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1. Introduction

The ability of a sensory system to passively sense the three-dimensional structure of its
surrounding environment is frequently a necessary precursor to cfficient interactions with that
cnvironment. both for biological and artificial systems. A common method for performing this
sensing is through sterco vision, and in fact, the human sterco system is remarkably adept at this
computation, under a wide variety of conditions. Sterco vision can be characterized by three steps:
(1) The point in onc image corresponding to the projection of a point on a surface is located. (2)
The point in the other image corresponding to the projection of the same surface point is located.
(3) The difference in projection of the corresponding points is used. together with estimates of the
paramcters of the imaging geometry (which may be determined solely frmo the correspondences),
to determine a measure of the distance to the surface point. While all three steps are important
to the process, the sccond stage has usually been considered the critical one. To deal with this
correspondence problem, and its concomitant problem of avoiding false targets in determining
the correct correspondence or match, concern has centered on appropriate representations for
matching, and on constraints on the matching process that will ensure the correct correspondence
is chosen. -

While psychophysical evidence concerning the nature of the human stereo system has
been accumulating for some time, recently attention also has been focused on computational
investigations of the system. One goal of these investigations has been to consider models of the
information processing aspccts of the system, independent to a large extent of the specifics of the
mechanism that performs the computation. While such models are of importance in understanding
the processing of the human system, this relative independence of the algorithm used by the
human system and its specific implementation in neural units also suggests that such algorithms
may have implications for non-biological applications.

In 1977, Marr and Poggio proposed a feature-point based model of aspects of human
stercopsis [Marr and Poggio, 1979]. A computer implementation of their algorithm was then
developed and tested [Grimson, 1981a, b]. Initially, the implementation was evaluated on standard
psychological test images, in particular, random dot stercograms [Julesz, 1960, 1971]. The intent of
this investigation was to demonstrate the adequacy of the Marr-Poggio model for such patterns,
and to demonstrate the consistency of the model with known aspects of human sterco perception,
including situations in which the system fails. The implementation was also tested on a number of
natural images, under a variety of illumination conditions and with a variety of different surface
materials. Since the original presentation of the Marr-Poggio model, a number of additional
psychophysical predictions of the modcl have been tested, and consequently, several modifications
and improvements have been proposed [c.g. Mayhew and Frisby, 1981; Frisby and Mayhew, 1980;
Mowforth, Mayhew and Frisby, 1981; Schumer and Julesz, 1982].

While examining the psychophysical aspects of the model is clearly of importance for
perceptual modelling, computational experiments with the algorithm can also provide insights
into the information processing aspects of the model. Such experiments are also of importance
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when considering applications of the algorithm to domains other than modclling of the human
system. as are non-biologically based studies of feature point sterco vision systems [e.g. Arnold and
Binford, 1980; Baker, 1982; Baker and Binford, 1981; Barnard and Thompson, 1980: Moravec,
1977, 1980; Ohta and Kanade, 1983 (scc also the technique of Kass 1983, 1984, which may also
be applicable to feature point sterco)]. Following the original testing of the Marr-Poggio-Grimson
algorithm, as reported previously [Grimson, 1981a. b, with some modifications ‘proposed in Marr
“and Poggio, 1980]. extensive additional computational experiments with the algorithm have been
performed. especially on natural images. These experiments have led to a number of modifications
to the original algorithm, as well as clucidating points that require additional attention. While no
inference is made as to the relevance of such modifications for the human system, the modified '
algorithm may serve as a uscful step towards an automated artificial stereo system.

In this paper, we will bricfly review the original Marr-Poggio modcl and outline the previously
reported implementation and testing of that algorithm. We will then describe some of the open
questions concerning that implementation, as well as some of the modifications suggested by other
models [e.g. Mayhew and Frisby, 1981). A revised algorithm will then be presented. Finally, we
will illustrate the performance of the modified algorithm by applying it to a scries of natural
images. Many of the examples presented are aerial sterco photographs, in part because automated
cartography is one of the traditional arcas of application of computer sterco algorithms. We also
consider an example of a robotics application, and investigate the accuracy of the algorithm in
reconstructing the distance to objects in the scene, given measurements for the parameters of the
imaging geometry.

2. The Marr-Poggio Stereo Model

In this section, we present a brief review of the original Marr-Poggio model [Marr and
Poggio, 1979], its original implementation [Grimson, 1981a, b] and suggested modifications- based
on psychophysical and computational studics [e.g. Mayhew and Frisby, 1981). Readers interested
in more comprehensive treatments are directed to the original articles.

2.1. The Model

The algorithm proposed by Marr and Poggio for solving the stereo correspondence problem
can be described as a feature-point based matching system, using a coarse to fine control strategy
to limit the search space of possible matches. As originally proposed [Marr and Poggio, 1979], the
algorithm consisted of the following steps.

(1) The left and right images are each filtered with oriented second differential operators
of four sizes that increase in size with eccentricity (distance from the center of the eye).
The cross-section of these opcrators is approximately the difference of two Gaussian
functions with space constants in the ratio 1:1.75. The purpose of this filtering is to
allow the detection of significant intensity changes at multiple scales.

(2) Zcro-crossings in the filtered images arc located by scanning along lines lying
perpendicular to the oricntation of the original differential operator. These zero-crossings
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mark the locations of significant changes in the original intensity function, at different
scales. Positions of the ends of lines and cdges are also located.

(3) For cach operator size and orientation, matching takes place between zero-crossing
segments or terminations of the same contrast sign in the two images, for a range of
disparitics up to about the width of the operator's central region. Within this disparity
range, Marr and Poggio showed that false targets pose only a simple problem, because
of the roughly bandpass nature of the filters.

(4) Disparity information obtained by matching features derived from the larger operators
can control vergence cye movements, thus allowing feature from the smaller operators
to come into correspondence. In this way. the matching process gradually moves from
dealing with large disparities at a low resolution to dealing with small disparitics at a
high resolution [sce also, for example, Moravec, 1980].

(5) When a correspondence is achicved, it is stored in a dynamic buffer, called the
24 -dimensional sketch [Marr, 1978].

2.2. The Original Implementation

The first computer implementation of this model was reported in [Grimson, 1981a] (recently
an independent reimplementation of the algorithm has been rcp'ortcd in [Kak, 1983]). The original
implementation essentially followed the five steps outlined above, although there were a number of
differences. Most of these changes arose from observations made during the process of transferring
the model described above to a working algorithm, since the process of explicitly detailing the
algorithm illuminated some previously unforeseen difficulties, whose solutions led to modifications
to the original model.

The steps in the implementation can be briefly outlined as follows.

(1) Image Filtering: The left and right images of a stereo pair are convolved with a series of

two-dimensional operators, whose shape is given by the Laplacian of a Gaussian :
2 2 2 2
V2G(z,y) = [a: :;y - 2} exp{:(zm%l},

or by an approximation to this operator, using a difference of two Gaussian functions [Marr and
Hildreth, 1980]. These operators are isotropic with respect to orientation, and hence differ from
the directional operators proposed in the model. (A discussion of this point may be found in
[Grimson, 1981a, b].) The size of the operator, as well as its spatial frequency characteristics, is
determined by the value of the constant o, which is related to the width of the central negative

portion of the operator, w, by the following expression:
w

g = —.

2V2

Figure 1 illustrates the form of thesc operators.

