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may be suggested by studies in computer vision (and vice versa)
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Abstract: The development of increasingly sophisticated and powerful computers 'in the
last few decades has frequently stimulated comparisons between them and the human
brain. Such comparisons will become more earnest as computers are applied more and
more to tasks formerly associated with essentially human activities and capabilities. The
expectation of a coming generation of ‘intelligent’ computers and robots with sensory,
motor and even ‘intellectual’ skills comparable in quality to (and quantitatively surpassing)
our own is becoming more widespread and is, | believe, leading to a naw and potentially
productive analytical science of ‘information processing’.

In no field has this new approach been so precisely formulated and so thoroughly exemplified
as in the field of vision. As the dominant sensory modality of man, vision is one of the
major keys to our mastery of the environment, to our understanding and control of the
objects which surround us. If we wish to create robots capable of performing complex
manipulative tasks in a changing environment, we must surely endow them with (among
other things) adeguate visual powers. How can we set about designing such flexible and
adaptive robots? In designing them, can we make use of our rapidly growing knowledge of
the human brain, and if so, how at the same time, can our experience in designing artificial
vision systems help us to understand how the brain analyzes visual information?
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~The Information Processing Approach to Vision

When we compare brains with computers we initially find many more differences than
similarities. The differences are most obvious at the level of hardware: the nerve cells, or
neurons, are small, delicately shaped structures consisting of a thin and complex membrane,
closely packed in a supporting medium of gliai cells that control a complex and probably
quite variable chemical environment. They are very unlike the wires and etched crystals of
semiconducting materials on which computers are based. In organization the differences
are also great. In the brain the interconnections between neurons are very numerous—each
neuron may receive many thousands of inputs— and are distributed in three dimensions.
In computers the wires linking the circuit components are limited by present day solid
state technology to a relatively small number arranged more or less two dimensionally. The
modes of transmission of signals are dissimilar as well. The binary coded electrical pulses
of the computer are to some extent mirrored in the all-or-nothing action potentials of the
nerve axon, but in addition to these the brain uses graded potentials, localized chemical
transmission across synapses, and active ionic channels in the cells’ membrane that can be
modulated by a range of chemical transmitter substances. The brain does not seem to have
anything similar to the registers and binary addresses of a conventional computer. Finally,
the temporal organization of the two systems is dramatically different. Computers process
information serially at a very fast rate. Their time course is divided up by a system-wide
clock into a series of temporally discrete states. The transient changes from one state to
the next play no part in the functioning of the system. What we know of brains, on the other
hand, points to their functioning as much slower, parallel processors, analyzing information
along millions of channeis concurrently and with no regular clock-driven operations.

Given this catalogue of differences at the lower levels of hardware and system organization,
at what level or levels can we begin to find similarities? Clearly, there is a level at which
any two functionally operational systems can be considered equivalent, namely the level of
the description of the task they perform. "To bring the good news from Ghent to Aixe" is a
description of a task that can be performed by telegraph, satellite, horseback messenger or
pigeon post equally well (unless other constraints such as time are specified). If, therefore,
we assert that brains and computers are both functioning as information processing systems
capable of performing similar tasks, we can develop descriptions or formulations of these
tasks that are equally applicable to both. We have a common language with which to
discuss them — the language of information processing. This independence or separability
of the description of the task to be performed from the hardware performing it is a familiar
notion in everyday life, but it is not always applied systematically in science. This principle
“is at the foundations of the new field of Artificial Intelligence, whose central goals are to
make computers more useful by endowing them with more ‘“intelligent” capabilities, and to
understand the principles that make intelligence possible.

Uitimately, we would like to understand the means by which a task such as vision is
performed by the biological hardware of neurons and synapses. But vision is not only a
problem in physiology and anatomy — how cells are connected and behave — but also
a problem in information processing. Both from the perspectives of the neurosciences
and of Artificial Intelligence,a satisfactory explanation of vision requires different levels of
understanding,from the level of the information processing task at hand to the level of the
particular algorithm, one sequence of steps that a system executes to perform a task, to
-and the level of the computer or biological hardware. The power of the approach lies in
the integration of all the levels of analysis; and in practice information from all sources
and levels is needed to attack a particular problem. The information processing approach
-to vision is only at its beginnings and we are still far from an integrated understanding. A
major recent contribution is David Marr's outline of how the visual perception of objects
might evolve (Vision, Freeman). But despite its originality, it is far from being adequate as
a theory of vision.




