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Abstract

This paper addresses linguistic issues that arise in providing support for shared
resources in large scale concurrent systems. Our work is based on the Actor Model
of computation which unifies the lambda calculus, the sequential stored-program
and the object-oriented models of computation. We show how receptionists can be
used to regulate the use of shared resources by scheduling their access and providing
protection against unauthorized or accidental access. A shared financial account
is an example of the kind of resource that needs a receptionist. Issues involved in
the implementation of scheduling policies for shared resources are also addressed.
The modularity problems involved in implementing servers which multiplex the use
of physical devices illustrate how delegation aids in the implementation of parallel
problem solving systems for communities of actors.
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1 Background

Two computational activities A1 and A2 will be said to be concurrent if they
do not have a necessary temporal ordering with respect to one another:
A1 might precede A2, A2 might precede A1, or they might overlap in time.
Concurrency can arise from a variety of sources including the multiplexing of
individual processors as well as the interaction of multiple processors. Thus
concurrent systems include time sharing systems, multiprocessor systems,
distributed systems, and integrated circuits. Parallelism is the exploitation
of concurrency to cause activities to overlap in time.

For thirty years, the lambda calculus and the sequential stored program
models have coexisted as important bases for software engineering. Systems
based on the lambda calculus [McCarthy 62, Landin 65, Kahn 81, Friedman
and Wise 76, Hewitt and Baker 77 and Backus 78] provide a sound basis
for constructing independent immutable objects (functions and functional
data structures) that have inherent concurrency which is constrained only
by the speed of communications between processing elements. Such systems
provide important ways to realize the massive parallelism that will be made
possible by the development of very large scale integrated circuits.

Unfortunately, the lambda calculus is not capable of realizing the need
in concurrent systems for shared objects such as shared checking accounts
which must change their behavior during the course of their lifetimes. More-
over, checking-accounts are good examples of objects created for open-ended,
evolving systems in that their behavior must be specified independently of
the number of teller machines.

While it has been shown that by treating input and output to functions
as infinite, continuous streams, functional languages can create objects capa-
ble of changing their local states, it is also known that this is only adequate
for “closed systems.” In an Open System (That is, a system which is open
ended and continuously evolving, see [Hewitt 83]), the inter-stream ordering
is indeterminate and subject to interactive external influences: the Brock-
Ackerman anomaly [Brock-Ackerman 81] is an example of a system where
one is unable to abstract the arrival order information from the purely func-
tional behavior of a concurrent system (Agha, private communication 1984).

The stored program computer provides a way to make the required
changes through its ability to update its global memory. However the con-
currency of the stored program computer is limited as only one access to the
memory occurs at a time. The variable assignment command (e.g., SETQ in
Lisp or the := command in the Algol-like languages) incorporates this ability
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in higher level languages with the attendant cost that they become inher-
ently sequential.

In the early seventies, an important step was made toward unifying of
the two approaches by developing the concept of objects. An object consists
of a local state and procedures to operate on it. SIMULA was the first
language in the ALGOL family which introduced objects in the form of
class instances. A class declaration specifies the structure of each object (in
term of the variables which constitute its local state) and a set of procedures
which can be invoked from outside to operate on the object.

In Lisp, objects are embodied by closures, sometimes called “funargs”.
A closure is a function plus an environment. The environment keeps the
values associated with variables used within the function and represents
the local state of the closure. When the closure is invoked, its function is
applied in that environment. Closures can modify their states by means of
an assignment command.

In the case of truly concurrent systems, however, the assignment com-
mand is not suitable as the basis for change of behavior because it doesn’t
address the problem of scheduling access to a shared object, so that timing
errors can be avoided. To deal with this problem, C.A.R. Hoare [Hoare 74]
proposed an adaptation of the Simula class construct called a monitor as
an operating systems construct for higher level languages. By imposing the
constraint that only one invocation can be active at a time, monitors pro-
vide a means for achieving synchronization and mutual exclusion. Monitors
retain most of the aspects of sequential programming languages including:

e Use of the assignment command to update variables of the monitor

e Requiring sequential execution within the procedures of a monitor

One of the most criticized aspect of monitors is the use of low level
wait and signal primitives to manipulate the queues of the scheduler of
the operating system of the computer. The effect of the execution of such
instructions is the release of the monitor by the process presently executing
inside of it and transfer of control to some other processes. Thus control
“jumps around” inside a monitor in a way which is not obvious from the
structure of the code.