If each picture clement (pixcl) is considered equivalent to one photoreceptor in the fovea of
the human visual system, then we may usc psychophysical data obtained from measurements on
the human system [e.g. Wilson and Bergen, 1979] to determine the appropriate sizes of operators.
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Figure 1. The initial filters. Each image is convolved with a two-dimensional operator whose form is
described by a Laplacian of a Gaussian. The size of the operator is determined by the space constant of
the Gaussian distribution. Part a shows a perspective plot of a V2G filter, part b shows a one-dimensional
slice through the center of the filter.

This led us to implement V2G operators with widths of w = 9, 18,36 and 72 picture elcments
(pixels) each. It has also been argued on computational grounds [Marr, Poggio and Hildreth, 1979]
and on vernier acuity grounds [Crick, et al. 1980] that an additional smaller operator corresponding
roughly to a width of w = 4 may also be present in the human system. The coefficients of the
operators were represented to a precision of 1 part in 2048. Coefficients of magnitude less than
zoqs th of the maximum value of the operator were set to zero. Thus, the truncation radius of the
operator (the point at which all further operator values were treated as zero) was approximately
1.8w.

(2) Symbolic Features: In the original Marr-Poggio theory, the clements to be matched
between images were (i) zero-crossings whosc orientations are not horizontal, and (ii) terminations.
It has since been demonstrated [Nishihara and Poggio, 1982) that aspects of human stereo
perception previously believed to imply the need for terminations may be explained strictly on the
basis of zero-crossings. Thus, terminations are not included in the implementation reported here.
It is assumed that the images have been brought into vertical registration, so that the epipolar
lines are horizontal. Thus, zero-crossings in the convolved images arc found by scanning along
horizontal lines, secking pairs of adjacent clements of opposite sign, or triplets of adjacent clements,
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Figure 2. An example of a stereo pair taken in a laboratory setting.

the middle of which is zero, the other two containing convolution values of opposite sign. The
positions of the zero-crossings are thus recorded to within an image clement. In addition to their
location, two other attributes of the zero-crossings were recorded: (1) contrast sign (whether the
convolution values change from positive to negative, or negative to positive, as we move from left
to right along the scan line) and (2) a rough estimate of the local orientation in the filtered image
of segments of the zero-crossing contour. In the original implementation, the orientation of a point
on a zero-crossing contour was computed as the dircction of the gradient of the convolution values
across that segment, and was recorded in increments of 30 degrees.

Examples of the convolutions and zero-crossings for a series of operators are illustrated in
Figures 2, 3, and 4.

We note that while the positions of the zero-crossings are specified to within a pixel, it
may be possible to perform subpixel localization. Hildreth [1980] (sec also [Crick, et al., 1980]
has demonstrated that in the case of an isolated zero-crossing, a simple lincar interpolation
between convolution values serves to localize the zero-crossing to subpixel precision [see also,
MacVicar-Whelan and Binford, 1981]. It has been observed in computational experiments that
strong isolated zero-crossings, such as those corresponding to occluding boundaries or shadows,
for example, can be reliable matched to subpixel precision. In the presence of texture or other
confounding photomctric effects, however, the accuracy of the subpixel localization decreases,
and is probably not effective. This raises an interesting question about human sterco acuity. It
suggests that for stimuli with isolated zero-crossings, (for example, line drawings), stereo acuity
could lie within the subpixel range [Howard, 1919; Woodburne, 1934; Berry, 1948; Tyler, 1977},
but for textured stimuli, (for example, random dot stercograms), stereo acuity might be expected
to decrease.

(3) Matching: Given a sct of zero-crossing representations at different scales for each of the
images, the matching process proceeded in a coarse to fine iterative manner. The idca [first used by
Moravec, 1977, 1980] is to usc a sparsc representation of the images, with a coarse spatial sampling,
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Figure 3. Convo]ulions of the blocks images.

for the initial matching of points. The reduced density of points greatly reduces the search space
and makes matching casier, at the expense of reduced resolution. This initial match can then be
used to constrain the matching of finer detailed representations, again reducing the search space
_of the matching process, while allowing finer detail disparity information to be obtained. Thus,
the matching is guided by a flow of information from coarse representations to finer ones.

(3.1) Feature Point Matching: Consider first the zero-crossing representations obtained from
the coarsest filters (with central width w,), and suppose that we are given some estimate d; of the
disparity in a region of the image (which we may initially assume to be some arbitrary value). For
a zero-crossing in onc image (say the left) at position (z, y), the scarch for'a matching zero-crossing
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Figure 4. Zero-crossings of the blocks images.

in the right image is constrained to the region

| {9 z+di-w <o <z4di+uc) | |
(Note that the search takes pléce along the same horizontal scan line, thereby assuming that the
images have been registered so as to yield horizontal epipolar lines.) This +w, range in Lhé rigﬁt
image is divided into three pools, two larger convergent and divergent regions, and a smaller one
lying centrally between them. For each pool, matching zero-crossings in the left and right filtered
images must have (1) the same contrast sign, and (2) roughly the same orientation.

A match is assigned on the basis of the responses of the pools. If exactly one zero-crossing
of the appropriate sign and orientation (within 30 degrees) is found within a pool, its location
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is transmitted to the matcher. If two candidate zero-crossings arc found within one pool (a very
unlikely event [sce, for example, Grimson, 1981b]). the matcher is notified and no attempt is made
to assign a match for the point in question. If the matcher finds a single zcro-crossing in only one
of the three pools, that match is accepted. and the disparity associated with the match is recorded
in a buffer. If two or three of the pools contain a candidate match, the algorithm records that

information for future disambiguation.

Once all possible unambiguous matches have been identified. an attempt is made to
disambigualc double or triple matches. This is done by scanning a neighborhood about the point
in question and recording the sign of the disparity of the unambiguous matches within that
neighborhood. (The sign of the disparity refers to the sign of the pool from which the match
comes: divergent, convergent or zero.) If the ambiguous point has a potential match of the same
sign as the dominant type within the neighborhood, then that is chosen as the match. Otherwise,
the match at that point is left ambiguous.

(3.2) Continuity: It is possible that the region under consideration does not lie within the +w,
disparity range cxamined by the matcher. This is detected and handled by the following operation.
If the region docs lic within the disparity range +w,, then excluding the case of occluded points,
every zero-crossing in the region will have at least one candidate match in the other filtered image.
On the other hand, if the region lies beyond the disparity range +w,, then the probability of a‘
given zcro-crossing having at least one candidate match will be roughly 0.7 [Marr and Poggio,
1979; Grimson, 1981a, b]. Thus, by counting the percentage of zero-crossings within a region
that have at least onc match, and thresholding based on the probabilities stated above, disparities
will be accepted only in regions lying within the current disparity range. This constraint is based
on the continuity assumption [Marr and Poggio, 1979] that surfaces generally vary in a smooth
manner relative to the viewer.

(3.3) Control Strategy: Finally, once this matching has been performed for the coarsest filter,
the sparse disparitics obtained can be used to realign the images, and the process can be repeated
at the next finer scale. Since the density of zcro-crossings increascs as the size of the filter is
decreased, this coarse to fine control strategy allows thc matching of very dense zero-crossing
descriptions with greatly reduced false target problems, by using coarser resolution matching to
drive the alignment process.

(3.4) Vertical Disparity: While the matching as described above only searches for corresponding
zero-crossing points along the same horizontal scan lines, the control strategy of the algorithm
can easily be modified to handle small amounts of vertical disparity. First, note that due to the
size of the V2G filters, the coarser level zero-crossing representations are less sensitive to local
vertical disparity than the finer level ones. Now suppose that the matching has been performed
for the coarsest filter and that the horizontal and vertical disparity in a region of the image is
roughly given by d and v respectively. When proceeding to a finer filter, the scarch for matching
zero-crossings is initially centered about this disparity. If, however, the density of zero-crossing
points that can be matched at this level is small, it is likely that the horizontal disparity is necarly
correct, but that the vertical alignment is in crror. Thus, reapplying the matching process with
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the same horizontal alignment. . but with small variations (on the order of several lines) in the
vertical alignment, » 4 «. will lead to a correct alignment of the images, and hence to a greater
density of zero-crossings being assigned valid disparity values.

