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Introduction

We have implemented a prototype language for the Connection Machine (henceforth CM) [11] called CL1
[4]. CL1 extrapolates serial machine programming language technology to the purposes of massively parallel
machines. We observed that the individual CM processing elements could be modeled by a compiler in much
the same way as a serial machine compiler models the target machine’s CPU and registers. A CL1 program
talks to the CM’s communications network in much the same was as a conventional machine talks to its
memory.

By experimenting with this language, we hoped to expose its inadequacies and learn from them. We
present here the details of our largest experiment, an interpreter for Scheme [14], a dialect of Lisp. Our aim
was not to propose Scheme as a language for CM programming, but to gain experience using CL1 to
implement an interesting and familar algorithm.

Consideration of the difficulties we encountered has led us to the conclusion that CL.1 programs do not
capture enough of the causal structure of the processes they describe. Starting from this observation, we have
designed a successor language called CGL (for Connection Graph Language), which we will describe in [5].

The Connection Machine

The CM is a massively parallel computer now being designed and built at the MIT Artificial Intelligence
Laboratory. It consists of a large array of identical small processor cells connected by a communications
network. The cells combine features of both the processors and memory words of traditional architectures.
By distributing processing power across a large address space, the CM architecture avoids the bottléneck
between processor and memory characteristic of conventional architectures [3].

Like the memory of a conventional machine, the CM is intended to have enough cells that the expense of
allocating a new cell should be comparable to that of allocating a new word of memory on a conventional
machine. The current design includes one million cells -- a 20-bit address space.

Like the CPU of a conventional machine, each cell has a few hundred bits of state. The cells do not have
any local program storage or program counter. Instead, instructions are broadcast by the host machine to all
cells at once over a common instruction bus. The CM is thus a SIMD (single-instruction, multiple-data)
architecture, although the SIMD nature of the machine does not play any role in this paper (except in the
section about efficiency considerations). Each cell has a serial ALU capable of executing any of a small
number of operations. The programmer can specify that only a certain subsct of the cells in the machine
should execute a given instruction by making execution of that instruction conditional on the value of a status
flag in each cell. '

The cells are connected by a communications network. If cell A has the address of cell B in its local
memory, then A can use the network to transmit a "message” of any length to B. Neither cell need know
anything about the structure of the network in-between. This network’s transmission protocol has been kept
- simple because of the sobering observation that one pays for any feature one adds to the cells a million times
over. The hardware provides no mechanisms for message arbitration; there is no hardware support for
queucing, for example. Because of this, CM programming languages must provide more useful message




sending abstractions built on the primitive foundation provided by the hardware.
Programming a Connection Machine

The CM was originally designed as a peripheral for storing and operating on semantic nctwork databases.
Since the CM'’s design was morc-or-less finalized, we have been able to experiment with programming it (in
microcode) for other applications. Here are the basics of CM programming as we now understand them; sce
[6] for more details,

In the CM, as in a conventional machine, onc builds data structures by allocating cells and connccting
them together by storing addresscs of cells -- "pointers” -- in the memory of other cells. Since a pointer can
only be used as an instruction to the communications network for delivering a message, the pattern of pointers
in a CM might best be thought of as a virtual communications network. The ability to pass pointers from cell
to cell as data can thus be thought of as the ability to dynamically reconfigure the network to suit the occasion.
This ability to form ncw "connections” through the communications network, under software control, gives
the Connection Machine its name.

Cells in the CM, like words of a conventional machine’s memory, will typically be used for a number of
different purposcs in any particular computation. Some cells might be linked into a binary tree to represent a
sct. Others might act as record structures to represent objects with components. A space-ship might have a
position, a velocity, and an owner.

The manipulations performed by a cell on the data in its local storage closely resemble those of a
conventional genecral-register computer on the data kept in its register set.  Calculations are performed on
data, and the results arc written back over data that is no longer necded. Temporary storage is allocated to
contain intermediate results. Since there is no run-time storage management, the layout of local storage is
static and must be established at compile-time. There is no natural way to implement stacks, arrays, or heaps.
The programmer has a complete model of the usage of cach bit in a cell’s local storage.

Programmers most commonly deal with the lack of synchronization or queucing features in the message
transmission facility by limiting the circulation of a cell’s address. Adoption of appropriate conventions about
the handling of pointers can guarantee that no more than one cell will ever wish to transmit messages to any
given cell.  If many cells might potentially wish to communicate with some target cell, then a tree of
intermediate cells can be built to handle the "fan-in" of messages, effectively constructing a queuc out of cells,
(Sce [I1}.)  Other higher-level protocols can be supported by appropriately coordinating message
transmission, and by building auxiliary supporting structurcs out of cells. To « large extent, the design of
algorithms for the CM is the design of such communications protocols.

Sometimes the representation of an object that the programmer wishes to treat atomically will require
more storage than that of a single cell. In this case, several cells must be allocated and Tinked together, by a
mutual exchange of addresses if nothing clse.  This forces the programmer to deal with inrernal
communications within her data-structures, as well as external communications between them,




CL1 Summary

The chief motivation behind the design of CL1 was the observation that the storage management in a
single CM processing clement closely parallels management of the registers in a conventional gencral-register
von Ncumann machine. Many expressions in a conventional programming language can be compiled into
"straight-linc" code which uses only the fixed storage contained in the register file of a conventional machine.
Since a single CM cell contains about the same amount of storage as a conventional register file, such code
can be exccuted on a single CM ccll. This suggested that we try programming individual cells in such a
language. We can support message passing by simply adding primitive transmitting and receiving operators
to our language.

Having chosen to view programming a CM in this manner, we built a compiler using off-the-shelf
compiler technology. We drew on techniques from [12]. as well as some more standard techniques such as
those found in [2]. The resulting language, a dialect of Lisp resembling Scheme [14], is documented
completely in [4].

CL1 programs are thought of as executed by single CM cells. This limits the kind of programs that can be
exccuted. Since cach cell has a fixed number of bits of state, programs requiring unbounded state will not be
executable. CL1 disallows two features which in more powerful Lisps allow programs to employ unbounded
state: recursion other than tail-recursion, and runtime closures. Truncated in this manner, CL1 cannot be
used for programs that require more than a fixed amount of state, as determined at compile time. CLI is -
basically a language for writing finite state machines. ‘

In the CL1 model of a CM, cvery allocated cell is in some "state". Each state has associated with it a
number of "state variables". The values of these variables at any cell in that state are stored in bits allocated
from that ccll's local storage. Also associated with cach state is a straight-line (non-branching) piece of code to
be run by any cell in that state. That code performs computations with the cell’s state variables, computes a
new state for it, and provides values for any new state variables.