In general terms the goal of vision is to tell us, or a machine, what is in the world and
where. This information is crucial for moving around without bumping into obstacles, and
for describing, recognizing. localizing and manipulating objects. Problems of the class we
are dealing with here are especially elusive to the intuition. Visual perception for example, is
something at which we are very good at but which is not open to introspective examination.
It is a mammoth information processing task which the brain performs rapidly and easily ~
effortlessly. It some conscious mental computation were required, as when we do mental
arithmetic for example, we would not underestimate its difficulty. Instead, we are too easily
lured into oversimple, non-computational preconceptions of what vision entails.

Vision begins with a large array of measurements of the amount of light that is reflected
from physical surfaces in the environment onto the eye or a camera. In the human eye these
measurements are made by over one million that undergo chemical changes in response
to light. The cameras we use at the MIT Artificial Intelligence Laboratory measure light
intensity with a physical array of so-called charge-coupled sensors. Although quite different
physical processes are used, both the eye and a camera produce visual images that can
be thought of as a large array of numbers that represent the intensity of light at different
locations in the world.

From this array of numbers, it is too difficult to achieve in one single step an understanding
of what is seen. Visual perception must be accomplished in stages by several different
visual processes operating in parallel to produce intermediate representations of visual
information, that successively approach our final understanding of the world around us.
At each stage, these representations make explicit information that is possible from
previous representations, and to subsequent processes. One of the final and most important
representations that is useful for recognizing objects is a description of the shapes of
objects around the viewer but that is independent of its viewpoint. It can be argued - as D.
Marr forcefully did - that the construction of such a description requires an intermediate
representation of the visible surfaces around the viewer - their distance and orientation
- from the vantage point of the viewer. In turn, there are several earlier visual processes
that can construct this intermediate representation from the 2D intensity arrays in which
this information is encoded by the imaging process. These processes exploit visual cues
available in shading, occlusion, contour, texture, motion and stereopsis. Although some of
these processes may work directly on the raw intensity image, they often operate more
effectively on another intermediate representation of primitive features in the image, such
as edges. In the rest of the article | will describe the process of stereoscopic vision, and
how the image must first be transformed into this more compact representation, on which
the stereo process can then operate.

Two notes of caution are needed here. First, while it seems that any powerful vision
system must use several intermediate representations, it is not yet clear how the different
representations interact and how the system as a whole is organized. Most likely, the flow of
information is not simply bottom up through the various representations, with each process
operating only on the immediately preceding representation. Second, different processes
such as motion analysis and stereopsis are probably not strictly independent modules of
the visual system. It is likely that different modules interact with one another. There are,
however, great advantages in treating the human visual system as a set of (relatively)
independent functional modules at the computational level, the output of one forming the
input to others. This is only an approximation to the true organization of the system, but
served as a convenient starting point for our research. For this reason, we have also
concentrated our efforts on the earlier stages in the visual system rather than to proceeding
too quickly to the later stages.

Though incomplete, the study of early vision is also the closest to yielding an analysis at
all levels, from the theory of the information processing tasks, to the level of physiology
and anatomy. The intermediate level of the algorithms used by the visual system is crucial,
"and often the most difficult to analyze, because the algorithms are constrained both by the




computation being performed and the available hardware. As a consequence, psychophysical
and neurophysiological data have an important role in studying the computations underlying
the first steps of vision. ‘It will help in understanding this point if | outline one such
attempt in which | was involved, where the search for a neural algorithm started from the
information processing level, namely the -extraction of contours from the image, and their
use in stereopsis, using diverse psychophysical and physiological pieces of evidence.

What is Stereopsis?

Stereopsis, which refers to the use of two slightly different viewpoints of the world to
compute depth, is one of the main processes responsible for two cameras deciphering
the 2-D images in terms of the 3-D surfaces that are at their origin. Stereopsis has been
chosen as a framework for this account of early visual processing for a number of reasons.
Not the least of these is the role it has played in the work on vision at MIT. in particular,
it has stimulated a close investigation of how the retinal intensity array may be optimally
represented for subsequent processing, which will be a main focus of my description.
Stereopsis is also in itself an important module in the process of seeing, and one which is
deceptively simple at first glance. As with so many other visual tasks that humans perform
easily and effortlessly, the development of automatic systems of stereoscopic vision, which
would yield immediate and important applications has proven surprisingly difficult. Finally,
stereopsis seems a good choice because there exists a large body of critical psychophysical
evidence, with which to define and constrain the problem.

