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1. The Recognition and Localization Problem

A central characteristic of advanced applications in robotics is the presence of signifi-
cant uncertainty about the identities and positions of objects in the workspace of the
robot. In simplest terms, if a robot is to interact intelligently with its environment, it
must know what objects are where. This normally necessitates sensing of the external
- environment as a means of obtaining the information needed to solve the recognition
and localization problem. The process of sensing can be loosely divided into two stages:
first, the measurement of properties of the objects in the environment, and second, the
interpretation of those measurements. Since the sensory information could come from
a variety of very different sources, for example, tactile, ranging, sonar or vision, both
binary and grey-level, it is important to derive recognition and localization techniques
that solve the interpretation stage of the sensing process with very few assumptions on
the sensory measurements themselves. In this article, we assume only that the sensory
data is characterized as sparse, noisy measurements of the local geometry of a small
patch of the object’s surface, for example, the position and orientation of a small planar
patch of the surface in some coordinate frame defined relative to the sensor.

Given these simple data elements derived from the sensory data, the problem of
model-based recognition and localization essentially can be considered as one of searching
for a consistent matching between these data elements on the one hand, and model
elements representing known objects on the other hand. That is, we need to assign each
sensory data point to a corresponding part of an object model in a manner consistent
with the assignment of the other sensory data. Since the data elements are assumed
to approximate the local geometry of a small planar patch of the surface, initially we
assume that the objects can be modeled as polyhedra which are defined relative to some
local coordinate frame. The sensed objects corresponding to the models are assumed to
have up to six degrees of positional freedom (three translational and three rotational).
In other words, the coordinate frame transformation required to rigidly transform the
model from its own local coordinate frame into the corresponding object being sensed in
a coordinate frame defined relative to the sensor can have up to six degrees of freedom,
three rotational and three translational. Note that three rotational degrees of freedom
are required, since one needs two to specify the unit normal which defines the direction
of rotation, and an additional degree of freedom is needed to specify the rotation about
that unit normal. The goal is then to define a matching process whereby the space of
possible interpretations of the sensory data can be searched for a consistent matching of
sensory data to model elements. If such a matching can be found, it will then determine
both the identity of the object being sensed and its position and orientation relative to
the sensor.

Since, in general, the search space is far too large to explore explicitly, the key to
the problem is to derive constraints based on the data that will efficiently restrict the
portions of the search space that must be explored. In this paper, we present a set of

“general criteria on these constraints and derive a specific set of such constraints for the
case of geometric sensor measurements. These constraints have previously been used in
an empirical investigation of an object recognition system [Grimson and Lozano-Pérez 84,
85a, 85b]. Indeed, the remarkable efficiency of this recognition and localization technique




on a broad range of real and simulated data was the original motivation for the work
presented here. In this paper, we provide theoretical support for the performance of
the recognition technique. In particular, we show that these consrraints are complete
both for the simpler case of three degrees of positional freedom, (two translational and
one rotational) corresponding to the situation of isolated objects in stable positions, and
for the general case of six degrees of positional freedom (three translational and three
rotational).

The main result is establishing theoretical bounds on the effectiveness of these local
constraints in controlling the combinatorics of the search process. We use known results
on the complexity of constraint satisfaction problems together with explicit estimates of
the effectiveness of the specific constraints to derive general bounds on the number of
interpretations expected to be consistent with the data. These results are compared with
empirical results reported earlier in [Grimson and Lozano-Pérez 1984]. Finally, several
predictions of the theory are discussed, including the degradation of the technique with
increased error, and the number of sensory points generally needed to guarantee a unique
interpretation of the data.

1.1 The Basic Problem

The recognition and localization of objects from sensory data is a central problem of
most advanced robotics situations. It is usually convenient to pose the problem as one of
search, that is, given a set of known models, we identify and locate the particular object
that we are sensing by searching a large space of possible solutions until we find one
(or all solutions) that matches the information available to us from the sensors. One of
the main difficulties with the problem, true of most search problems, is that the space of
possible solutions is usually enormous, and one seeks methods that will effectively reduce
the portions of the search space that must be explicitly explored. The problem is further
compounded in the case considered here by the fact that the sensory data against which
a match is sought are typically inaccurate, so that the matching process must be tolerant
to errors in the data.

In tackling the problem of object recognition, it is frequently convenient to concen-
trate on the subproblem of localization. If there exists a coordinate frame transformation
that rotates and translates an object model in a manner that is consistent with the sensory
data, then the existence of this transformation implicitly solves the recognition problem.
Thus, if we have a technique for solving the localization problem, we can use it to solve
the recognition problem as well. For example, we can use sequential search of a library
of object models to determine which object is being sensed, as well as where it is in the
coordinate frame of the sensor. Of course, this concentration on the localization portion
of the general recognition problem ignores some important issues, especially when large
libraries of objects are being considered, but it forms a sufficient starting point for in-
vestigating object recognition techniques. In the context of this paper, we will assume
that the object recognition problem can be basically considered as a problem of object
localization. The only real issue we are ignoring is the efficiency of recognizing an object
from among a large set of objects. :

There have been a wide variety of techniques applied to the recognition problem,
all attempting in some manner to control the potential combinatorial explosion of the




search. Much of the variation hetween existing recognition schemes can be accounted
for by the choice of descriptive tokens to match. Some methods rely on computing a few
very distinctive descriptors (features) that sharply constrain the identity and, or location
of the objeet. Others use less distinctive descriptors and rely more on the relationships
between them to effect recognition and localization.

The use of a few distinctive features sharply constrains the size of the search space,
and hence the search process can be very efficient. As an extreme example, consider
the problem of recognizing a soft drink can from visual data. One method would be to
process the image to obtain the UPC bar code, which would uniquely identify the type
of can. Moreover, knowing the position of the UPC code on the can and in the image
would allow us to determine the position and attitude of the can in the scene. Of course,
not all features will be as distinctive as a UPC code. Simpler examples might include
corners, holes, notches and other local features. The idea, however, is that very few such
distinctive features should be needed to identify the object, and the search space can
be effectively collapsed. Examples of techniques in this vein include the use of a few
extended features [Perkins 78, Ballard 81], or the use of one feature as a focus, with the
search restricted to a few nearby features [Tsuji and Nakamura 75, Holland 76, Sugihara
79, Bolles and Cain 82, Bolles, Horaud and Hannah 84].

The approach of using a few distinctive descriptors is alsc common to many com-
mercial systems (see, for example, [Bausch and Lomb 76, Gleason and Agin 79, Machine
Intelligence Corporation 80, Reinhold and Vanderbrug 80]). These systems characterize
both the measurements and the object models by a vector of global properties of binary
images, such as area, perimeter, elongation and Euler number. The matching process be-
tween such characteristic vectors is then straightforward. Because of their global support,
however, these descriptions do not extend well to overlapping or occluded parts.

Another type of recognition method relies on building elaborate high-level descrip-
tions of the measured data before matching to the model. These approaches also rely on
reducing the size of the search space by matching only a few distinctive descriptors. Ex-
amples of this approach include [Nevatia 74, Nevatia and Binford 77, Marr and Nishihara
78, Brooks 81, Brady 82].

