smooth compared with their distance from the viewer.
A smooth surface in motion usually generates a smoothly varying velocity field. Thus, intuitively,
we scek a velocity ficld that is consistent with the motion measurements derived from the changing
image, and which varics smoothly. Unfortunately, there is an infinity of velocity ficlds that satisfy
these two properties. Horn and Schunck (1981), in their work on the optical flow computation,
suggest that a single solution may be obtained by finding the velocity ficld that varies as little as
possible. In the remainder of this section, we show how this constraint may be formulated more
precisely, in a way that guarantees a velocity ficld solution that is mathematically unique and

physically plausible.

4.3.1 Measuring Variation in Velocity

To find the velocity field that varies the least, some means of measuring the variation in
velocity along a contour is required. This can be accomplished in many ways. For example, we
could measure the change in direction of velocity as we trace along the contour. Total variation in
velocity could then be defined as the total change in direction over the entire contour. A second
possibility is to measure the change in magnitude of velocity along the contour. Third, the change
in the full velocity vector could be measured, incorporating both the direction and magnitude of
velocity. Other measures are also possible. The goal of the computation is to find a velocity field
that is consistent with the changing image, and minimizes onc of these measures of variation in

velocity.

A measurc of variation may be described more formally by defining a mathematical functional,
0, which maps the space of all possible vector fields (along the contour), V, into the real numbers:

©:V - R, This functional should be such that the smaller the variation in the velocity field, the
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Figure 9. Measuring variation in velocity. (a) The vectors V(s) are displayed at two nearby points on
the image curve C. (b) The velocity vectors drawn in velocity space, where %}-’ is indicated by the dotted
arrow. (c) The direction of velocity for points on the contour is represented by the angle . (d) The velocity

vectors of (c) are drawn in velocity space, where %fi is shown.

smaller the real number assigned to it. Two candidate velocity fields may then be compared,
by comparing their corresponding real numbers. This formulation allows the development of an
explicit method for computing the velocity field of lcast variation. A sct of functionals can now
be derived, based on the measures of variation that were previously mentioned informally: (1)
variation in the full velocity vector, V(s), (2) variation in the direction of velocity, and (3) variation

in the magnitude of velocity, all with respect to the curve.
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1. Variation in V(s)

The local change in V(s) with respect to the contour is given by the vector oV A scalar

0]

. In Figure 9(a), two nearby velocity

measure may be obtained by tking its magnitude: !-’,\

vectors along the image contour ¢ are shown. The vectors are translated to a common origin in
r 2y

velocity space in Figure 9(b). where the vector 2 is shown as a dotted arrow. A measure of the
total variation in the velocity field over an entire contour may be derived by integrating this local

measure, suggesting a functional such as:

O(V) = /

Variations on this functional may also be considered, involving higher order derivatives, or

av

1s.
s @

higher powers, such as:

2

2y
9 ds.

S|ds or (-)(V)=/ ov

8

Js

o(V) = /

2. Variation in Direction

Let the direction of Véloéity be described by the angle ¢, measured in the counterclockwise
direction from the horizontal, as shown in Figure 9(c). In Figure 9(d), the local change in direction
for two nearby velocity vectors along the image contour, given by %{i, is shown in velocity space.
Total variation in direction along the contour may again be obtained by integrating this local

measure, leading to functionals such as the following:

o=

or variations involving higher order derivatives, or higher powers.

ds

3. Variation in I\’lagﬁftude
Finally, the total change in magnitude of velocity alone could be measured, using functionals

such as:
. AV
o) = [ Vg,
V) Js
Again, we could also consider variations on this measure.
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The functional that is used to measure variation may also incorporate a measure of the
velocity ficld itself, rather than strictly uatilizing changes in the velocity ficld along the contour,
by incorporating a term that is a function of [V[. This might be useful if we sought a velocity
ficld that also exhibits the least total motion. In addition, the functional could become arbitrarily
complex in its combination of |if,—\ﬁil, |52, QL,M or higher order derivatives.

Given that there arc many possible mcasurcsv of variation, what criteria can be used to
choose a single measure? First, from a mathematical point of view, there should exist a unique
velocity field that minimizes the particular measure of variation: this requirement imposes a sct
of mathematical constraints on the functional. Sccond, the velocity ficld computation should yield
solutions that arc physically pldusiblc. These two criteria are important for the evaluation of
any assumption that is proposed for the motion measurement computation. If, in addition, we
suggest that such a constraint underlies the motion computation in the human visual system, the
minimization of this measure of variation should yield a velocity ficld that is consistent with human

motion perception.

4.3.2 Mathematical Uniqueness of the Velocity Field

An examination of thesc measures of variation from a mathematical viewpoint suggests that

a measure incorporating the change in the full velocity vector is necessary for the »'elocify field

computation. The use of functionals that incorporate only a measure of direction or magnitude of

velocity, for example, does not in general lead to a unique velocity field solution. It can be shown,
however, that given a simple condition on the constraints that are derived from the image, there
exists a unique velocity ficld that satisfies these constraints, and minimizes the particular measure
of variation given by: [ |%¥|’-’ds. The basic mathematical question is, what conditions on the form
of the functional, and the structure of the space of velocity fields, are needed to guarantee the
existence of a unique solution? These conditions are captured by the following theorem from
functicnal analysis (Rudin 1973):

Theorem: Suppose there exists a complete semi-norm © on a space of functions H, and
that © satisfies the parallelogram law. Then, every nonempty closed convex set E C H
contains a unique element v of minimal norm, up to an element of the null space. Thus,
the family of minimal functions is

{v+s]s€eS}
where

S={wlv+weL}nN
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and N is the null space of the functional

N o= {u]| O(u) = 0}.

