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Figure 1 The geometry of the epipolar lines.The plane defined by the two foci, ¥, and
'y, and a point P cuts the two image planes in the corresponding epipolar lines I} and ls.
As we vary the position of P we produce a 1-parameter family of epipolar lines on each
screen. The lines are not paralle! to one another, and it can be seen that the epipolar lines
on screen 1 all intersect at the point where the line I'\I'y hits screen 1.

1. Introduction

The problem of stereo matching is ill-posed and underdetermined: constraints are needed
(a) to make the solution unique and (b) to reduce the search problem among possible
matches. :

Marr and Poggio (1979) originally identified two important constraints: (1) uniqueness, that
is, an element in one image in general only corresponds with a single element in the other
image, and (2) continuity, that is, stereo disparity varies smoothly almost everywhere in the
image. These constraints are powerful because they do not depend on the specific properties
of the scene but on general properties of the stereo geometry. Marr and Poggio (1979)
proposed a stereo matching algorithm, further developed by Grimson (1981, 1984), which
incorporates the unigueness and continuity constraints to match zero-crossing descriptions
computed at different scales. An ordering constraint along epipolar lines has been exploited,
both impticitly and explicitly, in several computer algorithms for stereo matching, as a special
instance of the continuity constraint. Epipolar lines in the two images are lines on which
corresponding points lie. The projections of a point P in space lie on the plane defined
by P and the two camera foci and, as a consequence, on the two lines defined by the
intersection of this plane with the two image planes (see figure 1).

This implies that the matching problem can be reduced to a one-dimensional search if the
epipolars are known. Most algorithms assume that the epipolar geometry is known (from a
known camera geometry) and that the images are registered. Furthermore, the ordering of
edges or other features is usually preserved by stereo projection along epipolar lines {that
is, if feature A is to the left of feature B in the left stereo image, then this spatial relationship
is maintained in the right stereo image). The ordering constraint along epipolar lines follows
from the continuity of surfaces and the assumption of opacity. As originally suggested by
Baker (1982) the ordering constraint is violated in situations such as figure 2. Recently,
Verri (1984) has discussed the role of the "forbidden zone", where the ordering constraint
is violated (Krol and van de Grind, 1982 first introduced the notion of forbidden zone). The
forbidden zone associated with each point of the visible suriace is a set of points in space
that would have images violating the ordering constraint. if any point in the forbidden zone
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Figure 2 The forbidden zone associated with point A is represented by the dashed region.
Any point in this region such as B has projections which violate the ordering constraint
relative to A.

would be connected to the first point by an opaque surface the two images would "see"
uppusiie sides of the surface. )

This ordering constraint can be exploited to reduce the complexity of the search for matching
features, and to eliminate false matches. Interestingly, there is preliminary evidence that the
ordering contraint (and perhaps a stronger form of it) may be implemented in the human
stereo system (Burt & Julesz 1980). The human system, Khowever, must often cope with
situations in which the images are not precisely registered. Furthermore, physical edges
are inherently two-dimensional (a property that is not exploited by the epipolar ordering
constraint). It is therefore natural to ask whether the ordering constraint can be generalized
from epipolar lines!. More precisely, can an ordering constraint be formulated that is
independent of the epipolar geometry? The simplest use of such a constraint would be
when either the epipolar lines are unknown or their estimation is affected by errors.

In this paper we show that it is indeed possible to generalize the ordering constraint. We
also give an analytic definition of the forbidden zone and characterize its properties. We
show then that the generalized ordering constraint implies several other constraints that
have been exploited in stereo matching. An algorithm based on this constraint has not been
implemented yet, but we discuss its advantages and its limitations.

The plan of the paper is as follows. Throughout the paper, unless specifically stated, we
consider a stereo geometry in which the two image planes have the same vertical unit
vectors. This simple geometry is fully representative for most practical applications and it
represents a good approximation for human binocular geometry (Longuet-Higgins, 1982). In
section 2 we assume orthographic projection. We prove a simple relationship between the
two images of a 3D curve that leads to a generalization of the standard ordering constraint.
This relationship allows us to identify special points in the images that correspond uniquely
to the same physical point in the object curve. The Generalized Ordering Constraint (GOC)
implies several of the specific constraints listed by Baker et al. (1983) , Mayhew and Frisby
(1981) (see their tigural continuity constraint), and Ohta and Kanade (1983). The ordering
constraint breaks down when the object curve enters the forbidden zone. We define the