Monitors do a good job of incorporating important abilities of the op-
erating system of a sequential computer in a high level language. As an
“operating systems structuring concept”, monitors are intended as a means
of interaction among parts of an operating system. These components are
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all at the same level, and each bears some responsibility for the correct
behavior of the system as a whole. Monitors basically support the ability
for processes to synchronize and notify each other when some action is per-
formed on shared data. However, the correct use of the resource, or the
consistency of its state when a process leaves the monitor, or the guaran-
tee that each process will eventually release the monitor, cannot usually be
established from the code of the monitor alone.

In the setting of a distributed system, it seems more appropriate that
the responsibility for the use of a shared resource be delegated to a specific
abstraction for the resource which regulates its use. It is unreasonable to
expect that each user is aware of the protocols to be followed in accessing
the resource and that each user will follow them.

We call the abstractions that have been developed for this purpose recep-
tionists [Hewitt, Attardi and Lieberman 79a and Atkinson and Hewitt 79)].
Receptionists solve the problem of scheduling access to shared objects by
unifying the notions of opacity found in lambda-calculus based systems and
mutability provided by the assignment command in imperative languages.

The purpose of a receptionist is to provide an interface to users for per-
forming operations on a protected resource. The receptionist is responsible
for serializing concurrent requests, for scheduling the access to the resource,
and for providing protection and ability to recover from failures. Recep-
tionists accept requests for operations and act on behalf of the requesters to
carry out such operations. Those requesting service are not allowed to act
directly on the resource, a property which we call absolute containment.

2 The Actor Model of Computation

The actor model is based on fundamental principles that must be obeyed by
all physically realizable communication systems. Computation in the Actor
Model is performed by a number of independent computing elements called
actors. Hardware modules, subprograms and entire computers are examples
of things that may be thought of as actors.

A computation is carried out by actors that communicate with each other
by message passing. Various control structures are hence viewed as “pat-
terns of message passing” [Hewitt 77|. Examples of such communications
are electrical signals, parameter passing between subroutines of a program
and messages transferred between computers in a geographically distributed
network.




2 THE ACTOR MODEL OF COMPUTATION 5

Conceptually, one actor communicates with another using a mail ad-
dress. Mail addresses may be the targets of communications and may also
be sent as messages within communications. Thus a mail address differs
fundamentally from a machine address which has read and write as the de-
fined operations. Mail addresses may be physically implemented in a variety
of ways including copper wires, machine addresses and network addresses.

An actor performs computation as a result of receiving a communication.
The actor model refers to the arrival of a communication, K, at an actor,
A, as an event. Symbolically, an Event, £, may be represented:

£ =A< K

As a result of receiving a communication, an actor may produce other
communications to be sent to other actors (trivially, this includes itself}. In
terms of events, this means that an event may activate some other events.
Events are hence related by an activation ordering [Hewitt and Baker 77],
and computation occurs between such events.

While processing a communication, an actor can create new actors and
can also designate another actor to take its place to receive the next delivered
communication.

In summary, an actor, A, can take the following actions upon receipt of
a communication:

e It can make simple decisions.
e It can create new actors.
o [t can send communications to actors.

e It can specify a replacement actor which will handle the next commu-
nication accepted.

Communications received by each actor are related by the arrival or-
dering, which expresses the order in which communications are received by
the actor. The arrival ordering of a serialized actor is a total ordering, 1.e.,
for any two communications received by an actor, it always specifies which
arrived first. Some form of arbitration is usually necessary to implement
arrival ordering for shared actors.

A computation in the actor model is a partial order of events obtained by
combining the activation ordering and all of the arrival orderings. Although
the actor model incorporates properties that any physically realizable com-
munication system must obey, not all partially ordered sets of events can be
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physically realized. For instance, no physically realizable computation can
contain two events which have a chain of infinitely many events in between
them, each activating the next.

2.1 The Nature of Actor Communication

For some of the recently proposed models of concurrent systems [Hoare 78,
Milner 79], the communication mechanism resembles a telephone system —
where communication can occur only if the called party is available at the
time when the caller requests the connection, i.e., when both parties are
simultaneously available for communicating. For the actor model, however,
message passing resembles mail service, in that communications may always
be sent but are subject to variable delays en route to their destinations.
Communication via a mail system has important properties that distinguish
it from “hard-wired” connections:

e Asynchrony. The mail system decouples the sending of a communica-
tion from its arrival. It is not necessary for the recipient to rendezvous
with the sender of a communication.

o Buffering: The mail system buffers communications between the time
they are sent and the time they are delivered to the recipient.

We have found the properties of asynchrony and buffering fundamental
to the widespread applicability of actor systems; they enable us to disen-
tangle the senders and receivers of communications, thus raising the level of
the description.