2.3. Testing of the Original Implementation

As reported in [Grimson, 1980, 1981]. this implementation of the Marr-Poggio algorithm
has been tested on a variety of images. Much of the original testing was performed on random
dot stercograms, for two reasons. First, because the stercograms are synthetically created, it is
possible quantitatively to compare the disparities computed by the algorithim with the physically
correct disparitics. Second, because random dot sterecograms are a standard psychological method
for examining attributes of the human sterco system, the performance of the algorithm on such
test cases could be compared to human perception, providing a means of examining the adequacy
of the underlying model. Examples of the testing included two-planar stercograms of varying
densities, more complex figures such as a wedding cake and a spiral staircase, stercograms in
which one or both images had been blurred, stereograms with added spatial frequency filtered
noise, stercograms in which one of the images had been decorrelated by different amounts, and
stereograms in which one of the images had been compressed. It was found that on the standard
random dot stercograms, the matching algorithm performed véry well, usually with an error rate
of less than one part in a thousand. On noisy or decorrelated stercograms, the error rate was
normally on the order of onc percent, while the density of points to which a disparity was assigned
decrcased (and in the limit vanished).

The implementation was also tested on a number of natural images,. using a variety of
illumination geometries and with objects of differing photometric characteristics. Examples included
a speckled coffee jar, a basketball game, an outdoor metallic sculpture, and a portion of the
Martian surface. For these natural images, a quantitative evaluation was more difficult to obtain,
precisely because the imaging gecometry was not controlled, but it was observed that the qualitative
performance of the algorithm was still good.

2.4. Discussion

While the initial testing of the algorithm did serve to support the adequacy of the Marr-Poggio
algorithm as a model of aspects of the human stereo system, and while the overall performance of
the matching algorithm was very good, a number of weak points in the algorithm were illuminated
during this testing.

2.4.1. Continuity constraints

It was observed that most of the actual matching errors occurred along discontinuties in
depth, for example at occluding boundaries between two objects. This follows from the use of
matching statistics over a region as a means of distinguishing correct matches from random ones.
Theorctically, this test is based on the obscrvation that surfaces are generally smooth relative to
the observer, and hence disparity will gencrally also be smooth. While the theoretical observation
is sound, the implementation of it by means of a statistical measure over a region of the image
has some difficultics.
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Figure 5. The problem of the continuity constraint near object boundaries.

This is most casily illustrated by the following example. Suppose the region over which the
matching statistics are measured is a square of side d (while this is the casicst to implement, it
is not critical and the following argumént holds for other shapes as well). Further suppose that
the stereogram consists of two planar surfaces with a sharp break in disparity between them. Let
the density of zero-crossings be p and presume, that the rcgmn is positioned such that £ percent
of the region covers surface A and that 1 — 2 z pcrccnt covers surface B (see Figure 5). Finally,
assume that the fixation of the cyes is curreggly posmoned on surface B, so that the portion of
the region covering the surface A is out of range of the jhéiching process. If ¢ is the threshold
for accepting the matches in a region as being within the raﬁge of the matcher, (for the analysis
of Marr and Poggio [1979, p317] 0.7 < ¢ < 1.0), then the qqéstion to consider is for what values
of z the percentage of matched points in the region will _eXceed €.

In theory, the number of matched points in the surface B region is expected to be pd(d — z),
and the number of matched points in the surface A region is expected to be 0.7pzd. Thus, the
percentage of matched points is given by ' ‘

pd(d — z) + 0.7pzd
pd(d — z) + pzd
The values of z for which this percentage exceeds e is given by

1—-¢
<
=73

The most conservative threshold would be € = 1, in which case z = 0 and the only position
of the region for which the disparity values are accepted as correct is that in which the region is
entircly positioned over surface B. While this would work on perfect data, in practice it is likely
to be overly conservative, causing a large reduction in the percentage of zero-crossings to which
a disparity is assigned, although the error rate should be virtually zero. One difficulty with real
data is that even for regions of the image whose disparities are completely within range of the
matcher, the zero-crossing points may not all have matches. For example, geomectric distortion in
the sensors, perspective distortions in the imaging geometry, noise in the irradiance values and local

T
=1- 0.32.

d.

10




Girimson Stereo Vision

photometric effects all can cause slight variations in the zero-crossings that may result in a small
number of unmatched points. Rather than discard all the disparity information in a region because
a single zero-crossing point docs not have an assigned match, we would like to preserve such
information, by using a less conservative threshold. Consider, however, the compromise case of
¢ = 0.85. In this casc, the constraints on the positioning of the region are given by 0 < r < 0.5d,
and in this case, any (incorrect) disparity values lying within 0.5d pixels of the edge of surface B
~will be accepted as correct. This is observed in examples of the testing of the algorithm, and while
the number of such crrors is small, it is unavoidable within the context of this type of statistical
check. This problem will be very apparent in the case of thin clongated surfaces suspended above
a background, where the widths of the surfaces are less than the diameter of the statistics region,
for example, in an acrial sterco image of a highway interchange.

Onc means of overcoming this problem is to observe that while it is difficult to ensure
that a region of the image corresponds strictly to a single surface, edges (or zero-crossings) in a
filtered image will generally correspond to a single surface, since they usually refiect changes in the
surface topography or the surface photometry. Thus, rather than imposing a condition of disparity
continuity over an area of the image, one could instcad require a continuity of disparity along a
contour in the filtered image. This is essentially the figural continuity constraint of Mayhew and
Frisby [1981], and has been suggested in a slightly different form in Arnold and Binford [1980].
Thus, we need to derive a contour based analog to the regional continuity check used in the
original Marr-Poggio implementation. ‘

Once the feature points have been matched, it can be observed that the collection of all
matched points is composed to two distinct sets. In regions of the image where the zero-crossing
representations lie within matching range of the current image alignment, the matched feature
points tend to form extended contours. Elsewhere, the matched feature points tend to lie in
scattered small segments. The goal of the figural continuity constraint is to distinguish between
these two situations.

We now derive an explicit form for the constraint. We know, by applying Rice’s theorem
[Grimson, 1981b, p. 78], that the expected distance between zero-crossings of the DOG filter of
the same contrast sign is given by
520w
23
Then given uncorrelated left and right zero-crossing descriptions, the probability of no match at
a particular disparity is

8 =

L
8

and if p denotes the horizontal width of a matching pool, and v denotes its vertical extent, the
probability of no match within a pool of dimensions p X v is

pv
(-3)"
8

and hence the probability of a match in this pool is

11




Grimson Stereo Vision

1y
,,=l_(l_-).
8

Now we consider the probability of randomly matching segments of a contour. Given a contour
scgment of length &£ in one image, we want to determine the probability that m of those &
points has a match within the corresponding pool in the other image, when the two images are
uncorrelated. Clearly, this is given by

i = 3 (5)tu-nr. (1

i=0
Thus, given some threshold, ¢, on the expected error rate, such that 0 < ¢ < 1, we can determine
constraints on the length of @ matched zero-crossing contour that will be accepted as corresponding
to a correct match. That is, given a threshold ¢, and a value for the number of unmatched gaps
in the contour, k — m, we can find the minimum length &k of a contour such that Py, < e. In
particular, we lct
£; =min{k | Prx_; < €}

denote the threshold on the length of matched contour required to satisfy the figural continuity
constraint, for some number of gaps. Note that this is a function of the expected error threshold
¢, as well as the horizontal pool size p, the vertical pool size v;.and the mask size w.