Stereopsis arises from the fact that our two eyes view the same scene from slightly different
angles. One can easily experience directly this binocular disparity by looking at objects not
too distant and noting their different relative positions when closing each eye in turn. The
eyes converge slightly so that the two axes of vision meet at one of the points. This point
is said to be fixated by the eyes and projects to the center of vision, i.e., the center of the
fovea, of each retina. Any neighboring point in the visual field will project to a point on each
retina some distance away from the center of vision, but the distance will not in general be
the same for each eye. In fact, the distance disparity will vary with the depth of the point
in the visual field relative to the fixated point, and also with its angular distances from it.
The human visual system is capable of using this disparity to recover the 3-D structure of
visible surfaces from their 2-D projections.

At this point the problem of stereopsis might appear to be a relatively straightforward matter
of trigonometry. We might be tempted to write a computer program to solve it, or to look -
inside the optic ganglia of the brain for neurons that respond preferentially to, say, a bar of
light on a dark background at a certain distance. However, no such computer program for
stereopsis has yet been constructed that performs at a level comparable with human vision,
and although such neurons can indeed be found (see the article by Pettigrew, Scientific
American, Aug '72), they have not helped us to understand (or to program on a computer)
. stereopsis. Our own facility to perform stereopsis has led us to gloss over what is the

‘central difficulty of the task, as we may now see if we formally set out the main steps
involved. There are four: :

(1) A location in space must be selected from one retinal image.
(2) The same location in space must be identified in the other retinal image.
(3) The positions in the two images of the two corresponding points must be measured.

(4) From their relative positions in the two images, the distance of the point must be
. calculated.

The last two steps recover the distance to a point in the scene from the positions of its
projection on the two retinas. This is a problem involving the geometry of the imaging
situation that we know well how to solve. As C. Longuet-Higgins in Sussex, J. Mayhew in




Sheffield and others have shown, the problem can be solved even when we know very little
about the position of the eyes or the cameras. For simplicity, | will consider a somewhat
ideal situation in this article: when the observer fixates a distant point, corresponding
locations lie on horizontal lines at the same vertical position in the two images. This situation
is common in most psychophysical experiments. In aerial photogrammetry it is common
to rectify the two images in order to satisfy this condition. (As we will see later, this also
simplifies the second of the above four steps.) The problem of calculating distance is then
very easy: an estimate can be computed by our brain or a computer just from the positions
of the points in the two images in terms of simple trigonometry.

In the first two steps shown above, identifying a “location in space" means, in effect, a point
on a surface. Each photoreceptor in the retina can be thought of as looking along a line of
sight to a point on the surface of some object. Geometrically corresponding photoreceptors
in the two retinae will not, in general, be looking at the same piece of surface. How then are
corresponding pieces of surface to be identified? This, is where the difficulty of stereopsis
lies. For us, the visual environment contains surfaces that are effectively "labeled" point
by point by their relationships to distinct objects and shapes. But, the influential work of B.
Julesz telis us at the outset a very important fact about stereopsis, namely that it does not
necessarily depend upon the prior perception of objects. Julesz's work with the random
dot stereogram is familiar to many Scientific American readers (see Sci. Amer. Feb., 1965).
Each eye is presented with an array of dots whose patterns are almost identical but which
conceal a simple 3D shape. The patterns are individually meaningless to the eye - the shape
is revealed only after the two images have been fused by the brain. This finding spoke
strongly against the prevailing theories of the time that gave object and shape recognition
a key role in visual processing. Most importantly, Julesz’ random dot stereograms allows

_one to formulate one computational goal of human stereopsis as the extraction of disparity

information from a pair of images, without the need of obvious monocular cues.

The main problem that human stereo vision must solve is therefore what has been called
the correspondence probiem - how to find corresponding points in the two images without
recognizing objects or their parts. This is also the main problem that has hampered the
development of completely automatic stereo systems, despite many attempts. In random
dot stereograms, black dots in one image are all the same, of the same size and contrast;

‘any given dot in one image could in practice be matched with any one of a large number

of dots in the other image. And yet our brain solves the false target problem and comes
up with the right answer. How does the brain determine what corresponds to what?

The problem could in principle be solved in two ways. First, some other form of local
labeling could be used. Each point in an image is the projection along a line of sight of a
point on a physical surface (unless the camera is looking at the sky!). If a point is visible in
both eyes or cameras, then its projections are the corresponding points in the two images
should be matched. One candidate for points to be matched would be raw light intensity,
but computer experiments show limitations to the effectiveness of this, and psychophysical
evidence speaks against it for the human visual system. Indeed, points on specular surfaces
will not necessarily reflect the same light intensity to both eyes, and, more important, widely
separated points may have the same intensity, thus causing ambiguity. Rather than using the
raw intensity array, stereopsis may operate on an intermediate representation of the image,
that makes explicit primitive features that correspond more closely to physical features in
space. It is this possibility that | shall now examine, beginning with some observations about
the physical world.