The functional © == {f !"‘ [2ds} e is a complete semi-norm that satisfies the parallelogram law, and
the space of possible velocity fields that satisfy the constraints derived from the changing image.
is convex (Hildreth 19844, b) 1t then follows from the above theorem that this space contains a
unique clement of minimal norm, up to possibly an clement of the null space. The null Space in
this case is the set of constant velocity fields. because the condition that f|2Y|2ds = 0 implics that
!(’\ ‘ = 0 cverywhere, which implies that V(s) is constant. In addition, the smoothness measure
is non-negative, so that minimizing {f}‘?\ [“ds}® is cqundlcnt to minimizing fl"‘;lzdﬁ- These

ds&

further observations lead to the following result (Hildreth 1984a, b):

If vl (s) is known everywhere along the contour, and there exists at least two points at

which the local orientation of the contour is different, then there exists a unique velocity

field that satisfies the known velocity constraints and minimizes [ [-‘?‘.,—Y[?ds.
An extended straight line does not yicld measurements at two different orientations, but in all other
cascs, there is sufficient information along a contour to guarantce a unique velocity field solution,
The smoothness constraint can be used to compute a projccted two-dimensional velocity field for
any three-dimensional surface, whether rigid or nonrigid, undergoing general motion in space.
While it is not yet clear whether this general formulation of the smoothness constraint, or the
particular measure [ !%—H?ds, is the most appropriate for the motion computation, it is important
that this measure satisfies certain cssential mathematical requirements, that the other measures do
not. The use of a functional incorporating only a measure of velocity direction, for example, which
attempts to make the local velocity vectors as parallel as possible, docs not lead to a unique velocity
field solution. In Appendix A.l, it is shown that for the simple case of a line segment moving
rigidly in space, with known velocity vectors at its endpoints, there does not exist a unique velocity
ficld that minimizes either variation in dircction, or variation in magnitude of velocity. This result
is not surprising; velocity has two degreces of freedom, and can be decomposed in various ways (for
example, into direction and magnitude, z and y components, normal and tangential components,
or radial and rotational components). If the measure of variation in velocity constrains only one
of these degrees of freedom, such as direction, the other is allowed to vary freely, and cannot be
specified uniquely. The simpler functional, [ [%‘;’lds, also docs not yield a unique velocity field in
general. In Appendix A.2, an example is presented for which a velocity field that minimizes this
measure does not exist. Measures involving higher order derivatives impose a higher degree of -

smoothness on the velocity ficld, which may not be necessary for this computation. Our approach
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is to consider first the simplest measure, f}"},![’-’ds, If this is not sufficient for the velocity field

computation, we can then consider a more complex measure.
4.3.3 Physical Plausibility of the Velocity Field Solution

The second criterion for evaluating a particular measure of variation in velocity is the physical
plausibility of the resulting solution. One question that can be asked is. under what conditions
will the velocity field that minimizes f |f'-},~\;:|'~’d.« be the correct physical velocity ficld? If we assume
orthographic projection of the scenc onto the image, there are at Ieast two classes of motion for
which this is true. The first consists of arbitrary rigid objects undergoing pure translation. In this

case, 8¥ = 0 cverywhere along contours in the image, and hence [ |%—\;|2ds = 0. Since zero is

ds
the smallest value that the measure can obtain, it follows that if there exists a valid solution that
is consistent with pure translation, then this solution minimizes [ I%S;l“’ds. Conscquently, motion
measurement schemes that rely on pure translation address a special case of this more general

method.

The sccond class of motions includes rigid polyhedra, undergoing general motion in space.

In particular, the following can be shown (Hildreth 1984a, b):

Suppose that a rfgid three-dimensional object, consisting of straight lines intersecting

in space, projects bnlo the image plane, using orthographic projection, in such a way

that line intersections are preserved (that is, two lines intersect in the image if and

only if their generaltors intersect in space). Further, suppose that this object undergoes a

general displacement in space. Then the two-dimensional velocity field that satisfies v-1(s)

measured along lines in the image, and minimizes [ ]%¥]2ds, is the correct projected
* two-dimensional velocity field.

The proof of this result takes advantage of the fact that the velocity ficld varies lincarly along
a straight line that is moving rigidly in space. The classes of blocks world objects (Roach and
Aggarwal 1979), and simple polygons in the image plane (Aggarwal and Duda 1975), are special
cases of this class of motions, for which an algorithm that minimizes [ ]"B—Y—l“’ds is guaranteed to

compute the correct velocity field.

Recently, Yuille (1983) derived a general condition under which the velocity field that
minimizes [ |%¥[2ds is the correct velocity field. Let V/(s) denote the true projected two-dimensional
velocity field for a curve in motion, and let T(s) denote the tangent vector along the curve. If the

following relationship holds at every point on the curve:
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RV
I =0 (1)

is®
then the velocity field V(s) that satisfies the constraints imposed by vl (s) and minimizes f|%%f"3d3
is the true velocity field V/(s). The two classes of motion mentioned above correspond to cases for
which ‘%;:\ = 0 along the curve, so that this general condition holds trivially. Yuille (1983) notes

that this condition is also satisfied when a curve undergoes purc expansion in the image plane.

For the class of smooth curves, undergoing general motion in space, we rely on an empirical
investigation for demonstrating the physical plausibility of the velocity ficld solution. In general,
the velocity field of least variation, in this case, is not the physically correct one, It is often
qualitatively similar to the true velocity field, however. As we will show in Scction 5.4.1, when
the two velocity fields differ significantly, it appears that the smoothest velocity ficld may be more

consistent with human motion perception.

A possible constraint on the velocity ficld, that is not considered explicitly, is the rigidity
of the underlying surface. The computation of a smoothest velocity field does not necessarily
scek a solution that corresponds to rigid motion, in either two or three dimensions. This may
at first seem physically implausible. When a three-dimensional curve rotates in space, however,
its two-dimensional projection may undergo significant distortion in the image. Wi‘thout knowing
the three-dimensional structure of the curve, it is very difficult, if not impossible, to find a
two-dimensional velocity ficld that corresponds to a single rigid motion in three dimensions.
It is also the case that some of the motion that we encounter arises from surfaces that are
nonrigid. If the analysis of motion is a two-stage process, .with the measurement of two-dimensional
motion preceding the derivation of three-dimensional structure from motion, a constraint such as
smoothness may be the most restrictive type of constraint that may be used, which yields a unique

solution, and still allows the analysis of general motion.

