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1. Introduction

The human visual system performs a remarkable feat. The pattern of light that reaches
the eye from a scene is the resuit of a complex interaction among several factors: the quality
of the illuminant, the geometry of the scene, and the properties of the materials composing
the visible surfaces. Yet somehow these confounded factors are mostly separated in our
perception. We see particular spatial arrangements of objects. These objects appear
bounded by surfaces having properties—color and texture—roughly invariant over a range
of conditions of geometry and illumination. To compute invariant descriptions of the material
properties of surfaces is an important goal of any visual system. Such material descriptors
are useful for object recognition and visual search.

I's commonplace to assume color vision has something to do with capturing the
albedoes of surface materials.! But exactly what aspect of the albedo function would serve
a visual system best? Consider the grandiose goal of recovering a material’s albedo as a
continuous function of wavelength. Not only is this goal impractical; it is counter to the
aim of finding invariant descriptors. With such an over-zealous representation, unimportant
variations in a surface would prevent its being recognized as a single region, a patch of
one kind of stuff. The perception of the world would be shattered with spectral acuity too
fine; one literally wouldn't be able to see the forest for the trees.

Here we seek a representation of material reflectance in which trivial surface variations
can be overlooked in order to appreciate important similarities.2 At the same time, the
representation must allow some discrimination among different materials. Below we develop
such a categorical color space, based on a theoretical solution to the problem of identifying
material changes. A trichromatic system, it will be shown, yields a two-dimensional color
space in which the axes will turn out to represent boundaries between different materials.
The four quadrants of the two-dimensional space represent material categories.

2. Spectral Information at Edges

When two image regions arise from different materials in the scene, the transition from
one material to another will usually bring about an edge in the image. Thus we restrict our
search for material changes to edges. How can we decide whether an edge is due to a
material change?

An edge in the image will usually arise from a single event or state of affairs in
the three-dimensional scene (Marr, 1982). The most common edge types are shadows,

'The albedo of a material is a function of wavelength p(7), with range (0, 1), that indicates what
fraction of photons (eritted by some light source) at each wavelength will be reflected.

*We are not suggesting any spectral information be thrown away. We are merely exploring a single
problem. Other problems may require detailed spectral information.
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(A) Lawful Change (B) Material Change
Wavelength

Figure 1 Graphs of image intensity versus wavelength. Each curve represents the image intensity
measurable from one image region. A) Two graphs of same shape: a likely lawful change. B) Two
graphs of different shape: a candidate for material change.

highlights, surface orientation discontinuities, and pigment density changes.3 Alternatively,
an edge may be due to a material change, a discontinuity between two different kinds of
stuff.* How can a material change edge be distinguished from other types of edges? Rubin
& Richards (1982) attempted to answer this question. Edges which arise from shadows,
orientation changes and highlights are /awful in the sense that there are equations that
describe how image intensities will change across these edges. By contrast, material
changes are completely unpredictable; they are arbitrary changes, and as such, can only
be inferred by ruling out, at a given edge, the possibility of any of the above lawful changes.

To infer material changes, we now face the awkward prospect of having to reject,
one by one, each of the lawful changes. Perhaps there is some method of rejecting all of
those edges en masse. Fortunately, there is a simple ordinal rule common to all the edges
formed by lawful processes: if the intensity at one wavelength decreases across a lawful
edge (shadows, highlights, and so on) then the intensity must also decrease at all other
wavelengths taken across the same edge (Rubin and Richards, 1982). When this condition
is violated, we say there is a “spectral crosspoint” across the edge. Spectral crosspoints
imply material changes; a spectral crosspoint is illustrated in Fig. 2a. The spectral crosspoint
is not the only means of discovering material changes, however. We will show that a second
and independent condition holds for each of the lawful processes—namely the preservation
of ordinality of image intensity across wavelength. A violation of this conditicn implies a
material change.

3Surface orientation change and shadow can coincide at an edge, but this exception is unimportant
to the arguments that follow. See Rubin & Richards, 1982, footnote 186.

*We consider materials to consist of some spectrally neutral embedding material (e.g., cellulose)
impregnated with a single pigment {(e.g., chlorophyll). A material change is a change in pigment type,
or a change in both pigment and embedding material.
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3. The Opposite Slope Sign Inference
3.1 The Lawful Processes

Figure 1a shows two image intensity graphs of the same shape. Intuitively, the two
graphs, of similar shape, arise from measurements taken on either side of a *lawful” edge
type. Figure 1b shows two graphs of different shape. None of the lawful edge types could
have produced such a distortion, and intuitively it seems that a material change edge is
the best explanation. We now must make explicit what we mean by *‘same shape” and
then show that this definition of spectral shape remains invariant across edges created by
shadows, changes in surface orientation, highlights or variations in pigment density—namely
the lawful conditions we wish to reject as material changes.

Definition: Two curves of intensity versus wavelength have the same shape if the
ordinal relations of image intensity across wavelength are preserved.

Thus, if Ix()\) and Iy(\) are image intensities as functions of wavelength measured on both
sides, X and Y, of an edge. Ix(\) and Iy(\) have identical ordinality if, for all \; and X,
Ix(M) < Ix(X2) <ff Iy(M\1) < Ir(\2). Note that two image intensity functions of identical
ordinality will have local extrema at the same values of wavelength.

Given this ordinal definition of “'same shape’”, Appendix 1 shows that the ordinality
relationship is preserved across all edges arising from the lawful edge types, provided that
the following two conditions hold:

Gray world condition: The average of all the different albedoes in the scene will
be a spectrally flat “gray”, so that the diffuse reflected light will have the same
spectral character as the direct light.

Spectral normalization: The spectral samples of image intensity have been
normalized with respect to the color of the illuminant.

(The need for the second condition, namely spectral normalization, will be eliminated
subsequently.)

3.2 The Opposite Slope Sign Operator

We now can proceed to test for “‘same shape’’ using the ordinality relation. If ordinality
is violated across an edge, then we infer the edge does not arise from one of the “lawful”
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Independence of Crosspoint and
Opposite Slope Sign
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Figure 2 Graphs of image intensity (ordinate) versus wavelength (abscissa). Two wavelength
samples, X, and X, are shown. An image region yields two samples of intensity, one for each
wavelength, ana is represented by the line segment connecting the two sample values. a) & c) Two
examples of the spectral crosspoint (Rubin & Richards, 1982). a) & b) Two examples of the opposite
slope sign condition. This is the minimal configuration that shows different ordinalities. Note that
the crosspoint and opposite slope sign condition are completely independent, since they can occur
together (a), or each can occur alone (b and c), or neither can occur (d).

(D) ./'
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processes and hence must represent a material change (provided also, of course, that our
grey world condition is not violated).’

What is the simplest way to seek violations of ordinality? A pair of spectral samples
suffices. Let the image intensities on both sides of an edge be measured at wavelengths
X1 and ;. If image intensity at X\, is greater than that at X2 on one side of the edge, then
the ordinality condition requires the same relationship hold on the other side. So if the
two sides of the edge do not have greater intensity in the same spectral sample, ordinality
is violated; the edge cannot be lawful. (Details are given in Appendix 1.) This condition

*It is possible when the grey world assumption is wrong, material changes will be inferred from
images. This is not entirely bad news; if human perception also goes awry when the grey worid
assumption is violated, then our theory will become more credible as an account of biological visual
systems.
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is called the opposite slope sign condition. Examples are shown in Fig. 2a and 2b. The
“slope” of the opposite slope sign condition is the slope of the graph of intensity versus
wavelength; it is an evaluation of the sign of the derivative of the spectral image intensity

function, 4.