It is the CL.1 compiler’s job to hide this state-machine model of program execution from the programmer
wherever possible. The programmer normally expresses the behavior of cells in a flexible, Lisp-like language.
However, sometimes the programmer must explicitly talk about a state with its associated variables and code.
This is usually donc using the DEFSTATE form, which allows a programimer to give a name to a statc:

(DEFSTATE FACTORIAL-STATE (NUMBER)
(LABELS ((FACT (LAMBDA (ACCUMULATOR COUNTER)
(IF (< COUNT 2) ACCUMULATOR
(FACT (* COUNTER ACCUMULATOR)
- (1- COUNTER))))))
(GO NEXT-STATE (FACT 1 NUMBER) NUMBER)))

This form defines a state named FACTORTAL-STATE, with a single state variable named NUMBER. If acell is
placed in state FACTORIAL-STATE and its state variable is initialized to contain some integer. that cell will
proceed to compute the factorial of that number. When it is finished. it will sct its state to NEXT-STATE,
initializing its first state variable to contain the newly-computed factorial and its second state variable to

contain the original number.,




Notice that most of the body of a DEFSTATE form looks like ordinary Lisp codé. This, after all, was the
major goal in implementing C1.1: to allow familiar tools to be applicd to CM programming,

Support for message passing in CL.1 is quite simple. A cell can have a number of channels to receive
messages. The TRANSMIT function takes a pointer to a channel in another cell and a message and causes that
message to arrive as input in that channel. The WITH-CHANNEL special form allocates a location within the
exccuting cell to be a channel and creates a pointer to that location, ¢.g.,

(WITH-CHANNEL (CHANNEL POINTER)
(MAKE-CELL NEW-CELL-STATE POINTER)
(INPUT CHANNEL))

In this cxample, the variable POINTER will be bound to the new pointer and the variable CHANNEL will be
bound to the "channel object” at which the pointer points. A pointer points to a channel within a cell, not to
the cell itself. The location of the channel will be deallocated when the body of the WITH-CHANNEL form is
finished cxecuting. The cell will be able to read any message transmitted to it using this pointer by applying
the INPUT function to the channel. In the example the executing cell creates a pointer-channel pair, allocates
a new cell using the MAKE-CELL function (not a trivial operation; see [6]). places that new cell in the state
NEW-CELL-STATE, initializes its single state variable to contain the new pointer, and then waits for a
message to arrive from the new cell. A version of TRANSMIT, called TRANSMIT-WAIT, performs arbitration
when more than one cell sends a message to the same channel at the same time. Each TRANSMIT-WAIT call
hangs until the recciving cell’s INPUT call gets around to that message. The TRANSMIT-WAIT construct is
not a hardware primitive; it compiles to a complex protocol. '

Since CL.1 has no theory of data other than providing a pointer datatype to represent CM addresscs, the
values manipulated by CL.1 programs in the present implementation are simply Maclisp objects. Data types
other than CL.1 pointers are Ieft to the programmer to simulate as best she can. Short fixed-length lists, for
cxample, are commonly used to implement records. The programmer is on her honor not to usc these objects
in ways that arc clearly impossible on an actual CM.

Coding cliches

In the course of writing the first few CL.1 programs, a number of conventions and coding cliches arose that
we have tried to capture with macros. Here we present the ones that are convenient to explain outside the
context of the Scheme interpreter described in the next section.

Lvery channel in a cell uses one of two message-passing contracts. A continuuation is a channel, typically
created as a place for another cell to send the result of its calculation, to which there is exactly onc pointer in
the system. One uses TRANSMIT to send a message 1o a continuation. A command channel is used by a cell to
offer some contract to any taker.  Messages to command channels, called commands, are sent using
TRANSMIT-WAIT. A command has a conmmand iype and a fixed number of fields, the first of which must be
a continuation to which the response should be sent.

When a cell creates a new cell with MAKE-CELL, the following scheme s often used to establish
communication between the new cell and its owner. The new cell will have among its initial state variables
onc called OWNER, which is initialized to a pointer o an input channel in the cell that made it. The newly




created cell is expected to send to the owner’s channel a pointer to a channel of its own.

Many types of cells arc quite passive, merely handling one command after another. Such command-loop
cells recall the "objects™ of languages like Smalltalk. As an example, here is a piece of CL1 code taken from
the Scheme interpreter that illustrates these three conventions:

(DEFSTATE CONS-NODE (OWNER CAR-PART CDR-PART)
(WITH-CHANNEL (COMMAND-CHANNEL COMMAND-POINTER)
(TRANSMIT OWNER COMMAND-POINTER)
(DO ((COMMAND (INPUT COMMAND-CHANNEL)
(INPUT COMMAND-CHANNEL)))
(NIL)
(DISPATCH COMMAND

((GET-CAR CONTINUATION)
(TRANSMIT CONTINUATION CAR-PART))
((GET-CDR CONTINUATION)
(TRANSMIT CONTINUATION CDR-PART))

))))

A CONS-NODE scnds its owner a pointer to its command channcl and then enters an cternal loop, dispatching
off the type of cach new command and transmitting the appropriate answer to the command’s continuation.
The DEFOBJECT macro can be used to suppress the first four lines of this definition:

(DEFOBJECT CONS-NODE (CAR-PART CDR-PART) (COMMAND)
(DISPATCH COMMAND .
((GET-CAR CONTINUATION) (TRANSMIT CONTINUATION CAR-PART))
((GET-CDR CONTINUATION) (TRANSMIT CONTINUATION CDR-PART))

))

The DISPATCH form dispatches on the type of a command, locally binding the fields of the command to
variables. The clause of a DISPATCH corresponding to a given type of command is commonly called that
command’s method. 'The code for CONS-NODE has a GET-CAR method and a GET-CDR method.

