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Abstract

Cne of the best definitions of early vision is that it is inverse optics — a set of computational
preblems that both machines and biological organisms have to solve. While in classical
optics the problem is to determine the images of physical objects, vision is confronted with
the inverse problem of recovering three-dimensional shape from the light distribution in
the image. Most processes of early vision such as stereomatching, computation of motion
and all the "structure from" processes can be regarded as solutions to inverse problems.
This common characteristic of early vision can be formalized: most early vision problems
are "ill-posed problenis” in the sense of Hadamard. We will show that a mathematiical
theory developed for regularizing ill-posed problems leads in a natural way to the solution
of early vision problems in terms of variational principles of a certain class. This is a new
theoretical framework for some of the variational solutions already obtained in the analysis
of early vision processes. It also shows how several other problems in eariy vision can be
approached and solved.
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Variational Solutions to Vision Problems

In recent years, the computational approach to vision has begun to shed some light on
several specific problems. One of the recurring themes of this theoretical analysis is the
identification of physical constraints that make a given computational problem determined
and solvable. Some of the early and most successful examples are the analyses of
stereomatching (Marr and Poggio, 1976, 1979; Grimson, 1981a,b; Mayhew and Frisby,
1981; Kass, 1984; for a review see Nishihara and Poggio, 1984) and structure from
motion (Ullman, 1979). More recently, variational principles have been used to introduce
specific physical constraints. For instance, visual surface interpolation can be derived from
the minimization of functionals that embed a generic constraint of smoothness (Grimson,
1981b, 1982; Terzopoulos, 1983, 1984a). Computation of visual motion can be successfully
performed by finding the smoothest velocity field consistent with the data (Horn and
Schunck, 1981; Hildreth,1984a,b) and shape can be recovered from shading information
in terms of a variational method (lkeuchi and Horn, 1981). The computation of subjective
contours (Ullman, 1976; Brady et al., 1980; Horn, 1981), of lightness (Horn, 1974) and of
shape from contours (Barrow and Tennenbaum, 1981; Brady and VYuille, 1984) can also
be formulated in terms of variational principles. Terzopoulos (1984a, 1985) has recently
reviewed the use of a certain class of variational principles in vision problems within a
rigoreous theoretical framework.

We wish to show that these variational principles follow in a natural and rigorous way from
the ill-posed nature of early vision problems. We will then propose a general framework for
“solving" many of the processes of early vision.

Il-Posed Problems

In 1928, Hadamard defined a mathematical problem to be well-posed when its solution

(a) exists

(b) is unique

(c) depends continuously on the initial data (this means that the solution is robust against
noise).

Most of the problems of classical physics are well-posed, and Hadamard argued that
physical problems had to be well-posed. “Inverse"” problems, however, are usually ill-posed.
Inverse problems can usually be obtained from the direct problem by exchanging the role
of solution and data. Consider, for instance,

y=Az (1)

where A is a known operator. The direct problem is to determine y from z, the inverse
problem is to obtain z when y (*‘the data") are given. Though the direct problem is usually
well-posed, the inverse problem is usually ill-posed!,

Typical ill-posed problems are analytic continuation, backsolving the heat equation,
superresolution, computer tomography, image restoration and the determination of the
shape of a drum from its frequency of vibration, a problem which was made famous by
Marc Kac (1966). In early vision, most problems are ill-posed because the solution is not
unique (but see later the case of edge detection).?



Regularization Methods

Rigorous regularization theories for “solving" ill-posed problems have been developed
during the past years (see especially Tikhonov, 1963; Tikhonov and Arsenin, 1977; and
Nashed, 1974, 1976). The basic idea of regularization techniques is to restrict the space of
acceptable solutions by choosing the function that minimizes an appropriate functional. The
regularization of the ill-posed problem of finding » from the data y such that Az = y requires
the choice of norms ||-|| (usually quadratic) and of a stabilizing functional ||Pz||. The choice
is dictated by mathematical considerations, and, most importantly, by a physical analysis
of the generic constraints on the problem. Three main methods can then be applied (see
Bertero, 1982):

1) Among =z that satisfy ||Pz|] < C-where C is a constant-, find z that minimizes

Az - yl, (2)

I) Among = that satisfy ||Az — y|| < C, find z that minimizes

1P, (3)

) Find =z that minimizes

|4z = ylI* + N[|P=|]%, (4)

where X is a regularization parameter.