5. AN ALGORITHM AND EXAMPLES

In the previous section, the use of the smoothness constraint led to the formulation of the
velocity field computation as an optimization problem. We seck a velocity field solution that
satisfies the constraints derived from the changing image, and minimizes the mcasure of variation
along contours given by: [ |%¥]2ds. The computation may also be described as secking a solution
for which neighboring velocity vectors are as similar as possible. To further test the adequacy of
this approach, it is neccessary to specify an algorithim that embodics the smoothness constraint,
and cxamine the results of the algorithm for a number of motion sequences. An algorithmic

study first allows us to demonstrate the biological feasibility of this approach, by showing that
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this formulation of the velocity field computation lends itself naturally to algorithms that involve
simple, local, parallel operations (Ullman 1979b; Grimson 1981; Marr 1982). Sccond, an empirical
study provides a further means for icsling the physical plausibility of the resulting velocity field
solution,

In general. there are many algorithms that implement a given computational theory. For the
velocity field computation, there are many choices for the design of an algorithm that embodics the
additional smoothness constraint. In this section and in Appendix B, we usc a standard, iterative
algorithm from mathematical programming, known as the conjugate gradient algorithm (1 uenberger
1973), to implement this computation. This particular algorithm is certainly not appropriate as a
model for human vision. Our aim is to test the basic idea of computing the velocity field of least
variation. If the results of the algorithm support the feasibility of this idea, we can thcn‘cxplore
alternative algorithms to implement the theory, that may be more appropriate for the human

system.

5.1 The Discrete Formulation

In Section 3.3, a continuous formulation of the smoothness constraint was presented; the
image, however, is discrete, and therefore image contours consist of a set of discrete points. The
first step in the design of an algorithm is to convert the continuous foﬁnulation into a discrete
one. To do this, the functional can first be expressed in terms of the z and y components of )

velocity, which we denote by V., and V,. The continuous functional becomes:
aV.\* [aV,\?

Suppose there are n points along a contour, whose coordinates are given by:

{(z1,91), (22, 92), s (Tn, yn) }-

Let (V,,,V,,) denote the velocity at the point (=, y;). Assuming for now that the contour is closed,
and the points are evenly spaced along the contour, the following function defines a discrete

correlate to the continuous functional:

By 30 (Vo = Var b (Vg = Voo )4 (Ve Va2 + (Ve Vo) )

For the case of an open contour, the discrete differences at the endpoints change. If points on

the contour are not cevenly spaced, the discrete differences must be divided by the distances
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between adjacent points on the contour. The goal of the computation is to compute the set of =
and y components of velocity, {(Va,, Voo ) (Yoo, Vi) oo (Va, Voo )}. which minimizes the discrete
function ;.

5.2 Satisfying the Image Constraints

The second step toward defining an algorithm is to incorporate the constraints on velocity
that are derived from the changing image. Here there is a choice; the velocity field can be forced
to satisfy the constraints cxactly, or satisfy them approximately. In the first case, the constraints
can be cxpressed as follows:

Voul—pl =0 (7)

The cquation states explicitly that the perpendicular component of velocity for the computed
velocity field, V- u-, is equal to the measured perpendicular component, »-L. (For simplicity,
we omit the argument, s, to these functions, throughout the remainder of the paper.) Letting

V= (V;,V,) and ul = (ul,ul), the constraints are simple lincar constraints:

Vaud + v, ui——v = 0. (8)

This equation can be used to express the y components of velocity in terms of the z components:
. R _ "’z,-u'l’

v
Vi u% ( )

This expression is valid for w540, If ut =0, then ut = 1, and it follows that V,, = v\, and
V. is unknown. This situation arises at points on the contour for which the vector u-l is oriented
horizontally (the contour is oriented vertically). At such a point, v-L specifics the z component of
velocity directly, and the y component is unconstrained. For points at which u%;éo, the above
expressions for V,, can be substituted directly into the discrete function @;. At points for which
u- = 0, the known values of V., and unknown parameters V,, can be substituted into ®,.
Given = points on the contour, there remains n unknown parameters to compute, with no further

constraint on these parameters.

In general, there will be error in the measurements of »-L. From a practical standpoint,
it may be advantagcous to require that the velocity field only approximately satisfy these image
constraints. This can be accomplished by requiring that the difference between V. ul and the
measured v-1 be small, rather than requiring this difference to be zero, as in Equation (7). The

-

continuous functional can be extended as follows:

0= /[(‘)d‘g ) (99\ )]4 +ﬂf Voul - o], (10)
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B is a weighting factor that expresses the confidence in the measured velocity constraints. In this
particular formulation, g is constant over the entire contour, but in principle. 4 could vary, if
confidence in the precision of individual measurements of o L varies along the contour. The second
term describes the least squares difference between the computed and mceasured perpendicular
components of velocity. There will also be error in the measurement of the direction vector u-l;
some of this crror is captured implicitly in the second term of the above functional. The continuous
functional leads to the following discrete function:

n 2

¢2 = q’| + IH Z {\I‘U}I" -+ Vy‘,ui}l;- — ‘l):-l‘ . ’ (11)
i==1 )

The goal of the computation in this casc is to find the set of £ and y components of velocity,

{(Vers Vo), (Vs Vi )y ooy (Vi Vo )}, which minimizes the discrete function @,. These components

satisfy the system of 2n lincar cquations given by:

6‘I>2 34)2

= - = <i<n.
av.. 0, av, 0, 1<ikn (12)

In general, there may be several hundred points on a given contour, giving rise to a system
of several hundred linear cquations. To solve this system of equations, we use techniques from

mathematical programming,.

5.3 An Algorithm from Mathematical Programming

The general mathematical programming problem can be stated as:

minimize f(x)
subject to hi(X)=0 i=1,..,m
| G0 j=1,.,r
xes

where x is an n-dimensional vector of unknowns, x = (z,zs, ..., z»). The bbjective function f,
and constraints h,, ¢ =1,..,m and g;, j = 1,...,r are real-valued functions of the variables
Ty, To,...,Tn. Lhe sct § is a subset of the n-dimensional space. A particular optimization problem
may or may not give rise to constraints of the form A(x) = 0 or g,;(x)<0; that is, the problem

may be a constrained or unconstrained optimization problem.