Constraints on the Stereo Computation

The task of identifying corresponding locations in the two images is difficult because of the
so-called false target problem. This seems particularly obvious in random dot stereograms




in which each of the black points in one eye’s view could match any of the points in the
other eye's view. There are many thousands of possible matchings between the left and
right images, yet our krain consistently chooses only one.

For our visual system to find a single answer to the correspondence problem, it must
make use of implicit assumptions about the physical world and how it is encoded onto
the eyes that allow it to determine one solution most appropriate from a physical point
of view. These assumgptions must be powerful enough to yield constraints that make the
problem determined and sclvable. There are two broad types of constraints on the stereo
computation; those on the matching process itself, and those on the nature of the items
- of the measurements on the image - that have to be put in correspondence. | will first
discuss briefly these two types of constraints and then show how they can be used to
answer the two basic guestion posed by the correspondence problem: what to match and
how to match.

In 1976, D. Marr and { found that simple properties of physical surfaces could constrain
the correspondence problem sufficiently for the stereo algorithms that we were then
investigating. These are: (1) that a given point on a physical surface has only one 3D
location at any given time, and (2) that objects are cohesive (and opaque) and that therefore
the variation in depths ever a surface are generally smooth, with discontinuous changes
occurring only at surface boundaries. The unigueness constiraint means that each item in
either image has a unigue disparity and can be identified with no more than one location
in the other image. The second, continuity, enables us to group points in space together
(exploiting some of their geometry) and thus bring configurational features of the two stereo
images to the aid of stereopsis. These two simple constraints provide matching rules that
are reasonable and powerful, and as we will see later, lead to the correct correspondence.
More refined matching rules can be formulated by considering in more detail the geometry
of stereopsis. For example, if the fixation point is sufficiently distant, corresponding points
have to be sought only on horizontal lines at the same height. If the surface is continuous
and is not transparent, the uniqueness and continuity constraints imply that points on a
horizontal line in the left image must be matched to points in the right image occurring in
the same order - from left to right. As shown by T. Binford at Stanford (with H. Baker and
Arnold) and J. Mayhew (with J. Frisby) in Sheffield, these and other matching rules can be
usefully incorporated into the computation of stereopsis.

It is necessary first, however, to identify items for the matching process that are in one-to-one
correspondence with well-defined locations on a physical surface, are stable as much as
possible against photometric and geometric distortions (i.e., they appear the same in the
two eyes despite the slightly different point of view), and are specific enough to simplify
the matching problem. We have already seen that raw intensity values themselves are too
unreliable to be used for matching. A class of items that are still quite simple, yet correspond
more closely to locations on physical surfaces are surface markings, and edges. These
markings and edges are of course encrypted in the grey level array provided by the sensors;
to use them as matching items, they must be decoded by appropriate operations. But how?
If an additional constraint on the nature of physical surfaces is added, the problem becomes
simpler. This is based on the observation that at locations where there are physical changes
in a surface, the image usually shows sharp changes in intensity. Intensity changes due to
markings on surfaces - such as texture edges - are sufficiently prevalent in the real world
to be a potential aid to stereopsis. Thus instead of the raw numerical values corresponding
to the intensity values in the image, we want the stereo matching process to operate on
a more symbolic, compact and robust representation. Attractive primitive symbols for this
description - in a sense its basic "alphabet" - are the intensity changes. D. Marr at MIT
coined the term "primal sketch" to describe a representation of different measurements of
intensity changes in the original grey level array.

I will next present a scheme for detecting and describing intensity changes that we have
been using at the MIT Artificial Intelligence Laboratory for the past several years, based on




old and new ideas developed by several people. It has many attractive features: it works
well, it is simple and it shows interesting analogies with biological vision from which it was
in fact suggested. It is not, however, the full solution to this problem. From a biological
point of view it is at present only a working hypothesis, certainly incomplete, at least in the
simplified form that | am going to describe.