Thus we have derived a specific form for the figural continuity constraint, namely that the
length of contour that must be matched, as a function of the error threshold, as well as the
parameters listed above is given by the values of ¢;.

2.4.2. Vertical disparity

One of the implicit assumptions of the Marr-Poggio algorithm is that the geometry of the
two sensors yields horizontal epipolar lines. While it is possible to rectify the images to remove
gross geometric distortions caused by factors such as cyclotorsion and camera tilt, there are likely
to be local distortions of the epipolar geometry, due to geometric distortions in the sensor, or
perspective effects. Furthermore, the discrete nature of the zero-crossing representation may cause
small variations (on the order of a pixel) in the positions of the zero-crossings. These factors
suggest that although large scale effects on the epipolar geometry can be handled by some type
of image rectification, there may still be small scale variations on the epipolar gcometry that must
be handled by the matching algorithm.

In light of this discussion, it is interesting to note recent evidence concerning the effect of
vertical disparities on the human stereo system. It has been observed psychophysically [Duwaer
and van den Brink, 1981a, 1981b] that while up to a degree of vertical disparity can be tolerated
by the human sterco system, almost all of this is handled by invoking an eye movement to align
the images. In the absence of cye movements [Niclsen and Poggio, 1983], only about 2-4 minutes
of vertical disparity can be tolerated. One interpretation of these results is that the sterco matching
mechanism is capable of performing the correspondence process only if the images have been
nearly rectified, and that grosser distortions of the epipolar gcometry are corrected for by changing
the alignment of the eyes.

12
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Interestingly. the original implementation of the Marr-Poggio algorithm essentially incorporated
this cffect in the following manner. Initially, the vertical disparity was assumed to be zero (although
if monocular cues were incorporated into the system, it would be possible to precompute a
less arbitrary vertical alignment of the images [Marr and Poggio, 1980]). and the matching was
performed at the coarsest resolution. Because of the large size of the filter, the cffects of vertical
disparity in the images is less likely to affect the performance of the matcher. Suppose we consider
some region of the image, and usc the disparity information computed by the coarse filter to
align the images. If the finer filtered images cannot be matched (or can be only very sparsely
matched), this can be taken as an indication that the images have been correctly aligned to remove
any horizontal disparity, but that a small amount of vertical disparity may be present. Thus, by
applying small alignment corrections in the vertical direction, the images can be brought into
alignment, thereby increasing the density of computed disparity values. This behavior was observed
in computational experiments on a number of natural images.

Although the performance of the Marr-Poggio-Grimson implementation was qualitatively
consistent with the psychophysical data, the use of a stringent epipolar matching geometry was
probably too strict. In other words, while it is feasible to use gross alignments of the images to
account for large scale geometric effects, a strict epipolar matching strategy may be too sensitive
to small logal distortions in the zero-crossing descriptions, cither due to gcometric or perspective
effects, duc to noise in the early processing, or due to discretization effects. As a consequence,
it is suggested that the matching of zero-crossings be relaxed slightly. (Note that in the original
Marr-Poggio algorithm, the usc of oriented filters suggests that vertical disparity effects would be
more tolerable.) For example, suppose there is a zero-crossing at some point (z,y) in the left
image. The initial Marr-Poggio implementation would scarch for a corresponding zero-crossing in
the region

{@"y))z+d-w<z <z+d+w}
in the right image. Instecad, we propose to search for a corresponding zero-crossing in the region
{y)|z+d-w< <z+d+w; y—-e<y <y+e¢}

where ¢ is on the order of 1 or 2 scan lines. Note that while this will make the matcher less
sensitive to small distortions or noise, it will also reduce the accuracy of the matching process,
since a single zero-crossing point in one image could potentially be matched to all the points on
a zero-crossing segment lying within this window in the second image, yielding a small range of
disparity valucs, rather than a single one. The cffect will become more noticcable as the orientation
of the zero-crossing segment approaches horizontal.

We also note, while discussing vertical disparity, that several authors have recently proposed
using measured vertical disparities to obtain the additional camera parameters needed to convert
disparity directly into distance [Mayhew, 1982; Longuct-Higgins, 1982; Mayhew and Longuet-
Higgins, 1982; Prazdny, 1982, 1983]. While the algorithm described here does not use the vertical
isparity information is this manner, it is possible to augment the algorithm to do so.
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2.4.3. Control strategics and scarch spaces

Finding the correspondence between points in the two images can be considered as a problem
of scarching a spacc of possible correspondences for the correct solution. In considering this type
of formulation, two separate issucs must be considered.

1. Restricting the sct of possible alternatives. The key point is to improve the reliability of
the computation, by attempting to ensure no false positives, and as few false negatives
as possiblc, i.c. no incorrect matches, and as few cases of no answer as possible.

2. Strategies for cfficiently scarching the space of alternatives to find the correct one.

We wish to separate these two issucs, since while they are related, techniques used to reduce
the space of possible correspondences need not be inextricably tied to particular strategies for
scarching for those correspondences.

First, we consider means for reducing the space of alternatives that must be explored in
order to find the correct correspondence. Assume that cach image is n X n. Then initially each
point in one image has n? possible matches. As well, there are n? points in cach image, so a
straightforward, British Muscum style, search algorithm requires n* total comparisons. How can
we reduce this?

Feature point systems, while suffering a reduction in the density of computed depth values,
can significantly reduce the space of possible correspondences, by attempting to restrict the
computation to "distinguishable” points in the images. If the density of feature points is p, then
the set of possible matches becomes pn? and the number of total comparisons under the British
Muscum algorithm is p?n*. Note that in the case of the Marr-Poggio algorithm, p varies with the
size of the initial filter. In particular, the expected density of zero-crossings is ‘

_1__
cw
where

3

= 1.87

c =

|

(4]

2
by the analysis of [Grimson, 1981, p.78]. Thus, the number of possible candidates for a
correspondence reduces to

=)

n2
cw
and the total number of comparisons involved in the search is

nt

w?’

The next major constraint that can be applied to the matching process is the epipolar one.
If we take a liberal interpretation of this constraint, then a point on line y can be matched only
to points on lines ' such that y —v < v < y + v, for some constant v. In this case, each point
has a space of possible matches on the order of

(2v+1)n
cw

and the total number of comparisons over the whole image is
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(20 + I)ni
(cw)®
The final matching constraint used in the Marr-Poggio dlgnrilhm is that of continuity, which
is intended to reduce the number of possible matching candidates from order n to 1. Of course,
onc can clearly construct situations in which the number of matching candidates is not reduced to
a unique solution, but in general, as the discussion in the previous section indicated, the continuity
constraint can be structured so as to reduce the probability of false matches to virtually zero.

Note that all of the constraints introduced in this discussion have been matching constraints,
that is. they have reduced the number of possible matches for a given point. As a consequence,
the total size of the scarch space has also been reduced, but it is important to note that all the
discussion to this point has been independent of the particular search strategy to be employed in
finding corresponding matches. This distinction between the use of matching constraints to alter
the space of possible correspondences, in order to cnsure the existence of a unique solution, and
the use of cfficient techniques for scarching the space of solutions to find the correct solution,
is important in light of the final constraint of the Marr-Poggio algorithm, the use of multiple
resolution representations of the image.

