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1. lntroductioh

Several times in science and engineering we need to evaluate rather exotic functions -- elliptic
integrals, Bessel functions. and probability density functions, for example.  Here’s where you can get
your hands on some LISP code that will evaluate some of these functions. The code runs in both
MACLISP and LISPM LISP,

‘The functions in the library are scattered in several different files. The descriptions below will
describe the function name, how it should be used, and the file where that function can be obtained. For
example, the function FACTOR is in PS:<GLR.FUNCT>MOD.LSP. Before it can be used, the code
must first be loaded by doing one of:

(LOAD "PS:<GLR.FUNCT>MOD.FASL") ; For MACLISP

(LOAD "OZ:PS:<GLR.FUNCT>MOD.QFASL") i For MIT LISPM
(LOAD "0Z:PS:<GLR.FUNCT>MOD.QBIN") ; For Symbolics LM2
(LOAD "0Z:PS:<GLR.FUNCT>MOD.BIN") i For Symbolics 3600

After the file has been loaded, just call the function with the right arguments:
(FACTOR 12345678987654321) ==> (3 3 3 3 37 37 333667 333667)

[f you have to compile one of the library files or you want to rcad the source version of a library
file into your LISP, then you will have to load a special macro called IMPORT-FILE that is defined in
the file PS:<GLR.LISP>IMPORT.LSP. You may want to usc the IMPORT-FILE macro yourself, Its
format is:

(IMPORT-FILE "OZ:PS:<GLR.FUNCT>MOD.LSP")

The argument is the source filename with a LISPM style hostname (the MACLISP version of the macro
knows to ignore the host). The behavior of the macro depends on whether it is being compiled,
evaluated, or loaded. If the IMPORT-FILE form is evaluated or loaded (EVAL-WHEN (EVAL LOAD)
...) and the imported file has not already been loaded, it will load a binary file if it can find one or the
source filc if it cannot. At compile time (EVAL-WHEN (COMPILE) ...), the IMPORT-FILE form turns
into
(PROGN °'COMPILE <first form in source file> <load code>)

By convention, the first form in the imported source file should be a DECLARE of all the external
functions and variables that the imported file defines. Including the declarations allows some compile

time crror checking and climinates spurious warnings about undefined functions. The <load coded
conspires to load the binary or source file when when the file we are currently compiling gets loaded.
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2. Number Theory and Combinatorial Functions

(FACTORIAL N) PS:<GLR.FUNCT>COMBIN.LSP
The number of ways to permute N objects.

(CHOOSE N M) PS:<GLR.FUNCT>COMBIN.LSP
The number of ways to place M distinguishable objects on N distinguishable plates.

(BELL-NUMBER N) PS:<GLR.FUNCT>COMBIN.LSP
The number of ways to place N distinguishable objects on N indistinguishable plates.

(CATALAN-NUMBER N) PS:<GLR.FUNCT>COMBIN.LSP

The number of ways to fully parenthesize a string of n symbols.

(FIB N) ' PS:<GLR.FUNCT>FIB.LSP
The Nth (FIXNUM) Fibonacci number. FIB(0)=0, FIB(1)=1, .... Uses a log(N) algorithm.

(FACTOR N)° PS:<GLR.FUNCT>MOD.LSP
Find the prime factors of the integer N (FIXNUM or BIGNUM). Returns a sorted list of the

factors.

(PRIME-TEST N &optional (TRIALS 50.)) PS:<GLR.FUNCT>MOD.LSP

Tests the primality of N using a probabilistic algorithm (see <Solovay>). Returns NIL, PRIME,
or PROBABLY-PRIME (P{crror} =2 TRIALS) TRIALS must be FIXNUM.

(SMALLER-PRIME N) PS:<GLR.FUNCT>MOD.LSP
Finds the first prime that is smaller than N. Repeatedly calls PRIME-TEST.

(JACOBI-SYMBOL P Q) PS:<GLR.FUNCT>MOD.LSP
Computes the Jacobi Symbol of P and Q.