More formally, given two regions X and Y across an edge and intensity samples I
taken at two wavelengths X, and X\,, we have the following test for a material change:

Opposite Slope Sign Condition:
(Ixxs = Ixx,) (Iys, = Iyx,) < 0.

which may be contrasted with' the previously derived crosspoint condition (Rubin and
Richards, 1982):

Spectral Crosspoint Condition:

(Ixx, = Iyx,) (Ixx, = Iyy,) < O.

INULE Uidt UIE SpeLual GIusspOlltt and uie OPPOUSItE SILEE SIYN CONUIIONS 4re compietely
independent. Figure 2a shows the two occurring together. Each condition can arise alone,
as shown in Figs. 2b and 2¢. Finally neither condition is necessary, as shown in Fig. 2d.

The two conditions are related by a kind of symmetry. The spectral crosspoint must
make two comparisons across an edge (one for each wavelength), and combine them
logically (both comparisons must work out in the correct way). The opposite slope sign
condition must make two comparisons, one within each image region, and then combine
them logically across the edge.

To summarize: the spectral crosspoint—our original means of finding material changes—
has been augmented by a second and independent material change condition: opposite
slope sign. The opposite slope sign condition is the key theoretical result on which we will
base our spectral representation of material types. We chcose opposite slope sign rather
than the crosspoint, because the cpposite slope sign condition tells us semething about
each of the two regions that produce it. Namely, one region has positive spectral slope, the
other negative. By contrast, the spectral crosspoint cannot be decomposed into assertions
about the two regions that produce it. in a crosspoint, spatial and spectral information are

®The opposite slope sign condition is described here as existing statically, across an edge. It is a
spatial comparison of spectral infornation. A comparison of spectral information in time is equivalent.
Such a temporal opposite slope sign condition would work as follows: An eye could sweep across
an edge, and the spectral information before and after the movement couid be compared. Similarly,
there is a temporal equivalent of the crosspoint. Consequences of these isororphic computations in
the temporal domain wiil not be explored here.
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hopelessly intertwined. We do not cast aside the crosspoint, though. It will play a vital role
in correcting for the spectral content of the illuminant.

4.0 Spectral Normalization

For the opposi‘te slope sign test to find material edges successfully, it is necessary
for the measured spectral intensities to be normalized. That is, these samples must be
transformed to what they would have been under a spectrally flat (“white’’) illuminant.
Clearly if no correction is applied, then the stronger spectral skew of an illuminant may
not only reduce the number of observed opposite slope sign pairs, but more seriously, may
transform pairs having the same slope sign into pairs that are seen as having an opposite
slope sign.

By contrast, the spectral crosspoint condition is insensitive to the spectral content
of the illuminant, as can be seen by inspecting panels A and C of Fig. 2. (See Rubin
& Richards, 1982, for a more formal treatment.) We capitalize on this property of the
crosspoint to devise a theory of spectral normalization. Once the image has been spectrally
normalized, it is as if the illuminant were white. The opposite slope sign condition will now
be able to find correctly a maximum number of material changes.

Consider now a scene composed of a I'arge number of randomly selected materials. For
each image region (simple closed curves defined by edges), take two samples of intensity
I\, and I,, at wavelengths X; and \,. Each region will be associated with a spectral slope
sign, which is just the sign of the difference I, — I,. If the illuminant were white (same
photon flux at all wavelengths), we would expect to have roughly equal numbers of regions
of positive spectral slope and regions of negative spectral slope. This expectation is based
on two assumptions. The first is that there is a random collection of materials in the scene.
The second is that materials in the world are such that a random collection of them will be
divided equally between positive and negative spectral slope.

As suggested above, normalization requires a collection of image regions that arises
from a random set of materials. What about using all image regions? The set of all image
regions is not likely to represent a random collection of materials, because many materials
will recur in several image regions. For example, if a cast shadow culs across a single
piece of material, that material will be twice represented, once for each side of the shadow
edge. A second example arises with pigment density changes. In a forest scene, all
leaves are composed of the same material (chlorophyll embedded in a cellulose base). A
sensible normalization scheme would not take each leaf as a distinct patch of material;
minor variations in pigment density from leaf to leaf ought to be ignored.
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It seems clear, then, that not all image regions should participate in normalization.
Perhaps a subset of image regions can be found that is more likely to represent a random
collection of materials. The spectral crosspoint offers a means of finding such a random
subset of regions. Suppose that instead of taking each image region as a distinct material,
we took only pairs of regions that have a spectral crosspoint on the edge between them.
We would be guaranteed that each pair of regions would correspond to distinct materials.
The pairs of different material regions found with the crosspoint will be the subset of image
regions that will be used for normalization.

Our normalization scheme works like this: Recall that we expect the regions found by
the crosspoint to represent a random collection of materials. So we expect roughly the
same number of regions having positive spectral slope as negative. For the subset of image
regions defined by the crosspoint, tally the number having positive spectral slope and the
number having negative slope. If the numbers are approximately equal, our expectation has
been met; we can infer that the illuminant is white (spectrally flat).” Suppose to the contrary
that the number of regions of positive spectral slope exceeds the number of negative-slope
regions. Then we can infer that the illuminant is more intense at long wavelengths than
at short. (Positive spectral slope means greater intensity in the longer wavelength sample.)
Now multiplicatively scale one of the spectral samples. In the example here, we need to
multiply all long wavelength samples by some number less than one. Exactly which number?
The one that will fulfill our expectation of equal numbers of positive and negative spectral
slope. That is, multiply all long wavelength samples by some number (less than one) such
that half of the regions under consideration will have greater intensity in the modified long
wavelength sample than the short wavelength sample, and half, the reverse. For a large
number of samples, the multiplicative constant of normalization can be calculated from
the mean value of the spectral slopes of all regions participating in crosspoints. See the
algorithm for spectral normalization in Appendix 2.

This crosspbint normalization scheme has some useful properties. Each image region
used has the same potency in normalization, regardless of the size of the region. That is,
each pair of image regions (found with the crosspoint) maps to a pair of data points, one
for each region. This is good for two reasons. First, the scheme is independent of image
region areas. This is desirable since we would not want visual systems to treat an image of
a large blue thing and a small red thing differently from an image of a small blue thing and

"Note there must be some crosspoints for normalization to proceed. If there are no crosspoints,
there are no regions to consider. So although it is technically true that there are equal numbers
of positive-slope regions and negative-slope regions (namely, zero), we do not want to infer the
illuminant is white for two reasons. First, we have no information about any image region, and thus
it seems imprudent to guess blindly that the light is white. Second, we have evidence that the scene
consists of a single material since it has no crosspoints. Normalization would bring about material
change assertions via the opposite slope sign condition, in contradiction to the evidence of uniformity
from the crossgoint.
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It is worth comparing our crosspoint normalization with Land’s latest normalization
theory. Land’s (1983) scheme involves comparing the image intensity of a target region
with that of a few hundred random locations in the image. In such a theory, the larger
an image region, the more random locations it will contain. Land's theory is therefore
area-based, while ours is independent of the particular sizes of image regions. Our theory
makes different predictions from Land’s: we expect no effect on normalization from the sizes
of image regions, or from the lengths of image edge segments.