Onc usc of multiple resolution representations is in dealing with false targets. For example,
if a fine resolution feature point representation has more than one possible match for a particular
point, the correspondence information at a lower resolution representation can be used to resolve
this ambiguity. This was one of the main uses of multiple resolution representations in the original
Marr-Poggio algorithm. This disambiguation technique was also intertwined with an efficient search
algorithm as well, however. In particular, the matching of finer level representations is directly
driven from coarser level correspondences (whenever possible). Not only does this provide one
means of avoiding false targets, but it is also an extremely cfficient method for searching the space
of possible matches, as is indicated in the following discussion.

Let wy denote the size of the smallest image filter, and assume that we have &+ 1 such
filters, each onc doubling in size from the previous one. Then, by the discussion above, we know
that at the coarsest level, we must search on the order of

n (2v+l)n  (2v+1)nd

c2kwy  c2kwy 222w}
alternatives in order to find correspondences for all the feature points in this level of representation.
If the matching process is driven in a coarse-to-fine manner, then at each subsequent level, the
image representations arc aligned based on previous matching, and for each feature point, we
necd only search an area of size cw to find the correct match. Thus, in principle, we neced only

compare
(2v + 1)ew

cw
points. This implies that at cach of the subscquent levels, we must search 2v + 1 comparisons for

=(2v+1)

each of

n?

2icwy
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feature points. Thus, the total number of comparisons needed is on the order of

4 k=l .
(20 + 1)n® Z n?(2v + 1)
2wd 22k 2 cuy

1=

points, or cquivalently,

(20 + 1)n? 0 1 n
cuyg 2k=1 w22k

points. This is still O(n*) but as k increases, we see that the amount of scarch involved in finding
feature point correspondences reduces to the order of the dimensions of the image, i.c. n2. Thus,
one of the advantages of multiple level representations, besides its use in disambiguation of false
targets, is its efficiency in finding the correspondences especially in situations, such as the human
visual system. in which high resolution information is only required over small portions of the
image at any one time. (Compare this estimate of O(n?) pointwise comparisons with the results
of [Ohta and Kanade 83] of O(n®) primitive computations for a general 3-D search algorithm and
O(n*) primitive computations under certain limiting assumptions.)

It is curious to note as an aside that one could use the above expression to predict the
number of levels of representation (or equivalently, the number of V2@ filters) needed to reduce
the search space to O(n?). If we consider an arca spanning 8° on a side with foveal-level receptor
spacing, then a straightforward calculation predicts that 6 filters are necessary to reduce the search
space to O(n?). Interestingly, recent investigations by Wilson [1983] provide evidence for 6 such
filters. ‘

If the key consideration is not speed, but rather, high resolution depth information at all
points in the image, it is possible to propose an alternative search strategy, while still taking
advantage of the disambiguation properties of multiple resolutions representations. Rather than
driving the matching process dircctly from the coarse level information, we can instead use that
information only when neceded for disambiguation.

As in the original Marr-Poggio algorithm, for any given alignment of the images (fixation of
the eycs), the scarch space is restricted to a range on the order of cw, so as to avoid the possibility
of false targets. Any candidates that satisfy all the matching constraints are accepted as possible
correspondences, and stored away. If the total range of disparity over the entire image is within
this cw range, then we are done. If not, however, then the same matching process is repeated at
some desired spacing in depth, and the algorithm is swept across the entire range of disparity.
While for each given alignment of the images, only onc match is possible, it may be the case that
matches for the same feature points will be found at very different alignment positions. If this
is the case, then this false targets problem can be disambiguated by choosing the alternative that
best agrees with the correspondence information obtained at coarser levels. Clearly, such a search
algorithm requires a sweeping of fixation across the entire range of depths, and while it will result
in high resolution depth information everywhere in the image, it docs so at the expense of speed.
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3. A Modified Marr-Poggio Sterco Matcher

We have incorporated all of these considerations into a new algorithm, which we describe
below. While the modifications were made in part becausc of recent psychophysical evidence
concerning the human stereo system, we will discuss its possible merits as a sterco system for such
applications as automatic acrial cartography and robotics in the next section.

-3.1. The Modified Algorithm

We will first outline the basic algorithm, and then provide more detailed descriptions of
cach of the steps. The basic steps of the matching algorithm can be summarized in the following
manner. Note that steps 0-3 arc identical to the original algorithm. The main concentration on
modifying the algorithm has been at the matching stage. Also note that steps 4.1-4.3 are an instance
of Marr's principle of least commitment [Marr, 1982].

3.1.1. Outline of the Algorithm

(0) Loop over levels: We initially choose the coarsest level of representation, ie. the one
corresponding to the largest image filter, and iterate by choosing successively finer levels of
represcntation.

(1) Convolution: Given a level of representation, the left and right images are convolved
with the V2G filters of the corresponding size.

(2) Zero-crossings: Given the convolved images, the nontrivial zero-crossings are located and
marked with their contrast signs. These zero-crossings descriptions form the basic representations
from which correspondences will be sought. ‘

(3) Loop over fixation position: The relative alignments of the two images are choosen. The
simplest method is to initially choose an alignment corresponding to some lower limit on the
disparity of the images, and slowly increment this offset until some upper limit on the disparity
is reached. This increment could be a pixel at a time, or in terms of some larger fraction of the
width of the matching area for a given fixation position.

(4) Matching:

(4.1) Feature point matching: Given a pair of zero-crossing representations, from the current
level, and given a fixation position defining the relative alignments of the two images, feature
point matching is applied. For each feature point in one zero-crossing description, this involves
searching an arca of the other zero-crossing description for a zero-crossing of the same contrast
sign. This arca has a vertical extent about the same horizontal line in the other image that is
limited to a small number of scan lincs, and a horizontal extent, of width defined by the size
of the underlying image filter, about the same position in the other image, offset by the current
relative alignment.

(4.2) Figural continuity: Once all the feature points have been matched for the current level
of representation and the current fixation alignment, figural continuity constraints are applied
to prunc the incorrect matches. This involves tracing the zero-crossing contours, scarching for
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contiguous matched scgments of those contours whose Iength exceeds a threshold whose value can
be determined a priori from the properties of the underlying V26 filters.

(4.3) Disparity map updare: Any matched feature point contours which pass the figural
continuity test are then added to disparity map, recording the relevant disparity for cach feature
point in the accepted contour scgments.

(5) Loop: Once this computation of disparitics within the defined range about the current
image alignment has been completed, the fixation position is updated by looping to step (3).

(6) Disambiguation: When all the fixation positions have been processed, we are left with a
disparity map representation that contains all matched zero-crossing scgments, with their associated
disparitics. We now check this map for possible double matches. Any such ambiguitics are resolved
by checking the disparitics within the same region of the representation at the previous level (if
there is on¢) and accepting only those disparity values at the current level that are consistent
with those values (i.c. lic within a predefined range of the coarser level disparities). If this
disambiguation does not succeed, cither because there is no coarser level, because there are no
disparity valucs within the same image region at the coarser level, because none of the current
level disparities lic within range of the coarser level ones, or because more than one of the current
level disparities are consistent with coarser level disparities, then all the alternatives are discarded.

(7) Loop: Once the final dispérity map for the current level has been completed, the process
proceeds to the next finer level of representation, by looping to step (0).

(8) Consistency: When all the levels of disparity information have been computed, one
final test is possible. Each disparity value at the finest level of reprcsentaﬁon can be tested for
consistency by checking that, within the same region of the previous disparity representation, there
is at least one disparity value that is consistent with the current value.

3.1.2. Detailed description of the algorithm
We now turn to a more dctailed description of the different stages of the algorithm.