‘Locating Edges in Images

Changes of in an image can be detected by comparing neighboring values in the array; if
the difference is large, the intensity changes very rapidly. This operation can be regarded
as taking the first derivative of the image, and looking at its extremal values - either peaks
or troughs. The position of the peak (or the through) localizes the position of an intensity
change, which in turn often corresponds to an edge on a physical surface. A brief thought
shows that an edge also corresponds to a zero-crossing in the second derivative of the
image (which can be obtained by taking differences between neighboring values in the
first derivative), that is the location where the second derivative crosses zero, going from
positive to negative values or vice versa. Thus, through their extrema and zeros, derivatives
of an image seem to provide a good means for detecting edges. Unfortunately, this scheme
is still too simple to work on real images, largely because intensity changes in an image are
“rarely like the clean and sharp step change from one intensity value to another shown in -
the figure. First, there are many types of changes, slow and sharp ones, taking place over
different characteristic spatia/ scales. Second, changes in intensity are also often corrupted
by noise that infiltrates at different stages during the process of transducing the image
formed by the optics of the eye or camera into an array of measurements of light intensity.
Modern digital cameras as well as our eye are subject to this, often unavoidable, noise.

To cope with intensity changes over different scales and added noise, the image must
be smoothed by local averaging of neighboring intensity values. The averaging procedure
removes minor intensity changes due to noise, and depending on the spatial extent of the
averaging, it can emphasize intensity changes at different scales. The differencing operation
can then be performed on the smoothed image. There are various ways of performing these
two steps and much theoretical work has been done to characterize optimal ways of doing
it. (Recent work by J. Canny and by V. Torre and myself has clarified further the exact
form of the optimal operations for edge detection.) An example, one of the simplest, is the
scheme that we have used at M.L.T.. It was suggested to D. Marr and myself in 1977, while
we were working on the problem of stereopsis, by a combination of psychophysical and
physiological data on primate vision, and was successively modified and extended in an
influential paper by D. Marr and E. Hildreth.

In this scheme the two operations ~ smoothing and differentiation — are combined into a
single operation of filtering (in this case convolving) the image with a circularly symmetric
spatial filter, technically called a point-spread function, whose shape is the Laplacian
~of Gaussian. The Laplacian-of-a-Gaussian filter, shaped like a Mexican hat, is similar to
the center-surround receptive fields of retinal cells, well known to visual physiologists.
Convolving an image with a filter is equivalent to substituting each value of the image
with a weighted addition of neighboring values, where the weights are provided by the
point-spread (or filter) function. The point-spread function shows how a single point of light
would spread out in the filtered array. Once this filtering operation is performed for each
image element, the result is an array of positive and negative numbers, a kind of second
derivative of the image intensity. Zero-crossings in the filtered array correspond to points
in the image where intensity is changing most rapidly. A binary map of the filtered array in
which the positive and negative regions are represented as white and black, is completely
equivalent to the map of the zero-crossings. :

In the human visual system, most of the elements required to make this hypothesis workable




seem to be present. As early as 1865, E. Mach observed that our perceptual system seems
to enhance the changes in light intensity, and postulated the existence of a mechanism
of lateral inhibition for performing an operation similar to a spatial derivative. Furthermore,
there is evidence suggesting that the primate retina may do something like center-surround
filtering. The output from each eye is conveyed to the brain by about a million nerve
fibers, which are the axons of the retinal ganglion cells. In the retina the intensity values
measured by the photoreceptors are processed by several types of neurons before they
arrive at the ganglion cells. Physiological data suggest that a subclass of retinal ganglion
cells, whose receptive fields have a center-surround organization (that is, an excitatory

~ center and an inhibitory surround), closely approximate the Laplacian-of-a-Gaussian filter.

Thus the array of one type of ganglion cells may represent the result of filtering the
image through the center-surround filter. It is not too unreasonable to think that positive
values in the filtered image would be carried by the ON-center cells and negative values
by the OFF-center cells. (ON-center cells are stimulated by a bright spot in the center of
the receptive field, whereas OFF-center cells are excited by a dark spot.) This is now a
conjecture that connects the theory of the information processing task performed at this
early stage of vision with the biological hardware that implements this task. It offers, of
course, many exciting possibilities. One which | cannot refrain from mentioning is based on
the recent finding by Nelson, Famiglietti and Kolb that ON- and OFF-ganglion cells (in the
cat) are segregated into two different layers in the retina. The binary maps of the images
provided by the MIT convolver would then literally represent activity in these two layers of
cells in the retina, blue corresponding to OFF-layer activity and red to ON-layer activity.