5.0 Choosing a Representation

Assume now that the image has been normalized using the spectral crosspoint
condition, as described in section 4. We next select a representation of spectral information
based on that rule. In particular, we seek a simple, convenient spectral representation of
materials that is invariant under shadow, highlight, surface orientation change, and pigment

density change.

For any region in the image, intensity can be measured at a long wavelength and at
a second, shorter wavelength. Call these two measurements of image intensity L and S,
respectively, for each image region. Suppose we'd like to represent the spectral character
of a region with a single number, namely some mapping of the pair (, S). Furthermore, we
would like the mapping (L, S) to be invariant under the lawful changes. The recognition of
material differences would be easy in such a representation. A single material in its different
guises—fully lit, shadowed, having different densities of pigmentation, with different surface
orientations—would map ideally to a single point. If there were such a mapping, then
whenever two image regions mapped to distinct points, we would know they corresponded
to distinct materials.

The lawful edge types are unfortunately so diverse that there is no function giving us the
desired mapping. No single continuous function of (L, 8) will be invariant under multiplicative
(shadow), exponential (pigment density), and additive (highlight) changes. Material change,
then, cannot be reduced to the problem of distinguishing two points in the range of some

function.

The problem isn't hopeless, however, for there is a continuous function invariant under
some of the lawful changes, namely the multiplicative ones {shadow and surface orientation
change). Consider again the two image intensity samples S and L. The quotient L will have
the identical value on both sides of a surface orientation change or a shadow edge. The
simple quotient is, of course, not unique in remaining constant across an orientation edge.
Many functions of the two samples 1, and § have the same property. We will choose among
three simple functions having this property:
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Many functions of the two samples /. and § have the same property. We will choose among
three simple functions having this property:

L L L-8
S L+S L+S )

How can we select among these candidates? The function % takes image regions
into the unbounded interval (0, co), while the other two functions take image intensities into
closed intervals. (—,—;—i—g maps intensities into [0, 1]; H% maps into [—1,1].) The function £ will
be rejected, since any reasonable computational system will be better off using quantities
that fall within a closed interval, rather than those that could be arbitrarily large. To choose
between the two remaining candidate functions we consider the ease of discovering material
changes in these two maps. In particular, how does the opposite slope sign condition appear

in each of the candidate mappings?

Given two image regions X and Y, let I denote the function 14, so that F(X) and
F(Y) are the values of the function F of regions X and Y, respectively. Then for F', the
opposite slope sign condition is expressed by [sign(#(X)~ 1) £ sign(F(Y)— 1)]. (The reason
for this expression is that the function F" takes on the value } whenever L = §.)

Let & denote the function {52, a common measure of contrast. This is a simple
function that facilitates the computation of material change. The sign of G is the sign of
the spectral slope of an image region. That is, [sign(G(X)) # sign(G(Y))] emerges as the
opposite slope (material change) condition.

We prefer the function G to the F for our representation. Whereas to determine
material change with G requires only a sign check, with F, the system must maintain the
constant 1 and perform two subtractions. The particular choice of F or G, though, seems
not to be critical for the goals we have in mind.

Figure 3 shows the interval [—-1,1], the range of the function G. Two image regions
corresponding to lit and shadowed versions of the same material, or two different surface
orientations, will, by design of G, be mapped to the same point. This is shown in Fig. 3a.
Two image regions of different pigment density have the same slope sign; hence, in the G
map, the corresponding pair of points cannot straddie the zero. The same holds for a pair
of points corresponding to a highlight and a neighboring matte region. The latter two edge ‘
types are shown in the G mapping in Fig. 3b. If two image regions are mapped to points
straddling the zero (Fig. 3c), they arise from different materials.

To summarize, we sought a function of spectral information invariant over the lawful
changes. That goal being impossible, we chose 5% for two reasons. First, it is invariant
across shadows and surface orientation changes. Second, finding material changes with
the opposite slope sign condition is easy. The range of the function can be divided into
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How Edges Map into the
Spectral Representation
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Figure 3 How various processes appear in the spectral representation implied by the mapping #52,
the range of which.is [-1,1]. a) Two image regions differing only in surface orientation or shadow map
to a single point. b) Two regions differing as matte and highlighted, or as two different degrees of
pigmentation density, map to the same half of the range, i.e., they map to points having same-sign
coordinates. c) Only two different materials can map to points straddling the zero, i.e., to points of
different-sign coordinates.

two parts, (—1,0) and (0, 1). Materials with albedoes of positive spectral slope sign will map
into the positive half of the range, and negative-sloping albedoes to the negative part of the

range.?

Finally, it's worth reiterating why we built our spectral representation around the
opposite slope sign condition, and not the spectral crosspoint. Spectral slope sign is an
invariant property of a material's albedo function.? The opposite slope sign condition can
be decomposed into separate meaningful statements about properties of two image regions:
The slope sign of one region is pesitive, and that of the other, negative. We know something
about each region. The crosspoint, by contrast, hopelessly confounds spatial and spectral
information. Higher goals of color vision involve describing the properties of individual
image regions, and cannot be reached by the crosspoint alone.

®Many continuous maps share the same invariance. We selected our map on the basis of algorithmic
considerations. The particular choice is independent of the theory of finding material change edges.

“Since a material is defined as a kind of stuff, a single material can have ditferent albedoes as pigment
density changes. What stays constant over these changes in density of pigment is spectral slope sign.

10
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Trichromatic Representations
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Figure 4 Stepsin the construction of the trichromatic material representation. a) Two axes comparing
L and M, and S and M samples, are joined orthogonally. Each quadrant is a material category.
Points in different quadrants correspond to distinct materials. Points within one quadrant may belong
to the same material; they are considered equivalent in this representation. b) The tine of unit slope
in the figure above represents the comparison between § and /. sarmples. Adding the unit slope line
divides the color space into six regions or “hextants.” Points in different hextants arise from different
materials. Note the hextants do not have equal areas.

6.0 Trichromacy: Finding More Material Changes

Suppose we add a third spectral sample, cail it M, to our original § and L samples.
Adding a third spectral sample will allow the detection of new kinds of material changes.!?
However, more importantly, the number of basic material categories will be increased from

two to six.

In the two-wavelength-sample material representation, an image region is encoded
essentiaily by the rank order of the spectral samples, or equivalently by the sign of the slope
of the line segment connecting the samples. Thus, given two wavelength measurements,
there are two types of material—negative slope and positive slope. With three wavelength
samples, an image region is associated with three slope signs—a slope between each pair
of samples (SM, ML, SL). There are six possible rank orderings of the measurements
(3! == 6), and thus six possible basic material types. Any two regions that produce distinct
rank orderings of the wavelength samples will bring about one or more opposite slope signs.
Any two such regions must therefore be distinct materials.