Onc commonly sends a ccll a command and calls INPUT on the provided continuation to await a response.
The DEFCOMMAND macro can be used to define a functional form to capture this cliche.  For example,
(DEFCOMMAND GET-CAR (CONS-NODE)) allows onc to obtain the CAR-PART of a CONS-NODE by
saying (GET-CAR cell). 'This form will cxpand into:

(WITH-CHANNEL (TEMPORARY-CHANNEL TEMPORARY-POINTER)
(TRANSMIT-WAIT cell
(MAKE-COMMAND 'GET-CAR TEMPORARY-POINTER))
(INPUT TEMPORARY-CHANNEL))

Notice that a cell that uses GET-CAR or any other DEFCOMMAND form must sit waiting in INPUT until the
target cell computes and returns the answer,

The DEFMAKER macro defines a functional form to create a cell that employs the OWNER convention, ¢.g.,
(DEFMAKER CONS-NODE (CAR-PART CDR-PART)) lcts one obtain a pointer to the command channel of a
newly created CONS -NODE by saying (MAKE -CONS -NGDF car-part cdr-part). "This form will expand into:




(WITH-CHANNEL (TEMPORARY-CHANNEL TEMPORARY-POINTER)
(MAKE-CELL CONS-NODE TEMPORARY-POINTER carpart cdrpart)
(INPUT TEMPORARY-CHANNEL))

Scheme interpreter

To sce what programming in CL1 is like, we wrote an interpreter for Scheme, a lexically scoped and
tail-recursive dialect of Lisp. The most obvious interest of this exercise is the promisc of being able to employ
arbitrarily diffcrentiated processing on the putatively SIMD Connection Machine: by multiplexing the CM’s
instruction strcam among the different kinds of objects in a running Scheme program, thousands of different
Scheme programs can be exccuted in parallel at the cost of a moderate constant factor slow-down. (A similar
tack is taken in [9].) Even so, we don’t consider Scheme to be particularly well-suited for programming
parallel machines: it provides no better account than the average language of the important linguistic issues of
how best to express methods of process decomposition and synchronization.

We chose Scheme interpretation as our first experiment in CL1 programming not because Scheme is the
ultimate parallel programming language but because the Scheme interpreter is an interesting and relatively
simple algorithm that we understand thoroughly. There is an extensive literature and culture of the
implementation of Scheme and its neighbors in language-space (sce [15]). The Turing-universality of the
algorithm provides some vaguc promisc that a wide varicty of programming issues must be addressed in its
implementation. A less familiar programming problem would have introduced uncertaintics unrelated to the
linguistic issucs that were our recal interest.

We assume that the rcader has a rcasonable grounding in Scheme and the issucs involved in its
interpretation; sce [14] or [1]. For our purposes, the most important features of a Scheme interpreter are:

® The language is lexically scoped (as is. for example, Algol-60). A procedure object is created by
combining a pointer to the body of the procedure with a pointer to the current environment. When a
procedure object is applicd to arguments, the body is interpreted in an environment constructed by
extending the procedure object’s environment with the new bindings of the procedure’s formal
parameters.

® Procedure objects are first-class data; they can be passed as arguments, returned as values, and
incorporated into compound data structures. That one should be able to make general use of procedure
objects without cxcessive penalty is part of the Scheme programming philosophy and a strict constraint
on the Scheme implementor.

® A Scheme interpreter must be fail-recursive, While a recursive procedure must wait for the result
from its recursive call so it can perform additional operations with that result, a tail-recursive procedure,
having no additional operations to perform, need not push a return address. (Sce [13].) The interpreter,
when calling itself on a subexpression of a given expression, saves only the information that will be
needed after the evaluation of the subexpression has been completed. In addition o allowing users to
use procedure calls liberally, this allows cfficient implementation of all common control constructs in
terms ol conditional evaluation and the procedure call.




In our CL.1 Scheme interpreter, a program is represented as a network of cells that is produced as a parse
tree by a syntaxer (roughly speaking, a parser). For instance, Figure 1 portrays the network corresponding to
the expression: '

(DEFINE MAKE-INCREMENTER
(LAMBDA ( INCREMENT)
(LAMBDA (X) _
(PLUS INCREMENT X))))

To evaluate a Scheme expression in an environment, one sends it an EVALUATE command, providing a
continuation and the environment, implemented as a chain of FRAME and ALIST cells. Figure 2 shows a
portion of the global environment after the definition of MAKE-INCREMENTER has been evaluated by
sending such a command to the DEFINITION cell at the top of the tree. Figure 3 shows the environment
after the form (DEFINE INCREMENTER (MAKE-INCREMENTER 7)) has been syntaxed and evaluated.

The contract of an EVALUATE command is that the result of evaluting the receiving expression in the
indicated environment should eventually be sent to the indicated continuation. On a serial machine, the
Scheme evaluator dispatches on the type of the cell being evaluated, but in our interpreter each object knows
how to evaluate itself. (This is reminiscent of what on serial machines is called object-oriented programming.)
There are eight types of cells in a program: v

CONDITIONALSs, asin ( IF predicate then else)

VARIABLES, such as CAR and PATTERN

DEFINITIONs, asin (DEFINE symbol expression)

LAMBDA-EXPRESSIONSs, asin ( LAMBDA variables body)
PROCEDURE-APPLICATIONs and OPERAND-CONScs, as in ( procedure . operands)
SEQUENCES, asin (SEQUENCE . expressions)

PARALLELSs, asin (PARALLEL . expressions)

CONSTANTs, such as (QUOTE (EATS KITTY FISH) ) and 23

As an cxample, consider the CONDITIONAL cell type. It has state variables called PREDICATE, THEN, and
ELSE. cach pointing at the cell for some other Schemie expression. Here is one way that the CONDITIONAL
ccll could have been implemented:

(DEFOBJECT CONDITIONAL (PREDICATE THEN ELSE) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT-WAIT (IF (EVALUATE PREDICATE ENVIRONMENT)
THEN
ELSE)
COMMAND ) )

))

A CONDITIONAL cell accepts a stream of EVALUATE comimands. [t uses the EVALUATE form defined using
DEFCOMMAND to find the value of the predicate and hands the result to CILT's IF, which determines whether
THEN or ELSE will he evaluated to provide the result. "The winning expression is sent the command the
CONDITIONAL reccived, and so will pass its result on to that command’s continuation itself. Meanwhile, the
CONDITIONAL cell can move on o new EVALUATE commands. "This continuation-passing trick (¢f. [10])




Figure 1. CM representation of a Scheme program.