For the case in which the image constraints are satisfied approximately, the velocity field

computation can be formulated as an unconstrained optimization problem. In this case, we let:

X = {Var, Vau, o Var, Vo, Vaas oo Vo 3.
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The objective function f(x) == &y, We seck a vector x that minimizes f(x). with no further

constraints on x.

bor the particular examples presented in this paper. the only constraints obtained from the
image are the measurements of » along contours. In general, there may be points at which V(s),
or the direction of velocity alone, is known. This information may be the result of a process that
tracks localizable features in the image, such as corners, isolated points, or line endpoints. These

additional constraints may be incorporated casily into the velocity field algorithm (Hildreth 19844).

There are several standard algorithms from mathematical programming that can be used to
solve this particular optimization problem (l.uenberger 1973). For the examples in the next section,
the conjugate gradient algorithm was uscd to obtain the solution. This is an iterative algorithm
that utilizes the gradient of the objective function f (x) to choose an optimal path to follow toward
the final solution. The initial velocity ficld is given by the perpendicular velocity vectors, v-Lu-L,
along a contour. If there are n parameters to be computed, the conjugate gradient algorithm is
guaranteed to converge to the exact solution in at most n iterations. Details of the application of

the conjugate gradient algorithm to the velocity field computation are given in Appendix B.

5.4 Examples of the Smoothest Velocity Field

In this scction, we present examples of the velocity field of least variation, for a variety -
of motion sequences. The conjugate gradient algorithm was chosen for its fast convergence and
because it is guaranteed to compute the velocity field of least variation. The algorithm provides
us with a means of testing whether the use of the smoothness constraint is a reasonable approach

~ to the velocity field computation.

5.4.1 Ideal Smooth Curves

We begin with some simple curves, undergoing rigid motion. For this first set of examples,
the curves and their perpendicular components of velocity were gencrated analytically from a
known velocity ficld, and therefore represent ideal input for the algorithm. Many of the examples
were choscen because perceptual studies indicate that human observers see motions that differ from

the true motion of the curves.

1. Rigid translation in the image plane

In Figure 10(a), a sampling of the true velocity ficld is shown for a simple polygon, translating

rigidly in the image planc. Figure 10(b) illustrates the perpendicular velocity vectors v-Lul, which
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a. b, c.

Figure 10. Pure translation. (a) The arrows represent a sampling of the true velocity field for a translating
polygon. (b) The initial perpendicular ve]ocity vectors. (c) The computed velocity field.

form the input to the algorithm. In this case, the velocity ficld of least variation, shown in Figure

' 10(c), is identical to the true velocity field, as expected.

2. Polygon Rotating in the Image Plane

Figure 11 illustrates the truc velocity field, initial perpendicular velocity vectors, and smoothest
velocity field for a polygon rotating rigidly in the image plane, about the point O. From the
theoretical results of Section 4.3.3, we cxpect to obtain the correct velocity field in this casc. Figure

11(c) shows that the computed smoothest velocity field is in fact the correct one.

3. Rotating Fllipses

Figure 12 illustrates the true velocity field. initial perpendicular velocity vectors, and smoothest
velocity ficld for an ellipse rotating rigidly in the image plane, about the point O. In this case, the
smoothest velocity field is quite different from the true velocity ficld. There is a reduced rotational
component of velocity, and added radial component in the computed velocity field. The difference

in total variation is significant.

At first glance, one might not consider the smoothest velocity field in this case to be a
plausible solution. In some carlicr perceptual cxperiments by Wallach er al. (1956), however, they
noted that a rigid cllipse does not appear rigid under rotation; it appears to deform continuously.
In their experiments, simple gcometric figures were placed on a rotating turntable, and obscrvers

described the perccived motion of the figures while fixating the center of the turntable (conditions




a. b, c.

Figure 11. Rotating polygon. (a) The true velocity field for a polygon rotating rigidly in the image about
the point 0. (b) The initial perpendicular velocity vectors. (¢) The computed velocity field.

of free and tracking cye movements were also used). Ellipses of various aspect ratios were observed.
It was found that when an cllipse whose axes measured 25 and 23.5 ¢m was rotated about its
center, it appeared o stand still while its contour pulsated. The largest effects were observed
for an ellipse whose aspect ratio was 3:2; the entire figure appeared fluid, undergoing a strong
deformation, as well as a rotation. For some observers, the deformation was more restricted, and
did not occur in the immediate vicinity of the poles of the major axis of the cllipse. As the aspect
ratio of the ellipse was increased, it appeared more rigid. The perceived deformation of the ellipse
was the same, regardless of whetﬁer it rotated about its center, or was placed eccentrically on the

turntable.

For the ellipse of Figure 12, the aspect ratio is 2:1. The computed velocity field of least
variation clearly implies a significant distortion of the contour, in addition to a rotation. In the
immediate vicinity of the poles of the major axes, the smoothest velocity ficld is very similar to
the true velocity field. In Figure 13, the true and smoothest velocity fields are shown for rotating
ellipses whose aspect ratios are 25:23.5 and 5:1. When the ellipse is nearly circular, the smoothest
velocity ficld indicates a strong inward and outward pulsation of the contour (Figure 13(b)). The
smoothest velocity ficld for the narrower cllipse, shown in Figure 13(d), is closer to the true
velocity field than in the case of the ellipse with aspect ratio 2:1, implying less distortion of the

contour. Finally, the smoothest velocity field for an eccentrically rotated cllipse differs from that
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Figure 12. Rotating ellipse. (a) The true velocity field for an ellipse rotating rigidly in the image about
the point 0. (b) The inital perpendicular velocity vectors. (¢) The compuled velocity field.

of the centrally rotated ellipse only by the addition of a uniform translation along the contour.
Thus, the same deformations of the ellipses is implied by the smoothest velocity field obtained
for eccentric rotations. We conclude that the perception of the movement of rotating ellipses is at

least qualitatively consistent with the computation of the velocity ficld of least variation.