The first method consists of finding the function = that satisfies the constraint IIPz|| < C and
best approximates the data. The second method computes the function z that is sufficiently
close to the data (C depends on the estimated errors and is zero if the data are noiseless)
and is most “regular”. In the third method, the regularization parameter \ controls the
compromise between the degree of regularization of the solution and its closeness to the
data. Regularization theory provides techniques to determine the best ) (Tikhonov and
Arsenin, 1977; Wahba, 1980). It also provides a large body of results about the form of the
stabilizing functional P that ensure uniqueness of the result and convergence. For instance,
it is possible to ensure uniqueness in the case of Tikhonov's stabilizing functionals (also
called stabilizers of p-th order) defined by

ipee = [ ép,(s)(j;fY&. )

Equation (5) can be extended in the natural way to several dimensions. If one seeks
regularized solutions of eq.(1) with P given by eq. (5) in the Sobolev space W} of functions
that have square-integrable generalized derivatives up to p-th order, the solution can be
shown to be unique (up to the null space of P), if A is linear and continuous. This is
because for every p the space W}, is a Hilbert space and IPz]|* is a quadratic functional (see
theorem 1, Tikhonov and Arsenin, 1977; p. 83). It turns out that most stabilizing functionals
used so far in early vision are of the Tikhonov type (see also Terzopoulos, 1984a,b).3 They
all correspond to either interpolating or approximating splines (for method Il and method
i1, respectively). :




(a) (b)

Figure 1. Decomposition and ambiguity of the velocity field. a) The local velocity vector V(s)
in the image plane is decomposed according to €q.(6) into components perpendicular and tangent to
the curve. b) Local measurements cannot measure the full velocity field: the circle undergoes pure
translation: the arrows represent the perpendicular components of velocity that can be measured
from the images. From Hildreth, 1984a.

Example I: Motion

Our first claim is that variational principles introduced recently in early vision for the
problem of shape from shading, computation of motion, and surface interpolation are
exactly equivalent to regularization techniques of the type we described. The associated
uniqueness results are directly provided by regularization theory. We briefly discuss the
case of motion computation in its recent formulation by Hildreth (1984a,b).

Consider the problem of determining the two-dimensional velocity field along a contour
in the image. Local motion measurements along contours provide only the component of
velocity in the direction perpendicular to the contour. Figure 1 shows how the local velocity
vector V(s) is decomposed into a perpendicular and a tangential component to the curve

V(s) = v T(s)T(s) + v-L(s)N(s) (6)

The component v and direction vectors T(s) and N(s), are given directly by the initial
measurements, the “data”. The component v 7 (s) is not and must be recovered to compute
the full two-dimensional velocity field V(s). Thus the “inverse" problem of recovering V(s)
from the data v is ill-posed because the solution is not unique. Mathematically, this arises
because the operator K defined by

vl =KV (™)

is not injective. Equation (7) describes the imaging process as applied to the physical
velocity field V which consists of the = and y components of the three-dimensional velocity
field of the object.

Intuitively, the set of measurements given by v-L(s) over an extended contour should provide
considerable constraint on the motion of the contour. An additional generic constraint,
however, is needed to determine this motion uniquely. For instance, rigid motion on the
plane is sufficient to determine V uniquely but is very restrictive, since it does not cover the
case of motion of a rigid object in space. Hildreth suggested, following Horn and Schunck
(1981), that a more general constraint is to find the smoothest velocity field among the



set of possible velocity fields consistent with the measurements. The choice of the specific
form of this constraint was guided by physical considerations — the real world consists of
solid objects with smooth surfaces whose projected velocity field is usually smooth — and
by mathematical considerations — especially uniqueness of the solution. Hildreth proposed
two algorithms: in the case of exact data the functional to be minimized is a measure of
the smoothness of the velocity field

ipvie = [ (3% a ®)

subject to the measurements v-1(s). Since in general there will be error in the measurements
of v, the alternative method is to find V that minimizes

AAY
ﬂl]KV-v—LH2+/(£é;-) ds, (9)

where g = {. It is immediately seen that these schemes correspond to the second and
third regularizing method respectively. Uniqueness of the solutions (proved by Hildreth* for
the case of equation (8)) is a direct consequence for both equations (8) and (9) of standard
theorems of regularization theories. In addition, other results can be used to characterize
how the correct solution converges depending on the smoothing parameter \.

Example lI: Edge Detection

We have recently applied regularization techniques to another classical problem of early
vision - edge detection. Edge detection, intended as the process that attempts to detect
and localize changes of intensity in the image (this definition does not encompass all the
meanings of edge detection) is a problem of numerical differentiation (Torre and Poggio,
1984). Notice that differentiation is a common operation in early vision and is not restricted to
edge detection. The problem is ill-posed because the solution does not depend continuously
on the data.’ The intuitive reason for the ill-posed nature of the problem can be seen by
considering a function f(z) perturbed by a very small (in L, norm) ‘“noise" term ¢sin Qz.
f(z) and f(z)+ esin Qz can be arbitrarily close, but their derivatives may be very different if
(1 is large enough.