As a first step in constructing the trichromatic material representation, we combine
slope information from two of the three pairs of samples. Arbitrarily, we begin with SM

'"The additional number of material changes detected with each new spectral sample will drop
sharply after the third sample. The reason is that the albedoes of naturai objects (in the visible range)
are typically slow-changing functions of wavelength (Krinov, 1971; Snodderly, 1979). Cohen (1964)
showed that three carefully chosen functions of wavelength captured over 99% of the albedo functions
of Munsell chips.

LR
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and LM, combining the information in a two-dimensional space as shown in Fig. 4a. Image
regions are mapped to points in the square [-1,1] X [, 1], and a pair of points separated
by an axis (or both axes) correspond to two regions of different material, just as did a pair of
points straddling the zero in Fig. 3c. Any pair of points in a single quadrant may arise from a
single material. This is the sense in which quadrants represent material categories. Without
yet considering comparisons between § and I, samples, we already have a categorical
representation in Fig. 4a, in which in each quadrant corresponds to a material category.

Let's now examine the third pairing of samples, § and L. What condition holding
between a pair of points in the preliminary representation of Fig. 4a corresponds to the
opposite slope sign condition between § and L? It is easily shown that if a pair of
points straddles the line of unit slope, the points arise from materials with opposite (S and

L) slopes.'' Furthermore, not just the sign, but the continuous value =5 of the Lto S

comparison is contained implicitly in the representation defined by ordered pairs ($734, 4=M)

that Fig. 4a illustrates.!?

The unit slope line in the SM-LM space therefore has special significance, and is
added to the representation as a third material change axis in Fig. 4b. A pair of points lying
across any of the three axes will correspond to distinct materials. Thus, each of the six
sectors of Fig. 4b corresponds to a material type, or equivalently, to a rank ordering of the
three samples. The particular rank ordering associated with each “hextant” is shown in Fig.
4b. Note the hextants of Fig. 4b do not have equal areas. The original pair of axes can be
joined in a skew fashion to allocate more or less area to the different material categories.

To summarize, image intensities are measured at $, M and L, normalized according
to the crosspoint normalization of section 4, and mapped to (553, 574 in a rectangular
coordinate system, initially creating four basic material types. A further subdivision into Six
types can arise by using the line of unit slope as a third axis, dividing the region [-1,1]?
into six regions, each corresponding to a different material type. Points in different hextants
arise from different materials, whereas points common to one hextant may arise from lawful

edge events occurring on a single material.

Algorithm aficionados should turn to Appendix 2, where we sketch a procedure for
spectral categorization based on the above theory.

"' The line of unit slope is given by $3M — L=M This s equivalent to (S—M)(L+ M) = (§+M)(L— M),
or § = L. Points above this unit slope line correspond to 1, > S, points below to § > L.

'* Given the values (74, 2=M), we can compute the value of 75 Let Q@ = 55M and B = M,
Then k=S —. @-t
L+S T Qr-1"

12
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7.0 Relation to Psychophysics and Neurophysiology

Our spectral representation of material types is but an abstract model of biological
color vision. In our theory, certain terms are left undefined. We haven’t described what the
‘“spectral samples” of the theory are, and we haven’t said anything about how materials are
encoded. How then can we assess its relevance? Two linking assumptions will guide the
interpretation of our theory. First, in the discussion of the psychology of color vision, we
will argue that of the traditional color variables hue, saturation, and lightness, it is hue that
encodes material type. Second, in the discussion of neurophysiology, we take the small step
to identify the spectral samples of our theory with the relative stimulation of the three human
cone photopigments (or combinations thereof).!® Given this interpretation of our theory, it
turns out that double-opponent units found in color neurophysiology can be understood as
performing the spectral crosspoint and/or the opposite slope sign computation.

7.1 Psychologically Unique Primaries

Ewald Hering (1964) offered a psychological account of human color perception that
was based on the notion of opponent processes. He observed that ‘‘redness and greenness,
or yellowness and blueness are never simultaneously evident in any color, but rather appear
to be mutually exclusive.” This is a clear case of categorical perception. Reddish and
greenish are mutually exclusive hue categories, and if hue is encoding material properties,
then the two categories will partition materials. See Fig. 5a. Similarly, bluish and yellowish
will partition materials. See Fig. 5b. These two sets of mutually exclusive hue pairs divide
the color space into four regions, as in Fig. 5c, just as did our trichrométic color space (Fig.
4a).

Our claim that Hering’s color quadrants correspond to our material categories is
predictive: we expect that shadows, surface orientation changes, and pigment density
changes would only rarely cause perceived hue to change from reddish to greenish (or vice
versa), or from yellowish to bluish (or vice versa). As noted in Appendix |, highlights could
be troublesome.

The fact that there are four hue categories supports the idea that trichromatic human
vision uses two opposite slope sign checks, as in Fig. 4a, but not the third, as shown in
Fig. 4b. (Goethe [1808], however, proposed a theory of color perception based on six
hue categories, which might correspond to the use of all three opposite slope sign checks.)

130ur theory of crosspoints and opposite slope signs was based on spectral samples at a single
wavelength. Biological measurements of the spectrum are broadband. It turns out that broadband
samples cannot introduce crosspoints that are false targets. That is, a spectral crosspoint found with
broadband samples is still a reliabie indicator of material change (Rubin & Richards, 1982, Appendix
V). The opposite slope sign condition may not be as robust; more work is needed to study the effects
of broadband sampling.
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Opponent Color Theory
(A) (8) (C)  Uniaue

Y
) 8 f Bluish | Reddish
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Unique
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Figure 5 Hering's notion of opponent color processes. a) All colors are either reddish or greenish,
but never both. b) All colors are either bluish or yellowish, but never both. ¢) The two pairs of mutually
exclusive colors divide the color circle into four quadrants, similar to the trichromatic representation
that we develop in Fig. 6a.

Evidence from infants (Bornstein et al., 1976) supports Hering’s theory of four hue categories
as independent of language and culture. Pigeons also have categorical color perception
(Wright & Cumming, 1971), suggésting the computational scheme that we propose here is
fundamental to color vision across species.

Hering’s notion of opponent color processes implies four special hues. They are
indicated in Fig. 5¢c. These hues, which Hering called psychological primaries, are the
boundaries that separate color categories. Primary red is that hue among the reddish hues
that separates the yellowish from the bluish; primary blue is that hue among the bluish
that splits the reddish from the greenish; and so on. These primary colors are unstable
in the sense that any deviation from them involves a change of color categories. Hering's
psychological primaries correspond to the axes of our trichromatic representation (Fig. 4a).

Just why these primaries have their particular locations in the spectrum is an interesting
evolutionary question not addressed here. One possibility is that a creature’s material
boundaries are positioned in some way as to make the greatest number of discriminations
among materials encountered in its environment.!* Interesting work has been done along
these lines. Snodderly (1979) attempted to relate the color vision of New World monkeys to
the spectral characteristics of their jungle habitat. Levine & MacNichol (1982) and McFarland

"Material boundaries can be changed in two ways. The wavelength at which a photopigment captures
the greatest percentage of photons can be altered, or new *“‘channels’” can be created by combining
photopigments. One sort of combination of two spectral samples S and 1. is a rotation; that is, new
coordinates (S cos 0 — Lsin 0, S sin 0 + L cos 0) can be created for some angle of rotation 0. The original
and rotated coordinate systems will not always agree about whether two image regions satisfy the
opposite slope sign condition. That is, the two spectral coordinate systems differing only by a rotation
will make different material distinctions. An angle ¢ can therefore be selected to maximize the number
of material changes detected.
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& Munz (1975b) linked the photopigment characteristics of fishes to the spectral character
of light in their environments.