4. Rotating Spiral

It is well known that a spiral appears to expand or contract, when it undergoes pure rotation
about its center (Holland 1965). The perceived velocity field thus contains a large radial component,
while the true velocity field contains only a rotational component of velocity. Figure 14 illustrates
the true velocity field, initial perpendicular velocity vectors, and computed smoothest velocity
ficld, for a single arm of a rotating logarithmic spiral. The smoothest velocity ficld exhibits a large
radial component of motion at the center of the spiral, which decreases toward the periphery.
The perception of the movement of the spiral is qualitatively more consistent with the smoothest

velocity field, than with cither the true or initial velocity ficlds.
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Figure 13, Rotating ellipses of different aspect ratjos, (@) and (c) The true velocity fields for Totating
ellipses with aspect ratios of 23:23.5 and 9:1. (b) and (d) The computed velocity fields for the ellipses in

displaccmcnts used in the actual Presentation, jp minutes of visual are, Anstis and Ramachandran
found that when the Wo frames were alternated, the whole field of dots appceared g move
obliquely a5 a unit. The pereeived dircction of velocity varied with the absolye displaccmcnt of
the dots, Viewed closely (with large displaccmcnts). perecived dircction of velocity wag roughly
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Figure 14. Rotating spiral. (a) The true velocity field for a logarithmic spiral rotating in the image about
the point O. (b) The initial perpendicular velocity vectors. (¢) The computed velocity field.

horizontal. As viewing distance increased (displacements decrecased), the apparent direction of

motion became increasingly more vertical.

The predictions of the velocity ficld algorithm are shown in Figures 15(b) through 15(e).
In this case, the two images were convolved with a V2G operator, and the Zero-crossings
(which encircle individual dots) were obtained. The time derivative, £(V2G*I) was computed by
subtracting the two filtered images. At the location of a zero-crossing, the local vector ut was
computed from the gradient of the filtered image, and the perpendicular components of velocity,

v-L, were computed as follows:

a1

vl = I\B;I('II) (13)

where V denotes the gradient operator, and I' is the filtered image. In the leftmost column, the
actual displacements between dots are given as a function of w, the diameter of the central positive
region of the initial V2G operator. The resulting smoothest velocity fields are shown enlarged in
the rightmost column of Figures 15(b) through 15(c). As the absolute displacement of the dots
decreases, the predicted direction of motien becomes increasingly more vertical, consistént with

the perception.
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Figure 15. The moving dot demonstration. (a) Closed circles represent a dot from the first frame, and
open dots represent dots from the second. The double arrows show the perceived direction of motion of
the full dot pattern. The inserted scale indicates the size of the displacements. (b) through (¢) The lefimost
column indicates displacements as a function of w, the middle column illustrates the initial perpendicular
components of velocity, and the righunost column illustrates the computed velocity fields.
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Figure 16. The split herringbone demonstration. (a) Alternating columns of a herringbone pattern of lines
move in opposite directions. (b) and (c) The zero-crossing contours derived for two different size V*G

operators. (d) and (e) The initial perpendicular components of velocity. (f) and (g) The computed velocity
fields.
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7. The "split herringbone” demonstration

Adelson and Maovshon (1983) present a motion demonstration, referred to as the "split
herringbone.™ The display, shown in Figure 16(a), consists of alternating columns of line scgments
that tilt lIeft or right in the odd and cven columns. The odd (left-tilting) columns move upward,
while the even (right-tilting) columns move downward. There are two pereeptions of motion that
result, depending on the viewing conditions. When the display is of high contrast, sharp, and '
centrally fixated, the columns arce scen moving vertically, in opposite directions. When the display
is of low contrast, blurred with a diffusion screen, or viewed peripherally, an illusion of rightward
motion is scen. To explain this phenomenon, Adelson and Movshon (1983) distinguish two kinds
of velocity field computations. The first is a local computation, that involves the tracking of
localizable features, such as the line endpoints in the herringbone pattern. 'The second is a more
"global™ process that combines velocity constraints derived from different parts of the image. They
argue that the perception of vertically moving columns represents the results of the first type of

process, while the perception of rightward movement represents the results of the second.

It is possible that both perceptions arise from a single underlying velocity field computation
that combines velocity constraints along contours in the image, which is applied to image
descriptions derived from initial V2@ operators of different size. (Evidence for the existence of
different size filters in early human vision can be found, for example, in Wilson and Bergen
(1979).) Figures 16(b) and 16(c) show the zero-crossing contours derived from the convolution of
the image of Figure 16(a) with V2G operators whose central positive diameter, w, is 6 and 16
picture elements, respectively. With w = 6, the zero-crossing contours surround individual bars,
while in the case where w = 16, the zero-crossings merge from one column to the next, forming
continuous contours across the image. Figures 16(d) and 16(c) illustrate the initial perpendicular
components of velocity, obtained from the temporal derivative and gradient of V2G*I. Figures
16(f) and 16(g) illustrate the resulting smoothest velocity ficld in each case. For the smaller
operator, the velocity directions are roughly vertical, while for the larger operator, the smoothest
velocity ficld indicates horizontal movement of the contours. Horizontal motion was perceived
under the conditions of peripheral viewing or blurring, for which a coarser initial filtering of the

image is expected (Wilson and Bergen 1979).

5. Other Examples of Ideal Smooth Curves

Other examples of idcal smooth curves in motion, which illustrate the consistency between
the velocity field of least variation, and human motion perception, shown in (Hildreth 1984a, b),
include the kinetic depth cffect stimulus, used by Wallach and O’Connell (1953) to demonstrate the
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a. b.

Figure 17. A natural image sequence. (a) The original image. containing 576 X 576 picture elements. (b)
The resulting zero-crossing contours(The images in (a) and (b) are mirror reversed.)

ability of the human visual system to derive three-dimensional structure from motion, the rotating
deformed circle studied in (Wallach er al. 1956), and a rotating helix, which yiclds a perception
of motion that is similar to the barberpole illusion (the perceived downward motion of the stripes

of a barberpole).

5.4.2 Natural Image Scquences

The final set of examples includes contours that have been extracted from natural images.
For the first two examples, the motion was constructed artificially. That is, a single natural image
was translated or rotated to producc a second image. In this case, the known velocity field allows
a rigorous evaluation of the correctness of the resulting solution. The final example is a sequence

of acrial photographs. Here, we rely on a qualitative assessment of the results.