In 1D, numerical differentiation can be regularized in the following way. The "image" model
i yi = f(z:) + ¢;, where y; is the data and «; represent errors in the measurements. We
want to estimate f'. We chose a regularizing functional ||/ f|| = [ (/"(z))*dx, where f" is the
second derivative of /. The second regularizing method (no noise in the data) is equivalent
then to using interpolating cubic splines for differentiation. The third regularizing method,
which is more natural since it takes into account errors in the measurements, leads to the
variational problem of minimizing

S 1)+ [ () (10

Poggio et al. (1984) have shown (a) that the solution of this problem f can be obtained by
convolving the data y; (assumed on a regular grid) with a convolution filter R, and (b) that
the filter 12 is a cubic spline” with a shape very close to a Gaussian and a size controlled by
the regularization parameter X (see figure 2). Differentiation can then be accomplished by
convolution of the data with the appropriate derivative of this filter. The optimal value of \
can be determined for instance by cross validation and other techniques. This corresponds
to tinding the optimal scale of the filter.®
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Figure 2. The edge detection filter. a) The convolution filter obtained by regularizing the ill-posed
problem of edge detection with method (ill) (see Poggio et al., 1984). It is a cubic spline (solid line),
very similar to a gaussian (dotted line). b) The first derivative of the filter for different values of
the regularizing parameter X, which effectively controls the scale of the filter. This one-dimensional
profile can be used for two-dimensional edge detection by filtering the image with oriented filters
with this transversal crossection and choosing the orientation with maximum response {see Canny,
1983).

These results can be directly extended to two dimensions to cover both edge detection
and surface interpolation and approximation. The resulting filters are very similar to two of
the edge detection filters derived and extensively used in recent years (Marr and Hildreth
1980; Canny, 1983; see Torre and Poggio, 1984).

Other problems in early vision such as shape from shading (lkeuchi and Horn, 1981) and
surface interpolation (Grimson, 1981b 1982; Terzopoulos, 1983, 1984) , in addition to the
computation of velocity, have already been formulated and “solved” in similar ways using
variational principles of the type suggested by regularization techniques (although this was
not realized at the time). It is also clear that other problems such as stereo?® and structure
from motion'® can be approached in terms of regularization analysis.

Physical Plausibility of the Solution

Uniqueness of the solution of the regularized problem—which is ensured by formulations
such as equations (2)-(4) - is not the only (or even the most relevant) concern of
regularization analysis. Physical plausibility of the solution is the most impartant criterion.
The decision regarding the choice of the appropriate stabilizing functional cannot be made
judiciously from purely mathematical considerations. A physical analysis of the problem and
of its generic constraints have the upper hand. Regularization theory provides a framework
within which one has to seek constraints that are rooted in the physics of the visual world.
This is, of course, the chalienge of regularization analysis. Conditions characterizing the
physically correct solutions can be derived !' (for the case of motion, see Yuille, 1983 and



for edge detection, see Poggio et al., 1984).

From a more biological point of view, a careful comparison of the various "regularization"
solutions with human perception promises to be a very interesting area cf research, as
suggested by Hildreth’s work. For some classes of motions and contours, the solution of
equations (8) and (9) is not the physically correct velocity field. In these cases, however,
the human visual system also appears to derive a similar, incorrect velocity field (Hildreth,
1984a,b).

Conclusion

The concept of ill-posed problems and the associated regularization theories seem to
provide a satisfactory theoretical framework for part of early vision. This new perspective
justifies the use of variational principles of a certain type for solving specific problems,
and suggests how to approach other early vision problems. it provides a link between the
computational (ill-posed) nature of the problems and the computational structure of the
solution (as a variational principle). In a companion paper (Poggio and Koch, 1984), we
will discuss computational "hardware" that is natural for solving variational problems of the
type implied by regularization methods. The approach can be extended to other sensory
modalities and to some motor control problems. For instance, a recently proposed solution
to the problem of executing a voluntary arm trajectory (Hogan, 1984) can be recognized as
an instance of our second regularization technique.!?