2.2 Functionality of the Mail System

The implementation of an actor system entails the use of a mail system to
effect communication. The mail system transports and delivers communica-
tions by invoking hardware modules, activating actors defined by software,
or sending communications through the network as appropriate. The mail
system provides the following functionality:

e Routing. The mail system routes a communication to the recipient
over whatever route seems most appropriate. For example, it may
be necessary to route the communication around certain components
which are malfunctioning. The use of a mail system contrasts with
systems which require a direct connection in order for communication
to take place.
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e Forwarding. The mail system must also forward communications to
actors which have migrated. Migration can be used to perform com-
putational load balancing, to relieve storage overpopulation, and to
implement automatic, real-time storage reclamation.

2.3 Sending Mail Addresses in Communications

An important innovation is that mail addresses of actors can be sent in com-
munications. This ability provides the following important functionalities:

e Public Access. The receiver of a communication does not have to antic-
ipate its arrival, in contrast to systems which require that a recipient
know the name of the sender before any communication can be re-
ceived, or, more generally, to systems where element interconnections
are fixed and specified in advance.

e Reconfiguration. Actors can be put in direct contact with one another
after they are created since the mail address of a newly created actor
can be sent to pre-existing actors.

In some models, e.g., those which only allow messages composed of ele-
mentary data types such as integers, reals and character strings, the mobility
of processes is limited. Processes or other non-primitive objects cannot be
transmitted: a limitation which is closely related to an important restric-
tion on the reconfiguration of the system. Reconfiguration is not possible in
such systems which require that a process be created knowing exactly the
processes with which it will be able to communicate throughout its entire
existence.

New actors can be dynamically created as a result of an actor receiving
a communication. The creator of an actor is provided with a mail address
that can be used to communicate with the new actor. Reconfiguration (see
above) enables previously created actors to communicate with the new ones.

2.4 Mathematical Models

Mathematical models for actor systems rigorously characterize the under-
lying physical realities of communication systems. In this respect, they
share a common motivation with other mathematical models which have
been developed to characterize physical phenomena. The actor model dif-
fers in motivation from theories developed for reasons of pure mathematical
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elegance or to illustrate the application of pre-existing mathematical theo-
ries (modal logic, algebra etc.). The actor model of computation has been
mathematically characterized pragmatically [Grief 75], axiomatically [He-
witt and Baker 77], operationally [Baker 78], and in terms of power domains
[Clinger 81].

An important innovation of the actor model is to take the arrival ordering
of communications as being fundamental to the notion of concurrency. In
this respect, it differs from systems such as Petri Nets and CSP which model
concurrency in terms of nondeterministic choice (such as might be obtained
by repeatedly flipping a coin). The use of arrival ordering has a decisive
impact on the ability to deal with fundamental issues of software engineering,
such as being able to prove that a concurrent system will be able to guarantee
a response for a request received within the mathematical model.

3 The Actor Language Act3

When you speak a new language you must see if you can translate
all of the poetry of your old language into the new one.

(Dana Scott)

A number of languages have been recently developed for concurrent sys-
tems. These languages differ in their conception of communication, in what
can be communicated, and in their ability to dynamically create new com-
putational agents. Design decisions in Act3 have been determined by the
need to provide support for parallel problem solving in our applications. Our
applications require that we be able to efficiently create, garbage collect and
migrate large numbers of actors from place to place in the network. This
circumstance causes it to differ with other languages and systems.

Act3 is an experimental language based on the actor model of compu-
tation. Act3 is universal in the sense that any physically realizable actor
system can be implemented in it.

3.1 Notation

Act3 generalizes Lisp’s syntactic notation for expressions (i.e. each expres-
sion is enclosed in parentheses with the elements of the expression separated
by white space) by allowing infix operations to be defined. This notation
has the advantage that all expressions have a uniform syntax at the level
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of expression boundaries. This is, however, only a superficial resemblance
between Act3 and Lisp. Most of the new semantic notions in Act3 (such as
receptionists, delegation, proxies, etc.) are not present in Lisp. Act3 was
designed to implement concurrent systems, whereas Lisp was designed and
has evolved to implement sequential procedures on a sequential computer.

3.2 Descriptions

Descriptions serve a role in Act3 that corresponds to the role of data types
and structures in more conventional languages. Descriptions are used to
express properties, attributes and relations between objects. Our description
language includes first order logic as a sublanguage.