1. Pure translation of a curve from a natural image

The image of Figure 17(a) was translated to the right by three picture clements, to yield
a sccond image. The two images were convolved with a V2G operator, whose central positive
diamcter was 12 picture clements, and the zcro-crossings, shown in Figure 17(b), were obtained.
The time derivative, %(V*G*I) was computed by subtracting the two filtered images. At the
location of a zero-crossing. uL was computed from the gradient of the filtered image, and v1 was

computed using Equation (13).

The analysis of the velocity ficld is presented for the zero-crossing contours extracted from
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A

Figure 19. Constraints in velocity space. The vectors v1v+, measured along the contours in Figure 18,
are indicated as points in velocity space.

the area outlined by the rectangle in Figure 17(a). The contours, together with the true velocity
field, are shown in Figurc 18(a). The initial perpendicular velocities are shown in Figure 18(b). In
Figure 19, the perpendicular vectors vLu-L along the contours are displayed as points in velocity
space. If the initial measurements were perfect, the points in velocity space would lic along the
solid circle shown. The deviation of the position of the points from this circle provides a visual
demonstration of the large error in the initial motion measurements. The resulting velocity field
solution, with 8 = 0.001, is shown in Figure 18(c). The average error in the direction of velocity
is 2.2°, and average error in magnitude is 2.8% of the true magnitude of velocity. The directions
of all resulting velocity vectors are within 5° of the true direction of velocity. It is significant that
a velocity field solution can be obtained, for which the error in velocity is so small, given the
large error in the perpendicular components of velocity that formed the input to the algorithm.
This error in the input underscores the need to design an algorithm that only requires the velocity

ficld to satisfy the image constraints approximately.

2. Rotation of a curve from a natural image

For the next example, the original image was rotated rigidly to obtain a sccond image.
Figure 20(a) shows the zero-crossing contour that is derived from the rectangle of Figure 17(a),

and its true velocity field. The original V2¢' operator had a central positive diameter of 16 picture
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clements. The image was rotated 3° in the clockwise direction, about a point in the center of the
palm of the hand. (The length of the displacement vectors in Figure 20 is slightly exaggerated.)
Again, the initial perpendicular components of velocity were computed from the time derivative
between the two filtered images, and the gradient along the zero-crossing contours of the first
filtered image: these components are illustrated in Figure 20(b). 'The computed smoothest velocity
ficld. with g = 0.001, is shown in igure 20(c). The truc and computed velocity ficlds are shown
superimposed in Figure 20(d). The directions of velocity for the true and computed motions agree
quite well around the fingers. thumb, and rightmost boundary of the hand. Around the palm of
the hand, and the contour running from the thumb to the forefinger, there is considerable error
in the direction of velocity. Error in the arca of the palm of the hand may be due to a reduced
contrast along the contour. The average error in the direction of velocity over the entire contour
is 8.1°, The magnitudes of velocity are generally smaller for the smoothest velocity ficld: average
error in magnitude is 13.1% of the true magnitude of velocity. The solution varies with the choice
of B; a larger value of g leads to better agrecment in the magnitudes of velocity between the true
and smoothest velocity ficlds, but the error in dircction of velocity increases.

In general, the velocity ficld of least variation, for smooth curves in rotation, is expected to
differ from the true velocity ficld. This is true for rotation in the image, as well as rotation in
space, and was demonstrated for a number of ideal smooth curves in the previous scction. The
error in the velocity ficld of Figure 20 is due in part to error in the initial motion measurements,
and in part to the fact that even with ideal input, we do not expect to obtain the correct velocity
field in this case.

3. A natural motion sequence

Figures 21(a) and 21(b) show two acrial photographs. taken in scquence from an airplane.
The images contain 256 X 258 picture clements. The two images were convolved with a V3G
operator whose central diameter was 12 picture elements. The resulting zero-crossings, for the
two images, are shown in Figurces 22(a) and 22(b). The contours cover a large extent of the
image in this case; this is a consequence of the small size of the image, and large displacements,
which required a large initial V2G opcrator. If the image were analyzed with higher spatial
and temporal resolution, the two-dimensional velocity field could also be obtained with higher
resolution. In Figure 23, the two zero-crossing descriptions arc shown supcrimposed, in order
to illustrate the relative displaccments between the two images. The zero-crossings from the first
image are shown in white, those from the sccond are black, and the background is grey. Points
at which zero-crossings occurred in both images are shown in white. Qualitatively, it can be scen

37




Figure 21.
elements, taken in sequence from an airplane.

A natural image sequence. (a) and (b) Two natural images, containing 256 X 256 picture
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Figure 22 Initial zero-crossing descriptions, derived from the images in Figure 21.

that displacement increases in magnitude as we move from the top to the bottom of the image. In

addition, the displacements vary in direction over the image, having a larger horizontal component
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Figure 23. Superimposed zero-crossings. The zero-crossings of Fig. 22(a) are shown in white, and those
of Fig. 22(b) are shown superimposed in black.

toward the top of the image, and a larger vertical component toward the bottom.

As before, the initial perpendicular components of velocity were computed aloﬁg the zero-
crossing contours in the first filtered image by comparing the local gradient at the Zero-crossings
with the time derivative, obtained by subtracting the two filtered images. The algorithm was then
run over each contour separately, to obtain the velocity field along the zero-crossing contours of
the first image. In Figure 24, the zero-crossings are shown in black, with the resulting velocity
vectors in white. The vectors shown represent a sampling of the velocity field along the contours.
Very small contours, and some of the contours that occurred at the image boundary, were not
included in this analysis. The length of the vectors in this display is cqual to their displacement
in the image. Qualitatively, the magnitude of the displacement vectors increascs from the top to
the bottom of the image, and their directions also vary in a way that reflects the displacement of
the zero-crossing contours in Figure 23.
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Figure 24. The computed velocity field. The zero-crossing contours are shown in black, and a sampling of
the computed velocity field is shown in white.

In Figure 1, shown in Section 2, the first image of this sequence, reduced in contrast, was
displayed with the velocity field superimposed with black lines. The velocity vectors are evenly
spaced on the image, and were computed by taking the average of the velocity vectors within a
ncighborhood of size 48 X 48 picture clements, centered at each point. The length of the velocity
vectors was doubled in this display, in order to emphasize the variation in direction and magnitide
of velocity over the image. The resulting velocity field agrees qualitatively with the displacements
of the contours shown in Figure 23. It also agrees well with the perceived movement between the

images, when viewed in rapid succession.