In sum, our spectral representation of material categories is a two-dimensional space
in which each quadrant represents a material type, and the axes represent the boundaries
between categories. Image regions that map to different quadrants necessarily arise from
distinct materials; image regions that map to the same quadrant may arise from a single
material. Supposing that hue encodes material information, Hering’s observation about
human color vision makes sense: hues are divided into four fundamental categories by the

mutually exclusive pairs red-green and blue-yellow.

7.2 Land’s Experiments

7.2.1 Two-Color Projection

Edwin Land (1959a,b) conducted some remarkable experiments in two-color projection
of natural images. Some of the phenomena he reported can be understood in terms of our
“materialistic” theory of categorical color vision.

Land’s paradigm was as follows. Two different black-and-white transparencies were
made of a colorful natural scene by means of long- and short-wavelength filters.!> The two
transparencies were called the long and short records, respectively. Corresponding regions
of the two records, in general, were of different grey values. The two records were projected
on a screen in register, the short record with short wavelength light, the long record with
long wavelength light. Surprisingly, the resuiting image was richly colored and faithful to
the original still-life.

Land’s (1959a,b) work was basically descriptive. He found a means of predicting the
hue name of a region in the two-color reconstruction. The intensity of long-wavelength
light in the region was expressed as a fraction of the maximum long-wavelength intensity
in the entire image. The same was done for short-wavelength intensity, yielding a pair of
numbers (each between 0 and 1). This pair of numbers (fraction of maximum S, fraction of
maximum L), plotted on log-log axes, yielded a coordinate system that Land used to relate
image intensity to perceived hue. Land’s coordinate system (hereafter called “Landspace”)
is shown in Fig. 6a.

We will now try to relate our current work to Land’s findings. Whereas Land began with
some surprising experimental observations of color appearance, we took image intensity

'5The transparencies did not consist solely of black regions and white regions, but rather the full
range of grey values between black and white.
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equations as the starting point of our theoretical investigation of the problem of discriminating
materials. We will show how these two approaches dovetail.

Our argument below consists of four major points. First, we look at how the spectral
crosspoint appears in Landspace. Second, we propose that an absence of crosspoints
should cause a total failure of Landspace, and note the failure conditions already observed
for Landspace correspond to such an absence. Accordingly, we make some predictions
for two-color projection that conflict with predictions in the literature. Third, we note
the opposite slope sign condition is identical to the fundamental split between warm and
cool color categories in Landspace. Finally, we suggest a straightforward extension of
our crosspoint normalization theory that would account for a peculiar resuit in two-color
projection.

7.2.2 The Spectral Crosspoint in Landspace

In general, the light source for a scene will not be white. (A white source is one that
emits the same flux of photons at each wavelength.) Suppose we take two spectral samples
of image intensity S and L. Spectral normalization is any procedure that transforms S and
L into new values S* and L*, where the latter measurements would have been obtained had
the illuminant been white.

Land’s normalization is ($*,L*) = (55—, 1), where S, and L,... are the greatest

mazx

intensities measured in the S and L samples throughout the image.

Our theory of normalization is based on the spectral crosspoint, as discussed in section
4. To relate our current work to Land’s experiments, we must ask how spectral crosspoints
appear in Landspace. We claim that a crosspoint corresponds to a pair of points in
Landspace that form a line segment of negative slope (in Landspace). To avoid confusion,
we will refer to the slope of line segments in Landspace as “Landslope,”’ as distinguished
from spectral slope in plots of intensity versus wavelength as discussed earlier in the paper.
(Landslope, then, is a function of a pair of regions, whereas spectral slope is a property of
a single region.) Our claim, again, is that a spectral crosspoint corresponds in Landspace
to a pair of points of negative Landslope. The proof follows.

Suppose there is a crosspoint between regions X and Y. Then, say, Sx > Sy and
Lx < Ly. Does the crosspoint imply some sort of relationship among the Landspace
coordinates for X and Y, (S%,L%) and (Sy,L})? It's easy to see from the definition of

Landspace coordinates that S} > Sy and Ly < L. Now Landslope is given by —%:L:,

so the Landslope of crosspoint regions X and Y is negative. (Note the assignment of S* to
the abscissa is irrelevant to the result.)
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Landspace and Some Achromatic Loci
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Figure 6 Landspace and some of its achromatic loci, as discovered by Land (1959a). A) Land'’s
coordinate system (adapted from Fig. 1 of Land, 1953b) that relates perceived hue to the fraction of
maximum long- and short-wavelength light (expressed on log-log axes). This coordinate system we
call “Landspace.” B) Image regions correspond to a line of unit Landslope. Such an image (as well
as the next two) results in a monochromatic percept. (This is produced by placing identical records
in the long- and short-wavelength projectors.) C) A line of zero slope. (This is created by removing
the record from the long-wavelength projector.) D) A line of slope —1. (One record is placed in the
short-wavelength projector, and its photegraphic negative is placed in the long-wavelength projector.)

7.2.3 Failures of Landspace

Landspace is a way of predicting the perceived hue of a region given the ratio of its
intensity to the maximum intensity, at long and short wavelengths. This predictive scheme
is successful for two-color projection of natural images. Land noticed, however, that for
certain contrived images, his coordinate system failed totally. These images were seen
as achromatic (or monochromatic). What did these concocted failure conditions have in
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common? Land (1959a) suspected that “any arrangement which yielded points falling on
a straight I_ine [in Landspace], or even on a simple smooth curve, would be colorless.”
[Judd (1960) formalized Land's results on failure conditions.] We will show that the failure
conditions Land has discovered correspond to situations in which our theory is unable to
make any material distinctions. Furthermore, we will show our theory predicts stricter failure
conditions than does Land in his conjecture.!®

Figureé 8b,c,d depict three concocted situations that Land found [and Judd (1960)
verified] to cause a breakdown of Landspace. In figures 6b and 6¢c, the failure loci are
straight lines of non~-negative Landslope. Notice that for such loci, there can be no spectral
crosspoints, since crosspoints correspond to point-pairs of negative Landslope.

Our normalization scheme, re-cast in Landspace, calls for inspection of all point-pairs
of negative Landslope, since this subset of points is more likely to arise from a random set of
materials than the totality of points. So a visual system using our normalization procedure,
finding no point-pairs of negative Landslope (no crosspoints), would fairly conclude that
there are no material changes and hence only a single material is present. A monochromatic
(or achromatic) percept is an apt result, then, for a system that encodes material type by
hue.