Data types in programming languages have come to serve more and more
purposes in the course of time. Type checking has become a very important
feature of compilers, providing type coercion, helping in optimization and
aiding in checking consistent use of data. The lack of power and flexibility
in the type systems of current programming languages limits the ability of
the languages to serve these purposes. Descriptions help overcome these
limitations.

We use descriptions to express assumptions and the constraints on ob-
Jects manipulated by programs in Act3. These descriptions are an integral
part of programs and can be used both as checks when programs are exe-
cuting and as useful information which can be exploited by other systems
which examine programs such as translators, optimizers, indexers, etc.

3.3 Communications and Customers

Communications are actors that embody the units of information that are
transmitted from one actor to another. There are different kinds of commu-
nications, each with possibly different attributes. Act3 provides mechanisms
that enable an actor to distinguish between kinds of communications which
it receives and to select their attributes by means of simple pattern match-
ing.

A Request is a kind of communication which always contains a mes-
sage and a customer. The notion of customer generalizes the concept of a
continuation, introduced in the context of denotational semantics [Strachey
and Wadsworth 74 and Reynolds 74] to express the semantics of sequential
control mechanisms in the lambda calculus. In that context, a continuation
is a function which represents “the rest of the computation” to which the
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value of the current computation will be given as an argument. A customer
is actor analogue to a continuation, in that a reply is sent to the customer
when the transaction activated by the request is completed.

A Response is another kind of communication and can be either a Reply
or Complaint. The first reply received by a customer is usually treated
differently than any subsequent reply. In general, subsequent replies will be
treated as errors and generate complaints.

This notion of customers subsumes and unifies many less well defined
concepts such as a “suspended job” or “waiting process” in conventional
operating systems. The ability to deal explicitly with customers unifies
all levels of scheduling by eliminating the dichotomy between programming
language scheduling and operating system scheduling found in most existing
systems.

3.4 Communication Primitives

Act3 provides primitives to perform unsynchronized communication. This
means that an actor sending the communication simply gives it to the elec-
tronic mail system. It will arrive at the recipient at some time in the fu-
ture. That is, an actor can transmit and receive communications (continue
computing) while communications that it has sent are in transit to their
destinations.

Transmitting communications using commands provides a very conve-
nient method for spawning more parallelism. The usual method in other
languages for creating more parallelism entails creating processes (as in
ALGOL-68, PL-1, and Communicating Sequential Processes, etc.). The
ability to engender parallelism simply by transmitting more communications
is one of the fundamental differences between actors and the languages based
on communicating sequential processes.

3.5 Transactions

The notion of an Event is now further elaborated to take into account the
various communication types:

{1 = [A <= (A Request (With Message M (With Customer C)))]

describes the reception of a Request by some actor, 4. Note, that in place
of a symbol representing the communication, the communication type and
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its primary components are specified. As a result of £;, some computation
is performed and, at some later time, a Reply is sent to the customer, C,
specified in the Request.

£n = [C <= (A Reply (With Message M))’

Events £; and £, are thus causally related and together comprise a
transaction. For a given computation, transactions may encompass sub-
transactions. For instance, sending a Request to an actor, ¥, that recur-
sively calculates the factorial of the incoming message might result in a series
of events:

&1 = |7 <= (A Request (With Customer C,) (With Message 3))]
£z = |7 <= (A Request (With Customer C3) (With Message 2))]
£s = |7 <= (A Request (With Customer C3) (With Message 1))]
£4 = |7 <= (A Request (With Customer C4) (With Message 0))]
£s = [Cy <= (A Reply (With Message 1))]
£ = [Cs <= (A Reply (With Message 1))
£7 =1[Cq <= (A Reply (With Message 2))]
£s = [C1 <= (A Reply (With Message 6))]

The top-level transaction begins with £; and ends with £g, whereas &,
and &7, £3 and &g, and &4 and &5 delimit nested sub-transactions.

3.6 Receptionists

Receptionists are actors that can accept only one communication at a time
for processing. Communications that arrive while the receptionist is receiv-
ing another communication are service in the order in which they arrive.

Accepting communications in the order in which they arrive does not
involve any loss of generality since a communication need not be acted on
when it is accepted. For example, a request to print a document need not
be acted on by a receptionist when 1t accepts the request. The receptionist
can remember the request for future action, and, in the meantime, accept
communications concerning other activities. Processing of a request can re-
sume at any time by simply retrieving it from where it is stored. The ability
to handle customers as any other actors allows receptionists to organize the
storage of requests in progress in a variety of ways. Unlike monitors, re-
ceptionists are not limited to the use of a couple of predefined, specialized
storage structures such as queues and priority queues.
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In other languages, which do not support the concept of a customer, the
acceptance of a request must be delayed until the proper conditions are met
for processing it. This usually requires complicated programming constructs
to guard the acceptance of communications.