(TOTIENT N) PS:<GLR.FUNCT>MOD.LSP
Computes Euler’s totient function of N. Calls FACTOR as a subroutine.

3. Discrete Fourier Transform

These functions arc used to compute discrete fourier transforms <Oppenheimer>. The inputs
arc two FLONUM arrays that represent the real and imaginary parts of the input. The algorithms require
input arrays for the transform to be bit reversed; there are functions for doing the reversal. The functions
also require some initialization. The length of the DFT must be a power of 2.



4 3 DISCRETE FOURIER TRANSIFORM

X[kl = £ N1 exp-j2 7 km/N)

xkl = (I/N) = N1 exp(j2m km/N)

(DFT-INIT LOGN) PS:<GLR.FUNCT>DFT.LSP

DFT-INIT returns a structure containing some tables that are nceded by the DFT algorithm,
This structure should be saved away and given to the DET routine each time it is called. The structure
need only be computed once for cach size DFT. The length of the DFT is o[LOGN,

(DFT-FORWARD X-REAL X-IMAG TABLES) PS:<GLR.FUNCT>DFT.LSP

This function docs a discrete Fourier transform. The results arc written back into X-REAL and
X-IMAG (the previous contents are lost) and are in sequential order (ic -- not bit reversed). TABLES is
as returned by DFT-INIT.

(DFT-REVERSE X-REAL X-IMAG TABLES) PS:<GLR.FUNCT>DFT.LSP
This is just like DFT-FORWARD, but it does the inverse transform. The input X arrays should

be in sequential (not bit-reversed) order. The resulting arrays are also in scquential order.

(DFT-REVERSE-ARRAY ARRAY TABLES) PS:<GLR.FUNCT>DFT.LSP
This bit reverses the first ZLOGN elements of ARRAY.

(DFT-610 X-REAL X-IMAG TABLES) PS:<GLR.FUNCT>DFT.LSP
This function docs a forward transform. X-REAL and X-IMAG are bit-reversed input arrays

(to reverse them, use DFI-REVERSE-ARRAY). The results are returned in X-REAL and X-IMAG in
scquential order.

(DFT-618 X-REAL X-IMAG TABLES) PS:<GLR.FUNCT>DFT.LSP

The reverse transform. Input arrays are scquential order, output arrays arc bit-reversed. Use
DFT-REVERSE-ARRAY to put them in scquential order.
4. Trigonometric and other Functions

These approximations come from <Abrain0witz>, <DEC>, and <Hastings>.

(EXP10 X) PS:<GLR.FUNCT>EXTFCN.LSP
Computes 101X,
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(LOG10 X) . PS:<GLR.FUNCT>EXTFCN.LSP
LLog basc 10 of X.

(TAN X)

(SEC X)

(CSC X)

(COT X)

(ASIN X)

(ACOS X)

(ASEC X)

(ACSC X)

(ACOT Y X) PS:<GLR.FUNCT>HYPER.LSP

Various trigonometric functions.

(ERROR-FUNCTION X) PS:<GLR.FUNCT>EXTFCN.LSP
Error function. eps < 1.5E-7.

@/sqrt(m)) S ¥ exp(-t?) dt

(BESSEL-I N X) PS:<GLR.FUNCT>BESSEL.LSP
Modified Bessel function for integer order N. eps < 1.6E-7

(BESSEL-J N X) PS:<GLR.FUNCT>BESSEL.LSP
Bessel function for integer order N. eps < 5E-8.

(GAMMA-FUNCTION A) PS:<GLR.FUNCT>GAMMA, LSP
Gamma function.
') = fooo @letg

(GAMMA-FUNCTION-INCOMPLETE A X) PS:<GLR.FUNCT>GAMMA.LSP

Incomplete Gamma function. 0<= x <= inf, but breaks if X is large because of roundoff error.
IGax)=f OX @lety

BETA-FUNCTION A B PS:<GLR.FUNCT>GAMMA, LSP
(
Beta function. A and B arec FLLONUM.