! This question was first brought to our attention by Dr. V. Torre
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forbidden zone geometrically and algebraically and discuss its properties. Section 3 shows
that slightly weaker results can be derived for perspective projection (this includes the
ordering constraint along epipolar lines as a very special case). These results again break
down for the forbidden zone, which is more complex than in the orthographic case. In
section 3, we characterize fully the forbidden zone for the perspective case and prove several
results about it. The boundaries of the forbidden zone correspond to the so called Panum
limiting case in the psychophysics of stereo, when one line of sight just grazes the surface.
Burt and Julesz' results suggest that human stereovision is limited to a smaller disparity
gradient. In section 4 we derive the equations for the physical surfaces corresponding to
this disparity gradient limit. In section 5 we show how the generalized ordering constraint
implies other stereo matching constraints. In section 6 we outline an algorithm for stereo
based on matching contours. From a single contour the algorithm retrieves the viewing
parameters and unambiguously matches points along the contour using the generalized
ordering constraint. The constraint of figural continuity (Mayhew and Frisby, 1981) follows
from the generalized ordering constraint and is implicitly implemented in our algorithm. In
Appendix 2 we derive an explicit solution of the equations for the viewing parameters in the
case of the stereo geometry suggested by Longuet-Higgins, using only two points.

2. The Ordering Constraint and the Forbidden Zone for Orthographic
Projection

We assuine a sierev-imaging geomeiry of ihe lype proposed by Longuei-Higging (i982) in
which the planes of the horizontal meridians of the two eyes coincide. Hence, the relative
orientation of the two eyes is defined by one parameter only. We also assume orthographic
projection. We show that for any part of the object which does not lie in the forbidden zone,
there is a simple relationship between the images of the object in the two eyes. This enables
us to generalize the ordering constraint (Baker & Binford, 1881) and to identify features in
the images that correspond to the same feature in the object.

We define an orthonormal triad of vectors in each eye. By our restriction on the geometry,
the vertical direction, k, is the same for each eye. The right eye has vectors i, j and Kk,
where j is normal to the right image plane. Similarly the left eye has vectors i’, i’ and k,
where j’ is normal to the left image plane The convergence angle 9 satisfies j+j’ = cosd
(see Figure 3). We define coordinates X, Y and Z along the i, j and k axes respectively.
Similarly, we let X’ and Y’ be coordinates along the i’ and j’ directions. Note that the
origins of these systems of coordinates lies at the intersection of the two image planes and
not at the focal points of the eyes. The following equations connect the triads of the two
eyes:

j i’ = cos®

.‘-,:—: <

1 Teos? (21)
i’ j=—sind

i-j = -Fsin®

We consider now a curve in the right image plane, parameterized by s (which is not the arc

. length) and written as

rn(s) = X(S)i -+ Z(s)k (22)

Under the assumption of orthographic projection, equation (2.2) is the image of an object
curve given by r(s) = X(s)i + Y(s)j + Z(s)k,
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Figure 3 See text.

ri(s) = X'(s)i' + Z'(s)k (2.3)
where

X'(8)=r(s) i = X(s)cosd — Y(s)sin ¥

(2,
Z'(s) = r(s) -k = Z(s) (24)

We partition the right image curve into intervals for which Z is a single valued function of
X. These intervals are separated by points at which %’,7{ = 0. For each such interval X can
be chosen as the parameter and we can write the projection (in the right image plane) as

rr(X) = Xi+ Z(X)k . (25)

Identification of s in equation (2.3) with X yields (for the left image)

r=X'(X)i'"+ 2'(X)k (2.6)
with
X'(X)= Xcosd - Y(X)sin9¥ 2.7)
Z'(X)= 2(X) '
Let us now compute %—' from equation (2.4):
dx’ Y (X) .
Fid cos ¥ — sin ¢ (2.8)
Note that (see Figure 4)
dY cos?
dX < sin 9 (2:9)

is the condition that curve never enters the ‘forbidden zone". Thus, if the curve never
enters the forbidden zone, i.e., it satisfies the condition (2.9), then
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Figure 4 Line (a) has gradient smaller than cotd and therefore is not in the forbidden
zone. Line (b) has gradient larger than cotd and lies in the forbidden zone. The two views
are of "opposite" sides.

dx’ :

A >0 (2.10)
Let us consider now the slope of the curve in the two images for each partition. The chain
rule yields

dz'! dZ dX
o0 = X X (2.41)
Thus, if the curve is outside the forbidden zone, (a) 4% and %% have the same sign (because
of equation (2.10). Moreover, (b) the zeros of 445 correspond to zeros of 4Z. Furthermore,
(c) equation (2.10) gives an ordering constraint on matching corresponding points in the
two curves, since within each partition ordered points on the right image curve correspond
to points on the right image curve with the same order (because of monotonicity implied by
equation (2.11)).

The Forbidden Zone for Orthographic Projection

We now define the forbidden zone and show that it occurs precisely where the ordering
constraints break down.
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Figure 5 Points A; and A, are the images of the physical point A and have cuordinates
X, and X, respectively.