‘The syntaxer for our CL.1 Scheme interpreter lays out a Scheme program in the CM as a tree of cells, one
for cach part of the code. To evaluate a picce of Scheme code in some environment, onc sends the cell at the
top of the tree a command of the form (EVALUATE continuation environment). The nctwork corporately

guarantecs that the right answer will eventually arrive at the continuation.

DEFINITION
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Figure 2. After defining MAKE - INCREMENTER.

A CL1 Scheme environment is organized as a sequence of FRAMEs, cach of which is composed of a
sequence of binding pairs (a chain of ALIST cclls). LOOKUP and SET-VARIABLE commands propagate
from a FRAME to its chain of ALIST cells, and from the last ALIST to the following FRAME. Procedures are
data objects like any others and a procedure is normally fetched by looking its name up in the current
environment. The object that embodics the procedure is a cell of type CLOSURE. A CLOSURE is created by
the cvaluation of a LAMBDA-EXPRESSION and contains not only the parameter list and body of the
LAMBDA-EXPRESSION but also the cnvironment that was current when the LAMBDA-EXPRESSION was
evaluated. The body will be evaluated in this environment when the CLOSURE is applicd to arguments.
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Figure 3. After defining INCREMENTER. . '
W%cn(DEFINEINCREMENTER(MAKE—INCREMENTER7))ismmhmmd,anmvALISTcdlmcmamdln

the global environment; this cell binds INCREMENTER to a new CLOSURE. A new FRAME is created to serve
as the environment of that closure. in which X has the value 7. The new FRAME’s parcnt cnvironment is the

global environment.
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corresponds to the tail-recursive nature of the ecvaluation of conditionals in serial-machine Scheme
interpreters.

Yet conditional evaluation isn’t quite tail-recursive, since the CONDITIONAL cell must wait on the result of
the evaluation of the predicate. If that predicate is a complicated expression, a large number of new
commands could back up in thc CONDITIONAL’s input qucuc. Not only that, but if the evaluation of the
predicate involves evaluating that same CONDITIONAL in some environment, the system will deadlock with
thc CONDITIONAL and its predicate waiting on one another.

Therefore, the CONDITIONAL creates a temporary cell to wait on the value of the predicate and pass the
EVALUATE command on to THEN or ELSE:

(DEFOBJECT CONDITIONAL (PREDICATE THEN ELSE) (COMMAND)
(DISPATCH COMMAND _
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT-WAIT PREDICATE
(MAKE-COMMAND 'EVALUATE
(FORK (RESULT-CHANNEL)
(TRANSMIT-WAIT (IF (INPUT RESULT-CHANNEL) THEN ELSE)
COMMAND ) )
ENVIRONMENT)))

))

(MAKE -COMMAND makes commands; it shouldn’t be confused with the forms created by DEFMAKER.) The
FORK macro suppresses the details of making a temporary cell to wait on the predicate outcome and then
perform the inner TRANSMIT-WAIT. The user thinks of the FORK form as returning a pointer to the
temporary cell’s RESULT-CHANNEL: this is the continuation for the evaluation of the predicate. Here is the
code into which the FORK form expands:

(WITH-CHANNEL (TEMP-CHANNEL TEMP-POINTER)
(MAKE-CELL (KAPPA (TEMP-OWNER)
(WITH-CHANNEL (RESULT-CHANNEL RESULT-POINTER)
(TRANSMIT TEMP-OWNER RESULT-POINTER)
(TRANSMIT-WAIT (IF (INPUT RESULT-CHANNEL)
THEN
ELSE)
COMMAND) ))
TEMP-POINTER)
(INPUT TEMP-CHANNEL))

CL.1I's KAPPA allows one to create anonymous states by analogy to the Scheme LAMBDA construct for creating
anonymous procedures. ‘The temporary cell, then, is started up in a state in which it creates a channel, sends a
pointer to it to its owner in the traditional manner, and waits for the outcome of the predicate to arrive in that
channel. After sending the original COMMAND to cither THEN or ELSE the temporary cell becomes garbage.
(CL.1 extends the anadogy between KAPPA and LAMBDA by making sure that variables free in a KAPPA form,
in this case COMMAND, THEN, and ELSE. are automatically transmitted to any cell created in the state defined
by the form.)

The temporary cell created in this process is analogous o the stack space that a serial-machine Scheme
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interpreter must occupy during its recursive call on the predicate of a conditional. Such cells are used in
several places in the CL1 Scheme interpreter, cach of them corresponding to a non-tail-recursive call in the
usual meta-circular (that is, written in Scheme) Scheme interpreter (see [15]).  Tail-recursion in the CL1
Scheme interpreter both increases the throughput of cells by not making them wait for answers and saves
space by not making them create temporary cells to do that waiting.

Thus the evaluation of a CONDITIONAL cell involves little more than passing the EVALUATE command
off to other cells. A similar tack is taken by PROCEDURE-APPLICATION cells:

(DEFOBJECT PROCEDURE-APPLICATION (PROCEDURE OPERAND-LIST) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT-WAIT PROCEDURE
(MAKE-COMMAND ' EVALUATE
(FORK (RESULT-CHANNEL)
(TRANSMIT-WAIT (INPUT RESULT-CHANNEL)
(MAKE-COMMAND °*EVLIS
CONTINUATION
OPERAND-LIST
ENVIRONMENT)))
ENVIRONMENT)))

))

When a PROCEDURE-APPLICATION cell receives an EVALUATE command, it must evaluate the
PROCEDURE expression in the provided environment and then tell the resulting closure to evaluate the
operands and apply itsclf to the resulting arguments. Rather than wait for that evaluation of PROCEDURE to
return a value, though, it uses the FORK form to create a temporary cell to do the waiting and send the EVLIS
command to the closure. Once the forked cell finishes sending the EVLIS command, it has no more code to
exccute and so passcs into the null state and is deallocated.