4 Implementation of a Hard Copy Server

Implementing a module to service printing requests for two printing devices
provides a concrete example to illustrate the flexibility of receptionists. The
following example illustrates the implementation of a receptionist that pro-
tects more than one resource (in this case two printers).

(Define (New HardCopyServer
(With device-1 =d-1)
(With device-2 =d-2))
(New HardCopyReceptionist
(With device-1 d-1)
(With device-2 d-2)
(With pending (A (New waiting-queue)))
(With device-status-1 idle)
(With device-status-2 idle)))

We have modularized the implementation of the receptionist for a hard
copy server into two kinds of modules:

1. Receptionists which provide the external interfaces to the outside world.

2. Prozies which deal with the issues of delegated communications for a
shared resource.

The hard copy server is provided with the mail addresses of two devices
(which are printers) when it is created. The function of the receptionist is
to set up and initialize a hard copy server. The receptionist has to maintain
a fundamental constraint that no device should be idle if there are pending
requests. The hard copy server accepts printing requests and communicates
with the printing devices. It maintains records of the status of the printing
devices and of pending requests in order to schedule the printers.

We can bind an identifier to a new instance of an actor using the Define
construct.

(Define Server-64 (New HardCopyServer

(With device-1 Dover)
(With device-2 LGP)))
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4.1 Receptionist Implementation

A first implementation of the Receptionist provides that print requests sub-
mitted to the receptionist will be served in the order in which they are
received. In general, though, requests cannot be served immediately for no
printer may be available at that time. Hence, a FIFO queue will be used as
appropriate scheduling structure for pending requests. Later, we will evolve
this implementation into one which uses a more sophisticated scheduling
structure.

Prior to code generation, a template program is constructed (see code
below). Such a template will serve as guide to the actual implementation.

(Define (New HardCopyReceptionist <attributions>)
(Is-Request <pattern> Do
;s the incoming-print-request Joins the
;s pending queue.
(Join p ;;the current transaction joins p
(Then Do
(Release-from p IF <some-device-is-idle>))
(After-Released Do ;;the current transaction has been released from p
<record-starting> ;device is now busy
. ; After delegating the print request to a prozy
(After <delegate-request>
<record-stopping> ;recordits completion
<reply-to-customer>
;s the next pending print-request s
; s Released-From the pending queue
v If a device s free
(Release-From p If <some-device-is-idle>)))))))

Operationally, the behavior of the HardCopyReceptionist is as follows:

1. A print request arrives and its transaction immediately joins the pend-
ing queue.

2. If device is free, the receptionist releases a transaction from the pend-
ing queue.

3. The HardCopyReceptionist updates its state to reflect the fact that
one of printers is busy concurrently with delegating the print message
to the chosen device.
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4. Eventually, a reply is received from the printer causing the receptionist
to update its local state to reflect that the device is no longer busy.

5. The reply is forwarded to the customer of the transaction concurrently
with releasing another transaction from the pending queue if some
device is free.

It is important to understand that the After construct frees up the
receptionist for other processing while the printers are operating in parallel.

4.2 Actual Implementation

The actual code for the HardCopyReceptionist is presented below. Readers
not interested in studying it may safely skip the rest of this section.

Act3 is homogeneous; all data are Actors. A program in Act3 is a collec-
tion of actors that, taken together, specify a behavior for the top-level actor
—in this case, HardCopyReceptionist. Specifically, the Act3 language is
comprised of commands, expressions and communication-handlers.

The terms command and ezpresston are used in the ordinary semantic
sense: Commands are actors whose execution results in some effect, whereas
evaluating an expression results in the production of more actors.

Note that Act3 maintains the distinction between describing an actor
and creating it. Basically, expressions of the form:

(A <Concept> (With <Att-Relation> <Att-Filler>))

are called Instance-Descriptions. Evaluating an instance-description results
in the creation of an <A-Expression> actor whose <Att-Relation>s and
<Att-Filler>s are determined by the encompassing environment.
<New-Expressions> have exactly the same syntax, except that the first
token must be the symbol, New. Evaluating a <New-Expression>, however,
results in the creation of an instance of the specified actor.
Commaunication-handlers are expressions of the form:

(Is-Request <Pattern> Do <Commands>)