Suppose the two screens, screen 1 and screen 2, are at an angle 0 to each other as
illustrated in Figures 5 and 6. Consider two points A and A’ with coordinates (X,,Y;) and
(X{,Y]) respectively relative to screen 1. They will be projected to points A; and A] on
screen 1 with OA; = X, and OA] = X{. They will be projected to points A, and A} on
screen 2 with OA; = X, = Xjcos0+ Yysin@ and OA] = X} = X{cosf + Y{sinf. The
ordering constraint will hold, provided

X{—-X,; > 0,if and only ifX; — X2 > 0 (2.12)

We have
, Y!-Y, :
X3—Xo=(X{—X1)cos0{1 + X=X, — ——-tanf} (2.13)

So a necessary and sufficient condition for (2.12) to hold is that

Yi-T
1+ —+—-tand .
+X{__X1ta >0 (2.14)
Note that we have —n/2 < 8 < #/2 and hence cos§ is always positive.

Equation (2.14) can be interpreted as a condition on the gradient m of the straight line
joining A to A’. Substituting m for YL—Y’- in (2.14) gives

m > —cot 0 (2.15)

which is the same as equation (2.9).
It is easy to see from Figure 6 that if this condition is violated, screen 1 and screen 2 will
see opposite sides of the line joining A to A’. This motivates the following definition of the
forbidden zone:

oA point A’ is in the forbidden zone of a point A if, and only if, the two screens see
opposite sides of the straight line joining A' to A

As we have shown above, the forbidden zone is precisely the region where the ordering
constraint breaks down.
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Figure 6 See text.

Observe from Figure 6 that the definition of the forbidden zone is symmetric, that is, if A’
is in the forbidden zone of A, then A’ is in the forbidden zone of A. Note also that the
forbidden zone of A depends only on the position of A and the angle 0 between the two
screens. This will not be the case when we consider perspective projection. In Section 3,
we prove some results about the forbidden zone for perspective projection, which will also
apply to orthographic projection.

3. Perspective Projection

We now consider the ordering constraints for perspective projection.

The geometry is summarized in Figure 7. The two screens have unit normals o, and a,
and focal length m. The foci have position vectors f;, and f, relative to the origin 0. An
arbitrary point A in space has position vector X relative to 0.

The centers of screen 1 and screen 2 are 1) and r3, where

1=t - ma (3.1)

0 __

The equations of the screens are

r-a =fF .o —-m, forscreen
(3.2)
r-a,="%.-0,—m, forscreen 2
Now consider the projection of a point X on screen 1. The line of projection is
r(\) = X+ X\f, — X) (3.3)
From (3.2), this hits screen 1 -at
X a+Mfi—=X) aq=fF-2,-m (3.4)

We solve (3.4) to obtain
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Figure 7 See text
A—1= (?T—:)%Z (3.5)
and so X is projected to a point r; with
rp=1"f - ﬁ%}% ! (3.6)

To find the position X; of the image of X relative to the center of the screen, rather than
relative to 0, we must subtract r} from r,. Hence,

m

= a0 = ) aday = (1 = X) (3.7

Xy =1r —
Similarly, the projection on screen 2 is given by

Xy = X)- Q‘-z)-qz - (f2 - X)) (3-8)

m
(f2 _ x) ‘Qy (((f2 -
Now we restrict ourselves to the geometry used by Longuet-Higgins (1982). In this case,

the vectors a,,a,,f; and f, are coplanar and perpendicular to a vector k that we take to
be in the z-direction. We can choose the origin 0 and the z-axis so that

f‘ = *—fg = (f, 0, 0) (39)
We define angles ¢; and ¢,, such that

= (cosm,sfnm,o) (3.10)
2 = (cos ¢3, sin ¢2,0),

and two vectors o] and o} orthogonal to o, and a,
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Figure 8 See text.

aj == (sin ¢y, — cos $1,0)
a; = (sin ¢2, — cos ¢2,0)

(3.11)

The vectors a}, a; and k form a right-handed triad for screen 1, as do o}, a, and k for
screen 2, :

Let the components of X be (X, Y, Z). Its projection X; on screen 1 is given by (3.7), and
can be written

X, = (Xl . _D.‘_I)(I; + (Xl . k)k (312)

Note X, :a; = 0, since X, lies on the screen. Thus we can take X; = (X; - a}) and
Z, = (X - k) to be the cartesian coordinates of the image on screen 1. Substituting from
(3.11), (3.9) and (3.7) gives

m , . _
X, = Feosdi — X cosd, _Ysinqsl(—fsmm + X sing; — Y cos ¢y)
7 ma (3.13)
te fcosgdy — X cosdy — Ysing,
Similarly, we have
—m . .
Xo = Feosds ¥ X conda d Ysin¢2(fsm $2 + X singy — Y cos ¢y) ‘14
7 —-mZ (3.14)
2

= fcosdy + X cos g + Y sin ¢g

It is well-known that there is an ordering constraint along epipolar lines, and with our
geometry, one such line occurs when 7 = 0. This is illustrated by Figure 8, where X and
X’ lie in the Z == 0 plane. The forbidden zone of X is the shaded region. Then, provided
that X’ lies outside the forbidden zone of X the images of X’ on the two screens will be
either both to the right of the image of X, as in Figure 8, or both to the left.
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Now observe that both X; and X, in (3.13) and (3.14) are independent of Z. Thus, if we
remove the restriction Z = 0, we obtain a similar ordering constraint independent of whether
X and X' lie on the same epipolar line. Intuitively, if X is to the “right” of X' in space, then
the projections of X will be to the “right" of the projections of X’ on both screens.