Note that the whole operation of filtering the image is computationally very expensive for
digital computers, because it involves very many multiplications: about 1 billion for an image
with 1000 x 1000 elements. K. Nishihara, N. Larson and M. Kass at the Artificial Intelligence
Laboratory of MIT, have designed a special hardware convolver that can perform this
operation in about 1 second. This is an impressive rate but still very slow compared with the
speed attained by retinal ganglion cells if they indeed perform, among other computations,
the convolution of the image with a center- surround filter in real time. ’

Let me now briefly mention the issue of scale. Changes of intensity, as | mentioned, can take
place over a range of spatial scales. In an image there are fine as well as coarse changes
of intensity. All of these changes must be detected and represented. How can this be
done? The natural solution is to use filters of different dimensions, and this is indeed what
neurobiology and psychophysics (by F. Campbell and J. Robson at Cambridge University
and by H. Wilson and J. Cowan of the University of Chicago) suggest to us. For a given
resolution the process of finding intensity changes consists of first filtering the image with a
center-surround type of filter whose extent reflects the spatial scale over which the changes
must be detected, and then locating the zero-crossings in the filtered image. To detect
changes at all spatial scales, it is necessary to add filters of different dimensions and carry
out the same computation for each. Large filters allow the detection of soft or "blurred"
edges as well as illumination changes, small ones allow the detection of fine details in the
image, and all filter sizes allow the detection of high-contrast sharp edges. On grounds
such as these, therefore, the hypothesis that derivative-like operations are performed on the
image at different scales (or resolutions) looks attractive as a means of decoding features
such as edges. The information about these edges is contained in the zero-crossings of
the filtered image at each scale, which may be represented explicitly by the zero-crossing

“'maps, or implicitly in the binary maps of the filtered image that show only the regions of

positive and negative convolution values (see figures). Primitive representations of this type

. at different scales are a far cry from the raw intensity array and sometimes reveal hidden

features in the image, as well as edges of different orientations and degrees of blur.

Recent theoretical results have enhanced the attractiveness of this idea by showing that
features similar to zero-crossings in the filtered image (or to the binary maps of the
filtered array) can be very rich in information. First, the mathematician B. Logan at Bell




Laboratories proved that a function filtered through a certain class of filters can be
completely reconstructed from its zero-crossings alone (modulus an overall scaling factor).
Though the Laplacian-of-a-Gaussian filter does not exactly satisfy Logan’s conditions,

- the theorem suggests that the relatively sparse number of discrete "symbols" provided

by the zero-crossings are very rich in information about the filtered image. In recent
months A. Yuille and | have obtained specific results about the zero-crossings (and other
extrema points) of images filtered with the derivatives of a Gaussian filter, such as the
center-surround filter shown in the figures. Our theorems suggest that zero-crossings maps
obtained at different scales, i.e. with different filter sizes, (in principle, one can think in
terms of a continuum of scales, an idea first suggested by A. Witkin at the Fairchild Artificial
Intelligence Laboratory) are a complete representation of the image. Clearly there is no
need for reconstructing the original image from these symbols. But our theorems suggest
that the features obtained by appropriately filtering the image capture a lot of information
and represent, therefore, one of the candidates for an optimal encoding scheme used by
later processes, such as stereopsis. It must be pointed out that the Laplacian-of-a-Gaussian
filter and the associated binary convolution maps (or its zero-crossings) are just one of the
representations suggested by this theoretical analysis. What exactly are the representations
that have to be used by artificial vision systems and are used by our visual system is still
an open question.

To summarize, the combination of computational arguments and biological data suggests
that an important first step for stereopsis (and other visual processes as well) is to detect
and describe the changes in intensity in the image at different scales. A representation of
intensity changes can be compact and explicit, representing the information that matters
for later processes. Filtering with the Laplacian-of-a-Gaussian filter is an especially simple
and convenient scheme; the zeros in the filtered array essentially correspond to "edges"
in the image. (Interestingly a similar operation can be useful for finding other kinds of
edges, such as color boundaries. The expected color-coded center-surround cells have
been recently found in special anatomic structures in the primate visual cortex by D. Hubel
and M. Livingstone.) It has been known since the early work of D. Hubel and T. Wiesel
that there exists cells in the primary visual cortex that respond selectively to edges of a
particular orientation and sign of contrast in their receptive fields. It is unclear whether
cortical cells exist that explicitly signal the presence of zero-crossing segments of a certain
orientation in their receptive fields. It is unlikely that cortical cells behave as originally
proposed by D. Marr, though experiments by K. Richter suggest that some cells (in the
visual cortex of the cat) may indeed encode information about zero-crossings.

Note that information about the zero-crossings implicit in the pattern of activity of some
of the ON- and OFF- ganglion cells layers in the retina, since the zero- crossmgs are
the locations where activity switches from one layer to the other (we neglect in this
simplified description all temporal properties of ganglion cells).To explicitly represent the
zero-crossings cortical cells would be required that connect neighboring ON-center and
OFF-center cells, and perform a multiplication or logical AND operation on their outputs.
Variations of this scheme are also possible, including one in which the logical operation
being performed is the AND-NOT operation. At this point, we feel very strongly the lack of
understanding of what elementary computational operations nerve cells can readily perform.