6. CONCLUSIONS

In this paper, we have examined the computation of the two-dimensional velocity field

that results from the changing projection of three-dimensional surfaces in motion. A theory for




this computation was developed, with three main components. First, initial measurements of
notion in the image wke place at the location of significant intensity changes, which give rise
to zero-crossings in the output of the convolution of the image with a V=@ operator. ‘The initial
motion measurcments provide lhcicmnpuncnt of velocity in the direction perpendicular o the
local orientation of the zero-crossing contours. Second, these initial measurements are integrated
along contours to compute the two-dimensional velocity field. Third, an additional constraint of
smoothness of the velocity ficld, based on the physical constraint of smoothness of surfaces, allows

the computation of a unique velocity field.

; There are three aspects of this work that are of fundamental importance. First, the additional
constraint for the velocity field computation that was formulated here allows the analysis of general
motion, while providing a velocity field solution that is unique, and physically plausible. Second,
this formulation of the computation leads naturally to algorithms that are biologically feasible, in
that they require only simple, local, parallel operations. Finally, the computation appears to yield
solutions that are consistent with human motion perception, and therefore may contribute toward

our understanding of the measurement of motion in the human visual system.
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APPENDIX A, EVALUATING OTHER SMOOTHNESS MEASURES

In this appendix, we first present an example for which the measures of variation given

by f192|ds (variation in direction) and f-(‘%ﬁl(/s (variation in magnitude) do not yield unique
AY

solutions. We then present an example for which a velocity field that minimizes ]34} [ds does not
exist. In both cases, the formulation of velocity constraints in velocity space is used (o analyze the

behavior of the smoothness measures.

1. A Line Segment in Motion

Consider a simple line segment that moves rigidly in the image plane, as shown in Figure
25(a). Lt us assume that the perpendicular component of velocity along the line, v-1(s). and the
velocities of the two endpoints, \’(ao) and V(s,,), arc known. The velocity of a particular point,
V(s;) on the linc is constrained to project to a line L; in velocity space, whose orientation is equal
to the orientation of the line in the image, and whose perpendicular distance from the origin in
velocity space is givcnv by v-(s;). This constraint is illustrated in Figure 25(b). A sct of evenly
spaced points along the line yiclds a set of constraint lines in velocity space, which are evenly
spaced from the origin, as shown in Figure 25(c). In addition, the velocity vectors associated with

the endpoints are shown in velocity space.

The true velocity field for the moving line segment corresponds to the straight line / in Figure
26(a), connecting the two known velocity vectors. The velocity of a point on the line segment,
V(s;), is given by the intersection of / and L;. Any valid velocity field must correspond to a path
in velocity space that begins at the endpoint of V(sg). intersects each constraint line in the order
that they arise along the image curve, and ends at the endpoint of V(s,). Three examples of valid
velocity fields correspond to the curves shown in Figure 26(b). Computation of the velocity field
in this case involves finding the valid velocity field that exhibits the least variation, given one of

the measures of variation.

Suppose that we want to find the velocity field that is consistent with the constraints shown
in Figure 25(c), and minimizes the total change in direction of velocity, given by: [ |%‘§|ds. For
the case of the true velocity field, ¢ increases monotonically; its total change is given by the angle
a, shown in Figure 26(a); hence [ l%fds = «a. a is the smallest total variation in direction that a
velocity ficld consistent with these constraints may obtain, There are other velocity ficlds, however,
that distribute the total change o« over the curve monotonically and smoothly. in a way that is
consistent with v-L(s). Other cxamples correspond to the curved paths in Figure 26(b); for these

velocity fields, it is also the case that [ |%‘§ids = «, Hence, in the simple case of a line segment

12 -




Figure 25. A line segment in motion. (a) A line segment moving rigidly in the image, with known velocity
vectors at its endpoints. (b) The constraint imposed by a single measurement of v1(s) (shown in the image
and in velocity space). (c) The constraints imposed by muliple measurements of v-1l(s) along the line
segment.
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Figure 26. Velocity fields for a line segment in motion. (a) The true velocity field in the image projects
to the line / in velocity space. (b) The curved paths correspond o other valid velocity field solutions.

moving rigidly in the image plane, minimizing the total change in direction of velocity alone docs

not yield a unique velocity ficld solution.

Now consider minimizing the variation in magnitude of velocity, given by the measure:
i) leds. Let m; and msy denote the magnitudes of the velocity vectors associated with the
endpoints. It then follows that f %—:ﬂda > |my — mo|. Any velocity ficld that is consistent
with the image constraints, and changes monotonically in magnitude along the line will yield

J %‘a—llds = |m, — mq|. This solution is again not unique.

2. A Rotating Semi-circle

As a second example, consider a semi-circle rotating about its center, as shown in Figure
27(a). Assume that the velocity vectors V(so) and V(s,) at the endpoints are known. Along the
contour, v-1(s) = 0, so these measurements give rise to lines of constraint in velocity space that
intersect at the origin, as shown in Figure 27(b). The known velocity vectors at the endpoints are
also shown in Figure 27(b). Consider the measure of variation given by: [ [%\;lds. As before, a
valid velocity ficld must correspond to a path in velocity space that begins at the endpoint of V(s,),
intersects the lines of constraint in the order that they arise from the image curve, and ends at the
endpoint of V(s,,). The valuc of the measure [ t%‘;’lds is equal to the length of the path in velocity
space. Thus, a velocity field that minimizes this measurc must give rise to a path of minimum
length in velocity space. For this particular example, however, a minimum length path satisfying

the constraints does not exist. In Figure 27(c), we show three paths in velocity space, labeled




V(s,)
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Figure 27. A rotating semi-circle.(a) A semi-circle rotating in the image about its center, with known
velocity vectors at its endpoints. (b) The constraint imposed by the measurements of v-1{s), shown in
velocity space. (c) Possible paths corresponding to valid velocity fields.