These results hold if, and only if, X' is not in the forbidden zone of X. The forbidden zone
is complicated for perspective projections, and we discuss it in the next subsection.

One obvious application of our generalized ordering constraint concerns two contours on
the two screens. It implies that there is an ordered mapping between the two contours and
that the points at the end of the contours, where 4% = 0, must be identified. (See Figure
8.) The ordering constraint along epipolar lines arises as a special case when we take the
contours to be the epipolar lines.

The Forbidden Zone for Perspective Projection.

Since the X-component on the screen is independent of the Z-component in space, (3.13)
and (8.14), the shape of the forbidden zone will be independent of Z.

From Figure 10, it is clear that B’ is in the forbidden zone of A if and only if the two screens
see opposite sides of the straight line joining A to B'.

The structure of the forbidden zone is more complicated for perspective than for orthographic
projection. For orthographic projection, the angle subtended by A to the two screens was
a fixed angle 0, independent of the position of A. For perspective, this is no longer the
case. In this section, we characterize the forbidden zone algebraically and prove various
desirable properties about it.

Let the permissive zone of A be the complement of the forbidden zone of A. If B is in the
permissive zone of A to the left of A we will write I3 left xA. Similarly, B right *xA means B
is in the permissive zone of A to the right of A.

It is clear from Figure 10 that I left »A if and only if the angles ¢; and . are both positive.
This will be true if and only if the Z-component of the cross-product of the vectors FyA
with Fy,B and I A with I, B are both positive (since the lines are coplanar, the sign of the
Z-component is the sign of sin . and sin,, respectively).

The vectors I'hA and F, B are written

10
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Figure 10 B/’ lies in the forbidden zone of A but B does not.

FyA= (X, + f,11,0)
FoB=(X;+ f,Y2,0)

and their cross-product is
R AX ByB={(X,+ /)Y — (X2 + )1}k

Thus the point B is to the left of the line FoA it

(Xl +f)Y2—(X2+f)Y[ >0
and to the right if

(X1 + Yy — (X2 + )1 <O
Similarly, B is to the left of F, A if

(X1 =2 — (X2 = f)Y1 >0
and to the right if

Xi—-NY.—-(X:-fNh <.
So we can have B left «A if and only if both

(Xl+f)Y2—(X2+f)Y1 >0
(X1 =f)Y2 = (X2~ f)Y1 >0

and B right+A if and only if both
(Xi+ N)Ya— (X2 + /)1 <0
(Xi= 2= (X2 = )1 <O

11
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(3.15)

(3.186).

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Figure 11 The line AB projects to a line on screen 1 and a point on screen 2.

Observe that if Y> > Y; then if B is to the left of I|A it is automatically to the left of FyA.
If Y, < Y;, then if B is to the left of I, A it is automatically to the left of Iy A. This is an
alternative way of characterizing leftx and right=.

We now show that the forbidden zone has the desirable properties of symmetry and
transitivity.

For symmetrv. we must show that B JeftxA is equivalent to A right«B. In other words, if R
is in the permissive zone of A to the left, then A is in the permissive zone of B to the right
and conversely.

The conditions for B leftxA are given by (3.21). The condition for A right+B are, from (3.22)

(Xe+ M= (X1 +f)Y2<0

(X =i = (X1 = [)Y2 <0 (3.23)

The equation (3.21) and (3.23) are clearly equivalent and hence the result is proved.
Now we consider transitivity. We want to show that if C left«B and B leftsA then C left+A.

C tett«+3 means that F,C is to the left of I B and F',C is to the left of F,3. From B leftxA
we have I B to the left of 7, A and I, B is to the left of IA. So, F,C is to the left of B
which is to the left of I'A and hence, F.C is to the left of FA. Similarly, I,C is to the left
of I'A. Thus C left+4 and the result holds.

4. Limits to Fusion

We have shown in the preceding sections that when a point 13 is inside the forbidden zone
of a point A, different sides of the straight line joining A to B are projected to different
screens. If B lies on the boundary of the forbidden zone of A then, as in Figure 11, one
side of the line will be visible to one screen but the other screen will only see a point. This
corresponds to Panum’s Limiting case.