A closure in Scheme is an object created by the cvaluation of a LAMBDA cxpression. It contains the
parameters and body given in the LAMBDA together with the environment that was current when the LAMBDA
cxpression was evaluated.  When a procedure is applied to operands, the operands are evaluated in the
current environment; once the parameters have been bound to the resulting arguments, the body of the
procedurc is evaluated in the environment that is stored in the closure. That the closure and not the caller
determines the environment of evaluation for the body of a newly called procedure is the essence of Scheme’s
Iexical scope, as opposed to the dynamic scope of traditional Lisp.

In our implementation, a cell of type CLOSURE is created by the evaluation of a LAMBDA-EXPRESSION
object in some environment:

(DEFOBJECT LAMBDA-EXPRESSION (SYMBOLS BODY) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(MAKE-CELL CLOSURE CONTINUATION ENVIRONMENT SYMBOLS BODY))

))

A CLOSURE processes EVLIS commands sent to it by PROCEDURE-APPLICATIONs. 'The ficlds of an
EVLIS commuand arc: (1) the continuation to which the eventual result is to be sent, () the unevaluated
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operand list, and (3) the environment in which these operands are to be evaluated:

(DEFOBJECT CLOSURE (ENVIRONMENT PARAMETERS BODY) (COMMAND)
(DISPATCH COMMAND
((EVLIS CONTINUATION OPERANDS OPERAND-ENVIRONMENT)
(TRANSMIT-WAIT BODY
(MAKE-COMMAND *EVALUATE

CONTINUATION

(MAKE-FRAME ENVIRONMENT
PARAMETERS
OPERANDS
OPERAND-ENVIRONMENT))))

))

Upon recciving and destructuring the EVLIS command, the CLOSURE object extends the environment and
tail-recursively initiates the evaluation of the body in the resulting environment. The MAKE-FRAME form,
which initiates the process of evaluating the operands and cextending the environment, does not wait for that
process to finish; instecad it immediately returns a pointer to the FRAME that will lie at the head of the
extended environment.

It is the responsibility of a FRAME, then, to sce that the operands are evaluated and bound to symbols in
fresh ALIST cells. After identifying itself to its owner, it starts a BIND command propagating down the
operand list. This results in a pointer to the first of a newly created ALIST chain being returned to it,
whereupon it settles into a command loop. ' '

(DEFSTATE FRAME (OWNER NEXT-FRAME PARAMETERS OPERANDS ENVIRONMENT)
(WITH-CHANNEL (COMMAND-CHANNEL COMMAND-POINTER)
(TRANSMIT OWNER COMMAND-POINTER)
(LET ((INITIAL-ALIST
(IF OPERANDS
(BIND OPERANDS PARAMETERS ENVIRONMENT NEXT-FRAME)
NEXT-FRAME)))
(ITERATE FRAME-LOOP ((ALIST INITIAL-ALIST))
(LET ((COMMAND (INPUT COMMAND-CHANNEL)))
(DISPATCH COMMAND
((LOOKUP CONTINUATION SYMBOL)
(TRANSMIT-WAIT ALIST COMMAND)
(FRAME-LOOP ALIST))
((SET-VARIABLE CONTTNUATION SYMBOL VALUE)
(TRANSMIT-WAIT ALIST COMMAND)
(FRAME-LOOP ALIST))
((DEFINE CONTINUATION SYMBOL VALUE)
(TRANSMIT CONTINUATION T)
(FRAME-LOOP (MAKE-ALIST SYMBOL VALUE ALIST)))

))))))

The evaluation of operand lists is a little tricky and not entirely pleasant. An operand list is implemented
as a chain of OPERAND-CONS cells, cach representing one of the operands. When an OPERAND-CONS cell
receives a BIND message. it evaluates its operand expressions in the provided environment and builds ALIST
cells for the results and the formal parameters.
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The code for OPERAND-CONScs and ALISTs requires a fair bit of explanation. The EXPRESSION
variable of an OPERAND-CONS points to (the command channel of) the operand, which is some arbitrary
cxpression. The NEXT variable contains cither NIL, indicating that this is the last opcrand, or a pointer to
another OPERAND~-CONS ccll. When an OPERAND-CONS reccives a BIND command, it propagates it down
the chain, making a new ALIST cell at every step:

(DEFOBJECT OPERAND-CONS (EXPRESSION NEXT) (COMMAND)
(DISPATCH COMMAND
((BIND CONTINUATION PARAMETERS ENVIRONMENT NEXT-FRAME)
(IF (NULL NEXT)
(MAKE-CELL LAST-PROTO-ALIST
CONTINUATION
(GET-CAR PARAMETERS)
EXPRESSION
ENVIRONMENT
NEXT-FRAME)
(TRANSMIT-WAIT NEXT
(MAKE -COMMAND *BIND
- (MAKE-PROTO-ALIST CONTINUATION
(GET-CAR PARAMETERS)
EXPRESSION
ENVIRONMENT)
(GET-CDR PARAMETERS)
ENVIRONMENT
NEXT-FRAME))))

))

Before understanding how OPERAND-CONScs work, consider one way they might have worked. An
OPERAND-CONS ccll could:

(1) cvaluate its operand,

(2) wait while subsequent operands are evaluated to yield the tail of the new chain of binding pairs,

(3) attach a new ALIST cell that binds its symbol to its value to the front of that tail, and

(4) return the newly created ALIST to the continuation, be it the previous OPERAND-CONS cell or
the CLOSURE fork that is waiting on the ncw environment,

This might work, but it would requirc thc OPERAND -CONS cells at the front to spend almost all their time
waiting when they could be evaluating their expressions in the scrvice of other CLOSUREs. Other kinds of
cells, like CLOSURES. solved this problem by using the FORK form to make a temporary cell to do the waiting.
But in the case of QPERAND-CONSces there is no need to go to the extra expense: the newly created ALIST
cell can do the waiting itself. This trick is the rcason why it is OPERAND -CGNS cclls that evaluate arguments
rather than PROCEDURE-APPLICATION cells, as a dircct translation of the usual meta-circular Scheme
interpreter into CL1 would have it.