Consider next a collinear collection of points of negative Landslope in Landspace.
Normalization can proceed according to our scheme, .since spectral crosspoints are avail-
able. Thus we disagree with Land’s (1959a) conjecture that al/l collinear sets of points will
be failures. We predict the locus shown in Fig. 7a will yield a range of hues. Only collinear
sets of positive Landslope will fail.

There is one special exception to our prediction that collinear loci of negative Landslope
will produce chromatic percepts. A set of points of Landslope —1 (Fig. 6d) corresponds to
an isoluminance image. Such an image has no luminance edges, and has long been known
to disrupt vision -(Evans, 1948). We have argued elsewhere (Rubin & Richards, 1982) that
crosspoints are only meaningful across edges, and hence should only be sought across
luminance discontinuities. Thus the isoluminance condition (the locus of Landslope —1)
implies an absence of crosspoints and a failure of normalization, leading to an achromatic
percept.

We turn next to Land’s conjecture that curved loci in Landspace will yield achromatic
percepts.!” We believe this is an overgeneralization. We predict, along with Land, that the

'SLand’s conjecture (that smooth one-dimensional loci in Landspace will be seen as achromatic)
is problematic. It seems difficult to legisiaté whether a collection of points in a plane constitutes a
curvilinear arrangement or defines an area. A smooth curve can be drawn through any collection of
points in a plane.

'"A line in Landspace does not have absolute significance anyway, since linehood depends on the
choice of axes. For example, a line in Landspace with log-log axes will not be a line with linear or
power axes.
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Figure 7 Predictions of our theory that conflict with Land’'s conjecture that all one-dimensional loci
in Landspace will yield achromatic {monochromatic) percepts. A) A linear locus of negative Landslope
(% —1). B) A smooth locus of points withdut point-pairs of negative Landslope should be a failure
condition. C) A smooth locus of points that has point-pairs of negative Landsiope should produce a
range of hues. )

non-linear locus of points in Landspace shown in Fig. 7b, since it contains no point-pairs of
negative Landslope (no crosspoints), will be achromatic. In contrast, the one-dimensional
locus of Fig. 7c has point-pairs of negative Landslope, and should yield a range of hues.

To sum up, we have suggested that failure conditions of two-color projection occur
when there are no spectral crosspointsi That is, Land failures should occur if there are no
(or too few) point-pairs of negative Lérﬂdslope. Our predicted range of failure conditions is
therefore narrower than Land’s. Furthermore, Land’s account of failures is purely descriptive;
ours is explanatory (via the theory of mhterial changes).

7.2.4 Opposite Slope Sign and Landspace

We have argued that the opposit¢ slope sign condition (between two regions) is strong
grounds for inferring the two regions arg¢ composed of different materials. Can this conditicn
be recast in Landspace? The answer hsii yes: two regions in the opposite slope sign relation
map to two points straddling the line bﬁi unit Landslope in Landspace.'®

The argument is as follows. Imqgje regions X and Y satisfy the opposite slope sign

'8 and's early work relied on two spec réu samples. Thus there is only one opposite slope sign
condition to worry about, as shown in Figi 5. Our trichromatic theory, sketched in Fig. 6, is not
applicable to Land’s work. ‘
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condition if normalized image intensiti¢s'? obey the following: Ly > S% and Ly < Sy,

where L% denotes the normalized infe hsity in the longwave sample of region X, and so

on. But the last condition indicates}tlhat (Sx,L%) lies above the line of unit Landslope
s S* values), and (Sy, Ly ) lies below. If the Land
shown that two regions in an opposite slope sign
hdspace straddling the line of unit Landslope. (For

normalization scheme and ours could yield similar

in Landspace (given the abscissa m%rk
normalization is correct, then we hav‘p
condition map to a pair of points in Lia
many complex natural images, Land’

results. That is why we can accept an H’s scheme as approximately correct))

Examine again Land’s results shdw
above the line of unit Landslope are alil
& Brocklebank [1960], in a study of tw
hue, saturation, and lightness were not

n in Fig. 6a. Land observed that the hues appearing
‘'warm,”” and those falling below are *‘cool.” (Wilson
p—color projection phenomena, noted that although
precisely preserved in the two-color ireconstruction

of the original still-life, at least the wa‘}m/cool aspect of hue was invariant.) h‘he distinction

between warm and cool colors is ce&'t inly the most fundamental fact of d;ategorical hue
perception. To sum up, given that L nd's normalization has been succd;ssful, different
materials (as discovered by the opposjte slope sign criterion) map in Landspace to two
points straddling the line of unit Land}s pe (and vice versa). In turn, two points straddling

the unit slope line correspond to two qualitatively distinct hues, one warm|and one cool.

This observation supports our claim th t hue is encoding information abouﬂ differences in

material.

7.2.5 Dpubling the Record

Land discovered that if he modii ied the two-color paradigm by plai ing a second
long-wave record, say, in the long-—w%v projector, perception is not substantially changed.
How does this transformation alter Landspace coordinates? The longwave coordinates of
Landspace are squared (and hence reb ced since Landspace coordinates ar¢ between zero

and unity). The shertwave coordinates hre unchanged.

Notice that to the extent that this ‘{doubling the record” manipulation leaves perceived
hue unchanged, Landspace has faild;d _Landspace was intended to allow| predictions of
perceived hue for a given pair of filteré. ut a successful prediction for the ngrmal two-color
set-up will be unsuccessful for the ddﬁ led record. For example, in the normal set-up, the

line of greys is the line of unit slope; when the record is doubled and perception remains

me curved locus (or a line of Landslope two on

filters, but the

the same, the line of greys shifts to

log-log axes). The perception of hue tHerefore depends not only on the two

distribution of values in Landspace as well.

sign to reliably indicate material changes, the illuminant

%pecall that in order for the opposite sl
e st be normalized.

must be white, or equivalently, the imag
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Figure 8 Detecting crosspoints and the ggposite slope sign condition. a) The spegtral crosspoint
to be detected. b) A schematic crosspointjdetector. Note a logical spectral opergtion follows an
arithmetic spatiai operation. ¢) Useful intenmediate units for crosspoint detection are |sketched. Spiit
bar-shaped configuration indicates a spatig comparison. Comparisons are made |within spectral
channels. Outputs of these intermediates car) then be combined logically. d) The opposite slope sign
condition to be detected. e) A schematic defector for the opposite slope sign. Note a logical spatial
operation foilows an arithmetic spectral opertion. f) Useful intermediate units for opposite slope sign
detection. Spectral comparisons are made 3 a single spatial region. Outputs of thesp intermediates
carn then be combined logically.

-
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two arithmetical operations (4') and ({,) are combined Jogically with an AND.22

Next consider the detection of ppposite slope signs as shown in Fig| 8d. On each
side of the edge, a spectral comparisonf must be made. The arithmetic operation (Lt M7)
denotes the value of the M sample sueracted from that of the 1. sample on pne side of the

edge. This operation has a minimum |vglue of zero. The spectral comparison (L* M™)is

then ANDed with the similarly defined pomparison (L~ M ™) on the opposite of the edge

to create the opposite slope sign detector shown in Fig. 8e.

It's worth noting that for the crosspoint detector, two spatial, arithmetic |operations are
logically combined across wavelength $amples. For the opposite slope sign detector, two
spectral, arithmetic operations are combined logically across space (across an edge).