Note, they contain a <Pattern> which is an expression and a series of
one or more <Commands>. In general, commands are preceded by the key-
words, Do or In. Besides Is-Request, Is-Reply and Is-Complaint, an
Is-Communication handler type is provided for complete generality.
Forms typed in at the top level are “asked to parse themselves”, hence,
“actor programs” are intrinsically distributed, and, depending upon context,
many Act3 constructs can appear as both commands and expressions.
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(Define (Nlew HardCopyReceptionist
(With device-1 =d4d-1)
(With device-2 =4-2)
(With pending =p)
(With device-status-1 =ds-1)
(With device-status-2 =ds-2))
(Is-Request (=pm Which-Is (A PrintRequestMessage)) Do
(Join p
;s suspend this transaction to wait in queue,p
(Then Do
i1 if some device 1s idle, then resume the next
; srequest to be processed
(Release-From p
If (v (ds-1 Is idle) (ds-2 Is idle))))
(After-Released Do
;s when this transaction 1s resumed
(Let (((An IdleDeviceFound
(With device-status =chosen-device-status)
(With device-chosen =chosen-device))
Match
(Call ChooseldleDevice
(With device-status-1 ds-1)
(With device-status-2 ds-2)))
;3 Call ChooseldleDevice to bind the Chosen Device
iy and the device-status.
In
(Become (New HardCopyReceptionist
(With chosen-device-status busy)))
(After (Ask chosen-device pm)
Cases
(Is (=r Which-Is (A PrinterReplyMessage)) Do
(Reply (Call MakePrintingCompletedReport
(With printer-reply r)))
(Become (New HardCopyReceptionist
(With chosen-device-status idle)))
; 1 if some requests are pending
;i then resume the nezt one to continue processing
(Release-From p

If (v (ds-1 Is idle) (ds-2 Is idle)))))))))))
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4.3 An Operational HardCopyReceptionist

Act3 is inherently parallel; concurrency is the default. Communication han-
dlers, commands and sub-expressions are evaluated in parallel.

A key part of the above code is the After command which we have
duplicated below:

(After (Ask chosen-device pm)
Cases
(Is (=r Which-Is (A printer-replyMessage)) Do
(Reply (Call MakePrintingCompletedReport
(With printer-reply r)))
(If (non-empty p)
. 1f some requests are pending,
(Then Do
;s then resume the next one to continue processing
(Release-From p)))))

The After command works as follows:

1. The Become command executes concurrently with the After command
making a new HardCopyReceptionist with device-status-i set to
busy. Hence, communications arriving at the HardCopyReceptionist
during the interim will have the information that it is not available.

2. The HardCopyReceptionist becomes sensitive to incoming communi-
cations while (Ask chosen-device pm) is taking place invoking de-
vice, chosen-device. In effect, then, the implementation of the Hard-
CopyReceptionist concurrently processes printing requests and guar-
antees service.

3. After the reply from (Ask chosen-device pm) has been accepted, the
bindings of d-1, d-2, p, ds-1 and ds-2, are bound to the values they
have when the reply is accepted which may be different from what they
were when chosen-device was invoked. The reply r is processed by
the Cases handler in the After command.

4. The processing consists of replying with a printed completed report
and then checking to see if there are any pending printer requests.

5 Methodology

In the following sections, we present a more thorough treatment of impor-
tant methodological issues raised by our treatment of the hard copy server
presented above.
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5.1 Absolute Containment

With receptionists it is possible to implement computational abstractions
which have a property called absolute containment of the protected resource.
This concept was proposed by [Hewitt 75] and further developed in [Atkinson
and Hewitt 79 (cf. [Hoare 76}, for a similar idea using the inner construct
of SIMULA). The idea is to send a communication with directions to the
receptionist. This, in turn, will pass it to the resource so that it can carry out
the directions without allowing the user to deal directly with the resource.
An important robustness issue arises with the usual strategy of giving out
the resource. It is not easy to recover the use of the resource from a situation
in which the user process has failed for any reason to complete its operations.

We have found that absolute containment produces more modular im-
plementations than schemes which actually allocate resources protected by
receptionists. Note that the correct behavior of a receptionist which imple-
ments absolute containment depends only on the behavior of the resource
and the code for the receptionist which implements the receptionist, not on
the programs which call it.

Our hard copy server implements absolute containment by never allowing
others to have direct access to its devices. Thus there is no way for others
to depend on the number of physical devices available. Furthermore, no
problem arises in retrieving the devices from users who have seized them
since they are never given out.

5.2 Evolution

An important consideration in the design of a receptionist is the likely di-
rection in which 1t will need to evolve to meet future needs. For example,
users may decide that smaller documents should be given faster service than
larger documents.