(1) Convolutions: As in the previous implementation, convolve the images L, R with V2G(w)
filters, for different values of w. For notational convenience, we let

LCy(z,y) = ViG(w)+ L
-~ RCy(z,y) = V2G(w)*+ R

denotc the left and right convolutions, that is, for different widths w, the convolved image forms
a two-dimensional array indexed by z and y. Generally, we use only 3 or 4 values of w, for
example, w = 5,9, 17, 33 pixels.

(2) Zero-Crossings: As in the previous implementation, compute the zero-crossings of the
convolved images. We let
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LP(x,y) = positive zero-crossings of LCy(x, y)
LN, (x,y) = negative zero-crossings of LC,(x,y)
L11,.(x,y) = horizontal zero-crossings of LC,(z,y)
LZ,(x,y) = all zero-crossings of LCy(z,y)
RP,(z,y) = positive zcro-crossing of RCy(z,y)
RN, (z,y) = negative zero-crossings of RC,(z,y)
R, (z,y) = horizontal zero-crossings of RCy(z,y)
RZ,(z,y) = all zero-crossings of RCy(z,y).
Each of these is a bit map.

(3) Fixation position: Initially choosc the alignment of the two images to correspond to some
preset lower limit, and increment by a specified amount until the alignment exceeds some preset
upper limit.

(4) Matching: The matching algorithm can be subdivided into threc sections. First, the
feature points arc matched: then, figural continuity is applied to the resulting matches; and finally,
any ambiguities between matches are resolved.

(4.1) Feature point matching. The feature point matching portion of the algorithm can be
summarized as follows. Suppose we are dealing with zero-crossing descriptions corresponding to
some particular filter of size wy. Given a disparity dg, we construct an N X N X 2w, local disparity
array M:

y+e
M(z,y,1) ={LP.,,0(:1:, ) /\ [ V RPy(z+do+r, v)]}

v=y—€

y+e
V {LN,,,,,(z, y)/\ V RNy (z+do +71, 'u)]}

v=y—e
where 0 <z < N,0<y <N, and —w < r < w. Thus, each slice of M(z,y,ro) given by a
value ro of r is a set of matched feature points, within a vertical range of +e, for a local disparity
value r about the current convergence value do. Note that positive zero-crossings are matched to
positive ones, and negatives to negatives, over a vertical range of +e, and over a horizontal range

of +w about the current alignment.

(4.2) Figural continuity.

In order to distinguish correct from random feature point matches, we apply a figural
continuity constraint, by restricting the accepted matches to those extended contour segments
whose length is sufficiently large. First, we nced a means of defining a path along a zero-crossing
contour. If LZ,,(z,y) = 1, that is if there is a zero-crossing at this point, then we define
JLw, = (u,v) to be the next point along the zero-crossing contour. In other words, if the vector
I = (z,y) is an index into the zero-crossing array, and if LZ,,,(zo,y0) = LZy,(ro) = 1 then the
ordered sequence

To, fL,wo (l'o), fL,wo(fL,wo("O))) o

traces out a zero-crossing contour.

Then, given a threshold ¢ on the expected error rate (0 < ¢ < 1), we need a threshold on
the length of the matched contour segments. By the previous discussion, this is given by
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£ =min{k| Pex—y < ¢}
where Pg - is given by cqudtion (1). Thus, we et £q, £y, €2 denote the contour lengths required
by contours of 0, 1 and 2 gaps respectively. Then the procedure for figural continuity can be
specified as follows.

Figural Continuity Procedure
Compress all the matches into one representation:

MT(z,y) = V M(z,y,7)  Vz,y.
Initialize the output array:
SM(z,y)=0 Vz,y.

For each point ry = (zg, yo) such that M T(ro) = 1, apply the following procedure. Set:
g=20 ; gap counter
L=1 ; length counter
S = {ro} ; contour tested
p=1Iy ; contour pointer.

0) If fr,u,(p) = 1o
then we have completed tracing the contour, and it is not long enough, so exit without
saving the contour;

else,
i LH oy (f1,0(p)) = 1
then the next point is a horizontal zero-crossing, so go to (1);
else,
if MT(fL,uw,(p)) =0
then there is a gap so increment the gap counter; g =g+ 1
and go to (1);
else increment the length counter: £=£+1
and continue.
MDIfg>2
then the gap is too large, so exit without storing the contour;
else,
if g=2,
then,
ife> ¢
then save the contour: Vp € §,set SM(p) = SM(p)V MT(p)
else go to (2).
else,
ifg=1,
then,
if¢> ¢
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then save the contour: Vp € §,set SM(p) == SM(p)V M T(p)
else go to (2).
clse,
ifg=0,
then,
if > ¢
then save the contour: vp € §,set SM(p) = SM(p)V MT(p)
else go to (2). '
(2) Increment the contour collection, setting § = S U {/1,w(P)}
and increment the contour pointer, setting p = f1,.u,(P)-
Go to (0).

(4.3) Disparity updating,
When this procedure is finished, SM(p) contains all the matches for this alignment that pass

the figural continuity constraint. Now, we need to update the global disparity array Dy, (z,y, d).
This is accomplished by looping over all values of p and applying the following procedure.

Disparity Update Procedure
If

then set

e —wSM(p,0)(do + o)
e

That is, we mark a 1 at the point in the three-dimensional disparity array corresponding to
the average disparity of the local matches. Thus for each d, the set
{Du,(p,d) | Vp}
is a disparity slice of the matched images.

To create the total disparity array D, we can simply let dy range between preset limits dg to
dp, and iterate over the previous steps. Note that this is an extremely simple control strategy, which
could clearly be augmented, for example along the lines suggested in the original Marr-Poggio
theory. In cases where a detailed, fine resolution, disparity map is desired, this simple control
mechanism should suffice. In situations in which speed is a critical factor, an attention focussing
mechanism that uses coarse disparity information to guide finer resolution matching is probably
essential.

The above algorithm has been specified for a single operator size wo and can be applied at
each of the four sizes specified carlier. The original Marr-Poggio theory proposcd that a coarse to
fine matching strategy be used to guide the matching at finer resolution representations, in part
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because the ambiguity of such matches increases with the increasing density of the zero-crossings.
While we have split off the control strategy aspects of this proposal by sweeping the images
through the entire range of possible disparitics for cach opcrator, the use of multiple resolution
operators as a mcans of disambiguation still remains a possibility.

(5) Loop: Simply loop to step (3) to increment over all possible image alignments.

(6) Disambiguation. In particular, while only a single match will be assigned a zero-crossing
point, for cach alignment of the images, dy. it is possible that more than one contour will be
matched to the point, as the disparity sweeps through the range d; < dy < dj. We can use the
disparity information obtained at coarser channels to help disambiguate this case. For cach channel
size wg, we perform the following operations.

First, we project the disparity array, sctting, Vp:

d, if D‘wo(p, a) = 604
PDwo(p) = {nul], if Dwo(p, a) = 0, Ya
2, if otherwise.

Thus, if there is exactly one match, PD,,(p) equals the disparity value of that match; if there
is no match, it is set to null; and if there is more than one match, PD,, (p) is marked with the
special character “?”. If wq is currently set to the largest possible filter size, then nothing can be
done. If it is set to a smaller filter size, however, then let w, denote the next largest filter size and
proceed in the following manner.