Both detectors (Figs. 8b and 8e) superficially resemble double-opponent linits described
in many species (Daw, 1972; Michae],|1978a; Livingstone & Hubel, 1984).| That is, both
detectors have two spatial fields—one thiat receives excitatory connections from one spectral
sample, and inhibitory inputs from anpther spectral sample, and a secorld spatial field
receiving the opposite spectral inputs. Neurophysiological tests have not yet been sufficiently
detailed to distinguish whether doublg ppponent units are computing spectrpl crosspoints,
or opposite slope signs, or neither.

Useful intermediate units for crossppint detectors are shown in Fig. 8c. The line through
the bar-shaped configuration indicateg a comparison across space. Co mparisons are
within spectral channels; outputs of these intermediates can be combined logically tc build
crosspoint detectors. This sort of intermpdiate unit—spatial comparisons in isplated spectral
channels—has only been reported ondce| (Michael, 1978b), apparently without replication.

Figure 8f depicts useful intermed je units for opposite slope sign detegtion. Spectral
5

comparisons are made within a single sgatial region. Units of this type—specftrally opponent

but spatially undifferentiated—have begr] described by physiologists recording from monkey
lateral geniculate nucleus (Weisel & Hubel, 1966; Kriiger, 1977; Michael, 1978b). This
evidence suggesté that the double-ogdponent units described in primate|V1 might be
performing an opposite slope sign computation. Detailed color neurophysiolpgy is needed
to test this notion.

i
¢
i

|
*Strictly speaking, the results of the twol arithmetical operations must be converted to 0 or 1
before being logically combined. Alternatively, the results of the arithmetical operations—the modified
subtractions—could be multiplied together.| A non-zero product implies a crosspoint.

|
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Appendix |
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direct source: If I;s(\) and lp.4()\) are i

lit and shaded regions, respectively, the
Iihaa(N) = Eg
$ie(N) = [E}

where Euifruse(N) and Eyirece(N) are the

p(M) characterizes the albedo of the maferial.

By inspection of equations (1), it
of shadow. That is, a false target is po
regularities. There is usually some clb
(Goral et al., 1984). This is not surprigi
reflections of the direct light from a va
be made that this is usually the case:
the same spectral character as the dire
constant k. This we call the “‘grey w{
implied by the statement that all the aly
data support the grey world assumptig
functions in a pine woods in a sunny ard

Invoking the grey world assumption

Iﬂhad()\) +
I[(t()\) =
Note that the lit and shaded regio
intensity functions. Ordinality will therefq

4.0 Highlights

The analysis of highlights is slightly
Richards, 1982; equations 14a) express|t
neighboring matte region:

Imatte()\) = (E(l{‘f/'l.t.se(x
Thightight(N) = 6 Egirect(N)

where Lingiee(N) and Inigniign:(N) are the jmages intensities (as functions of W

matte and highlighted regions, and 6 € (0
surface is mirrorlike (6 = 1 describes a
1982, for a more extended treatment.)

hage intensities (as functions of wavd
n:

s clear that ordinality can be violatd
ssible. The visual world, fortunately,
Be relation between diffuse and dire
g, since diffuse light results from di
]:ety of materials in the scene. An a
t light. That is, Euifjuse(N) = kEuired
brid”’ assumption (see Section 3.1),

COLOR AND MATERIA

t1use(Mp(N)
if use(N) + Eairect(N)]p(X)

5
f

t

visual system can presume that di

edoes of a scene will average to gr

>
e

n. Hailman (1979) measured specf

, equations (1) become:
kEdirect(x)P()\)
(1+ k)Edt'rect(x)P()‘)

b

s now give rise to multiplicatively
re be preserved.

he image intensities to be found in a

-+ Edirect(x))p()‘) ‘
- (1= 8)[Eaiffuse(N) + Eairect(N)]p(M)

,1) is a constant that indicates to wH
perfect mirror). (See Richards, Rubi

L CATEGORIES

length ) from

(1)

diffuse and direct components of illimination, and

d in the case

offers certain

ct illumination
verse, random

sumption will
use light has
(A\), for some

because it is

y. Anecdotal

ral irradiance
g and in nearby shade. The functiong are strikingly
similar in shape, and are shown in Fig. 9.

(2

elated image

more complex. The following equat#ons (Rubin &
highlight and

3)

avelength) in

at extent the

n & Hoffman,
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Shadow and Wavelength

1

T™TYTY

Log photon flux
N

T TTTTT

! !
®

I 1 ! I 1

it

L
oy

Wavelength

Figure 9 Measurements of the spectral ifr:
Florida pine woods, adapted from Hailman (
flux. The abscissa shows wavelength.

979), Fig. 74a. On the ordinate is the log

COLOR AND MATERI|AL CATEGORIES

diance functions of direct sunlight and n:arby shade in a

rithm of photon

The equations express the fact that bor
t

and diffuse light. In addition, the highlig
Applying the grey world assumptio

]matte(x) == (1 +k
Inighiight(X) = 6 Egire

which reduces to

Imatte()\) = (1
Thightight(\) = E4

By inspecting equations (5), it can
violation in ordinality. Assume now that
color of the illuminant. Normalization is
character of the illuminant. (Such a con

is equivalent to a transformation of the ifnage intensities to what they would H

the illuminant been white; it allows us to

Both equations (5) can now be rew

h, equations (3) become:

Edirect(k)p()‘)
t(N) + (1 = 6)(1 + k)Eairece(N)p())

H- k)Edirect(k)p()‘)
rect(N)[6 + (1 — 8)(1 + k)p(N\)]

be seen that highlights can produ
the image has been normalized with
any scheme that allows recovery d
hputation is presented in section 4.)

set Eyirect(N) = B8, where g is some ¢

Fitten substituting 8 for Ey;,...(\), viel

27

highlighted and matte regions refle¢ct both direct
, acting as a partial mirror, reflects the direct light.

4

(5)

ce a spurious
respect to the
f the spectral
Normalization
ave been had
constant.
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Imatte()\) F ﬂ(l + k)p()\)

Inightignt(X) = B[6 + (1 — 8)(1 + k)p(N\)] ©

With the two assumptions of grey world and spectral normalization, highlights will not
produce violations in ordinality. This caf be seen in equations (6), where the jmage intensity
function of the highlighted region is simply related to the image intensity function of the
neighboring matte region. The intensity in the matte region is multiplied |by a constant
(1 - ¢6), and then a constant function (I[)\) = ép) is added. These two operations preserve
ordinality; hence no opposite slopes wil| arise given our assumptions.
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A
Algorithm for

and Mate

ppendix 2:
Spectral Normalization
rial Categorization

Given a full-color image of a sceng lit by an unknown illuminant, and a|way of finding

i
ig of different materials. An algorithm f¢
5t

edges and regions, regions can be assjghed to one of a small number of material categories.

Regions in different categories are mag Dr categorizing

materials is sketched below. The first step is to correct for colored illumination; the second

is to categorize.

In the Beginning

The original full-color image can bg viewed through three spectral filters
7, and B. See Fig. 10a. These three

number of filters, or their spectral @

yielding three

distinct maps of image intensity, say R maps of image

intensity we call “spectral images.” The haracteristics,

should not be important. All that mattqrs is that the filters yield independent measurements.