Approaches that rely on a few distinctive features have some weaknesses. First, the
cost of the search has been greatly reduced, but at the expense of global pre-processing of
the sensory data. Sensors do not provide distinctive descriptors directly, the descriptors
must be computed from the mass of local data provided by the sensor. In some sensing
modalities, such as tactile sensing, searching for data to build distinctive descriptors can
be very time consuming. Second, heavy reliance on a few features can make recognition
susceptible to measurement noise. If the imaging device is out of focus, for example,
so that the image of the UPC bar code is blurred significantly, recognition may be
altogether impossible. In this case, degradation in the presence of error is not graceful,
that is, the recognition process may fail badly when small amounts of error are present
in the sensory data. Third, useful features are by definition sparse or they cease to be
distinctive; this sparsity may be a problem when dealing with occlusion. Note that in
this context, the term distinctive refers to the uniqueness of the features relative to the
entire set of features of an object, not to their spatial distinctiveness. In our UPC bar
code example, if some other object occludes the UPC code from the sensor, we will not




be able to recognize the can. This may occur even though virtually all of the rest of the
can is available to the sensor.

An alternative approach to recognition relies more on the geometric relationships
between simpler descriptors, rather than on a few distinctive features. Such descriptors
are densely distributed and not particularly distinctive taken individually; for example,
surface normals fit into this category. In these circumstances, the search space is large
and constraints to prune it are critical. While the size of the search space explored by
these methods will be larger than in the feature-based methods, the expectation is that
the individual tests are very efficient and if the constraints have sufficient power, the
simplicity of the tests will offset the larger search space. Representative examples of
such schemes include [Brou 83, Horn 83, Horn and Ikeuchi 83, Ikeuchi 83, Faugeras and
Hebert 83, Gaston and Lozano-Pérez 84, Grimson and Lozano-Pérez 84, Stockman and
Esteva 84].

The key difference between matching on these low-level descriptors and on distinc-
tive features lies in the availability of descriptors. The simpler sensor measurements are
likely to be dense over the object. As a consequence, recognition schemes based on such
simple measurements should be applicable to sparse sensors, and should be less sensitive
to problems of occlusion and sensor error, since an input description can always be ob-
tained and matched to the model. In this paper, we explore some theoretical aspects of
a recognition scheme that uses very simple sensor primitives that can be computed over
the entire object [Grimson and Lozano-Pérez 84]. We rely on the power of geometric
constraints to keep the combinatorics of the search process reasonably controlled.

1.2 Assumptions and Approach

As a consequence of this discussion, we will assume that the basic available sensory
data consists of local estimates of three-dimensional position and orientation of small
patches of the object surface. In this case, we can make very simple assumptions about
the elements of the object models needed for matching. In particular, since the data
elements are measuring the local geometry of small patches of the object surface, we
assume that the object models are also constructed of small local patches. Thus, our two
assumptions about the elements to be matched between sensory input and object models
are:

e  The objects are all modeled as polyhedra. The objects have six degrees of positional
freedom, when transformed from a model based coordinate system to a sensor based
coordinate system. In the simpler case of flat objects lying on a plane, the objects
are modeled as polygons, which have three degrees of positional freedom.

e The sensory data available to the process include positions of points on the object,
to within some known volume of error, and surface orientations at those points, to
within some known cone of error.

The basic approach to the problem is to determine the set of positions and orientations
of an object that are consistent with this sensed data. If there are no consistent positions
and orientations, then the object can be excluded from the set of possible objects. The
elements to be matched are thus simple local patches of a surface.

The technique proceeds in two steps:




e  Generate Feasible Interpretations: A set of feasible interpretations of the sense data
is constructed. Interpretations consist of pairings of each sensed point with some
object surface on one of the known objects. Interpretations inconsistent with local
constraints, derived from the model, on the sense data are discarded.

e  Model Test: The feasible interpretations are tested for consistency with surface
equations obtained from the object models. An interpretation is legal if it is possible
to solve for a rotation and translation that would place each sense point on an object
surface. The sensed point must lie :nside the object face, not just on the surface
defined by the plane equation.

There are several possible methods of actually searching for consistent matches. For ex-
ample, Grimson and Lozano-Pérez [1984] chose to structure the search as the generation
and exploration of an interpretation tree, more commonly known as backtracking. Thus,
starting at a root node, we construct a tree in a depth first fashion, assigning data points
to model faces. At the first level of the tree, we consider assigning the first data point to
all possible faces, at the next level, we assign the second data point to all possible faces,
and so on.

Clearly, the first of the two steps is the key to this process. The number of possible
interpretations given s sensed points and m surfaces is m?®. Therefore, it is not feasible
to explore the entire search space in order to apply a model test to all possible interpre-
tations. Moreover, since the computation of coordinate frame transformations tends to
be expensive, we want to apply this part of the technique only as needed. The goal of the
recognition algorithm is thus to exploit local constraints on the sensed data so as to min-
imize the number of interpretations that need testing, while keeping the computational
cost of each constraint small. In the case of the interpretation tree, we need constraints
between the data elements and the model elements that will allow us to remove entire
subtrees from consideration without explicitly having to search those subtrees.

In searching for appropriate constraints to apply to the generation stage, several
criteria are appropriate.

e The constraints should be coordinate frame independent. That is, we would like
to derive constraints that remove large portions of the search space, independent of
the particular orientation of the object. This suggests that the constraints should
embody restrictions due to the shape of the object, and not due to the specifics of
the sensing geometry.

e  The constraints should be simple and have low computational cost.

Thg; % aints should, at the same time, be as powerful as possible in the sense of
remoying large portions of the overall search space.

° Therg%gtraints should degrade gracefully in the presence of error in the sensory
measurements.

e  The constraints should be independent of the specifics of the sensor from which the
data came, so that they will apply equally to different sensing modalities.

These criteria are very similar to those suggested by Marr and Nishihara [1978] (see also
Marr [1982)).

We can illustrate the role of constrained search in solving the recognition and local-
ization problem with a simple example. Consider the primitive two dimensional object
illustrated in Figure 1, and the set of three sensory points, Py, P;, P;, which are known
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Figure 1. A simple example of constrained search. We want to find consistent matchings of the
three data points to the edges of the indicated quadrilateral. If we only use distance between
data points, then the table of possible ranges between the edges of the object is given by

1 2 3 4
1 0,15 | [0, 3.25) 2, 3.25] [0, 2.5]
2 | [o,3.25 [0, 2] (0, 2.5] (1.4, 3.25]
3 | |2 3.25) [0, 2.5] [0, 2] (0, 3.25]
4 [0, 2.5) (1.4,3.25] | [0, 3.25] [0, 2.5]

The tree indicates the set of possible assignments of data points to object edges, given
distance as the only constraint. One can see that only 16 out of 64 possible interpretations are
consistent with this very simple constraint.

to lie on the edges of the object. To find the possible interpretations of the data, we need
to determine the set of possible assignments of data points to model edges. For the sake




of Mllustration. we will further assume that the only constraint avatlable to us is that of
distance, i.e. we can measure the distance between the sensory data points. and that
distance must be consistent with the object model. The table in Figure 1 indicates the
ranges of possible distances between pairs of edges of the model. That is, for each pair of
edges in the model, we determine the range of possible distances that can arise between
two points, one on each edge, as the points are taken through all possible positions on
their respective edges.