A simple scheme for accomplish this is to assign floating priorities to the
documents based on their length. The idea is to assign an initial priority
equal to the length of the document. When a printer is free, the document
with highest priority (i.e. with the smallest priority number) is served next.
If a print requisition for a document d-1 of length n; is received when there
is a document d-2 at the rear of pending with priority ny which is greater
than ny, then d-1 is placed in front of d-2. In addition the priority of d-2
is changed to ny — n;.

Simply replacing the queues in the original implementation of the hard
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copy receptionist with floating priority queues will accomplish the desired
change.

5.3 Guarantee of Service

In our applications we want to be able to implement receptionists which
guarantee that a response will be sent for each request received. This re-
quirement for a strong guarantee of service is the concurrent system’s ana-
logue to the usual requirement in sequential programming that subroutines
must return values for all legitimate arguments. In our applications, it would
be incorrect to have implementations which did not guarantee a response to
communications received.

If one can prove that each individual serialized actor in an actor system
will specify a replacement for itself for each communication that it processes,
then that actor system is guaranteed to be deadlock free. In general, the
proof that a receptionist always designates a replacement might depend on
assumptions on the behavior of other actors. In our example, the property
of the server was achieved by relying on the well defined behavior of each
printer. In cases where such dependencies constitute a partial ordering,
such a proof can be performed without difficulties. If there are loops in the
dependencies, then a more complex analysis is necessary.

Proving a guarantee of service (i.e., every request received will generate
a response) is not trivial. Note that it is impossible to prove the property of
guarantee of service in some computational models, such as Petri nets and
CSP, in which processes communicate via synchronized communication. We
consider the ease with which we can prove guarantee of service to be one
of the principal advantages of using the actor model of computation in our
applications.

We recognize that our conclusions concerning the issue of guarantee of
service are at variance with the beliefs of some of our colleagues. These
disagreements appear to be fundamental and have their genesis in the in-
ception of the field in the early 1970’s. The disagreements can be traced to
different hypotheses and assumptions on conceptual, physical, and semantic
levels.

e Conceptual Level. As mentioned earlier, one of the innovations of the
actor model is to take the arrival ordering of communications as being
fundamental to the notion of concurrency. In this respect, it differs
from systems such as Petri Nets and CSP which model concurrency
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in terms of nondeterministic choice. Modeling concurrency using non-
deterministic choice implies that all systems must have bounded non-
determinism. However, a system, such as our hard copy server which
guarantees service for requests received, can be used to implement
systems with unbounded nondeterminism. Actor systems impose a
constraint on all implementations that all mail sent must be delivered
to the target actor. Whether the target actor ever accepts the com-
munication and acts on it is a separate matter which is not of concern
to the mail system.

e Physical Level. A careful analysis of the physical and engineering re-
alities leads to the conclusion that guarantee of service can be reliably
implemented in practice. Worries about the possibility of implement-
ing guarantee of service have caused others to shrink from constructing
theories in which the ability to guarantee service can be proved (e.g.,
{Dijkstra 77], pg. 77).

e Semantic Level. The axiomatic and power domain characterizations
of actor systems are closely related and represent a unification of op-
erational and denotational semantics. The axioms which characterize
actor computations that are physically realizable are entirely differ-
ent from those which have been developed by Von Neumann, Floyd,
Hoare, Dijkstra, etc. to characterize classical programming languages.
The power domain semantics for actor computations developed by
Clinger i1s grounded on the underlying physical realities of communi-
cation based on the use of a mail system. It provides a model theory
to support proofs in which properties such as guarantee of service can
be proved.

One criticism of guarantee of service is that it does not give any indi-
cation of when the service will be performed. Of course, this theoretical
problem has been with us for a long time since it occurs even for sequential
programs. In the case of concurrent systems, we can do somewhat better by
transmitting progress reports as the computation proceeds as well as esti-
mates when the request will be accomplished. For example, we can modify
the communication handler of our receptionist for the hard copy server so
that it produces a report of the number of print requests queued before
the one which has been submitted using the Report-Status command (see
example below).
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(Define (New HardCopyReceptionist
(With device-1 =d-1)
(With device-2 =d-2)
(With pending =p)
(With device-status-1 =ds-1)
(With device-status-2 =ds-2))
(Is-Request (=pm Which-Is (A print-request-message)) Do
(Report-Status
(A Report
(With no-of-previous-requests (length p))))
(Join p (With priority (length (document pm)))
N

The idea for incorporating this modification in our example comes from
a suggestion of Hoare |private communication 1981] and is, in fact, similar
to the way that the current hard copy server for our laser printer at MIT
works. Using such ideas, we can incorporate stronger performance criteria
into our mathematical semantics.