Despite its attractions, this theoretical synthesis of early vision also shows the limitations
that are intrinsic to the variational solutions proposed so far, and in any case to the simple
forms of the regularization approach. The basic problem is the degree of smoothness
required for the unknown function z that has to be recovered. If = is very smooth, then it
will be robust against noise in the data, but it may be too smooth to be physically plausible.
For instance, in visual surface interpolation, the degree of smoothness obtained with the
thin plate model (from a specific form of equations (4)-(5)) smoothes depth discontinuities
too much and often leads to unrealistic results (but see Terzopoulos, 1984).

These problems may be solved by more sophisticated regularization techniques, such as
stochastic methods. The simple regularization techniques analyzed here rely on quadratic
variational principles that lead to linear Euler-Lagrange equations. Thus the solution can be
found by filtering the data through an appropriate linear filter. Analog electrical or chemical
networks can be devised for the specific variational principles (Poggio and Koch, 1984).
Again, the universe of solutions to quadratic variational principles is somewhat restricted.

Nonquadratic variational principles are, however, possible. They may arise naturally in
one of the most fundamental problems in early vision, the problem of integrating different
sources of information, such as stereo, motion, shape from shading, etc. This problem is
ill-posed, not just because the solution is not unique (the standard case), but because the
solution is usually overconstrained and may not exist. The use and extensions of tools from
regularization theory to analyze the fusion of information from different sources is one of
the most interesting challenges in the theory of early vision.!3:14

The problem is related to the deep question of the computational organization of a visual
processor and its control structure. It is unlikely that variational principles alone could
have enough flexibility to control and coordinate the different modules of early vision and
their interaction with higher level knowledge. This also hints at the basic limitation of
regularization methods that makes them suitable only for the first stages of vision. They
derive numerical representations—surfaces—from numerical representations—images. It is
difficult to see how the computation of the more symbolic type of representations that are
essential for a powerful vision processor can fit into this theoretical framework!5,



In summary, we have outlined a new theoretical framework that from the computational
nature of early vision leads to algorithms for solving them, and suggests a specific class of
appropriate hardware. The common computational structure of many early vision problems
is that they are ill-posed in the sense of Hadamard. Regularization analysis can be used
to solve them in terms of variational principles of a certain type that enforce constraints
derived from a physical analysis of the problem. Analog networks—whether electrical or
chemical—are a simple and attractive way of solving this type of variational principles.
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Footnotes

[1] Whether a problem is well- or ill-posed depends on the triplet (A, Z, Y) where Z and Y
are the solution and the data space respectively.

[2] The reason for the lack of uniqueness is that the operator corresponding to A is usually
not injective, as in the case of shape from shading, surface interpolation and computation
of motion.

To clarify some of the structure of ill-posed problems, let us consider the linear operator

Az=y. (1)

If z and y are finite vectors, then the inverse problem is easily solved by finding the inverse
of A, or its pseudoinverse. It is well known that if A is a square matrix, A~! exists if
det|A| £ 0.
Now let us suppose that z € Z and y € Y, where Z and Y are Hilbert spaces. The inverse
problem is well-posed iff the three conditions of Hadamard are satisfied. In particular,

(1) condition (a) of Hadamard is satisfied iff the range of A is R(A) =Y.

(2) condition (b) of Hadamard is satisfied iff A is injective.

(3) condition (c) of Hadamard is satisfied iff R(A) is a closed set.
If the operator A is compact and R(A) does not have finite dimensions, R(A) is open, and
therefore the inverse problem is also ill-posed.

Most linear operators whose domain and co-domain are Hilbert spaces are compact
operators. In fact, if £ and I are measurable, bounded sets £ € R™ and F € R™, and
k(t, s) is a measurable function defined on £ X F, then the linear operator A:Ly(E) — Ly(F)
defined as .

(Az)(t) = / k(t, 8)2(s)ds )

is compact and R(A) has finite dimensions iff k{t, s) is separable, i.e.,

t o) = 3 cn(t)Balo). (3
k=1 i

Obviously if 12(A) has finite dimension, then R(A) cannot coincide with Y, and therefore the
inverse problem of an integral operator or a convolution is in general an ill-posed problem.
We can relax condition (2) and admit the case that A is not injective. The problem is then
regularized by introducing an appropriate norm and finding the generalized pseudoinverse
of the inverse problem (1).

When y is not in R(A), it is not easy to regularize the problem without altering the essence
of the problem itself.

[3] J. Canny's (1983) variational formulation can be derived from eq. (4) and a stabilizing
functional of the form of eq. (5) (see Poggio et al., 1984).