There are two cases. A new ALIST can wait on the results of operand evaluation or on both that
cvaluation and the construction of the remaining ALISTs, depending on whether it is the last ALIST in that
frame. Consequently, there are two different states in which an ALIST cell can be created, PROTO-ALIST
and LAST-PROTO-ALIST:




-15-

(DEFSTATE LAST-PROTO-ALIST (OWNER SYMBOL EXPRESSION ENVIRONMENT NEXT)
(GO ALIST OWNER SYMBOL (EVALUATE EXPRESSION ENVIRONMENT) NEXT))

(DEFSTATE PROTO-ALIST (NEXT-SOURCE OWNER SYMBOL EXPRESSION ENVIRONMENT)
(WITH-CHANNEL (EVAL-CHANNEL EVAL-POINTER)
(TRANSMIT-WAIT EXPRESSION
(MAKE -COMMAND 'EVALUATE EVAL-POINTER ENVIRONMENT))
(WITH-CHANNEL (NEXT-CHANNEL NEXT-POINTER)
(TRANSMIT NEXT-SOURCE NEXT-POINTER)
(GO ALIST
OWNER
SYMBOL
(INPUT EVAL-CHANNEL)
(INPUT NEXT-CHANNEL)))))

(DEFSTATE ALIST (OWNER BOUND-SYMBOL INITIAL-VALUE NEXT)
(WITH-CHANNEL (COMMAND-CHANNEL COMMAND-POINTER)
(TRANSMIT OWNER COMMAND-POINTER)
(ITERATE ALIST-LOOP ((VALUE INITIAL-VALUE))
(LET ((COMMAND (INPUT COMMAND-CHANNEL)))
(DISPATCH COMMAND
((LOOKUP CONTINUATION SYMBOL)
(COND ((EQ SYMBOL BOUND-SYMBOL)
(TRANSMIT CONTINUATION VALUE))
((NOT (NULL NEXT))
(TRANSMIT-WAIT NEXT COMMAND))
(7
(FORMAT T :
"UNBOUND SCHEME VARIABLE: ~S"
SYMBOL)))
(ALIST-LOOP VALUE))
((SET-VARIABLE CONTINUATION SYMBOL NEW-VALUE)
(COND ((EQ SYMBOL BOUND-SYMBOL)
(TRANSMIT CONTINUATION T)
(ALIST-LOOP NEW-VALUE))
((NOT (NULL NEXT))
(TRANSMIT-WAIT NEXT COMMAND)
(ALIST-LOOP VALUE))
(T
(FORMAT T
"ATTEMPT TO SET AN UNBOUND VARIABLE: ~S"
SYMBOL) .
(ALIST-LOOP VALUE))))

)))))

There is quite a bit going on here. Here is the image: as the BIND command propagates down the chain of
OPERAND-CONS cclls, a parallel chain of PROTO-ALIST cells is created. cach of which has initiated the
evaluation of its corresponding operand and is waiting for the next ALIST cell along to identify itself. When
the BIND command rcaches the last OPERAND-CONS cell along, control "turns around™ at a
LAST-PROTO-ALIST ccll, propagating back along the chain of proto-alist cells, cach of which initializcs
itself in wrn by moving into the ALIST state. (Operands are thus evaluated in parallel.) The process is
completed when the fiest ALTST cell in the chain identities itself 1o the new FRAME.
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We used such a peculiar pattern of message sending and receiving to implement operand list evaluation so
that no cell that could be doing useful work has to wait for anything. In particular, we don’t want the
OPERAND-CONS that creates a new binding pair to have to wait for all the downstrcam binding pairs to be
created first.  But cach ALIST cell requires a pointer to its successor. Consequently, when an
OPERAND-CONS cell creates a PROTO-ALIST cell, the PROTO-ALIST cell returns to it a pointer (called
NEXT-POINTER) to a channel (called NEXT-CHANNEL) to which (a pointer to the command channel of) the
next ALIST cell along should be sent once it is known. This pointer is scnt along to the next
OPERAND-CONS as part of the BIND message. The boundary case of this process is at the last
OPERAND-CONS, for which the correct value of the new ALIST cell’s NEXT variable is known. (This value is
not NIL, but rather the next frame in the environment, where failed LOOKUP and SET-VARIABLE
commands should be propagated.) Therefore, LAST-PROTO-ALIST cells perform only half of this complex
protocol: they wait on the evaluation of the operand, but are given the NEXT right away rather than having to
wait for it as well.

Once an ALIST cell has entered its command loop, it can accept two types of commands --
SET-VARIABLE and LOOKUP, with the obvious semantics. The LOOKUP command is used by VARIABLE
cells: '

(DEFOBJECT VARIABLE (NAME) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT-WAIT ENVIRONMENT
(MAKE -COMMAND *LOOKUP CONTINUATION NAME)))
))

The only obscure point in the ALIST command loop is the SET-VARIABLE command’s returning a value.
This satisfies the contract of a command and also informs any caller who might be curious that the setting has
been completed and whether it succeceded. One cannot sct or ook up a variable in an environment in which it
is not bound. The calls to FORMAT would not carry over to a CM implementation, which would have to have
its own ways of signalling crrors. Support for error-handling in CM languages is as yet poorly understood.
This concludes our explanation of procedure application in the CL1 Scheme interpreter,

SEQUENCE and PARALLEL constructs differ only in their attitude toward the result of exccuting the first
of the two expressions, LHS and RHS. (If there are more than two forms in a SEQUENCE or PARALLEL form,
the syntaxer will make a chain of SEQUENCE or PARALLEL cells.) A SEQUENCE must set up a FORK to await
the completion of the evaluation of the LHS before sending the EVALUATE command on to the RHS. A
PARALLEL, on the other hand, tells the LHS to send its result to a bit bucket and then immediately passes the
EVALUATE command to the RHS. (CI.1 docs not support bit buckets specially, so there is a kind of cell called
BIT-BUCKET just for this purpose.)
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(DEFOBJECT SEQUENCE (LHS RHS) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT-WAIT LHS
(MAKE-COMMAND 'EVALUATE
(FORK (RESULT-CHANNEL)
(INPUT RESULT-CHANNEL)
(TRANSMIT-WAIT RHS COMMAND))
ENVIRONMENT)))

))

(DEFOBJECT PARALLEL (LHS RHS) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT-WAIT LHS
(MAKE-COMMAND 'EVALUATE (MAKE-BIT-BUCKET) ENVIRONMENT))
(TRANSMIT-WAIT RHS COMMAND))

))
(DEFOBJECT BIT-BUCKET () (COMMAND))