Disambiguation Procedure
For each point p such that PD,, (p) =?, let
A= {a|Duy,(p,a) =1}
denote the set of possible matches for this point.
If there is a point p’ in a neighbourhood N,,(p) about this point, such that
PD o, (p')~null

and

PDy,(p')#!
and such that

IPDu(p)-ail < 5

for some a; € A, '
then a; is a legitimate disparity value.
If there is exactly one legitimate element a; of A,

then set
PDwo (p) = aq

else set
PDy,(p) = null.
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In this manner, we create the disparity map I’D,,, for the current filter size wy.

(7) Loop: We can iterate this procedure over decreasing values of wg. When this is finished,
we have a scries of disparity maps I’D,, of increasing resolution as w decreascs.

(8) Consistency. The disambiguation process described above can be considered as a type
of consistency check. That is, if there are two contours that, to within the limits of the figural
continuity constraint, match a given contour, we can usce coarser level information to climinate
the incorrect match. This relies on the assumption that the correct contour will be accepted by
figural continuity. There may also be circumstances in which the correct contour is not accepted,
for example because it is occluded in onc of the images, but in which an incorrect contour passes
the figural continuity constraint, and is accepted as a correct match. While this occurs very rarely
(cmpirical observations suggest that less than 0.005 of the matched zero-crossing contours have this
problem), it is possible to apply a consistency check to the computed disparity maps to remove
this possibility.

Consistency Procedure
Given two adjacent filter sizes w, < wy, Vp,
if PD,,(p)#null
then,
if Ny, (p) is empty, leave PD,,, (p) as it stands,
else,
if there is a point p’ € Ny, (p) such that [PD,,(p) — PDy,(p')| < ¥
then leave PD,,,(p) as it stands,

else, set PD,, (p) = null as it is not consistent with the coarser
resolution disparity map.

4. Examples

We will examine two different types of stereo imagery in this section, a laboratory scene
with many of the characteristics of industrial robotics situations, and acrial photographs of natural
and artificial terrain. The intent is both to provide a means of examining the performance of
the sterco algorithm outlined in the previous section, and te consider the potential applicability
of such algorithms to automated sterco acquisition of depth information, both in robotics and
cartography.

4.1, Laboratory Scenes

 We consider first an example of a laboratory scene, shown in Figure 2. The scene is composed
of a set of wooden blocks, of different shapes and lying at different distances from the cameras.

23




Grimson Stereo Vision

Figure 6. The set of matched ;é;ajc;as_sings for the blocks image.

The images were taken with an Hitachi CCD camera, and are 288 by 224 pixels each. The images
contain grey-levels from 0 to 255, although the contrast range is more on the order of 10 to 110.
The cameras were positioned roughly 1500 mm from the foremost point in the image, namely
the front of the cylinder, with a separation of roughly 290 mm. By roughly, we mean that the
distances were measured to an accuracy of a few millimeters.

The left and right images were convolved with four different sized V2G filters, with central
widths given by w = 17,13,9 and 5 pixcls each. Thesc convolutions are illustrated in Figure 3.

The zero-crossings obtained from each of these convolutions are shown in Figure 4. Note
by comparison to the convolutions that most of the zero-crossings in the support plane have
very shallow gradients, corresponding to low contrast changes in the images. The positions of
has been demonstrated in earlier implementations of the Marr-Poggio model, the density of the
zero-crossings is directly proportional to the size of the V2@ filter. Note also that the zero-crossings
of the largest operator tend to capture coarse features of the objects, such as their occluding
boundaries, while the zero-crossings of the smaller operators tend to capture in addition finer
details, such as the wood grain on the objects.

The set of zero-crossings from the finest level operator to which a matching zero-crossing is
assigned by the algorithm is displayed in Figure 6. Note that the figural continuity constraint has
removed virtually all of the matches corresponding to the shallow zero-crossings of the background
plane. As we noted earlier, thesc shallow zero-crossings tend to be sensitive to noise in the system,
and as a consequence there can be a noticcable variation in_the position of such zero-crossings,
due to this noisc component. One of the advantages of the algorithm presented here is that
the variation in zero-crossing position due to noise will generally violate the figural continuity
constraint, and hence such matches, with inherently noise disparity information attached to them,
will be pruned from the final disparity data. We should note, however, that there may be other
edge detection techniques that are more effective at removing such noise-sensitive features prior
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Figure 7. Contour map of the blocks image.

to the matching stage [for cxamplc Canny. 1983]

The vertical disparity in this set of images covers a range of +3 lines. To obtain the results
displayed here, the algorithm was run at three different vcnigal,aligxlmcnts, and the results of each
pass of the algorithm were merged into a single disparity array.

Finally, in order to display the results of the sterco algorithm, we apply the following process.
We first interpolate the disparity information providcd by the ﬁhcst level channel, using a model
of visual surface reconstruction based on the image irradiance equation [Grlmson 1982, 1983a,
1983b]. To do this, we use a portion of an efficient multi- gnd unplementanon of an alternative
but similar surface interpolation model, developed by Terzopoulos [1983, 1984]. Given the output
of this process, which is a dense reconstruction of the disparity over the image, we plot isometric
disparity contours, as shown in Figure 7.

The isometric disparity contours clearly demonstrate the local variations in depth of the
objects, as computed by the stereo algorithm. It can be scen that the isometric disparity contours
are not perfectly parallel, as might be expected from the shape of the blocks. This indicates that
while overall the computed shape of the objects is correct, there may be a certain amount of local
variation in the disparity values, lcading to a distortion of the isometric contours. This is further
illustrated in Figure 8, which shows a perspective view of the reconstructed surfaces of the blocks.

To further evalute the performance of the algorithm, especially the extent of this local
variation, we performed the following additional tests. First, the disparity information was converted
to actual distance values, based on the separation :of the cameras, the angles of convergence of the
cameras and the size of cach individual pixel. These parameters were measured for the geometry
used to record the original sterco images, and thus, the distances from the camera to points in
the image were computed. The following table records the computed and measured distances, in
millimeters, for a selected sct of points in the image.
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Figure 8. Perspective view of the reconstructed blocks surfaces.

Table 1 - Computation of Distance

Points Computed Mcasured Difference
Cylinder front 1506 1517 11
Wedge front 1647 1665 18
Block front 1743 1758 15
Cylinder to block 371 241 4
Cylinder to wedge 141 148 7
Cylinder radius - left 16 By 1
Cylinder radius - right 18 17 1
Wedge - depth extent 33 35 2
Block - depth extent 47 50 3

The first three entries record absolute depth measurements, and it can be seen that the
computed distances to the fronts of the three objects are off by approximately 15 mm, out of a
sensing distance of 1500 mm, or roughly 1%. Note that this transfgnnation to absolute distance is
sensitive not only to errors in the computation of stereo correspondeﬁce, but also to errors in the
measurcment of the camera geometry. Given the coarseness with which the camera parameters
were computed, it is likely that this is the major source of error in the computation of absolute

distance.

The remaining entries of the table record relative computed distances, both for separations
of the objects, and for the depth extent of the objects. The fourth and fifth entries record the
computed and measured relative scparations of the objects. The final four entries record the radius
of the cylinder, as mcasured to the left and right of the front of the cylinder, and the change
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in depth across the block and wedge. for this particular viewing angle. On average. the crror in
relative depth tends o be on the order of 5-7 mm. out of a total depth range of 300 mm. To
put this in the context of the stereo algorithm, we note that for this camera geometry, an crror
in sterco matching of one pixel would give rise to a depth error of 5-10 mm, depending on the
actual location in the image. Thus, the errors in relative depth are essentially on the order of a
pixel in disparity.

4.2. Acrial Photographs

The second type of images to which we have applied the sterco algorithm are acrial
photographs, both of natural terrain and man-made structures. The performance of the modified
sterco algorithm on all the images is summarized in the following table.