Now, suppose that the measured distances between the three sensed points are
dist(Py, P;) = 2.6, dist(Py, P;) = 0.6, and dist(P,, P3) = 2.7. From this we can see, for
example, that any interpretation of the sensed points that assigns P; and P, both to
edge f; is inconsistent with the model, since the feasible range is only from 0.0 to 1.5.
The tree structure of Figure 1 indicates those branches of the interpretation tree that
correspond to feasible interpretations, as well as those that can be terminated due to
inconsistencies. For example, the indicated node of the tree corresponds to assigning
sensory point P; to edge fs, point P; to edge f; and point P; to edge f».

One can see that only 16 of the 64 possible interpretations are consistent with this
very simple constraint of distances between points. Of course, even fewer interpretations
are completely consistent. For example, if we were also to include angles between the
surface normals at the sensed points, this additional constraint would further reduce the
number of consistent interpretations. In the following sections, we look at ways to extend
this simple example in a coherent manner.

2. A Specific Set of Local Constraints

The example of the previous section indicated the kind of constraint of interest to us
in solving the recognition and localization problem. We begin our analysis by deriving
a more detailed set of coordinate-frame-independent constraints, which were first pre-
sented in [Grimson and Lozano-Pérez 1984]. To do this, we first consider what types
of coordinate-frame-independent constraints are possible, given that the sensory data
is characterized as sparse points, each consisting of a position measurement and a unit
surface normal (for example, the pair (p;,n;) in Figure 2). Clearly a single data point
provides no constraint on the possible faces from the model that could consistently be
assigned to it. Thus, we look at pairs of sensory points. The basic information available
from these points'consists of a pair of unit normals at those sensed points, as well as the
vector separating their bases, as shown in Figure 2.

One way to get coordinate-frame-independent constraints is to construct a local
coordinate frame relative to the configuration itself. Thus, we can use each of the two
unit normals as axes of the local coordinate frame. In two dimensions, these define a
local system, except in the degenerate case of the unit normals being (anti-)parallel. In
three dimensions, the third component of the local coordinate frame can be taken as the
unit vector in the direction of the cross product of the first two basis vectors. Given such
a local basis, clearly one set of coordinate-frame-independent measurements provided by
the configuration of Figure 2 is the components of the separation vector along each of




Figure 2. The constraints between pairs of sensory points. The sensed points are indicated by
the endpoints of their local unit normals, n; and n2, and are separated by a vector d. This
whole configuration is placed in some global coordinate frame, specified by the orientation and
position of the coordinate frame x,y, z.

the basis directions. (Note that the use of the distance and two of the components is
equivalent, up to a possible sign ambiguity, to using the three components of the vector.)
Additionally, the angle between the two basis vectors is also specific only to the local
coordinate frame. More formally, if the unit normal vectors are denoted by n;,n, and
the vector separating the two points is d, then one set of coordinate-frame-independent
measurements of this configuration is

n, n;
d n;
d-n,
d-nj;
where n;; is a unit vector in the direction of n; x n;. (Note that these measurements
are isomorphic to the set used in [Grimson and Lozano-Pérez 1984].)
These are coordinate-frame-independent measurements on the configuration defined

by a pair of sensory points. To turn them into constraints on the search process, we
must map them into equivalent measurements on the model elements. Since each object
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1s modeled as a complex polyhedra, the mapping is fairly straightforward. For example,
consider the first measurement, n; - n,. In order for these two sensory points to be
consistent with a pair of faces on an object, the dot product of the corresponding face
normals must agree with this measurement. Thus, by precomputing the angles between
all pairs of faces on an object, this sensory measurement can be used to constrain the
search for a consistent interpretation. In particular, if a pair of points is inconsistent with
a particular assignment of faces to those points, the entire subtree of the interpretation
tree lying below the node corresponding to that assignment can be ignored, thereby
reducing the amount of searching required. Similar constraints can be derived for the
components of the separation vector in the directions of the unit normals. That is,
for each pair of faces in the model, one can precompute the range of values of the
component of a vector in the direction of one of the face normals as that vector assumes
all possible positions having one endpoint on the first face and the other endpoint on the
second. Again, for an assignment of sensory points to faces to be consistent, it must be
the case that the coordinate-frame-independent sensory measurement must agree with
the precomputed model values. Thus, we have defined one possible matching process
between sensory measurements and models, similar to that presented in [Grimson and
Lozano-Pérez 84].

As stated, such constraints ignore the possibility of noise in the sensory data. Con-
sider, for example, the dot product between two sensed surface normals. We have stated
that for these sensory measurements to be consistent with an assignment to a pair of
faces from an object model, the dot product between them must be the same as the dot
product between the model faces. If there is error in the sensory measurements, however,
we must account for it. Given bounds on the amount of error in the measurements, it
is possible [see Grimson and Lozano-Pérez 84] to compute ranges of possible values for
the true sensory measurement, given the recorded sensory measurement. In this case,
rather than requiring exact agreement between the recorded dot product between the
sensed normals and the dot product of the model normals, the constraint simply requires
that the range of possible dot products, given the recorded dot product, include the dot
product between model normals. Similarly, the constraints based on the components of
the vector separating the sensed positions in the directions of the sensed normals can be
relaxed to allow for bounded amounts of error. For a geometric derivation of these con-
straints, see (Grimson and Lozano-Pérez 84]. For the purposes of this article is suffices
to note that such simple geometric measurements can be modified to account for error
in the original sensory measurements.

3. A Practical Context for the Constraints

Before we proceed to the heart of the paper, which is a theoretical investigation of the
use of such constraints in object recognition and localization, it is important to briefly
outline the practical context in which such constraints can be used. This is especially
true since several simplifying assumptions will be made to ease the theoretical analysis,
and this can potentially obscure the practical importance of recognition algorithms based
on the constraints outlined above.
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We have outlined a set of coordinate-frame-independent constraints based on the
geometric relationship between pairs of sensed points, each of which is defined as the
measurement of the position of a point of contact on an object and the local surface
orientation at that point of contact. We can use these constraints in a straightforward
manner to search for consistent matchings between the sensed points on the one hand
and faces of the object model on the other [Gaston and Lozano-Pérez 84, Grimson and
Lozano-Pérez 84|. For example, we can use backtracking, or depth first search, to explore
a tree of interpretations, as in Figure 1, using the constraints to remove entire subtrees
of the search space from consideration when one of the constraints is violated. In this
manner, any leaves of the interpretation tree that also pass the model test are legitimate
interpretations of the sensory data.

There are a number of assumptions inherent in this recognition scheme, however.
For example, we have developed constraints on the matching process based on pairs of
points. One could naturally ask whether constraints based on triples or higher order
collections of points are possible. While the answer to this is undoubtedly yes, we have
chosen to concentrate solely on pairwise constraints for practical reasons. In particular,
given constraints based on pairs of model elements, we only require a set of m? tables to
represent each object, where m is the number of faces in the model. For constraints based
on triples of elements, we would require a set of m® tables, and so on. Hence, if the simple
constraints based on pairs of points are sufficiently powerful in solving the recognition
problem, the reduced overhead in representing object models is to be preferred.

