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A large gap exists at present vetween computational theories of vision and their possible
implementation in neural hardware. The model of computation provided by the digital
computer is clearly unsatisfactory for the neurobiologist, given the increasing evidence that
neurons are complex devices, very different from simple digital switches. It is especially
difficult to imagine how networks of neurons may solve the equations involved in vision
algorithms in a way similar to digital computers. In this paper, we suggest an analog model
of computation in electrical or chemical networks for a large class of vision problems, that
maps more easily into biologically plausible mechanisms. Poggio and Torre (1984) have
recently recognized that early vision problems such as motion analysis (Horn and Schunck,
1981, Hildreth, 1984a,b), edge detection (Torre and Poggio, 1984), surface interpolation
(Grimson, 1981, Terzopoulos 1984), shape-from-shading (lkeuchi and Horn, 1981) and
stereomatching can be characterized as mathematically ill-posed problems in the sense of
Hadamard (1923). lll-posed problems can be “solved”, according to regularization theories,
by variational principles of a specific type. A natural way of implementing variational
problems are electrical, chemical or neuronal networks. We present specific networks for

solving several low-level vision problems, such as the computation of visual motion and

edge detection.
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lll-Posed Problems and Variational Principles

In mathematical analysis ill posed problems are defined as such problems that do not have a
unique solution that depends continuously on the data. Early vision problems are ill-posed,
typically because the solution is either not uniquely constrained by, or does not depend
continuously on the data. Computation of the velocity field and the recovery of shape
from shading are examples of the first type; edge detection, considered as the problem
of measuring spatial changes of intensity in an image, is an example of the second class.
Rigoreous regularization theories for “solving"” ill-posed problems have been developed
in recent years (see especially Tikhonov and Arsenin, 1977; and Nashed, 1974). lll-posed
problems of the form

y = Az, - (l)

where A is a possibly nonlinear operator on the unknown solution z, and y is the data,
can be regularized by introducing suitable norms ||-||, usually quadratic, and a “stabilizing"
functional ||Pz||, with certain mathematical properties. Its exact form depends on the
physical constraints that are relevant to the specific problem. The regularized solution is
then obtained in terms of a variational principle. For simplicity, we consider here two main
methods (the second and third methods in Poggio and Torre, 1984):

(a) If the data are exact, then the regularized solution z is the function that minimizes

[|P2]] (2)

among the z such that y = Az.
(b) If the data are not exact, the regularized solution is z that minimizes

Az — y|I* + N P2]|? (3)

where X is a regularizing parameter (see Poggio and Torre, 1984).

Typically, A and P are linear operators and P usually corresponds to a physically relevant
smoothness constraint. Poggio and Torre (1984) have argued that most early vision problems
can be solved in terms of variational formulations of this type. A few such solutions have
been already obtained. A representative example is the computation of the velocity field
(Hildreth, 1984a,b; see also Poggio and Torre, 1984; for a second example see Poggio,
Voorhees and Yuille, 1984)!. In this case the velocity V of each point along a curve in the
image is underdetermined, since

V(s) = v T (s)T(s) + v--(s)N(s) (4)

(T, N are the unit vector tangent and perpendicular to the contour respectively, s is the
arc length), and only »T(s) can be obtained by local measurements, if the curve is smooth.
The stabilizing functional derived by physical considerations (Hildreth, 1984a,b) is obtained
from PV = 9V/ds. The regularized solution is found by

oV, ~/ ov\?
7 = (53‘) ds (5

subject to the data VT, if the data are exact, or by
(b) minimizing

(a) minimizing
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where X\~! is a weighting factor expressing the reliability of the velocity measurements?,
when the data are affected by errors.