" H. Barlow has suggested, in fact, that the "veto" or AND-NOT operation is one for which

nerve cells may be especially adapted, and V. Torre, C. Koch and | have shown that
this operation can be performed between pairs of synaptic inputs on a small patch of
the dendritic membrane of a neuron. Neurons in the visual cortex are mostly likely doing
much more than detecting oriented "edges" or zero-crossings or peaks in derivatives of
the image. But the work of physiologists suggests that representing intensity changes in a
way somewhat similar to the scheme we have discussed, may indeed be one of the tasks
of some cortical cells.




Stereopsis Algorithms

In order to see how a representation of intensity changes might be used in stereopsis, we
shall first consider an algorithm that was devised by D. Marr and myself in 1976, which
incorporates the previously stated computational constraints, and which is successful at
solving random dot stereograms (the approach was first suggested by P. Dev). As the
figure shows, the algorithm requires a 3D network of nodes or "cells", each of which
lies at the intersection of a line of sight from each image. Each node contains a “0" or
a “1", depending on whether a correspondence is established between the two points
corresponding to the two intersecting lines. To implement the uniqueness constraint, the
nodes lying along a given line of sight strictly inhibit each other. To implement the continuity
constraint, each node excites its immediate neighbors.

In the unnatural case of a random dot stereogram, each dot can be made to correspond
to one line of sight and has one of two distinct intensities (black or white). To run the
algorithm, we begin by placing a 1 in each node at which the intensities agree, and 0 at the
others. Each 1 represents a match, whether the true one or a false one. In the execution
of the algorithm, each node adds up the excitatory inputs from its coplanar neighbors at
the same disparity, and subtracts the inhibitory inputs from its colinear ones. If the result
exceeds a threshold value, the node takes the value 1, otherwise it is set to 0. After a few
such steps, the network reaches stability and the problem is solved.

The cooperative algorithm has some quite considerable virtues. In particular, it is composed
of local interactive operations that can run asynchronously in parallel and which could
easily be identified with individual neurons. In addition, the network not only solves the
false target problem, but can also "fill-in", effectively interpolating a centinuous surface.

" Notice also that whereas the algorithm favors continuity of matches in the disparity domain

(in this simple version it favors front and parallel planes) it allows for sharp discontinuities
at boundaries. However, the 3D network required to process finely detailed natural images
would seem to be very large, and most of the nodes in this network would be idle at any one
time. Furthermore, as pointed out earlier, intensity values are not satisfactory for matching
under less restricted conditions than those that apply to the random dot stereograms.

The range of effectiveness of this algorithm can be extended to more natural images
by transforming the images to obtain their zero-crossings or equivalently the sign of
the Laplacian-of-a-Gaussian convolution. This transformation provides us with a means

. for converting natural scenes into patterns that bear a resemblance to Julesz’s binary

random dot stereograms (the sign of this convolution array is completely equivalent to
the zero-crossing map). The cooperative algorithm can now operate on this representation
— this binary array — exactly as on random dot stereograms and extract the correct

- disparities. In addition, the convolution can be performed with different sized filters, that

reveal primitive, otherwise hidden features at the different resolutions. Economies could
therefore be achieved in the brain by processing the image with a range of filters of different
sizes interacting in an appropriate way.

At present it is unclear whether performance of this simple version of the cooperatlve
algorithm on natural images can be satisfactory. It is quite surprising that such a simple
and "blind" algorithm relying on primitive constraints can perform so well for at least
some natural images. Of course, natural images contain a variety of cues in addition to
binocular disparity, like shading, contours and occiusions that human observers are very
adept at using for computing depth. Julesz’s demonstration that monocular information is
not needed to fuse a stereogram does not imply that it is not used when available. A
complete theory of human stereo vision shouid eventually also include ways to process this

v additional mformatnon

In any case, the representation of the image in terms of the convolution with the center-
surround filters at different resolutions opens up much more interesting possibilities than