Constants are the simplest expressions to evaluate. Upon recciving an EVALUATE message, a CONSTANT
cell simply sends its constant back to the continuation:

(DEFOBJECT CONSTANT (DATA) (COMMAND)
(DISPATCH COMMAND
((EVALUATE CONTINUATION ENVIRONMENT)
(TRANSMIT CONTINUATION DATA))

))

All that remains is the initialization of the run-time environment. There is a separate cell type for ecach
primitive thie language supports, and these are bound to the appropriate symbols in the initial environment.
The initial environment is sct to the Macl.isp variable GLOBAL-ENVIRONMENT using a sequence of calls to
the DEFINE form (which was created by (DEFCOMMAND DEFINE ( FRAME SYMBOL EXPRESSION))):

(DEFSTATE INITIALIZE-GLOBAL-ENVIRONMENT ()
(LET ((GLOBAL (MAKE-FRAME NIL NIL NIL NIL)))

(SET *GLOBAL-ENVIRONMENT GLOBAL)
(DEFINE GLOBAL 'CONS (MAKE-PRIMITIVE-CONS-CLOSURE))
(DEFINE GLOBAL 'CAR (MAKE-PRIMITIVE-CAR-CLOSURE))
(DEFINE GLOBAL 'CDR (MAKE-PRIMITIVE-CDR-CLOSURE))
(DEFINE GLOBAL "EQ? (MAKE-PRIMITIVE-EQ?-CLOSURE))
(DEFINE GLOBAL '1+ (MAKE-PRIMITIVE-INCREMENT-CLOSURE))
(DEFINE GLOBAL '1- (MAKE-PRIMITIVE-DECREMENT-CLOSURE))
(DEFINE GLOBAL ‘ZERO? (MAKE-PRIMITIVE-ZEROP-CLOSURE))
(DEFINE GLOBAL '+ (MAKE-PRIMITIVE-PLUS-CLOSURE))
(DEFINE GLOBAL '* (MAKE-PRIMITIVE-TIMES-CLOSURE))
(DEFINE GLOBAL 'LIST? (MAKE-PRIMITIVE-LISTP-CLOSURE))
(DEFINE GLOBAL 'SYMBOL? (MAKE-PRIMITIVE-SYMBOLP-CLOSURE))
(DEFINE GLOBAL ‘PRINC (MAKE-PRIMITIVE-PRINC-CLOSURE))
(DEFINE GLOBAL 'NIL ’NIL) _
(DEFINE GLOBAL ‘T 'T)))
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The definitions of PRIMITIVE-CAR-CLOSURE and PRIMITIVE-CDR-CLOSURE illustratc two different
ways of writing unary primitives. Each is defined using DEFOBJECT and uscs an ordinary command loop,
and cach forks off a temporary cell to wait on operand cvaluation. The difference is that while the fork
created by PRIMITIVE-CAR-CLOSURE waits for the result of an EVALUATE-FIRST request sent to the
operand list by the closure, the fork created by PRIMITIVE-CDR-CLOSURE does all of the work itself:

(DEFOBJECT PRIMITIVE-CAR-CLOSURE () (COMMAND)

(DISPATCH COMMAND
((EVLIS CONTINUATION OPERAND-LIST OLD-ENVIRONMENT)
(TRANSMIT-WAIT OPERAND-LIST '
(MAKE -COMMAND *EVALUATE-FIRST
(FORK (RESULT-CHANNEL)
(TRANSMIT-WAIT (INPUT RESULT-CHANNEL)
(MAKE-COMMAND *GET-CAR CONTINUATION)))
OLD-ENVIRONMENT)))

))

(DEFOBJECT PRIMITIVE-CDR-CLOSURE () (COMMAND)

(DISPATCH COMMAND »
((EVLIS CONTINUATION OPERAND-LIST OLD-ENVIRONMENT)

(MAKE-CELL (KAPPA ()
(TRANSMIT-WAIT (EVALUATE-FIRST OPERAND-LIST
OLD-ENVIRONMENT)

(MAKE-COMMAND 'GET-CDR CONTINUATION)))))
)) ’ :

The asymmetry is for only expository purposes; cach definition could be written cither way. The other
primitive closures are turned out by macros operating on these models.

Primitive procedures do not construct alists, but rather send EVALUATE-FIRST and EVALUATE-SECOND
commands to the opcrand lists they are given. The DISPATCH clauses for these commands were omitted in

the definition of OPERAND-CONS given above.

(DEFOBJECT OPERAND-CONS (EXPRESSION NEXT) (COMMAND)

(DISPATCH COMMAND
((BIND CONTINUATION PARAMETERS ENVIRONMENT NEXT-FRAME)

)
((EVALUATE-FIRST CONTINUATION ENVIRONMENT)

(TRANSMIT-WAIT EXPRESSION ’
(MAKE-COMMAND *EVALUATE CONTINUATION ENVIRONMENT)))

( (EVALUATE-SECOND CONTINUATION ENVIRONMENT)

(TRANSMIT-WAIT NEXT
(MAKE-COMMAND 'EVALUATE-FIRST CONTINUATION ENVIRONMENT)))

))

There are some piceces missing from the present implementation. Were we to develop Scheme into a
parallel programming language, we would have to provide facilitics for communication between programs.
At present, ditferent Scheme programs that are running in paratlel can communicate only through a shared
global environment. and there are no facilities for reducing the contention that results when programs share
environments. ‘The syntaxer is an artifact of the CL1 simulator’s Maclisp implementation and does not
address the issues involved in building real CM linkers and loaders. We have not thought about garbage
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™ collection.

Almost everything we learned in the course of writing the interpreter is so obvious in retrospect as to be
nearly invisible. (The most confusing aspect of the interpreter, the BIND protocol, arosc naturally and was
confusing only in retrospect.) There were three main stages in the program’s development:

® 'The first version was written almost entircly in terms of the coding cliches described in the
previous section.

® The sccond version introduced the FORKing trick described in the context of CONDITIONAL and
so implemented the tail-recursion of the Scheme interpreter properly. Various optimizations to avoid
unnccessary waiting by cells made most uscs of the DEFCOMMAND and DE FMAKER cliches disappear.

@® The third version made DEFINE expressions work properly and considerably cleaned up the
interpreter’'s modularity by changing the implementation of environments from a simple list of binding
pairs to the two-level frame-and-alist structure.