If the point 13 is moved to B’ in the permissive region of A then the line AB' can be seen by
both screen 1 and screen 2 although the projection to screen 2 will be very foreshortened.
It should in principle be possible to fuse features on the line A3’ despite this foreshortening.

12
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Figure 12 See text

In a recent paper, however, Burt and Julesz (1980) claim that there is a limit to the relative
disparities in two screens that the human visual system can fuse. If this is so, then the
boundaries of the forbidden zone may be a competence limit while the Burt-Julesz limit may
be a performance limit. We have so far been assuming that the greatest slopes in space
that we can see are bounded above by the forbidden zone and Burt-Julesz’ results could
tell us that this limit cannot always be attained. To investigate this, we ask what surfaces in
space correspond to a limit of disparity gradient. We will see that they are straight lines.

First, assume the system is fixating at infinity so the two screens are parallel. We illustrate
this case by figure (12). Now let A be a point in the center of the visual field with coordinate
(0,a). It projects to points A, and A, on the screens. These have components (f(1+ 2), —m)
and (—f(1+ ), —m) respectively. Let the relative disparity limit be denoted by « {Burt-Julesz
would set « = 3). The relative disparity of two points in space is defined as the ratio of
the differences of their images in the two screens (see Fig. 12). So the fusional limit would
occur for points @ and P on the two screens, where () is a distance X to the left of A; and
P is aX to the left of A;. So we have

0Q = (/(1+7) =% ~m)

(4.1)
QP =(—f(1+ ::—)— a\, —m)
The line QF, is given by
m
y= )‘_“(-'c*f) (4.2)
where p = mf/a, and the line PF; is
m
y= a)‘+“(z+f). (4.3)

These lines intersect at a point where

13
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Figure 13 The screens fixate at A with vergence angle 2¢

_ _M+a)
2u + Ma — 1)
2mf
V=N 1)
Letting X vary, we cbtizin a curve pascing through A which is the greatest slope corresponding
to the Burt-Julesz limit. Eliminating 2 from (4.4) gives the curve

oz = (221 )1t~ 0 45

which is a straight line. Observe that the gradient of the curve depends only on a and f.
Setting o = 3 gives a gradient of 3 7

We also perform the calculation when the visual system is fixating on A as in Figure 13.
It is straightforward to modify the previous calculation by setting

m’' = mecos¢

A =\cos¢ (4.6)

Note that in this case we have

a|~..

tan ¢ = (1.7)

Since neither m or X\ appear in the final expression (4.5), the result is unaltered by the
change in fixation point. As before, the gradient is proportional to ¢ and by (4.7) it is hence
proportional to cos ¢.

5. The generalized ordering constraint and other constraints

Arnold and Binford (1980) and Mayhew and Frisby (1981) suggested a figural continuity
constraint for stereo matching: disparity is usually continuous along contours. This figural
continuity constraint can be powerful in practical implementations as demonstrated by

14
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Grimson (1984) and Ohta and Kanade (1984). Our geometric model of matching implicitely
implements figural continuity, because matching is performed along continuous contours
under the constraint that the disparity gradient is not too large (i.e., the contour does not
enter the forbidden zone).

Binford (see Baker et al., 1983) suggested surface occlusion rules for making explicit opacity
and non-opacity of surfaces. In particular the cross-product rule determines whether an
hypothetized match between two corners lies in the forbidden zone. Again a rule such as
this follows immediately from the generalized ordering constraint.

6. Epipolar lines as a constraint for rhatching

We now proceed to show that if the stereo geometry is known, perhaps by registering
the screens from the image as in Appendix 2, then there is a simple relation between the
epipolar lines on the two screens. A point on the left screen will lie on a unique epipolar
line which will therefore correspond to a unique epipolar line in the right screen.

We consider a general point in space (X, Y, Z). On the right screen, this projects to (X,7;)
by equation 3.13,

m

X = fceosdy — X cos gy — Ysin¢y (=Fsin s+ Xsingy — ¥ cos 1) (6.1)
. mZ
o= fcosdy — X cosdy — Ysingy (6.2)
and on the left screen to (X3, 7;) by (3.14),
—1m . .
X = Feoda ¥ Xoos g 4 Vaingg U P2 ¥ X sinds =¥ cosda) (6.3)
& g (6.4)

= fcosda + X cosdy + Y sin g

To derive our relation, we use the four equations (6.1)-(6.4) to eliminate the unknowns X,
Y and Z, which leaves us with a single equation relating X, X,, Z1 and Z,.