the use of the simple cooperative algorithm One obvious possibility is to use as matching
features the zero-crossing contours themselves. At low spatial resolutions, zero-crossings
of a given sign (for instance zero-crossings for which the convolution output changes from
positive to negative) are quite rare and in fact never too close. Thus false targets - matches
between noncorresponding zero-crossings - are essentially absent over a relatively large
disparity range. A mathematical analysis of the probability of occurrence of zero-crossings
in bandpass filtered images it shows that if the disparity range that is considered is on the
order of the size of the receptive field used to filter the image (more precisely the diameter
of the "excitatory" center), false targets are virtually absent. These observations led D.
Marr and myself to propose in 1977 a different algorithm for solving the correspondence
problem. In its simplest version the algorithm matches zero-crossings of the same sign in
image pairs filtered with center-surround receptive fields of 3 or more different sizes. First
the coarse images are matched and the disparity measured. This rough result is used to
approximately register the two images in the region of interest (monocular features and
texture differences can also be used). The same matching process is then applied to the
medium-sized filter. A similar procedure finally yields very fine disparity resolution in the
small disparity range within which the smallest, high resolution filter operates. A theoretical
extension and computer implementation of this algorithm by E. Grimson at the Artificial
Intelligence Laboratory (described in his book that also addresses the basic problem of
surface reconstruction) shows many of the properties of human depth perception, for
instance the ability to perform successfully when one of the stereo images is defocused.
That there are also some significant differences is shown in recent work by J. Mayhew and
J. Frisby at Sheffield and B. Julesz at Bell Laboratories.

Other stereo algorithms that make direct use of the primitive multiscale description obtained
by filtering the image with the center-surround filters are also quite effective. For instance,
K. Nishihara at the MIT Artificial Inteliigence Laboratory has developed a stereo system
for robotics applications that operates on the sign of the convolution of the image. It
detects the presence of a correspondence between regions of these binary representations
and measures its rough disparity in a sequence of increasingly finer resolutions. lts main
characteristics are speed and capability of coping with noisy images.

At this point what can we say about the biological mechanisms of stereopsis? The algorithms
that | have described are still far from solving the correspondence problem as effectively
as the human visual system but suggest ways of how it may be solved at all. Experiments
in the cat’s visual cortex by H. Barlow, C. Blakemore and Pettigrew in 1967, and in the
visual area of the macaque by D. Hubel, T. Wiesel and by G. Poggio, revealed that cortical

~ neurons signal binocular disparity, but did not provide insight on how the brain handles the

correspondence problem that occurs during binocular vision. Very recently, G. Poggio has
found cells in the visual cortex of the macaque that signal the correct disparity of random
dot stereograms in which there are many possible false matches. This discovery promises
to give us new insights about the brain mechanisms underlying stereoscopic matching. In
particular, while some disparity sensitive cells may be thought to use matching primitives
that correspond to isolated oriented edges, the activity of some complex cells may reflect
something similar to patchwise correlation of fiitered images, an operation that is almost

“equivalent to matching zero-crossings over a certain area and that could be performed in

the same cortical area or elsewhere.

The interaction of the information processing approach with these new physiological data is
an exciting development that should raise our confidence in the prospect of understanding .
human stereo vision, perhaps in the near future. Work on computational algorithms for
stereopsis is clarifying the central issues in terms of information processing. Psychophysics
and physiology are important for solving the problem of human stereo vision, testing
specific models and even for helping to develop automatic stereo systems. Many problems
that | did not mention must still be solved if we want to understand human stereopsis
well enough to be able to implement it in computers and robots with the same level of
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performance. Stereopsis is an early but difficult stage of vision; it provides a unique and
exciting opportunity to demonstraie that attempts to understand the human visual system
and to develop computer vision systems that can fruitfully interact.

Conclusions

One message that should have emerged from this discussion is the extent to which
computers and brains can be brought together in the investigation of a problem like vision.

On the one hand, computers provide a powerful tool for testing computational theories and
algorithms and proving their ability (or sufficiency) to solve the problem. In the process,

they serve as a guide for the design of neurophysiological experiments, suggesting what to
look for. The impetus that this will give to brain research over the next decades is likely to
be very great. : '

But the benefit is not only one way; computer science also stands to gain. It is not the
case, as some computer scientists have maintained, that the brain provides no more than
an existence proof, i. e. a living demonstration that a given problem has a solution. It can
also, as | hope this article has suggested, show us how to seek a solution. The brain
is an information processing machine that has evolved over millions of years to perform
certain real-world tasks superlatively well. If we tend, with usually not unjustified modesty,
to regard our brain as a somewhat uncertain instrument of reason, this is only because we
are conscious of the things it does less well - the recent things in evolutionary terms like
logic, mathematics and philosophy - and are normally unconscious of its true powers, like
vision. It is in these functions that we have a lot to learn from the brain, and it is against
these functions that we should judge our achievements in computer science and robotics.
If we do this we may begin to see what vast potential lies ahead of us.
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