We have also assumed that all of the sensory data comes from the same object. In
situations of objects in isolation, this may be reasonable, but for most robotics appli-
cations such an assumption is overly restrictive. We need recognition techniques that
can also deal with occluded objects. In this case, the sensory data may come from sev-
eral objects, and there will be no single polyhedral interpretation that can consistently
account for all the data points. There are ways to extend the constraint satisfaction
technique to find interpretations of the data in this case. One is described in [Grimson
and Lozano-Pérez 85a, 85b] together with empirical evidence in support of it.

We are also assuming that the sensory data is metrically accurate, that is, the object
model is of a fixed size. This assumption can be relaxed to allow for scale factors in the
sensory data. In particular, [Grimson and Lozano-Pérez 85a, 85b] report on a natural
extension to the technique that allows the sensed object to be an arbitrarily scaled version
of the model, and automatically solves for the magnification, or scale, factor as well as
the location of the object. '

For the purposes of the analysis of this paper, we will restrict our attention to
isolated, metrically accurate objects. Extensions of the results to the more general case
will depend on the specific methods used to deal with occluded objects.

4. The Constraints Satisfy Our Criteria

We begin our theoretical investigation by examining the characteristics of the constraints
derived above. We will then consider their combinatorial power and their degradation
with error.
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4.1 Coordinate-Frame-Independence

By the specifics of the derivation, the constraints are coordinate-frame-independent.
Moreover, they also satisfy our requirement of simplicity. Obtaining the sensory half
of the constraint is straightforward, and the model half of the constraints can be pre-
computed directly from the model. The matching process itself then becomes a simple
table-lookup process, which also satisfies the notion of simplicity and computational ease.

4.2 Completeness of the Constraints

While the constraints derived above meet our basic criterion, it is important to also
demonstrate that they form a complete set, that is, there are no other independent
coordinate-frame-free constraints between pairs of sensory points that are not already
incorporated in these particular constraints. This can be easily established by the fol-
lowing equation counting argument. Consider the configuration illustrated in Figure 2.
Suppose we construct some arbitrary global coordinate frame, having three rotational
degrees of freedom ¢, 6,1 and three translational degrees of freedom, given by the com-
ponents of the vector p,, relative to the described configuration. To completely describe
the configuration shown will require a total of 10 equations, three to specify the base
position p,, three more to specify the separation vector d, and two each to specify the
relative attitudes of ny,ny. These ten equations are explicit functions of several param-
eters, including the three angular and three translational degrees of freedom described
above. Thus, to reduce this set of 10 constraints to a set of coordinate-frame-independent
constraints, we must resolve the set of equations. In other words, we must remove the
explicit dependence on the parameters related to the specific choice of global coordinate
frame. Clearly this will require at least six equations, and thus there are at most four
coordinate-frame-independent constraints given by this particular pairwise configuration
of sensory points.

In the simpler case of two dimensions, we find that there are three coordinate-frame-
independent constraints. Thus, we see that in both cases, the constraints outlined above
are complete.

5. A General Theoretical Basis

The key theoretical issue still to be settled is the combinatorial power of the local con-
straints in reducing the number of consistent hypotheses. By its formulation as a search
process, our problem of object recognition can be considered as one of constraint satis-
faction, or consistent labeling. Hence, there are some general results available to us [for
example, Nudel 83, Haralick and Elliot 80, Gaschnig 79]. In particular, general bounds
on the expected number of solutions, on the expected number of consistency checks per-
formed at each level of the search tree and on the expected number of consistent nodes
at each level of the tree are known. Our goal is to derive explicit values for these bounds
in the case of our particular constraints and show as a consequence that our constraint
satisfaction technique for object recognition will generally be extremely efficient.
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5.1 General Bounds

To establish bounds on the effectiveness of our constraints in handling the problem of
object recognition and localization, we will rely on known general results. To do this, we
quickly review the results reported in [Nudel 83} and using the notation developed there,
(see the bibliography in [Nudel 83] for additional references.)

Let V = (vy,...,v,) be alist of variables, which in our case will represent the sensed
data points. Each variable has an associated domain D; = (v;1,...,v;pn,) from which
it can take any of M, values or labels. In our case, the domains are all of the same
size, D; = D = (1,...,m) — the labels of the faces of the model. In general, a set of
constraints R = { Ry, ..., Ri} consists of relations that specify which values are mutually
compatible for various subsets of the variables,

RJ' (_: D‘,; X Dz; X ... X Di{’.'

Our case is particularly simple since all of the constraints are binary (r; = 2).

Binary constraint labeling problems can be represented by their relations matrix
[T,:{ (undefined for ¢« = j7), a bit matrix such that T;’} 1 if and only if the k*® value for
variable ¢ is consistent with the /*" value for variable ;. In our case, this translates as
saying that the i*? data point can be assigned to the k*P face of the model and the jtP
data point to the I*? face in a consistent manner.

If we assume that

Prob (T;f = 1) = pij
then one can show [Haralick and Elliot 80, Nudel 83] for backtracking that the expected
number of solutions is

H Pij
i<y
where m is the number of faces in the model, and s is the number of sensed points. If
pi; = p for all ¢+ and j, this reduces to
Iexp m p(z) (1)
At the k* level of the search tree, the expected number of checks performed is
(*2 ')—_-—-1 -
m*p T
The expected number of nodes at the k! level is sunply
mipl*3).

As a consequence, the total number of expected nodes in the search tree is
8
Z mkp(k;l)
k=1

and the total number of checks expected to be performed is
k-1

kll—
Zmp =

Even without explicit values for the probability p these results provide some useful
information. For example, one can determine when the expected number of interpre-
tations is a maximum as a function of the number of sensed points. A straightforward
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application of the calculus shows that this occurs for
' 1 logm
5= - 21 (2)
2  logp
Secondly, one can determine the number of data points needed to reduce the expected
number of interpretations to at most one. Again, a straightforward application of the

calculus shows that this occurs for

gp
We will use equation 1 and 3 in Tables 1, 2 and 3 when we compare the predictions of
the theoretical results with empirical evidence obtained by apply a recognition algorithm
to real data.

§28min =1~

These are general results, true of arbitrary consistent labeling problems. To apply
them to our problem of object recognition and localization, we need to estimate the
probability p of consistency between pairs of data points. We will do this by applying
the useful tool of a Relative Configuration (RC) Space.

5.2 Relative Configuration Space (RC-space)

We need to provide estimates for the probability that two faces can be assigned con-
sistently to two data points of the model. To do this, we need a way of mapping both
the sensory data and the object models into some common space in which they can be
compared. ]

The space we will use for doing this is a relative configuration space (RC-space).
Throughout the analysis we will consider two separate cases. The first is one in which
the objects are non-overlapping and lie in stable positions. This case is essentially a
two dimensional one, and the objects have three degrees of positional freedom relative
to their models, two translational and one rotational. The second case is one in which
the objects are arbitrarily oriented in space. This is a three dimensional problem and
the objects here have six degrees of positional freedom relative to their models, three
translational and three rotational.