Analog Networks for Solving Variational Problems

As suggested by Terzopoulos (1984), analog networks—chemical, electrical or mechanical—
are a natural computational model! for solving variational principles. We know from physics
that the behavior of such systems, in fact the behavior of any physical system, can
be described using variational principles (MacFarlane, 1970). In the frictionless world of
classical mechanics a system’s state variables will behave in such a way as to minimize
the associated Lagrangian. Electrical network representations have been constructed for
practically all of the field equations of physics — many of them are equivalent to variational
principles (for an electrical network implementation of Schredinger’'s equation see Kron,
1945). A fundamental reason for a natural mapping between variational principles and
electrical or chemical networks is Hamilton’s Least Action principle®. The class of variational
principles that can be computed by analog networks is dictated by Kirchhoff's current and
voltage laws (KCL and KVL), which simply represent conservation and continuity restrictions
satisfied by each network component (appropriate variables are usually voltage and current
for electrical networks and affinity, i.e. chemical potential, and chemical turnover rate for
chemical systems). KCL and KVL provide the unifying structure of network theory. A large
body of theoretical results is available about networks satisfying them, including classical
thermodynamics (Oster, Perelson and Katchalsky, 1971). In particular, KCL and KVL imply
Tellegen’s theorem?!. For a network containing only sources and linear resistors, Tellegen’s
theorem implies Maxwell’'s minimum heat theorem: the distribution of voltages and currents
is such that is minimizes the total power dissipated as heat®. These results can be extended
to nonlinear circuit components® (MacFarlane, 1970; Oster & Desoer, 1971), but in the
following we will restrict ourselves to linear resistors. Since the power dissipated as heat
by linear resistors is'a quadratic functional of the form

AL (7)

where I, and V; are the current and the voltage respectively, and the sum is taken over all
resistive processes ry, it follows that any network consisting of linear resistors and voltage
sources I, has the following associated quadratic functional that is minimized

Zrklz —EE,'I,' (8)
k i

where the second sum includes all the batteries. The functional for the network containing
current sources is very similar?,

It is then easy to show formally that electrical networks of linear resistors and batteries
(or current sources) can solve quadratic minimization problems in a Hilbert space®. The
corresponding linear equations =z == b have a unique solution z, corresponding to the unique
solution of the variational principle. Interestingly, the data b can always be represented
in terms of current or voltage sources. The matrix @ is the symmetric, real matrix of the
network resistances®.

A simpler argument also shows that variational principles of the type of equation (2)
and (3) can be solved by linear networks. The Euler-Lagrange equations associated with




equations (2) and (3) are linear in 2. In the discrete case, they correspond to = linear,
coupled algebraic equations that can be solved by networks of passive, linear resistors and
voltage/current sources’. An alternative implementation, common on analog computers,
involves operational amplifiers (Jackson, 1960). As pointed out by Terzopoulos in the
context of vision (earlier, Horn (1974) proposed an analog implementation of the lightness
computation), a significant advantage of an analog implementation is its extreme parallelism
and speed of convergence. Another advantage of resistance networks is their robustness
against random errors in the resistance units of the network (Terzopoulos, 1984; Karplus,
1958). A disadvantage is the limited precision of the analog signals.

a) Ei-;  Ej Eis

Figure 1: Three resistive networks computmg the smoothest velocity f:eld SOIUUOH of H:ldreth 1984a.
The first two networks correspond to the situation where the constraints imposed by the data are to
be satisfied exactly. The equation for the current, which corresponds to the desired »T in mesh ¢
(for figure 1a), is given by (2r + ri)li — iy — 71—y = E;, where the value of the battery E; depends
on the velocity data v at location i. The voltage at node ¢, corresponding to v,, for the network
1b, the dual of network 1a, is given by (2¢ + ¢:;)Vi — gViy1 — gVi—1 = L, where the injected current I;
depends on the velocity data. Sampling the voltage between nodes corresponds to linear interpolation
between the node values. Network 1c, consisting of two interconnected networks of the type shown
in 1b, solves the velocity field problem when the data are not exact. The equations for the i-th nodes
are (29, + gz.')Vz; — 9 Vait1 — 92 Vai—1 + C.'Vy.' = d;; and ('Zg,, + gy‘)Vy.' - gva|'+] - gny.'_l + i Vs == d,,.‘.
However, unlike the two purely passive networks shown above, an active element may be required,
since the cross-term ¢, relating the z and the y components of velocity, can be negat;ve Such a
negative resistance can be mimicked by operational amplifiers.