P, P, and P;, that correspond to valid velocity ficlds. As we move from P; to Ps, the length
of the path decreases. Thus, the value of the measure [ [-‘%(da decreases, for the corresponding
velocity ficlds. We can continue indefinitely, however, to find paths of shorter length that satisfy
the constraints. The paths will approach the horizontal line, but can never reach it exactly, because
the horizontal line does not correspond to a valid velocity field. Thus, a velocity field of least

variation, given this particular measure of variation, docs not exist.
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APPENDIX B. THE CONJUGATE GRADIENT ALGORITHM

In Secction 5, it was shown that the velocity field computation, in which the constraints
imposed by the measurements of »-l-(s) are only approximately satisfied, can be formulated as an
unconstrained optimization problem. and the conjugate gradient algorithm can be used to obtain
a solution. The computation finds the = and y components of velocity for cach of the » points on
a contour. Each possible solution can be considered as a point in a 2n-dimensional vector space,
with cach dimension representing the z or y com‘poncnt of velocity at one point on the contour.
The 2n-dimensional vector space can be embedded in a (2n + 1)-dimensional vector space, where
the final dimension corresponds to the total variation of velocity along the contour. By associating
a mcasure of variation with cach possible velocity field, we can construct a hypersurface, called
the objective surface, in the (2n + 1)-dimensional space. The goal of the velocity field computation
is to find the "lowest” point on this surface; this point corresponds to the velocity field of least

variation.

The conjugate gradient algorithm is an iterative descent algorithm; a sequence of approximations
VA V@) to the exact solution V is computed, given an initial approximation V(©, and this
scquence has the property that each new approximation decreases the value of the objective

funbtion. The basic steps for a descent method are as follows:
(1) Start at an initial point V), which is usually V(© = 0.

(2) According to a fixed rule, determine a direction of movement along the objective

surface that will reduce the value of the objective function.
(3) Move in this direction to a (relative) minimum of the objective function.
(4) If the final solution has not yet been reached, return to step 2.

One of the most common descent methods is that of steepest descent, in which the direction of
movement in step 2 above is given by the negative gradient of the objective function, evaluated at
the present point. The steepest descent method has the disadvantage of relatively slow convergence.

A much improved rate of convergence can be obtained with the method of conjugate gradients.

The velocity field of least variation is given by the solution of a system of linear equations.

Let this system be denoted in matrix form by:
Qx=Db

where Q is an n X n symmetric positive definite matrix. The unique solution to this equation is

equivalent to the unique solution of the quadratic problem:
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minimize %x"‘Qx ~bhTx
subject to XeENC L™

I5™ denotes the n-dimensional Euclidean space. Conjugate direction methods were invented largely
for the analysis of quadratic problems. We present a brief development of these methods, and the
conjugate gradient algorithm. This development is taken from Luenberger (1973), where further

details may be found.

‘The basic idea behind conjugate direction methods is to optimize the direction in which
each new step is taken in the algorithm. To show how this optimization is achicved, we begin by

defining the notion of Q-orthogonality:

Definition. Given a symmetric matrix Q, two vectors dy and dy are said to be Q-orthogonal,
or conjugate, with respect to Q if d;erg = 0.

The following can then be shown:

Proposition. If Q is positive definite and the set of nonzero vectors dg, di,...dx are
Q-orthogonal, then these vectors are linearly independent.

Given the positive definite matrix Q, and a set of non-zero Q-orthogonal vectors, dg, dy, ...d,_1,

their linear independence allows us to express the solution x’ in terms of these vectors:

X = aply + '-'+a,,_1d,,_.1

for some sct of scalars ;. The orthogonality of the vectors implies that multiplying by Q and
taking the scalar product with d; causcs all the terms, except the i** to vanish, yielding:

4oy dfb
d7Qd: 4 Qd;

The solution is then given by the following:
__zf AL
= Tod"

The expansion for the solution x’ can be considered as the result of an iterative process of n steps,
where at the " step, the term o,d; is added. In this way, the following result can be proven
(Lucnberger 1973):
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Conjugate Direction Theorem: [er {d;}720 be a ser of non-zero Q-orthogonal vectors.

For any xXo € K™ the sequence {x,} generated according 1o
( & ,

Xgp1 = Xg - ”’kdk, ICSO
with T
g de
X = —*—‘:.{:—*—‘*-
and |
g =Qxx - b

converges 10 the unigue solution, X', of Qx = b afier n steps.

The conjugate gradient algorithm provides one method for generating the scquence of
Q-orthogonal dircction vectors; the successive direction vectors are sclected as a conjugate version
of the successive gradients obtained as the method proceeds. Hence, at cach step, the next direction
vector is determined, based on the current state of the objective function and its gradient vector. -

The algorithm, which is guaranteed to converge in at most n steps, is outlined below:

The Conjugate Gradicent Algoritvhmv

Starting at any point xo € E™ define dy = —go = b — Qxq and

Xk+1 = Xi + axl

o = — gi dx
- dTQdy
diy1 = —8r+1 + Prdy
B = gfﬂQdk
* T TdTQd:

where g, = Qxx —b.
For the velocity field computation, we showed in Section 5.2 that the system of 2n linear

“equations to be solved is given by:

9%, P, : .
== — <
3V 0, 0 1<i<n

where @, is given by:

B0 = 3 [(Va = Vars + (Ve = Vs ] 4+ [(Vas = Vo) + (Vs = Vs 1]

=2
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n 2

8y {\’Iiu}' + Vyut - o

=1

From the partial derivatives with respect to the = components of velocity, we have the cquations:

(1 +28(uz-))Va, = 2Va,, = 2Va, + 20utulV, = 28vtul,  1<i<n.

FFrom the partial derivatives with respect to the y components of velocity, we have:
(14 28(ut)?)V,, =2V, =2V, +28utul V. = 28vtul,  1<i<n.

The cocfficients on the left hand side of the equations form the symmetric positive definite matrix
Q, and the values on the right hand side form the column vector b. It should be noted that for
the case of an extended straight line, Q is singular, so that a unique solution does not exist. The

initial velocity field consists of the normal velocity vectors; hence:

Lyl

xo = (viud, vitul, ., vdud  vitul, viul, vt ud).

Tz Y2? " v Cyn

The conjugate gradient algorithm is then applied stréightforward]y.
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