In the two dimensional case, we define an RC-space in the following manner. Each
face of an object is defined by a two-dimensional position (given by the position of the
midpoint of the face) and an orientation (given by the orientation of the normal of the
face). To ease the analysis, we will assume that all of the edges of the object (or polygon)
have equal length £. For a three dimensional object, we assume that all of the faces are
squares of se L.

Givena face f: assigned to the first point P;, we can define a three dimensional
coordinate system relative to this face, consisting of two coordinates of spatial extent and
one of angular extent. The origin of the two spatial dimensions is set at the midpoint of
the base face (f;) (with the face extending along the z axis and with the normal of the
face pointing in the —y direction) and the origin of the angular dimension is set to the
orientation of the normal of the base face. Thus we have defined a configuration space
relative to the orientation of a particular face. The position of another face is completely
specified by the position and orientation of its midpoint in this RC-space.

In the three dimensional case, we construct a 5 dimensional relative configuration
space, based on the first face f;. This RC-space has three positional dimensions and two
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orientation dimensions (since only two angles are needed to specify the orientation of a
unit vector). Note that in this case, we cannot determine the rotation about the normal
of the first face. This becomes a free parameter in our analysis, and hence we need only
consider a five degree of freedom relative configuration space.

In this case, the origin of the spatial components is defined to be the midpoint of
the base face, with the surface normal pointing in the —z direction. The edges of the
face are aligned with the z and y axes. Thus, the position of any other face is given
by the position of its midpoint in this RC-space. The rotational components of a face
are defined by two different angles, -7 < w < 7 and 0 < ¢ < 7, where ¢ describes the
elevation of the unit normal relative to the —z axis, and w describes the orientation of
that unit normal in the z — y plane.

To obtain bounds on the effectiveness of local constraints in pruning the search space
of feasible interpretations, we need to map both the models and the sensory information
into this RC-space. By enumerating the intersection of these two mappings, we will
be able to analyze the combinatorial efficiency of the constraints, and determine the
probability p of equation 1.

Clearly, given a base face for the RC-space, each additional face of the model is
represented by the position of its midpoint in this space, and that is given by the spatial
offset of its midpoint relative to the midpoint of the base face, and the angular variation
of its normal, relative to the normal of the base face. Thus, each face projects to a point
in this RC-space, and the entire object is given by a scattered collection of such points.

Consider now what the constraints on the sensory measurements tell us about the
positions of feasible faces in this RC-space. With no constraint, the faces of the object
corresponding to a sensory data point could lie anywhere within the RC-space. The
constraints on distance and relative angle, however, will restrict the set of feasible faces
that can be assigned to a data point to lie within a reduced volume in RC-space. Thus,
given the assignment of the first point P; to face f;, the face corresponding to the
second data point, P,, can be restricted to lie within some finite volume of RC-space.
Clearly, this should generally place a restriction on the number of faces consistent with
the sensory data, and our goal is to obtain bounds on this restriction, by considering the
characteristics of this restricted volume in RC-space.

In more detail, we consider what the effects of the constraints are in the case of three
degrees of positional freedom. In particular, given a second sense point P;, we know the
following facts.

e Distance. The measured distance between the two sensed points clearly restricts
the position components of the second face to lie within a restricted area. This
follows from the observation that if the base of the vector connecting the two sensed
points must lie somewhere on the first face, and the length of the vector is given
by a measured distance d, which is accurate to within some range ¢, then the set of
positions in which the midpoint of the second face can lie is restricted to lie within
an area specified by d and €. (We will see later one method for analytically specifying
this area.)

e Angle of the vector. The measured components of the vector between sensed
points relative to the measured surface normals define the angle, 8, between those
vectors. This angle is subject to a range of values, which in this case is a function
of d, e and ~, the bound on errors in measuring surface normals.
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¢ Angle of the normal. The angle between the surface normals at the first and
second faces can be restricted to some measured value v plus an error range defined
by v _
As a consequence of these restrictions, we see that if the first point P; lies somewhere
on the base face f;, then the second point P, must lie within some volume

V(d,€,8,6,¢,7)
of RC-space. Note that three of the parameters defining this volume are measured

values and three are global parameters set by the object and the error sensitivities of the
measuring device. To reflect this, we rewrite this volume of RC-space as

Vf,i,“l(da 8, d))
Note that this symbol represents a region in a three-dimensional RC-space. We will use

ve,[’—y(d, 9’ lp)
to denote the magnitude of this volume.
Given that face f; is initially assigned to the first sensed point, we let

p‘i(z’ Y, ¢)
denote the distribution of faces relative to this assignment. Thus, p; is a sum of m delta
functions, each of which reflects the configuration of a face relative to f;, and

27
/// pi(z,y,¢)dzdydd = m.
zJyJ¢=0

If we let d,;, 1,,, 0;; denote the sensed measurements between points P; and P;, then
the number of faces that can be consistently assigned to a second data point, P,, given
face f; is assigned to P; is bounded by

/// pi(xaya¢) dxdydd)
V. 5(di2,812,912)

We could use this approach directly to estimate the expected number of interpretations
(see, for example, [Grimson 84]). However, we really want to estimate p, the probability

that
/// pi(z,y,¢)dzdydd > 1
Vei(diz,612.912)

for all 7, and for any pair of data points P, P,.

There are several ways we could do this. We choose to seek expected bounds, that
is, bounds that will hold in general, so that the class of objects for which the bounds
are exceeded is small, and hopefully, has measure zero, yielding an almost everywhere
bound. This relies in some sense on a type of limiting behavior assumption as follows.
Suppose we consider k different polygons, each with m faces and diameter D, where the
diameter of an object is defined as the maximum distance between any two points lying
on the object. Then in the limit as k tends to oo, the distribution of the mk faces of the
ensemble of objects tends towards a uniform distribution. If we then average over k, we
can assert that the limiting distribution of faces is also uniform, over an area defined by
the diameter of the object, D (which is defined as the maximum distance between any
pair of points on the object).

Even for single objects, this assumption of uniform distribution may not be badly
violated. Consider the simple, two-dimensional object illustrated in Figure 3(a). The
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Figure 3. A sample object and its distribution of faces in relative configuration space. Each
point in the bottom figure corresponds to the position of the midpoint of an edge of the object.
The entire collection of points was obtained by assigning the midpoint of each edge to the
origin of the RC-space, accumulating the midpoints of all the edges relative to that edge, and
accumulating these collections of points as all the edges were assigned to the origin of the space.
One can see that the distribution of faces roughly fills a disk about the origin of RC-space.
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spatial distribution of midpoints of edges of this object in relative conliguration space i<
illustrated in Figure 3(b). This distribution was obtained in the following manner. First.
the midboigt of each edge was marked. Then the midpoint of the first edge was aligned
with the origin of the space, with the normal to the first edge pointing along the —y axis.
Having aligned the object in this way, the positions of all of the other midpoints were
marked in the space. This was repeated, aligning the midpoint of the second edge at the
origin, and marking the positions of the other midpoints, and so on.