Table Il = Stereo Summary
Blocks uBcC FSill Phocenix Bocing
Size 288 X 224 320 X 320 512 X 512 512 X 512 320 x 320
Disparity Range 56 13 51 41 13
Zero-crossings 11013 16801 32907 31403 10642
Matched Z-C's 1780 12310 16073 23890 6608
Matching Errors 0 9 286 78 167
After Consistency 0 0 0 0 33

The row labelled size indicates the dimensions of the images. The row labclled disparily range lists
the disparity' range of each image pair, in pixels. In the row labelled zero-crossings, we indicate
the total number of zero-crossing pixcls, including horizontal ones. In the row labelled matched
z-¢’s, the number of such zero-crossings that are assigned a match is indicated. In the row labelled
matching errors, the number of zero-crossings pixels that are assigned an incorrect match are listed.
Note that we distinguish here between matching crrors and localization errors. Matching errors are
those that arise when incorrect zero-crossings contours are matched, independent of the accuracy
of the contours themselves. Such errors tend to be relatively large in disparity. Localization errors
are thosc that arise due to error in position of the zero-crossing contour itself. Such errors usually
tend to be relatively small. The row labelled afier consistency lists the number of such matching
errors that remain after the consistency constraint is applied between different resolution disparity
maps.

The images themselves are illustrated in Figures 9-20. For cach one, we show the sterco images,
the disparity map obtained by matching the zero-crossings are the finest level of representation,
and a contour map based on this disparity map. The disparity maps arc displayed using intensity
to encode height, so that the brighter disparity points are closer. To obtain a contour map
representation of the results, we have applicd a surface reconstruction algorithm [Grimson 1982,
1983a, Terzopoulos, 1983, 1984] to the stereo data.

The first pair of images, from the Phoenix area, are illustrated in Figure 9, and were supplied
courtesy of the Defense Mapping Agency. A second sterco pair of natural terrain, from the
Fort Sill, Oklahoma area, arc illustrated in Figure 12, and were supplied courtesy of the U.S.
Army Engincering Topographic Laboratory. The next sterco pair, from the University of British
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Figure 10. Disparity map (Ft. Sill).
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Figure 12. Natural terrain stereo pair (Pheonix).

Columbia, and supplied courtesy of UBC, are illustrated in Figure 16. The final stereo pair are of

a highway intcrchange, and were supplied courtesy of Bocing Corporation.

A number of comments are in order concerning the performance of the algorithm, as indicated

above. We note that in the case of the blocks scene, the percentage of matched zero-crossing to total
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res: ¥ man:D max:

Figure 14. Contour map (Pheonix) based on matching before consistency check.

zero-crossing is small, on the order of .17 percent. Note, however, that many of the zero-crossings
are shallow, unstable zero-crossing. corresponding to small fluctuations in the photometric process,
as illustrated by Figure 3. If we consider only zero-crossing points on the blocks themsclves, then
the number of ecligible zero-crossing points reduces to 2703, of which 1780 arc assigned a match.
Note further that this number of 1780 does not include any strictly horizontal zcro-crossing points,
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Figure 16. Natural terrain stereo pair (UBC).

nor does it include very small zero-crossing contours, which fall below the matching thresholds,
and are hence unmatchable,

The Fort Sill image does provide some difficulty for the algorithm, particularly because the
photometric propertics of the images cause a certain amount of fluctuation in the positions of the
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Figure 18. Contour map (UBC) based on matching before consistency check.

zero-crossing contours. As a consequence of the design of the matching procedure, which favors
no match to possible incorrect matches, a large number of the potential zero-crossing points are
not matched. Note, however, that the percentage of matched zero-crossings to total zero-crossings
is somewhat misleading. since a large number of the total are not, in fact, matchable. In this
case, at Icast ten percent of the zero-crossings in the left image are not present in the right since
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Figure 19. Natural terrain stereo pair (Boeing).

Figure 20. Disparity map (Boeing).
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they lic beyond the edge of the image. We also note that the contour map displayed in Figure
11 is based on the results of the matching algorithm before the consistency check is applied. As
a consequence, the cffect of the single incorrectly matched contour in the upper left quadrant
is clearly visible as a sudden dip in the contour map. This clearly demonstrates the need for a
consistency cheek to remove obvious matching crrors that survive the matching process itsclf.

In the Phoenix images. the contour map of Figure 14 is also gencerated from matching data
without a consistency check. In figure 15, we apply the surface reconstruction algorithm to the
data after applying the consistency check. We also have relaxed the tightness with which the
reconstruction is forced to pass through the stereo data. 1t can be seen that the resulting contour
map has removed the obvious matching defects and has a smoother st of contours. This smoother
surface reconstruction is one means of removing possible localization errors in the matched data,
as well as matching errors that survive the process.

While the Fort Sill image presents a great deal of difficulty to the algorithm due to large
fluctuations in the positions and shapes of the zero-crossing contours, the Bocing image presents a
different type of difficulty. Here, the large number of extended, parallel image contours presents
a large set of potential ambiguitics. In general, however, the algorithm is able to solve this
problem, by relying on information from coarser channnels to disambiguate finer ones. Because
the interpolation process is only applicable across smooth surfaces, and the Boeing image contains
a large number of surface discontinuities, we have omitted the contour map for this image.

It is important to stress with all of the contour maps, and especially for the UBC images,
that these illustrations are intended as a graphical means of displaying the performance of the
sterco algorithm but not as a precise reconstruction of the underlying terrain. In particular, since
onc of the parameters of the surface reconstruction algorithm is the degree of smoothing applied
to the reconstructed surface, the resulting contour maps may exhibit more smoothing than is
warranted, due to the choice of this parameter. Nonctheless the qualitative performance of the
stereo algorithm is still evident by the arrangement and spacing of the contours. In the case of the
stereo pairs with buildings and other artifacts present, the application of the surface reconstruction
algorithm directly to the results of the sterco algorithm is actually incorrect, since it attempts to fit
a single surface over what are in fact several distinct surfaces. To be completely correct, the stereo
depth data should be segmented into coherent regions, and then interpolated. Since this was not
done, the resulting surface interpolation tends incorrectly to smooth over the discontinuities in
depth. Nonctheless, the contour maps illustrated still demonstrate the basic performance of the
sterco algorithm and the tightly clustered isometric contours help to indicate the scparations of
the differcnt buildings from the ground.

5. Discussion

The modified Marr-Poggio-Grimson algorithm presented here was originally implemented in
LISP on an MIT Lisp Machine, and then recoded in Lisp Machine microcode, for more efficient
performance. The convolutions of the images were performed using a special purpose convolution
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device [Nishihara and Larson, 1981]. While the time required to process an image is dependent
on a large number of factors involving the complexity of the image, it is possible to give estimates
on the performance of this implementation of the algorithm. Using a 320 x 320 image as a basis,
we have observed the following timing characteristics. Fach convolution of an image. including
time required to interface the convolution device with the Lisp Machine, usually required on the
_order of 5 scconds. Fach computation of a zero-crossings representation typically required on the
order of 10 scconds. The amount of time required to match the zero-crossing representations was
highly dependent on the number of fixation positions required (and thus on the total disparity
range of the image). Matching at cach such fixation position usually required on the order of
5 — 20 scconds, depending on the structure of the zero-crossings contours. Finally, combining all
the slices of the disparity map into a single consistent representation typically required on the
order of 30 — 60 scconds. Thus, for example, a single fine resolution channel processing of the
UBC images normally took under 5 minutes in total, and the total time for running three different
resolution channels was on the order of 10 minutes.
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