An Example: Circuits for the Velocity Field Computation

We will consider next some specific networks for solving the optical flow computation'®,
The simpler case is when the measurements of the perpendicular component of the velocity,
v,.l, at n points along the contours are exact. In this case, the discretized Euler-Lagrange
equations, corresponding to the regularization solution, equation (5), are (Hildreth, 1984a)

(2+ K?)’U:r - ”I}-l - 'va = d, (9)

where « is the curvature of the curve at location i, d; is a function of the data vi- and the
curve and v;'— is the unknown tangential component of the velocity v; at location ¢ to be
computed. Figure 1a and 1b shows two simple networks that solve equation (9), where one
network is the dual of the other.
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Figure 2: Two examples of chemical networks solving the motion problem for exact measurements.
They are equivalent, under steady-state conditions, to the electric circuit of figure 1b. Fig. 2a

(illustrates a diffusion-reaction system. A substance A (the concentration of which corresponds to

the desired v T) diffuses along a cable while reacting with an extracellular substance S (first order
kinetics). The corresponding On-rate k; varies from location to location. This could be achieved by
a differential concentration of an enzyme catalysing the reaction or by varying the properties of
the membrane where the reaction has to take place. The Off-rates can be either constant or vary
with location. The inputs are given by the influxes of substance A. Figure 2b shows an instance of
a lumped chemical network. n different, well-mixed substances, interact with each other and with
the substrate §. Assuming first-order kinetics, these reactions can mimick a linear resistance under
steady-state conditions. The input is given by the influx Mx and the output by the concentration of
X. Chemical networks of this type are a kind of computational soup.

The equation‘describing the i-th node, in the case of figure 1b, is




Qg+gVi—gVisi—gVia =16 (10)
where V; is the voltage—corresponding to the unknown »T—and I; the injected current
at node i—corresponding to the measurements ng. It is important and surprising that this
implementation does not require negative resistances. When the constraints are satisfied
only approximately (equation (6)), the equations are

(2 + bgi)vza - VI.‘+1 - Vzi—n + c"Vy.. = dz.’ (1 l)

(2 + b?/.-)vﬂ.' - Vy.‘+: - Vy.'-l Vo, = dy.-
where b; depends on the contour and V;, and V,, denote the = and y component of the
unknown velocity »; at location . The corresponding network is shown in Figure 1¢. The
resistances ¢;, however, can be either positive or negative, and may therefore require active
components such as operational amplifiers'!. In the limit, as the meshes of the circuit
become infinitesimally small, the network solves the continuous variational problem, and
not simply its discrete approximation.

We have devised similar analog networks for solving other variational problems arising from
regularization analysis of several early vision problems such as edge detection (Poggio
‘et al.,, 1984) and surface interpolation'? (Terzopoulos, 1984). These networks are analog
solutions to certain kinds of spline interpolation and approximation problems. For instance,
in the case of surface interpolation the analog network solves the biharmonic equation
which is the Euler-Lagrange equation corresponding to the variational problem associated
with thin-plate splines. The stabilizing functionals used in regularization analysis of vision
problems typically lead to local and limited connections between the components of the
network.

Solving lll-Posed Problems with Biological Hardware

The mathematical property of ill-posedness determines a common computational structure
for the solution to specific problems in early vision based on variational principles of
a specific type. Analog electrical networks are a natural hardware for computing such
variational principles. Because of the well-known isomorphism between electrical and
chemical networks (see for instance Busse and Hess, 1973 or Eigen, 1974) that derives from
the common underlying mathematical structure, appropriate sets of chemical reactions can
be devised, at least in principle, to “simulate" exactly the electrical circuits. Fig. 2 shows
two chemical networks that are equivalent (in the steady state) to the electrical circuit of
fig. 1b3,

Electrical and chemical systems of this type therefore offer a computational model for early
vision that is quite different from the digital computer. Equations are “solved" in an implicit
way, exploiting the physical constraints provided by Kirchhoff's laws. It is not difficult to
imagine how this model of computation could be extended to mixed electrochemical systems
by the use of transducers, such as chemical synapses, that can decouple two parts of a
system, similarly to operational amplifiers!*.