Several things are noticeable in this diagram. The first is that the relative midpoints
of the faces do tend to uniformly fill the disk of possible positions. There are some
clusters, however, and these generally correspond to partial symmetries in the object.
This suggests that one set of objects that will badly violate our assumption of uniform
distribution is regular polyhedra. For example, a regular n-gon, because of its n-fold
symmetry, will have a face distribution consisting of n clusters of n indistinguishable
points, and thus the number of consistent hypothesis should be higher than predicted
by the theoretical analysis. This is in fact observed in simulations reported in [Grimson
and Lozano-Pérez 84].

Note also that while the spatial components of the RC-space are reasonably uni-
formly distributed for the object in Figure 3, since all the angles between faces are
multiples of %, the rotational component of RC-space will only contain points clustered
at 0,=%,®x. That is, the spatial components of RC-space basically meet the assump-
tion of uniformity while the rotational components do not. On the other hand, a regular
polygon would have rotational RC-space points that are uniformly distributed, while the
spatial components are strongly clustered. This suggests that in cases where only some
of the components of RC-space satisfy the criteria of uniform distribution, the expected
number of consistent hypotheses will be higher than that predicted.

The key point of this assumption of uniform distribution is that the integral of the
distribution function will depend only on the magnitude of the swept volume, and not
on its specific position in RC-space. Suppose we let vy denote the magnitude of the total
volume of RC-space that could possible contain a point corresponding to an object face.
This is given by

vr = [7rD2] 2r
and is found by considering the area swept out by rotating the object about one end point
of its diameter, which denotes the total possible range of the translation components
(v D?), and the total range of the rotation component (27).

As a consequence, the expected number of faces consistent with data points P; and

P2 iS‘ -
E (/// pi(z,y,9) dxdyd¢) =m Ue,l,ﬁ(dlh-elhd)lz).
Vt.l<7(d12)812)w12) vr

Moreover, the assumption of a uniform distribution implies that this value is not de-
pendent on the choice of the first face f;. Thus, if we can bound the magnitude of the
volume

Ue,e,q(d12,912,¢12)
independent of the specific sensory measurements, say,

”Z.tn = SUPgyg .y [Ve,e,(d,8,9)],
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then under the assumption of uniform distribution, the probability of consistency is
simply given by

B rv, .

: 5] W
In other words, by assuming that the faces of the object are uniformly distributed, we
can assume that their corresponding representation in RC-space consists of a uniform
distribution of points in the total volume of the space. Thus, the probability that two
faces will be consistent with assignments to a pair of sensed points is simply given by
the ratio of the two volumes, as indicated in equation 4.

6. Specific Bounds

We now turn to a careful consideration of the specific constraints that apply to our
particular case, and derive explicit expected bounds on the number of interpretations
consistent with s sensory points, by estimating the volume parameter

Ve vy = lvi,tﬁl .

6.1 The Two Dimensional Case

We will first consider the two-dimensional case of objects with three degrees of positional
freedom, and will then extend this to the general three dimensional case of objects having
six degrees of positional freedom.

First, we will make the following assumptions about the object being sensed.

e  All the edges of the object have the same length £.

e  The diameter of the object, that is the maximum distance between any pair of points
on the object, is denoted by the constant D.

We make the following assumptions about the sensory information.

e  The positions of the sensed data points are known to within a circle of radius e.
e  The normals to the sensed edges are known to within an angular error of ~.

Now suppose that we arbitrarily choose some face on which to place the first sensed point
(obviously we have no constraints on this anyway). Given a second sensed point, we want
to consider the probability that some other face is consistent with the constraints between
the two sensory points. To answer this, we first review what constraints are available
from two sensory points.

e  We can measure (to within some error) the angle 1)y between the normal of the first
face and the normal of the second face. This is given by the combination of knowing
the dot product between the two normals and the cross product of the two normals.
In fact, this measurement is accurate to within a range of ++v, by our assumption
above.

e . We can measure the length d of the contact vector d between the two sensed points
(with a possible error of +e).
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e Finally, we can determine the angle between the contact vector d and the first face
normal. To determine the range of possible error, we note that each endpoint of d
lies within a circle of radius €. It is straightforward to show, either algebraically or
geometrically, that the maximum angular deviation of the true contact vector from
its measured position is given by

—1 [ 2¢
tan (E) .

Our general technique in estimating bounds on the combinatorial efficiency of these
constraints will be the following:

e Construct a relative configuration space (RC-space) centered at the midpoint of the
first face.

e Bound the volume of this épace in which the second face must lie.

e Normalize this volume relative to the entire usable volume of RC-space in order to
obtain a bound on the probability of consistency p.

We arbitrarily assign a face to the first sensed point, and construct a relative configuration
space about this face. Recall that the origin of the spatial dimensions of the RC-space lies
at the midpoint of the face and the normal of this face defines the origin of the angular
dimension of the RC-space. Thus, a face is represented in RC-space by the position of
its midpoint relative to the midpoint of the base face, and by the angle of its normal
relative to the normal of the base face.

Figure 4. The range of possible positions for a second sensory point, given that the first sensory
point lies at one end of the base face.

Suppose that the base of the contact vector d lies at one of the endpoints of the first
face. What positions could the endpoint of d take in RC-space? First, we know that the
angle of this vector relative to the sensed normal to within a range tan~!(2¢/d) and we
know that the variation in the sensed normal relative to the face normal is given by ~.
Thus, the angle # made by the contact vector relative to the face normal is bounded by
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the range

v =tan ! ?—6 -+ 7.
d

Thus the area of RC-space swept out by the endpoint of d is given by
d+e 0+~+tan” '
/ / pdpdp
=f—~y—tan—! 3—
2
4 ('y +tan™! f) ed = 4ved.

This is illustrated in Figure 4.

which evaluates to

Figure 5. The range of possible positions for a second sensory point, given that the first sensory
point lies 2 h' e on the base face.

But the fi ‘_ggmory point, P;, could lie anywhere on the first face. The total area of
RC-space swépt out as the base point of d is moved across the base face is diagrammed
in Figure 5.

We could simply integrate the area swept out by this process to obtain an expression
for the probability of consistency. It is somewhat easier, however, to simply consider the
problem of enscribing a rectangle, with sides aligned along the coordinate axes of the
RC-space, about this volume. For example, the bounding rectangle for the swept area of
Figure 5 is indicated in Figure 6.

x

We will assume that ¥ < % and that we only consider contact points such that
d > 2¢. In this case, 0 < v < . We may assume, without loss of generality, that § lies
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Figure 6. A bounding rectangle for the range of possible positions for a second sensory point,
- given that the first sensory point lies anywhere on the base face. This particular bounding
rectangle corresponds to the case of the swept area of Figure 5.

in the range [0,7]. In order to determine bounds on the dimensions of the enscribing
rectangle, we consider three case.