We eliminate Z by dividing (6.2) by (6.4) to obtain

Zy —{f cos ¢y + X cos ¢y + Y sin ¢}

41 . (6.5
Zy feosd, — X cosdy — Y singy (6:5)

We rewrite (6.1) and (6.3) respectively as

X{—Xicos¢; —msing}
+Y{-Xsin¢gy + mcos ¢} (6.6)
+ X, fcosdp+mfsing; =0

and

"X {— X2 cos pa — msin¢s}
+ Y{—-Xasin ¢y + mcos ¢y} (6.7)
— Xof cos s — mfsin gy =

We combine (6.6) and (6.7) into a matrix equation

15
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—-X1cos¢y — msin @, — X singy +mcosd; \[X ~Xfcospy —mfsing,;
(%)= (6.8)
— X3 cos Py — msin ¢g —X 8in ¢y + m cos ¢y Xofcosdy +mfsindy )

We invert the matrix to solve for X and Y obtaining#™

FUX Xy — m?)sin(éy + ¢2) — m(X; + X2)cos(dy + ¢2)}

X = - 6.9
{X1 X2+ m?}sin(ds — ¢1) + m(Xz — X1) cos(ds — ¢1) (6.9)
and
{Xng cos By cos ¢y + mXy cos dg sin ¢y + mX sin dy cos ¢y + m?sin posing;} (6.10)
{X1 X3 + m?}sin(¢a — ¢1) + m( X2 — X1) cos(dz — ¢1) .
We rewrite (6.5) as
(Z1 cosdy + Zy cos du)f + (Za cos g — Zy cos )X (6.11)

-+ (Z2 sin ¢2 — Zl sin ¢[)Y = 0.

and substitute (6.9) and (6.10) into (6.11). After some manipulation, this simplifies and we
obtain the result

Zi{msin ¢ + Xg cos 2} = Zy{msin ¢; + X1 cos P} (6.12)

Thus we see that if we know the position on cne screen, for example (X, 7,), we find
that the other position on the other screen, (X,, 7,), must lie on a straight line. This-is, of
course, the standard epipolar line constraint. It is interesting to see that in our coordinate
system, it can be written in such a simple form. Thls makes it straightforward to implement
it in an algorithm.

7. Outline of a contour based algorithm

A simple example of an algorithm which indicates how the generalized ordering constraint
can be exploited is as foliows.

Instead of using the epipolar lines to impose an ordering constraint, we use them as a
consistency constraint. In conjunction with the ordering constraint along the contour, they
determine stereo matching. This avoids wasteful scanning of all epipolar lines and ensures
that computation is done only at places where it is necessary. It also automatically enforces
figural continuity. There are clearly interesting effects when the contour we are matching
runs along an epipolar line for some distance. Psychophysical experiments (Buelthoff and
Poggio, pers. comm.) suggest that the human visual system also has problems in such
cases.

For a single contour the generalized ordering constraint tells us that the leftmost point
and the rightmost point in the two images must correspond (see figure 9). These points can
be used to "register” the viewing system, using the formulae in Appendix 2, and hence to
_ determine implicitely the epipolar lines. Starting at one of these two points we move along
the contours using the epipolar line constraint (6.12) to determine which points are to be
matched. If more than one contour is present the generalized ordering constraint is used
to .decide which contours in the two images correspond (contours are also "ordered” in a
similar way as points along a single contour are). In this case there will be many points in
the two images which are known to correspond (two for each contour) and the registration
process will hence be more robust (Mayhew and Longuet-Higgins, 1982). An algorithm of
this type is currently under development with E. Tiffany.
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8. Discussion

A few remarks about photometric effects and perspective invariants are relevant at
this stage. We have assumed that the contours in the image being matched correspond
to a physical structure, such as a wire or a silhouette, in the object being viewed. If
zero-crossings of the Laplacian of a Gaussian are used as the matching primitives we must
be sure they correspond to a precise physical location in the object being viewed. It is
encouraging that results by Yuille (1984) suggest that many zero-crossings may be due
to significant changes in the geometry of the object which are almost independent of the
viewing positions. As it stands now, the theory presented here is only valid for wire-frame
objects. Occluding contours, though theoretically "wrong", may however be often used in
small angle stereo (Grimson, 1981). The main challenge is to extend the matching scheme
presented here to solid and textured surfaces. Several possibilities can be considered: a)
fingerprints representations (Yuille and Poggio, 1983) may provide specific features to be
used in the matching process; b) several functional measurements of the two images (Krass,
1884) along the contour may be used to perform the matching.

The generalized ordering constraint analysis is done under the assumption of a three-
dimensional curve in space. The analysis may be applied to occluding contours, but we
need estimates of the errors. We also need to identify which contours are occluding
contours. One possibility is to use fingerprints (Yuille and Poggio, 1983). The idea would
then be to identify separately zero crossings corresponding to occluding contours, zero
crossings corresponding to step edges and zero crossings due to texture. Some of these
zero-crossings could then be used for a matching scheme based on the generalized ordering
constraint. Internolation of the surface between matched 7ero crossing could be performed
under the constraint of matching measurements provided by a scheme similar to Kass'
(1984). His scheme may be reformulated to exploit a form of ordering constraint for speeding
up the search. The main problem for a practical algorithm is obviously the stability of the
contours to be matched between the two images. Geometric and photometric distortions
are likely to present a hard problem.