Could neural hardware exploit this model of computation? Increasing evidence shows that
electrotonic potentials play a primary role in many neurons (Schmitt, Dev and Smith, 1976)
and that membrane properties such as resistance, capacitance and equivalent inductance
(arising through voltage and time-dependent conductances; see for instance Cole, 1968
and Koch, 1984) may be effectively modulated by various types of neurotransmitters, acting
over very different time scales (Marder, 1984). Dendrodendritic synapses and electrical
gap junctions serve to mediate graded, analog interactions between neurons and do




not rely on all-or-none spikes (Graubard and Calvin, 1976). Such an electricalbmédiated
interaction between cells has been exploited in a model of the small-signal behavior of the
photoreceptor network in the vertebrate retina (Torre and Owen, 1983).

When implementing electrical networks in equivalent neuronal hardware, one can draw upon
a large number of elementary circuit elements'® (Fig. 8). Patches of neuronal membrane
or cytoplasm can be treated as resistance and capacitance. Voltage sources can be
mimicked by synapses on dendritic spines (Koch and Poggio, 1983), whereas synapses
on large dendrites act as current sources. Chemical synapses could effectively serve to
decouple different parts of a network. Chemical processes such as the reactions associated
with postsynaptic effects or with peptides could also be thought as part of a complex
electrochemical network. Obviously, the analogy cannot be taken too literally. It would be
very surprising to find the exact neural analog of the circuit of Fig. 3 somewhere in the
CNS. We are convinced, however, that the style of computation represented by analog
circuits represents a very useful model for neural computations as well as a challenge for
future VLSI circuit designs.

Figure 3: This schematic figure illustrates an hypothetical neuronal implementation of the
regularization solution to the motion problem. A dendrite, acting both as pre- and post-synaptic
element has a membrane resistance that can vary with location. It can implement under steady-state
conditions the circuit 1h. The inputs—corresponding to the measurements v —are given by synaptic
mediated current injections, while the output voitages—corresponding to the desired » T —are sampled
by dendro-dendritic synapses. The membrane resistance can be locally controlled by suitable synaptic
inputs-—corresponding to the curvature of the contour—from additional synapses opening channels
with a reversal potential close to the resting potential of the dendrite. This scheme can easily
be extended to the case where the measurements of the perpendicular velocities are not exact,
by having a similar, second dendrite (see also figure 1c). The interaction between both dendrites
takes place via two reciprocal chemical synapses. If the corresponding cross-term in equation
(11) is negative, the chemical synapse must be inverting, presynaptic depolarization leading to an
hyperpolarization.

The regularization approach is not limited to early vision. Other sensory modalities and
motor control can be analyzed in a similar way (Poggio and Torre, 1984). For instance, the
network corresponding to the variational principle suggested by Hogan for controlling the
formation of voluntary movements (Hogan, 1984) is topologically related to the electrical
network underlying one-dimensional edge detection.

The variational principles that we have considered so far for early vision processes are




quadratic and therefore lead to linear networks. This is not always to be expected. The
ill-posed problem of combining several different sources of surface information, for instance,
may lead to non-quadratic regularization expressions and to corresponding nonlinear
networks. Though this is a topic that still needs to be explored, nonlinearities may greatly
expand the rather restricted universe of computations that can be performed in terms of
quadratic minimization principles (Hopfield, 1984). Again, analog networks may be used
to solve these minimization problems, that will in general have multiple local minima
corresponding to the zeros of the mixed potential (Brayton and Moser, 1964; Oster, Perelson
and Katchalsky, 1973). Schemes similar to annealing (Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller, 1953; Kirkpatrick, Gelatt and Vecchi, 1983; Hinton and Sejnowski, 1983)
may be easily implemented by appropriate sources of gaussian noise's. In a chemical
network "noise" may be introduced in various, simple ways. Needless to say, a number
of biophysical mechanisms, such as somatic and dendritic spikes, interactions between
conductance changes, voltage and time-dependent conductances etc., are likely to be used
by neurons and patches of membrane to perform a variety of nonlinear operations.
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Footnotes

[1] In 1-D the problem of edge detection is considered as a problem in numerical
differentiation of the light intensity f{z). Numerical differentiation can be regularized in the
following way. The model is y; = f(x;). We want to estimate f/. We chose a regularizing
functional ||Pf|| = [ (f"(=))*dz, where /" is the second derivative of f.