Consider first the case of § > 7 + v. In this case, one can show that

Ymin = (d - €¢)sin (8 + v)
ymax = (d + €)sin (§ — v)
Zmin = (d+€)cos (0 + v)
Tmax = (d — €)cos(f — v) + £

Similarly, if § < § — v, then

Ymin = (d - €)sin (8 — v)
ymax = (d + €)sin (8 + v)
Zrnin = (d = €)cos (9 + v)
Tmax = (d+ €)cos (8 — v) + €,
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and if 5 — v < # -7 5 — v, then
Ymin = (d — ¢)min {sin (§ — v),sin(§ + v)}
Ymax = (d + ¢)
Tmin = (d—€)cos (8 +v)
Tmax = (d+ €)cos (§ — v) + £

Thus, for example, the range in y is given in these three cases by

Ay = —2dcosfsinv + 2esinfcosv Case 1
= 2dcosfsinv + 2esinf cosv Case 2
=(d+¢€¢)—(d—€)min{sin(f — v),sin(6 + v)}. Case 3

We want to consider the maximum extent of this range. Applying standard mini-
mization techniques, we find that the maximum value for both Case 1 and Case 2 are
given by

Ay = 2V d?sin® v + €2 cos? v
and for Case 3, the maximum occurs at
2 (d sin® v + ecos? v) .
Moreover, the extremum observed in Case 1 and Case 2 is always greater than that of
Case 3, so we can bound the y component of the enscribing rectangle by

Ay = 2V d?sin? v + €2 cos? v.

In a similar manner, we find that we can bound the z component of the enscribing
rectangle by

Az = £+ 2V d?sin® v + €2 cos? v.
This gives us a rectangular bound on the area of RC-space in which the second sensory
point can lie, given that the first sensory point lies somewhere on the base face. Since
a face is described in RC-space by the position and orientation of its midpoint, relative
to the base face, we need to expand this volume to cover the possible positions of the
midpoints of the face. Clearly the most straightforward way to do this is to expand this
rectangle by -;4 on all sides, since a sensed point must lie within that distance of the

midpoint of the face. This yields an area in RC-space of dimensions

20+ 2V d?sin® v + €2 cos? v

by

£+2Vd?sin? v + €2 cos?v
in which the midpoint of a face must lie in order to be consistent with the sensory
information. —

Finally, we must account for the orientation of the face. Clearly, the angular com-
ponent of RC-space has extent 27 and the range of possible values for the orientation of
the second face relative to the first is given by 25. Thus, the swept volume of RC-space
corresponding to possible positions for the second sensory point is given by sweeping the
area illustrated in Figure 5 through the appropriate range of values along the orientation
dimension, as illustrated in Figure 7.

This defines a volume in RC-space in which a face must lie in order to be consistent
with the sensory information. In order to make useful estimates concerning this volume,
we need to normalize this volume. To do so, we have made the assumption that the faces
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Figure 7. The range of possible positions for a second sensory point, given that the first sensory
point lies anywhere on the base face.

have equal probability of lying anywhere within this RC-space (which spans an area = D?
in the spatial dimensions and 27 in the angular dimension). Clearly this assumption is
not netessarily valid for any particular object, although when averaged over all possible
orientations of the object, it becomes more accurate. In this case, the normalized volume
of RC-space in which a face must lie is bounded above by

< 151 Sg

m

!
v
£
Vg — 687
vr
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where

1 2 [, Nt
51—-\,; [D v2\/sm V—(D> cos u]

1 14 €\?2
= 2
D+2\/sm V—r<D> cos U].

VT
Note that, as expected, V; is a dimensionless quantity, depending only of ratios of
parameters of the polygonal object. Also, we can restrict our computation to cases where
d > 2e¢ so that v can be bounded above by v + %
Since V, is an upper bound on the probability of consistency p, by equation 1,
this normalized volume leads to a straightforward bound on the expected number of
interpretations consistent with s sensed points,

I, = m’psz) (5)

SS9 =

where
>
p<p,= —2 5182

6.2 The Three Dimensional Case

We can expand the derivation of the previous section to deal with the three dimensional
case. Here, the faces are squares of side £, rather than one dimensional edges. It is
straightforward to show that the positional aspects of the derivation can be decomposed
into z and y components, both yielding normalized ranges of size s;, while the z com-
ponent has a normalized rar{ge given by s;. Only one of the two rotational parameters
can be constrained by the measurements between the two unit surface normals, so that
the normalized volume in this case is given by

1

Vs = [“v'ﬁ“t—q} < 78382
vr n
As in the two dimensional case, this is an upper bound on the probability p, and

allows us to define an upper bound on the expected number of interpretations, by using
equation 1.

6.3 Computable Bounds

To use these results for actual computations, we make two final assumptions. In partic-
ular, we assume that we can filter our sensory data so as to ensure that

d > 2e.

This is straightforward to do with any of the sensing modalities mentioned, and fur-
thermore makes intuitive sense. Clearly, allowing closely spaced sensory points (where
closeness here is defined by the sensitivity € of the sensing device) is unlikely to provide
much additional constraint on the recognition problem. This assumption then implies
that

<u<— .
RS _4+’7

We further assume that v < /4, since errors in sensing the surface orientation beyond
that range imply that the sensor cannot tell which side of a plane the sensor lies on.
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Given these simple assumptions on the quality of the sensory data. if we let £/ = (D
denote the normalized, dimensionless edge length, and ¢/ = ¢,'D denote the normalized,
dimensionless sensing error, then we have

1 .
sq < 7 [i’—i— \/2 (siny + cosy)? + 4 (¢')? cos?
el
§; = ﬁ + $2
7
Vg = ;3182
b
V3 = ;8382

and the upper bounds on the probability of consistency, as in equation 1, are given by V;
in the case of three degrees of freedom, and by V3 in the case of six degrees of freedom.

- 6.4 Degradation with Noise

Having derived specific bounds on the effective pruning of the local constraints, it is
easy to see how the presence of sensor error affects the expected number of consistent
hypotheses. To demonstrate the graceful degradation of the constraints, we have plotted
the expected number of interpretations as a function of the number of sensory points,
for several different error conditions.

In Figure 8, we graph an upper bound on the expected number of interpretations
as a function of the sensor error, by using equation 5. Each graph represents a different
value of ¢’ ranging from 0.05 to 0.5. The ordinate of each graph is the expected number
of interpretations. The abscissa is the number of sensory data points. For all of the
graphs shown here, the number of model faces was fixed at m = 1000 and the size of
the model faces was fixed at £/ = 0.01. Parts a, b and ¢ show the cases of angle error
v = /5,7/10 and 7 /15 respectively. In Figure 9, we plot similar graphs for the case of
¢ =0.1.

It can be seen from these graphs, as might be expected from the earlier theoretical
analysis, that the number of expected interpretations reaches an extremum for a small
number of gensed points, and then quickly reduces as the number of sensed points is
increased. This suggests that for a wide range of errors in the sensory measurements the
constraint bases

6.5 Predictions for Sensing

Given estimates for the probability of consistency between faces of an object, we can use
equation 3 to predict the number of sensory data points needed to reduce the expected
number of interpretations to 1. Some samples are listed in Tables 1 and 2.