Ba.b) = fol @La-oPLar, a>0, 650

(BETA-FUNCTION-INCOMPLETE A B X) PS:<GLR.FUNCT>GAMMA. LSP
Incomplete Beta function. A and B are FLONUM, but one of A or B must be an integer (eg,

3.0).
Bla.b.x) = [* @1 10T dr, 0ca, 0o, K =x¢=1
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(ELLIPTIC-INTEGRAL-K M) PS:<GLR.FUNCT>ELLIP.LSP
Elliptic integral of the first kind, k(M). 0<= M < 1. cps = 2.0E-8.

f077’/2 (I-m sin?‘(ﬂ))'O'5 d6

(ELLIPTIC-INTEGRAL-KC M) . PS:<GLR.FUNCT>ELLIP.LSP
Complementary elliptic integral of the first kind, k’(M). k(M) = k(1-M).

(ELLIPTIC-INTEGRAL-E M) PS:<GLR.FUNCT>ELLIP,LSP
Elliptic integral of the second kind, ¢(M). eps< 2.0E-8. .

(ELLIPTIC-INTEGRAL-EC M) PS:<GLR.FUNCT>ELLIP.LSP
Complementary clliptic integral of the second kind, e’ (M). ¢'(M) = e(1-M).

(ELLIPTIC-SINE u M) PS:<GLR.FUNCT>ELLIP.LSP
Elliptic sinc function (SN(u,M))

(ELLIPTIC-COSINE u M)) PS:<GLR.FUNCT>ELLIP.LSP
Elliptic cosine function (CN(u,M)) A

5. Linear Regression

Say we are trying to fit some (x, y) data to a function that looks like:
Y'(x) = a0* 1 + al*gl(x) + éZ‘gZ(x) + ... + an*gn(x)

where the a[i] are constants that we are trying to determine, the gfi] are lincarly independent functions
that we specify, and Y'(x) is the valuc of the fitted equation. Such a fit is called a linear regression and
here are some functions that will do it.

(FIT FCTN X Y N &optional (MODE 0)) PS:<GLR.FUNCT>FIT.LSP

Let X be a onc dimensional array of x values (the x values could themselves be vectors). Y is a
one dimensional array of FLONUM valucs for the corresponding X input. N is the number of terms in
the equation we are fitting (ic, n in the cquation above). FCTN is a function of N+ 1 arguments that
cvaluates the equation above. That is FCTN looks like:

(LAMBDA (X A0 Al A2 A3 ... AN)
)

and calculates the above equation. FIT returns a list of the coefficients Ai as the CDR of its value.
FIT actually uses the procedure REGRESS in PS:<GI.R.FUNCT>REGRES.LSP, which is
modcled after <Bevington>. If you want to do something a little more complicated, then ask me about
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that procedure.

6. Functional Minimization

(FMFP FUNCT N X G EST EPS LIMIT) PS:<GLR.FUNCT>FMFP.LSP

Fletcher-Powell’'s  functional minimization procedure (adapted from <Kuester> and
<Luenberger>). This finds a minimum of a multivariate, unconstrained, nonlincar function. That is, find
the vector X such that F(X) is a local minimum. The arguments to this function are:

EST
EPS
LIMIT
FUNCT

(MARQUARDT

number of independent variables

vector[N] of initial variable values

contains the result vector on exit

vector[N] in which to store the gradient

estimate of minimum value of objective function

test value representing the expected absolute error in movement
maximum number of iterations

user supplied objective function that computes F and the gradient
(FUNCT N X G) returns F(X) and

also fills in the vector[N] G with the gradient

N K XY Z FUNC DERIV B BMIN BMAX BV)
PS:<GLR.FUNCT>MARQ.LSP

Marquardt’s parameter fitting procedlire (adapted from <Kuester>). Given N data points (X[i],
Y[i]) and a function F with K parameters B[j}, find the K parameters Bj] that best fit the data. The fitted
values are returnced in array Z. The arguments are:

FUNC -~

DERIV=-~

number of data points (FIXNUM)
number of unknowns ( FIXNUM)
vector[K] of (FLOMUM) unknowns
vector[K] of (FLONUM) minimum values of B[j]
vector{K] of (FLONUM) maximum values of B[j]
vector[N] independent variable data points
(this vector might be a vector of vectors)
vector[N] of (FLONUM) dependent variable
vector[N] of (FLONUM) computed values of dependent variable
vector[K] of (FLONUM) codes
1.0 -> numerical derivatives
0.0 -> do not change this unknown
(FUNC X K B N Z ZOFF) computes the function F (using the
K parameters in vector B) for each of the X[0] ... X[N-1]
and puts the respective results into Z[ZOFF+0] ... Z[ZOFF+N-1]
(not used)
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7. Hyperbolic.& Inverse Hyperbolic Functions

This functions usc the Common Lisp <Stcele> names, but arc only defined for real arguments.
They call EXP to compute their results.

(COSH X)

(SINH X)

(TANH X)

(COTH X)

(SECH X)

(CSCH X) PS:<GLR.FUNCT>HYPER.LSP
Hyperbolic functions. FLONUM argument and FLONUM result.

(ACOSH X)

(ASINH X)

(ATANH X)

(ACOTH X)

(ASECH X)

(ACSCH X) PS:<GLR.FUNCT>HYPER.LSP
Inverse hyperbolic functions. FLONUM argument and FLONUM result.

8. Numerical Integration

(INTEGRATE-TRAPEZOIDAL F X0 X1 N) PS:<GLR.FUNCT>INTEGR.LSP
Uses the trapezoidal rule to integrate the function F (of one FLONUM argument) from X0 to

X1 with N (FIXNUM) iterations.

(INTEGRATE-SIMPSON F X0 X1 N) PS:<GLR.FUNCT>INTEGR.LSP
Uses Simpson’s rule to integrate the function F (of one FLONUM argument) from X0 to X1

with N (FIXNUM) iterations.

(INTEGRATE-EULER F X0 YO H X1) PS:<GLR.FUNCT>RUNGE . LSP
Uses the forward Euler method to integrate F(x, y) from position (X0, Y0) to a position (X1, Y1)

using a step size of H. Y1 is the value of INTEGRATE-EULER. F is a function of X and Y (FLONUM)
and should return DY/DX for the given position.

(INTEGRATE-RUNGE-KUTTA F X0 YO H X1) PS:<GLR.FUNCT>RUNGE .LSP
This is just like EULER except it uses a fourth order RUNGE-KUTTA method instcad of

Euler’s method.
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(INTEGRATE-MULTI-STEP-H F X0 YO H X1
&optional (CD 1.0E-8) (CH 1.0E-5)) PS:<GLR.FUNCT>RUNGE.LSP
Uses a multi-step predictor-corrector method to integrate DERIV (see <Hamming> page 407).

Integrates from X0 to X1 using an initial step size of H. When the routine estimates that the crror is
below CD, the step size is doubled: when the crror is above CH, the step size is halved. For
rcasonableness, CI << CH.

9. Root Finding Functions

(BISECTION-ROOT-SEARCH F X0 X1) PS:<GLR.FUNCT>ROOT.LSP

Uses bisection search to find a zero of F(X) between X0 and X1.

(FALSE-POSITION-SEARCH F X0 X1 EPS) PS:<GLR.FUNCT>ROOT.LSP
Uses false position scarch to find a zero of F(X) with initial guesses X0 and X1.

(FALSE-POSITION-CONVERGE F X0 X1 EPS) PS:<GLR.FUNCT>ROOT.LSP

Uses falsc position convergence to find an X = F(X) with initial guesses X0 and X1.

(CONVERGE F X0 EPS) PS: <GLR. FUNCT>ROOT. LSP
Find an X =F(X) with initial guess of X0. Uses Wegstein’s method.