It is also possible to use perspective invariants to help match two contours which
arise from the same physical location. Points on the two contours which correspond to the
same invariant can be matched. A number of perspective invariants or "semi-invariants”
are discussed by Yuille and Verri (1984). For example, the zeros and the discontinuities of
curvature of a non-planar curve are preserved under perspective projection to the image
plane, although the converse is not true. These "semi- mvanants" can be used to find points
on two contours which correspond.

In summary, we have shown that, with the Longuet-Higgins (1982) geometry, a
generalized ordering constraint holds provided the viewed object does not enter the
forbidden zone. This constraint is not restricted to epipolar lines. We characterize the
forbidden zone for orthographic and perspective projections and discuss experiments which
suggest that the human visual system incorrectly interprets objects in this zone. Results
by Burt and Julesz (1980) suggest that limits to fusion occur before this zone is entered.
We use the generalized ordering constraint to propose an algorithm for stereo matching
along contours using the epipolar lines as a consistency constraint. We use the generalized
ordering constraint to determine points in the images which correspond and hence can
be used to find the viewing parameters. The generalized ordering constraint provides an
efficient way to match points by scanning only along the available contours instead of along
all epipolar lines. It also automatically imposes a figural continuity constraint (Mayhew,
1983).
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Appendix 1: The Orthographic Limit of Perspective Projection

From equation (3.7), we have the perspective proiection of a point X on a screen with
normal o, focus f; and focal length m is given by x;: where:

—m

(fi—X) o,

The term inside the brackets corresponds to the orthographic projection of (f; — X) on
screen 1. It is scaled by a term (f; — X) - a,. Provided we stay in a region of the image
where this term only varies a little, orthographic projection will be a good approximation
and the scaling will be constant. This will normally be the case when (f — X) and o, are
almost parallel, since we have

X; = ((Fy = X) = {(Fy = X) - )ay) (A.L1)

(f—X) -a; = |f— X|cosr (A.1.2)

- where r is the angle between (f — X) and «,. For r near zero, cost is approximated by
1 —r%/2 and will be insensitive to small changes in 7.

How good the orthographic approximation is in general will depend on the gradient of
the surface being projected not being too large.

Appendix 2: Solving for the Viewing Angles

The projection X; of a point X on screen 1 is given by equation (3.7), and we write it
as :

(X —1) (A2.1)

X, = ma; —

_m
X-1-a

Alternately, we can take a point P; on screen 1 and construct the line joining it to thé
focus (). The point P, has position vector Z; relatlve to the origin X, of screen 1. From
Figure (1) and Figure (8)we see that .

Xo = fi — may (A2.2)
The gradient of the line from P, to F; is ma; — Z;, and we can write the line as
r\) = f; —ma, + Z; + N{ma, — 2} ' (A.2.3)
We rewrite (A.2.3) as
N =f, +(\ — 1){ma, — Z} (A.2.4)
band we obtain a similar equation for screen 2:

M) = f2+ (p — ){ma, — 2y} (A.2.5)
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o These lines intersect at a point P where

fi+ N —D){ma -2} =1+ (u- ‘){1n_q2 —~ 2y} (A.2.6)

Now in our geometry there is a fixed (vertical) axis k such that

=

Qe

=Q2'k=f1'k=f2~kzo (A2.7)

Py lies on screen 1 s0 Z; - a; = 0 and so we can define coordinates Z;(= Z; - k) aﬁd
X, of Z, by

21 == Zlk +X1(k X _(_1_1) (A2.8)
Similarly, for 22‘ we have
Z, = 7,4k +X2(k X g_2) (A29)
Taking the dot product of (A.2.6) with k yields
0=—(p—1)Z2+(\—1)7, (A.2.10)
For convenience we replace \ and p with ¢ and v where

¢=x-1

- A.2.11
~ i (A2.11)
Then we rewrite (A.2.6) using (A.2.10)'as
fi —fy= V(m.a_g - Xz(k X Qf_g)) (A212)
= ¢(may — Xi(k X &)
and equation (A.2.10) as
¢ _ 72
, =7 (A.2.13)
Substituting for ¢ from (A.2.13) into (A.2.12) gives
Zy
fi — fy = v{(ma, — Xa(k X a,)) - Z(mg"‘ = Xi(k X a,))} (A.2.14)
Now we assume a second point is also known to correspond. This has coefficients
Z,,X1 on screen 1 and 7z, X» on screen 2. Repeating the argument leading up to (A.2.14)
gives the equation
- Zo _
fi —f2 = 7{(ma, - Xa(k X a,)) - 7—("&1 = Xi(k X ay))} (A.2.15)
1 .
o~ for some constant r.