It can be seen from Tables 1 and 2 that the number of sensory data points required
is quite small, even for large amounts of error in the sensory measurements.
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Figure 8. The expected number of interpretations as a function of the sensor error. Each graph
represents a different value of ¢’ ranging from 0.05 to 0.5. The ordinate of each graph is an
upper bound on the expected number of interpretations. The abscissa is the number of sensory
data points. For all of the graphs shown here, the number of model faces was fixed at m = 1000
and the size of the model faces was fixed at ¢ = 0.01. Parts a, b and ¢ show the cases of angle
error v = m/5,7/10 and 7/15 respectively.
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Figure 9. The expected number of interpretations as a function of the sensor error. Each graph
represents a different value of ¢ ranging from 0.05 to 0.5. The ordinate of each graph is an
upper bound on the expected number of interpretations. The abscissa is the number of sensory
data points. For all of the graphs shown here, the number of model faces was fixed at m = 1000
and the size of the model faces was fixed at £ = 0.1. Parts a, band ¢ show the cases of angle
error v = 7/5,7/10 and 7/15 respectively.
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051 15 .2 2 3 3% 4 45 5
7,50 4+ 4 4 4 4 1 P 4
Cox30 | 5. 5 54 5. 51 s | 5 | 5 5 . 5 |
37 /50 5 5 6| 6 6| 6. 6| 6 6 | 6
47 /50 6 | 6 6 | 6 6| 6 7| 7 '
57/50 7| 7 7| 7 7| 7 7| 7 8 | 8
67 /50 8 | 8 8 | 8 8 | 8 8 | 8 o | 9
7r /50 9 | 9 9 | 9 9 | 9 9 | 9| 10| 10
87 /50 10| 10] 10] 10| 1010 10| 10| 11 | 11
97 /50 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 12
107/50 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 13

Table 1 - Number of sensory points needed for a unique interpretation. The number of model
faces is fixed at 1000, and the ratio of model face size to object diameter is fixed at £ = 0.1. The
rows show increasing positional error, measured in ¢ and the columns show increasing angular
error, measured in 7.

.05 1 .15 2 .25 3 .35 4 45 5

7 /50 5 5 5 5 5 5 5 5 5 5

27 /50 6 6 6 6 6 6 6 6 6 6
37 /50 7 7 7 7 7 7 7 7 7 7
47 /50 8 8 8 8 8 8 8 8 9 9
57 /50 9 9 9 9 9 10 10 10 10 10
6 /50 11 11 11 11 11 11 11 11 12 12
r /50 12 12 12 12 13 13 13 13 14 14
87 /50 14 14 14 | 14 15 15 15 15 16 16
97 /50 16 16 16 17 17 17 17 18 18 19
107 /50 19 19 19 19 19 20 20 21 21 22

Table 2 — Number_of sensory points needed for a unique interpretation. The number of model
faces is fixed at 1000, and the ratio of model face size to object diameter is fixed at £/ = 0.5. The
rows show increasing positional error, measured in ¢’ and the columns show increasing angular
error, measured in 7.

7. Application of the Theory

We began our investigation of the problem of model-based recognition and localization by
establishing a set of criteria that should be satisfied by constraints between sensory data
and model elements. In particular, we argued that the constraints should be coordinate-
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frame-independent. simple, sensor-independent, combinatorially powerful and degrade
gracefully with error. We have spent the bulk of this paper deriving such a set of
constraints and establishing on theoretical grounds that these criteria are satisfied. This
theoretical basis was an outgrowth of earlier work Grimson and Lozano-Pérez 1984, in
which an isomorphic set of constraints was proposed and tested.

\3)}‘%

Figure 10. Sample objects used in empirical studies as feported in [Grimson and Lozano-Pérez
84]. Table 3 indicates the agreement between the theoretical results and the empirically observed
behavior.

The original motivation for this theoretical investigation was the surprising (to the au-
thors) success of a recognition algorithm based on the simple geometric constraints devel-
oped here, and reported in [Grimson and Lozano-Pérez 84]. In the original development
and presentation of the recognition algorithm, a large set of simulations were run on a
series of test objects, for varying types of error conditions. Even though the assumptions
used in development above are not completely met by the objects used in the empirical
studies, we can use the empirical results to demonstrate a general agreement between
the theoretical bounds derived in this paper, and the empirically observed results. Two
sample objects are shown in Figure 10. A comparison of the theoretical and empirical
results is shown in Table 3. Here Jexp is computed from equations 1 and 3, and is the
theoretically prediction of the number of interpretations. I} is the empirically observed
number of interpretations. s ;,, is computed using equation 3 and denotes the predicted
number of data points needed to force a unique interpretation. Since the object does
not consist of equal sized faces, we used the average length of the edge of a face as the
value for £ in our computations. The table indicates that the values in the Iexp and
the I, are almost identical, and the slight deviations can probably be accounted for
by deviations of the objects from the simplifying assumptions made in the theoretical
analysis. Similar agreement has been observed for other objects.

We can relate the theoretical results to empirical ones in another way. Equation 2
predicts the number of sensory points for which the expected number of interpretations
reaches a maximum, provided that an estimate for p is available. In [Grimson and




K a V=P o lexp [obs
mi15 0 .003 0970 5) 1 : 1
R 1 1
7 /15 .033 .0972 5 1 1
x/10 | .003 | .1695 6 1 1
7/10 | 017 | .1696 6 1 1
7/10 .033 .1697 6 1 2
7/8 .003 2322 7 1 1
r/8 .017 2323 7 1 1
7/8 .033 .2326 7 1 2

7 ¢ Vs=p | Smin Texp Iobs
n/12 .0013 .1023 5 1 1
/12 .0065 .1024 5 1 1
7/10 .0013 1328 6 1 1
/10 | 0065 | .1328 6 1 1
x/8 | 0013 | .1833 6 1 2
n/8 .0065 1834 6 1 2

Table 3 — Comparison of theoretical and empirical results. The top table corresponds to the
Motor Housing, and the bottom table to the Hand. ~ and €' indicate the normalized errors
in the sensing. sp;, is the minimum number of sensory points needed to reduce the expected
number of interpretations lexp to 1. I pg is the median number of observed interpretations.
using 12 points of sensed data, and based on 100 trials.

Lozano-Pérez 84| the median number of interpretations, based on a series of tests, was
presented as a function of the number of sensory points. For the objects in Figure 10, it
was shown that the maximum number of interpretations occurred for 3 sensory points,
after which point the number of interpretations decreased. If we evaluate equation 2,
given the estimate of p obtained above, we find that the theoretical bounds also predict
" a peak in the number of interpretations for 3 sensory points (when taken to the nearest
integer).

8. Summary

Previously, (Grimson and Lozano-Pérez 84, 85a, 85b] presented a technique for the recog-
nition and localization of objects from sparse, noisy sensory-data. The technique’s per-
formance on extensive simulations and real data was used as support for its effectiveness.
In this paper, we have further supported that recognition technique, by showing that
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local, coordinate-frame-independent constraints between sparse, noisy sensory data are
very effective, in general, in handling the recognition and localization problem.

We provided a method for estimating the probability of consistency between data
points and corresponding object patches, and used this method to actually compute the
expected number of interpretations, under a variety of sensing conditions. It was seen
that this number rapidly decreases with increasing sensory data, and that shows graceful
degradation with the presence of increasing noise. The predictions of the theory were
also shown to be in agreement with the results of experiments.
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