10. Probability and Statistics

The following functions are useful in probability and statistics. There are functions for
computing probability density functions p(x), computing cumulative distributions P(x), and generating
random numbers from a particular distribution. Most of the approximations come from <Abramowitz>.
Most of the generators use the ratio of uniform deviates method <Kindermand.

(UNIFORM-DENSITY X)
(UNIFORM-CUMULATIVE X)
(UNIFORM-RANDOM-NUMBER) PS:<GLR.FUNCT>STATIS.LSP

Probability functions for thc uniform distribution.
px) =1 0<=x<K=1

(NORMAL~DENSITY X)
(NORMAL-CUMULATIVE X) PS:<GLR.FUNCT>STATIS.LSP

Probability functions for normal (Gaussian) distribution.
p(x) = (1/sqrt(2 7)) exp (-x2/2)
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(NORMAL-TAIL ALPHA) PS:<GLR.FUNCT>STATIS.LSP
Given a probability ALPHA, find the X such that ALPHA =1-P(X), where P(X) is the

cumulative distribution. This function provides a one-sided tail.

(NORMAL-RANDOM-NUMBER) PS:<GLR.FUNCT>STATIS.LSP

Generates a random number from the unit normal distribution.

(EXPONENTIAL-DENSITY X LAMBDA)

(EXPONENTIAL-CUNULATIVE X LAMBDA)

(EXPONENTIAL-RANDOM-NUMBER LAMBDA) PS:<GLR.FUNCT>STATIS.LSP
Exponential probability functions.

p(x,A\) = Aexp(-Ax), A>0

(POISSON-DENSITY N TIME)

(POISSON-CUMULATIVE N TIME)

(POISSON-RANDOM-NUMBER TIME) PS:<GLR.FUNCT>STATIS.LSP
Poisson probability functions. Probability of exactly N (FIXNUM) arrivals within TIME

(FLLONUM) for a Poisson process with an average arrival rate (A) of L.

p(n, m) = (m" exp(-m))/n!, m=At

(CHI-SQUARE-DENSITY X N)

(CHI-SQUARE-CUMULATIVE X N)

(CHI-SQUARE-RANDOM-NUMBER N) PS:<GLR.FUNCT>STATIS.LSP
The CHI-SQUARE distribution with N (FIXNUM) degrees of freedom.

(T-DENSITY X N)

(T-CUMULATIVE X N)

(T-RANDOM-NUMBER N) PS:<GLR.FUNCT>STATIS.LSP
Student’s T distribution with N (FIXNUM) degrees of freedom. N must be even in

T-CUMULATIVE.

(T-TWO-SIDED X N) PS:<GLR.FUNCT>STATIS.LSP
For the T distribution, the probability that T falls within -X to +X. N must be an even

FIXNUM.

(F-DENSITY X M N)

(F-CUMULATIVE X M N)

(F-RANDOM-NUMBER M N) PS:<GLR.FUNCT>STATIS.LSP
Snedccor’s F distribution with M and N (FIXNUM) degrees of freedom.
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(GAMMA-DENSITY X A)
(GAMMA-CUMULATIVE X A)
(GAMMA-RANDOM-NUMBER A) PS:<GLR.FUNCT>STATIS.LSP
Gamma probability functions with parameter A (FLONUM). 'The random number gencrator
must have A > 1.0.
px,a) = (I/T@) @ le* a5

(BETA~-DENSITY X A B)
(BETA-CUMULATIVE X A B)
(BETA-RANDOM-NUMBER A B) PS:<GLR.FUNCT>STATIS.LSP
Beta probability functions with parameters A and B (FLONUM). The random number
gencrator is slow, so keep A and B small (say below 10).
p(x,a,b) = (1/8@b) ¥ 1 1)L, 250, 630

(CAUCHY-DENSITY X)

(CAUCHY-CUMULATIVE X)

(CAUCHY-RANDOM-NUMBER) PS:<GLR.FUNCT>STATIS.LSP
Probability functions for the Cauchy distribution.

p(x) = 1/ (7 (1 + x3)
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