6 Concurrency

Concurrency is the default in Act3. Indeed, maximizing concurrency, min-
imizing response time, and the avoidance of bottlenecks are perhaps the
most fundamental engineering principles in the construction of actor sys-
tems. The only limitation on the concurrency of a serialized actor is the
speed with which the replacement can be computed for a communication
received.

Concurrency occurs among all the following activities:

e Within the activities of processing a single communication for a given
serialized actor. The serialized actor which receives a communication
can concurrently create new actors, send communications, and desig-
nate its replacement (cf. [Ward and Halstead 80] for the application
of this idea in a more limited context).

e Between the activities of processing a communication for a serialized
actor and a successor communication received by the same serialized
actor. The ability to pipeline the processing of successive communi-
cations is particularly important for a serialized actor which does not
change state as a result of the communication which it has received
and thus can easily designate its successor. Another important case
occurs where the computation for constructing the replacement can
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occur concurrently with the replacement processing the next commu-
nication using “eager evaluation” [Baker and Hewitt 77]. For example,
a checking account can overlap the work of constructing a report of
all the checks paid out to the Electric Company during the previous
year with making another deposit for the current year.

Of course, no limitation whatsoever exists on the concurrency that is
possible between the activities of two different serialized actors. For exam-
ple, two separate checking accounts can be processing withdrawals at exactly
the same time.

Unlike communicating sequential processes, the commands in a recep-
tionist do not have to be executed sequentially. They can be executed in
any order or in parallel. This difference stems from the different ways in
which parallelism is developed in the actor model and communicating se-
quential processes. In the latter, parallelism comes from the combination of
sequential processes which are the fundamental units of execution. In the
actor model, concurrent events are the fundamental units and sequential
execution is a derived notion since special measures must be taken to force
actions to be sequential.

7 Related Work

The work on actors has co-evolved with a great deal of work done elsewhere.
Important differences have emerged in part because of different motivations
and intended areas of application. The driving force behind the our work
has been the needs of parallel problem solving systems for communities of
actors [Kornfeld and Hewitt 81, Barber, DeJong and Hewitt 83].

The work on Simula and its successors SmallTalk, CLU, Alphard, etc.,
has profoundly influenced our work. We are particularly grateful to Alan
Kay and the other members of the Learning Research group for interactions
and useful suggestions over the last few years.

One of our achievements is to unify procedure and data objects into
the single notion of an actor. The Simula-like languages provide effective
support for coroutines but not for concurrency. Through its receptionist
mechanism, Act3 provides effective support for shared objects in a highly
parallel distributed environment.

In the area of semantics, parallels can be found with the recent work of
Hoare, Milner, and Kahn and MacQueen. From the outset, an important
difference between the Actor Model and the process models of Hoare and
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Milner has been that process models have not allowed direct references to
processes to be stored in data structures or communicated in messages. The
Actor Model differs in that all objects are actors and all computation takes
place via communication.

A fundamental part of the motivation of the work reported in this paper
is to provide linguistic support for receptionists in open systems [Hewitt 83].
One of the fundamental properties of open systems is that they do not have
well defined global states. In this respect our work differs from previous
work on concurrent access to data bases using the notion of serializability.

The only thing that is visible to an actor is the communication which it
has just accepted. Other communications which might be on the way will
not have been noticed yet. We have deliberately made nothing else visible
so that a variety of scheduling procedures can be implemented such as pipes,
queues, multiple queues, priority queues, floating priority queues, etc.

8 Future Work

Dealing with the issues raised by the possibility of an actor being a special-
ization of more than one description has become known as the “Multiple
Inheritance Problem”. A number of approaches have been developed in
the last few years including the following: ‘Weinreb and Moon 81, Curry,
Baer, Lipkie and Lee 82, Borning and Ingalls 82, Bobrow and Stefik 82 and
Borgida, Mylopoulos and Wong 82].

Our approach differs in that it builds on the theory of an underlying de-
scription system [Attardi and Simi 81] and in the fact that it is designed for a
parallel message passing environment in contrast to the sequential coroutine
object-oriented programming languages derived from Simula. In this paper
we have shown how receptionists can be used to regulate the use of shared
resources by scheduling their access and providing protection against unau-
thorized or accidental access. The work in this paper needs to be combined
with work on relating descriptions and actions in concurrent systems [Hewitt
and DeJong 83] to provide a general framework for addressing problems of
multiple inheritance.
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