The solution can be found by
(a) minimizing

[ 17de ()

subject to the data y;, or by
(b) minimizing

= ) [ 1o e (12)

and then in either case by differentiating f to obtain f/.

[2] Regularization theory provides techniques to determine the best A (Tikhonov and Arsenin,
1977; see also Reinsch, 1967). For instance, methods such as the Generalized Cross
Validation method (Wahba, 1980) may be used to find the optimal \. In the case of edge
detection X\ effectively corresponds to the scale of the filter (Poggio et al., 1984).

[3] The main form of Hamilton’s Postulate of least action states that the motion of a
dissipation-less dynamical system, free from external disturbance, from a configuration at
time t; to another configuration at time t,, is such that the integral of its Lagrangian
L =T - U is stationary on the path followed. That is

12
/ Ldt = Eztremum.
ty

If one extends Hamilton’s Postulate to dissipative systems acting under external forces it
can be shown that

vtg
/ (L + W)dt = Extremum
ty

must hold, where W is the virtual work done by the dissipative elements (e.g. resistors) and
the sources. - '

[4] Kirchhoff's laws are physical restatements of the topological properties of the dynamic
space. For electrical networks they correspond to conservation of flows (KCL) and
uniqueness of potential (KVL). Tellegen's theorem capture the basic constraints provided
by KCL and KVL. It is one of the most general and powerful results of network theory and
is independent of any assumption about constitutive relations or stationarity.




Tellegen’s theorem: If U is the vector of branch potentials (a component for each branch)
and J is the vector of branch flows, then

UTJd=0.

Thus the flow and the potential variables are orthogonal at any instant in time.

[6] If one assumes the electric circuit to be isothermal, then dividing the heat, Q, dissipated
in the resistors by the temperature T', we find that Q/7 = dS/dt is also minimum (Oster and
Desoer, 1971). The theorem of minimum entropy production expresses a kind of variational
property of linear nonequilibrium systems. When given boundary conditions prevent the
system from reaching thermodynamic equilibrium (i.e. zero entropy production) the system
settles down in the state of "least dissipation" (Prigogine, 1967).

[6] In addition to Hamilton’s Postulate, there are two specialized variational principles for
networks composed entirely of sources and linear or nonlinear dissipative elements. In
such a network, the actual distribution of the currents will be such as to minimize the total
content G of the system where G is given by

.
G’=/ vdi.
0

Conversely, the distribution of voltages will be such as to minimize the total co-content J
of the system where
V .
J = / idv.
0

If the network considered contains only linear resistors and sources, then both of the above
principles reduce to Maxwell's Stationary Heat Theorem: the distribution of voltages and
currents will be such as to minimize the total power dissipated as heat (MacFarlane, 1970).

[7] In a network of linear resistances rx = 1/gx and current sources I; the associated
quadratic power functional to be minimized is given by :

Y aVi-Y Lv,
k {

where the second sum includes all the current sources.

[8] Assume a Hilbert space with an inner product < -,- >, which defines a quadratic norm
I-ll. An ill-posed problem can be formulated in terms of norms; i.e. minimize

[1P2]* + M|z — ]| | (8.1)

where P is any linear operator and b is the data. This is the third regularization method in
Poggio and Torre (1984). Writing this in terms of inner products, we have




<Pz, Pz2> 4N < Az—bAz—-b>. (8.2)

This is equal to

< Pz, Pz > XN < Az, Az > -\ < Az, b> X < b Az > +\ < bb > (8.3)