[4] 1t is shown in Hildreth (1984a) that extremizing equation (8) yields a unique velocity
field, since it corresponds to minimizing a positive definite functional on a convex set. The
theorems of du Bois-Reymond state that, provided %¥ is continuous the solution of the
minimization problem will be the solution of the corresponding Euler-Langrange equations.

[5] The problem is to find the solution z to



y = Az

with (Az)(z) = [y #(s)ds. Thus, z is the derivative of the data y. The problem is (mildly)
ill-posed because if z € L,[0, 1], the compact operator A is not closed in L[0, ].

[6] For data on a regular grid, it corresponds to convolving the data with the L, filters of
Schoenberg (1946).

[7] A higher degree stabilizer may be used for higher derivatives, leading to higher order
splines.

[8] Methods such as the Generalized Cross Validation method (GCV) (Wahba, 1980; see
also Reinsch, 1967) may be used to find the “optimal" scale of the filter, i.e., the optimal \.
Fingerprints (Yuille and Poggio, 1983) may provide a method for tinding the optimal value
of the regularization parameter X\. This follows from the fact that the filter given by equation
(10) is very similar to a Gaussian and that ) effectively controls the scale of the filter (see
Poggio et al., 1984).

[S] Another clearly ill-posed problem is stereo-matching. It is not immediately obvious,
however, what the correct regularizing procedure is. Berthold Horn has suggested (personal
communication) a variational principle for stereo-matching similar to his scheme for
computing optical flow. The norm to be minimized measures deviations from smoothness
of the disparity field. Specifically, the norm of the derivative of the z component, the depth
component, has to be minimized subject to the constraints given by the data. This can
be regarded again as a variational principle of the type that is obtained directly using
the standard regularization methods of ill-posed problems. We are presently developing
regularization solutions to the stereo problem (Yuille and Poggio, in preparation).

The problem of shape-from-contours in the variational formulation of Brady and Yuille (1983)
is an ill-posed problem but the solution is not of the standard regularization type.

[10] The rubbery constraint proposed by Uliman (1983) is more general than the rigidity
constraint. It may be possible to reformulate it according to regularization techniques.

[11] A method for checking physical plausibility of a variational principle is, of course,
computer simulation. A simple technique we suggest is to use the Euler-Lagrange equation
associated with the variational problem.

In the computation of motion, Yuille (1983) has obtained the following sufficient and
necessary condition for the solution of the variational principle equation (8), to be the
correct physical solution

oV

0s2

T 0

where T is the tangent vector to the contour and V is the true velocity field. The equation
is satisfied by uniform translation or expansion and by rotation only if the contour is
polygonal. These results suggest that algorithms based on the smoothness principle will
give correct results, and hence be useful for computer vision systems, when (a) motion
can be approximated locally by pure translation, rotation or expansion, or (b) objects have
images consisting of connected straight lines. In other situations, the smoothness principle
will not yield the correct velocity field, but may yield one that is qualitatively similar and
close to human perception (Hildreth, 1984a,b).

In the case of edge detection (intended as numerical differentiation), the solution is correct
it and only if the intensity profile is a polynomial spline of odd degree greater than three
(Poggio et al., 1984).

[12] The variational principle (minimization of jerk) corresponds to the second regularization
method, with I = ¢*/dz®. The associated interpolating function is a quintic spline. Analog



networks for solving the problem can be devised (Poggio and Koch, 1984). It may be
interesting to consider our third method of reguiarization in the context of the available
data on arm trajectories.

[13] The variational principles that we have considered so far for early vision processes are
quadratic and lead therefore to linear equations. The ill-posed problem of combining several
different sources of surface information may easily lead to non-quadratic regularization
expressions (though different *non-interacting” constraints can be combined in a convex
way, see Terzopoulos, 1984). These minimization problems will in general have multiple
local minima. Schemes similar to annealing (Kirkpatrick, Gelatt and Vecchi 1983; Hinton
and Sejnowski, 1983; Geman and Geman, 1984) may be used to find the global minimum
(see also Poggio and Koch, 1984).

[14] This is a list of open problems on which we are presently working:

a) Regularized solution for stereo matching.

b) Regularized solution for structure from motion.

c) Full extension of the edge detection analysis to 2-D and application to suffacv,é
approximation for computing differential properties of surfaces.

d) Analysis and implementation of methods for finding the optimal regularization parameter
X. Use of fingerprints.

e) Connection between the regularizing parameter X\, the iteration number in iterative
reguiarizing methods (Nashed, 1976) and the truncation of a formal power series expansion
of the regularizing operator.

f) Use of stochastic regularization methods (see also Geman and Geman, 1984).
[15] But see Hummel and Zucker, 1980.
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