: Define 2f = f, — f, and the angles 0 and ¢ as in figure (14). Then taking the dot
product of (A.2.15) with o, and ¢, vields
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Figure 14 See text.

%2fcos(0+¢) = mcos @ — Xpsin0 — -g—-z-m (A.2.16)
1 R . ;
and
1 oz v om o
| | ;‘.’f cos g — m ~- Ej-(w: cc:.é’ 4 Xy sind) (A2.17)
Similarly from (A.2.15) we can obtain
1 - . 2y - e
=2f cos(f -+ @) = mecosf — Xysind — _Z-T—m (A.2.18) -
T ‘ 71
and
1 Zy .
;_—2fcos¢ =m— ?-(mc030+yl sin 0) (A.2.19)
2 RS

Dividing (A.2.16) by (A.2.18) yields

mecos — Xysind — —g‘im

- (A4.2.20)

mecosl0 — Xosinf — :_“Z—ﬂm
41

T

Similarly, dividing (A.2.17) by (A.2.19) yields

. m — Z2(m cos 0 + X sin 0) (A2.21)

,
v om- %i(m cos 0 + Xy sin 0)
71

Hence we can combine (A.2.20) with (A.2.21) to yield an equation in # only.

s,

(mcosl — Xysinl — —J—gm)(m - _;;-i_z(m cos 0 + X sin0)) =

7 ,
?‘ . (A.2.22)
(mcos0 — X psin 0 — Z2m)(m — :ZJ:?'—(m cos 0 + X sin 0))
1 1
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Set

-7
A=—2, B=- 2
1 L, ;1};Zt s

‘;‘\‘:!'

(A.2.23)

Then, after some manipulation we write (A222) és

{m*(A~ B) + (AX, X2 — BXX;)}sin? 0
+m{(Xs — X))+ AB(X | — X1)}sing (A.2.24)
+ M{B(Yl - Xz) + A(X—z - Xl)}sinOcosﬂ =0

We can divide this equation by sin 0 ( sin 0 = 0 corresponds to the special case when
the eyes are fixating at infinity) and obtain an equation of form

Ci1s8inf+ C2 + Czcos0 =0 (A.2.25)
where

Cy = m2(A — B) + (Aleg - B;_Xv_le)
Cy = 7H{Y2 —~ X +AB(71 - Xl)} (A.2.26)
Cy = m{B(Yl _ Xg) -+ A(Yg - Xl)}

(A.2.25) can be written as a quadratic equation

(C?+ C%)cos® 9+ 2C2C3c080 + (C2 - C%) =0 (A.2.27)
and has solution
—C3C;3 + C1/C% + C% — CE .
— A.2.2
cosf == C’f’ 0§ ( 8)

Note that (01,02,03) =4 ('-Cl,‘og,—o;;) as (A,B) > (B,A) and (Xl,Xz,Yl,Yg) >
(X1,X2,X1,X2). So if we have two points in the visual field which are known to coincide
then we know that points P, and P; on screen 1 correspond to P, and P, on screen 2.
The coefficients (X, 7,), (X1, 7Z1), (X2, Z2) and (X2, Z) of P\, Py, P, and P, are known and
hence from (A.2.23) and (A.2.26), C;,C; and C, are known. (A.2.28) gives two possible
solutions for ¢ in terms of Cy,C; and C;. Let these be 0, and 0,. Dividing (A.2.16) by
(A.2.17) yields '

cos(0+¢)  mcosf— Xysin0— Zy/7Zym

cos¢  m— Zp/Zi(mcosl+ X, sin0) (4.2.29)
Expanding cos(0 + ¢) = cos 0 cos ¢ — sin 0sin ¢ we can rewrite (A.2.29) as
Cising + Czcosgp =0 (A.2.30)
where
Cy=m— Zy/Z(mcos 0+ X, sin0) (4.2.31)

C3 = ~Xo— Z2/Zi(msind — X, cos 0)
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ra There are two possible values of (Cy,T,, C3) depending on whether 0 = 0, or 0 = 6.
(A.2.31) will give two possible solutions for ¢, for each value of 9:

S S
+C\/C{+C
TV s (A.2.32)

i+

Hence we have four possible solutions for ¢ and ¢ which can be formed directly from
(A.2.28) and (A.2.29). In the general case, only one of these solutions will be physically
reasonable and the others can be discarded. '

We have shown that if the images on both screens of points in space are known then
we can solve the non-linear equations directly for the angles ¢ and ¢ that specify the stereo
< geometry. These solutions are given by (A.2.28) and (A.2.32). Two solutions are generated
of which only one is physically reasonable in general.

cos ¢ =
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