Since the last term is constant, it can be disregarded in the minimization. If the adjoints of
the operators I and A are denoted by P* and A* respectively, minimizing this expression
is equivalent to minimizing

<HP Pz> A< A Az > -2\ < 5, A0 > . (8.4)

Defining a new operator @ by Q = P*P + XA"A, we can formulate the original variational
problem as the problem of minimizing

<zQz>+N <z Ab> (8.5)

The first term can be identified with the total power dissipated in a linear resistive network,
while the second term is the voltage- or current-source contribution. Note that Q is
automatically self-adjoint. If @ is a linear operator satisfying

m<zz> < <zQz2> < M<zz>

for all z € H, with II being a Hilbert space, and some M,m > 0, the vector 2 minimizing
eq.(8.5) is the unique solution of the equation @z = b (thus the energy inner product
< z,Qz > is H-elliptic and bounded, see Terzopoulos, 1984). The problem of minimizing
the quadratic functional on a Hilbert space can be formulated as a Hilbert space minimum
norm problem (Luenberger, 1969).

[9] Let the Euler-Lagrange equations associated with a quadratic variational problems be
@z = b, where the n-dimensional vector b is a function of the data. These equations can
be implemented in a planar network containing only linear resistances and voltage sources.
For every variable z; one mesh is set up (with the associated mesh current I;). The mesh
consists of a battery I; and a resistance r;; == ¢;; for every non-zero entry in the i-th row
of Q. Moreover, a very simple auxiliary circuit connects the i-th and the 7-th mesh via an
auxiliary resistance I2;;. The associated circuit current flows not only through Ry;, but also
through r;; of the 7-th mesh and r;; of the j-th mesh. However, since this scheme requires
up to n?/2 resistances, it seems only feasible if @ is sparse. Fortunately, the operator P used
in the variational problems of early vision (Poggio and Torre, 1984) has a small and limited
support, so that the corresponding matrix @ will have very few non-zero entries. Although
this procedure will always yield an electrical network with linear elements implementing
Qz = b, its physical realization might require negative resistances (if the corresponding
term in @ is negative), which need to be mimiked by active elements!!, Alternatively, one
can use the signal-flow graph techniques of Mason and Coates for solving linear algebraic
equations (Kuo, 1967). :

[10] S.Ullman (pers. comm.) has suggested an analog mechanical spring model for the
computation of the smoothest velocity field. Minimization of the potential energy contained
in the springs corresponds to minimization of equation (5) directly in velocity space. It
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~ has proved so far impossible to map this very special model into electrical or chemical
networks.

[11] Physically realizable linear resistances, whether in electrical or in chemical systems,
must dissipate energy, i.e. they are constrained to the upper right and the lower left
quadrant in the T —V plane and can thus only be positive. However, there are at least three
different options for implementing negative resistances using basic circuit components. (i)
The positive and negative resistances can be replaced in a purely resistive network by
inductances and capacitances, with impedance iwl and —i/(w() respectively. The network
equations are then formulated in terms of the currents and voltages at the fixed frequency
w. (i) The negative resistance can be implemented by the use of operational amplifiers
or similar active circuit elements. A case in point are reciprocal inhibitory synapses, like
those found between mitral and granule cells in the mammalian olfactory bulb. Depolarizing
one sysiem leads to a hyperpolarization in the second system. (iii) One can try to exploit
the negative impedance regions in such highly nonlinear systems as the tunnel diode or a
Hodgkin-Huxley like membrane.

—T TN — T~ TN
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Figure 4: Electrical circuits nmplementmg the regularization solutlon to edge detection (Poggio
et al, 1984; Torre and Poggio, 1984) )\-—15 + f =y. Sampling f at discrete points i, we have
firo—Afipr +6fi —Afici 4 fipa + X fi = >\ 'y;. Fig. 4a shows the topology of the Clrcmt while fig.