SpeclrJal Normalization

First, apply an edge operator to th
crucial. Assume the edge operator pra
must be made explicit. See Fig. 10b. ]
T-vertex terminates the edge that is the
edge segments is important because W

For each edge segment, two narr

the strips X and Y. (Understanding ve
edges.) See Fig. 10c.

Average the intensity values of ea
and Y strips. The output of this step is

For each edge segment, check
conditions are (Rx — Ry)}(Cx — Gy) <

the possibility of a third crosspoint invg

Suppose an image has n crosspo

#f algorithm for edge detection does no
identified using edge fragments.
*The R and G samples can yield crosspoi
¢ sample could just as easily be taken as !

elimage. The particular edge operator
dlices a closed set of edges.?* Next, €
[His involves understanding vertices. R
lpg, but not the edge that's the crossh

e| will iterate through a list of them.

t

chh of the spectral images R, G, and B

q
b

ix values Rx, Ry, Gx, Gy, Bx, and

fq
0
|

r two types of crosspoint, RG, an

ing the I and B samples.

nt edge segments.

nt

hg photopic luminosity function.

i

strips must be defined, one on e
es is important because the strips m

and (Gx — Gy)(Bx — By) < 0, respg

For each cross
broduce closed edges, then regions mus

b, and independently, so can the 3 and

should not be
dge segments
or example, a
ar. Identifying

ich side. Call
ust be free of

in both the X
By.

d BG.25 (The
ctively.) Note

point, record

st somehow be

y samples. The
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(A)

Full-color image Spectral images

(B) Edges, vertices
are made explicit

(C) Edge strips are
~—{ defined; each strip
yields a point in the
spectral space below

R-G
R+G
(D) :'.': Uneven distribution
o -‘-’:} B-G of points in a spectral
°/®* ® |B+G  space

have been found and made explicit. This image shows five edge segments. Vertices have been found,
and are here marked with large black dots. 'c] On either side of one of the edges, narrow strips X and
Y are defined. No edge segments should be |n the strips. Intensity averages will be taken in the three
spectral images in both of the strips, yielding]six measurements. This is done for each edge segment
in the image. d) Measurements taken from Isfrips about each edge map to points in a spectral space
detined by axes as labeled. Normalization cofisists of multiplying &2 and 13 values by factors such that
equal numbers of points will be found in edch quadrant.

Figure 10 a) The full-color image is run t’q« ugh three spectral filters R, G, and B. b) Edge segments
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spectral information about the two abutting strips. In particular, store two color contrast

values per region:

8

where ¢ is an index ranging over the 2
particular form of ratio is useful becausg

n edge strips defined around n crosspoints. This
its value must lie in the closed interval [-1,1]. The

spectral information recorded can be considered as 2n points in a two-dimensional spectral

B—-G
B+G

space (with axes of ££=& and ) sho

Let U be the number of points in 1]
and L be the number of points in the |

t
a random assortment of materials to :1

equally distributed among the quadrants

wn in Fig. 10d. (See also Fig. 4a.)

e upper half-plane of the spectral space (Fig. 10d),
half-plane. Under a white illuminant, we'd expect
ld U = L = =, that is, points should be roughly
of the spectral space.

If the 2n points are not divided equially among the quadrants of the spectral space, we

must seek normalization constants « an

]i=l,...,

all; — G;

MILDIAN[m

H 3 that satisfy the following criterion:
BB; — Gi]
t=1,...

= MEDIAN[ BB T C. 9)

n

For a large enough number of image regions, we can take

_1-0
1+

o

Lidss

(10)
RG

where Cre and Cpe are means of the gets of measurements (8):

R

&

+|

2n
— 1
Crg = an Z ‘
g==1
The values of a and g8 in (10) will
criterion (9) will hold) given some simpl4

The correctness of the normalizat
verifying that criterion (9) holds. If not, t
in an iterative procedure. The entire nor
11.

Once correct values of the normali
three spectral images R, G and B can

**There must be at least 12 independent|
of measurements { #i=C:i} must approach

R+G,
measurements {

ndiy (See Siegel, 1956.)

i Bk
B +G

1

G

G

(1)

2n
. 1 & Bi— Gy
CBG—E;;; e}

B; +
provide a correct normalization (i.e., normalization
statistical conditions.26

on constants « and B can easily be checked by
ne values of o and 3 can be adjusted incrementally
malization algorithm is shown as a flowchart in Fig.

ration constants are returned by the algorithm, the
be transformed into a set of normalized spectral

rosspoint edges, and the mean and median of the set
he same value as 7 — oo, and similarly for the set of
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NORMALIZATION ALGORITHM

Begin with Points
in Spectral Space

'

2n
R;-G;
111/2n ia R7G:
Seta:z 2 R-c.
tt/en y —
. R, +G;

i=1
hen § 86
n i% Bi +Gi

{ =

P (bizn § 86
izl Bi+Gi

Y

Compute zand Z

J 1
- >
] Y
Compare| =— | Stop: Stop: =~ | Compare
—
% and n Return @ Return B Zandn
2<n Z>n
——> Incrementa [ < Increment f [€———
' «>n Z<h
L » Decrement a Decrement 8 |4 ————
Compute Compute
< aR-G BB8-6 .
aR+6 - »| BB+G
and recompute and recompute
/4 L
Figure 11 Normalization Flowchart. Bedin with points scattered in spectral space, and end with

a pair of multiplicative normalization coefticie

to balance the /3 image with respect to G.

hts, a to balance the /2 image with respect to G, and
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(A)

(B)

R

(+,+)

ixa

Rl | ¢

Figure 12 a) The three spectral images R
produced by the procedure shown in Fig. 1
B". b) The regions of the image sketched i
assigned one of four possible ordinal doub

G, and B are normalized using the multiplicative constants
. The normalized spectral intensity maps are R", G°, and
h Fig. 10b labeled with material categories. Each region is
ets.

images. All values in the R image are

Itiplied by «, yielding B*. (The asterisk superscript

u
denotes normalized intensity; see sectrI)n 7.2.2,) Similarly, B* = 8B. Spectral image G is

unchanged: G = G*. See Fig. 12a.

Spe

Suppose that when closed edge ¢

ttral Categories

pgments were found that image regions were made

explicit. For each region i, measure th¢ average values of the normalized spectral images,

yielding the triplet (R],G],B;). A trip

relations:

(R,G;,B

where signge is “+” if G > R}, and *

let of numbers yields one obvious pair of ordinal

(1

[) > (signpe, signpe);

- otherwise.

Each region can therefore be assigned to one of four material categories: (+, +), (=, +),

("') +)v ("’:“‘)'
composed of distinct materials.

Note that a third ordinal relation i
if this relation is included, six spectral

This is shown in Fig. 12

b. Two regions that are in different categories are

b sometimes independent, the R* — B® comparison.
ategories obtain.

Finally, note that while the algorithm described here is categorical, continuous infor-

mation has not been lpst; it is stili avai

the continuous-valued coordinates

ble for more refined purposes. For each region i,
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Rl~G: B;—
R +Gi’ B; + G; ) (13)

should be useful.
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