4b shows an actual realization. The correspondmg network equatnon is '
g-Vire + g+ Vigr — {294 + 29 + g)V + g+V v g Viea=15 if I is the current bemg lnjected at the
i-th node. The negative resistances g— can be lmplemented usmg actwe components The resistive
circuit can, however, be replaced by mductances and capacatnes and the d c voltages and currents
by a.c. voltages and currents of fixed freque,ncy '

[12] A regularization analysis of the edge datectmn problnm leadsto a sxmple one- d:mens:onal
network that implements the variational equanon (1 1). The assoclated Euler Lagrange
equation is the one-dimensional bnharmomc equatlon %i = (0, where f is known at some
discrete points, i.e. fi = v, where Yi is the ‘lght mt:n sity. The correspondmg electrical
network interpolates f between the samplxng pomt‘* When the measuremento are not
exact, the Euler-Lagrange equanon is given by )\ + E f(u,) (r——- @) = y; 1/,5(1‘——:1‘) :
The corresponding hnear dect,n .'l CIrcuzt (f:g 4) approxrmaleb f Since the corresponding
elecrical circuits are in both cases space- mvanant the underlymg mters are convolutaon
filters (Torre and Poggio, 1984; Poggio of al., J1984)
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[13] Two possible chemical and neuronal implementations of the smoothest velocity field
computation in the case of non-exact measurements are shown in fig. 5. They correspond
to the electrical circuit shown in fig. 1c.

a) WL

| /H,\/\/\/\/g/; N\\
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Figure 5: A chemical and a neuronal implementation of equation (11). The cross-term ¢;, which
can be negative, is mimicked by either an appropriate non-linear chemical reaction between the two
substances A; and B; or by reciprocal synapses. For the details compare with fig. 2a and 3.

[14] Synapses may implement a vanety of linear and nonlinear 1- and 2-ports. A chemical
synapse converts a presynaptic voltage V,,. into a postsynaptic conductance change
gpost (Via @ chemical process) and corresponds to a non- reciprocal 2-port in the sense
of Brayton and Moser (1964) or Oster et al. (1971). Its constitutive relation defines a
2-dimensional surface in the four-dimensional space spanned by Vp,e, Ipre, Vpost @nd Ipgst.
The two presynaptic variables, V,,. and I,,. are related by Ohm’s law and similarly for the
postsynaptic variables. The relation between V,,. and V,,. is given by f(z), where f is
in general a nonlinear function. A chemical synapse is non-reciprocal, since variation of
any of the two postsynaptic variables does not affect the presynaptic variables. Chemical
synapses tend to decouple neuronal systems from each other, rather like operational
amplifiers, since a postsynaptic current can be induced without any change in presynaptic
current. Depending on f, synapses can mimick positive or negative resistances. Reciprocal
synapses, like those found between mitral and granule cells in the olfactory bulb or
between bipolar and amacrine cells in the vertebrate retina (Ellias and Stevens, 1972),
may reintroduce reciprocity. Because V; = f(V;) and V, = ¢(V,), where V, and V; are the
intracellular voltages of the two neurons, V; can be varied while observing its effect on
V.. Upon reversing the position of observer and input, orie expects to obtain symmetrical
measurements — at least up to small signals. Electrical synapses, usually referred to as
gap junctions, provide a low-resistance pathways between cells, thus approximating linear
resistances. However, rectifying gap junctions are known to exist, implementing the neuronal
equivalent of diodes. The transjuncticnal resistance can be varied by a variety of neuronal

12




parameters, such as intracellular calcium concentration, pH and voltage (Bennett, 1972).

[15] The stochastic differential equations describing an electrical or a chemical system with
a source of Gaussian noise (for instance voltage or the presence of a chemical reactive
substance) can be formulated in terms of Ito or Stratonovitch calculus (Wax, 1954; Gihman
and Skorohod, 1972). In physics the equations are called Langevin equations. They can
be solved with the Fokker-Planck or the Kolmogorov method. A "solution" of a stochastic
differential equation is a characterization in terms of probability distributions of the "output”
process. For linear networks, simpler correlation methods can also be used. If the noise is
white and Gaussian, its spectral density is proportional to the "temperature" 7. The output
is also a Gaussian process with probability distributions that asymptotically approach the
Maxwell-Boltzmann distribution.
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