We have used the CL1 Scheme interpreter, in simulation, to run some substantial Scheme programs,
including a simple relational database system (about 100 lines of code). The main thing we learned from
these cxercises is how much of our usual programming practice assumes a serial virtual machine.
Programming in Scheme for a highly parallel virtual machine, we found that efficiency considerations often
differentiated between ways of writing our programs that were cqually efficient on serial machines. Although
our programs ran correctly, we have little absolute idea how quickly they would be executed on a real CM.
On the basis of the few rough calculations we can perform, we guess that the cross-over point between

V) running N Scheme programs in parallel on the CM and in serial on a serial mainframe is reached with N in
the thousands.

Some Connection Machine efficiency considerations

A working programmer constantly makes design decisions according to some model of what kinds of
processes are cfficient or incfficient on her machine. Our ideas about how to design CM languages and write
logically correct programs in them are derived from bits and pieces of ideas about the corresponding
problems on serial machines. Nothing, however, has prepared us to reason about the relative efficiencies of
different logically correct CM programming methods. It's very hard. And lacking an actual CM, we hdave
little empirical evidence on which to formulate ideas about efficiency considerations.

On onc analysis, the central consideration is that the whole machine has only one instruction stream and so
only onc type of cell can be running during any given wall-clock tick. To a first approximation, then, in a
program with a hundred different states 99 of them will be dormant at a time. But because the CM’s
controller is free to run the states in any order it likes, this can be a poor approximation in real programs.
Compile-time and run-time analyses can deterntine what the most heavily populated states are likely to be at a
given time. Since semantics of CL1 dictate that the outcome of a program is independent of the order in
which the states are run, the CL1 programmer can’t help the controller out. ‘This is one less thing for the
programmer to have to worry about and onc less opportunity to use onc’s understanding of what happens
when in designing an cfficient program,

Such considerations might be entirely irrelevant if, as some of its designers expect, the CM turns out (0
spend almost all of its wall-clock time routing messages.  In that case, the subtle statistical issues of router
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congestion will predeminate in reasoning about cfficiency. If the programmer can’t derive or intuit any
modcls of these matters to guide her efficiency judgements, she’s going to be in trouble.

A CM programmer pays not for the total amount of computation done by her program (as on a serial
machine) but for the number of different things that must be done on cach step. Consider, for example, an
algorithm for locating the unique clement of a lincar list that satisfics some complicated predicate. On a scrial
machine it is best to test each clement of the list in turn, proceeding to the next element only if the test fails,
On the CM, one would be better off traversing the whole list putting cach clement into a state in which it is
about to apply the predicate. "Then all of the predicate tests can be run in parallel. Alternating predicate-test
and next-element operations would allow only one predicate-test to be executed at a time.

Another important consideration in CM programming is that one often pays not for the average case of an
algorithm, as on a serial machine, but for the worst case. Consider an algorithm in which every cell in the
machine goes through some loop until some calculation converges. Since only one sort of thing can happen at
a time, the code for the inside of the loop must be broadcast repeatedly until all one million cells’ loops have
converged. If acell converges it must sit idle until all its siblings have converged too.

We have deliberately avoided discussing the more traditional considerations of SIMI) machine
programming, many of which concentrate on formulating onc’s algorithms so that the computation is as
homogenous as possible. This is frequently possible in applications that are governed by differential
equations, as in low-level vision, or their symbolic analogs, as in constraint networks. The applications in
which we are interested, however, generally do not appear to enjoy this luxury.

What we learned

Because we had little a priori idca of what would make a good Connection Machine programming
language, CL.1 is incvitably little more than a minimal cxtrapolation from the archetypes of the culture of
serial machine programming. Expericnce using CIL.1 has led us to a number of conclusions as to what the next
language should look like.

CL1 has no mechanisms for explicitly assigning a type to a ccll. Instead, the CL1 programmer typically
uses the built-in state mechanism to give types to cells. A cell is considered to be of a certain type just in case
its state is in the sct of states that implement the type. A difficulty with this is that the CL1 language forces all
of the states associated with a certain type to be collected into one place. For example, consider the code for
the CONS-NODE cell type provided above. A cell placed in the statc CONS-NODE performs the usual
handshake with its owner and then goces into an infinite loop receiving commands and responding to them.
This command loop understands two types of commands, GET-CAR and GET-CDR. 'The cell responds by
transmitting the requested part back to the continuation provided in the command.

Suppose we were to use CONS-NODE cells to store a list of items in the conventional [isp manner, linking
through their CDR-PARTSs a scries of CONS-NODEs whose CAR-PARTs arce the clements of the list. Given the
definition above, it takes four messages to retrieve the second clement of a list; two commands and two
reSpoNses. ' ’

If we modify the definition of CONS-NODE by adding a new "method” (in the sense of current
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object-oriented programming languages [8, 16]) to its command-type dispatch:

(DISPATCH COMMAND

((GET-CADR CONTINUATION)
(TRANSMIT-WAIT CDR-PART (MAKE-COMMAND 'GET-CAR CONTINUATION)))

)
then we can obtain the second clement of a list in only three messages: a command of type GET-CADR from

the requesting cell to the first cons, a GET-CAR command from the first cons to the sccond, and a third
message from the second cons back to the requester.

Having to modify the code that implements the CONS-NODE type whenever a new operation such as
GET-CADR is nceded is a severe modularity violation. We would prefer to be able to write our methods
wherever convenient, potentially in lexically distant locations. The CL1 compiler could achieve this by
looking through the program and collecting together each set of related methods before beginning
compilation of the lexical context in which they all must appear. But this is only a shallow solution to a deep
problem.

To sec why, supposc we additionally required that the CL1 compiler automatically generate additional
methods whenever they can be usceful. For example, the GET-CADR method we demonstrated above should
ideally be generated whenever the programmer writes something like (GET-CAR (GET-CDR ...)) in her
code; an analysis of the message passing should reveal to the compiler that two of the four messages involved
can be compressed into a single message dircctly from the first cons to the second. Such optimizations as this
require the compiler to consider all relevant entitics simultancously, but the CI.1 compiler’s view
encompasses only onc cell at a time. We would like the compiler to maintain a compile-time model of the
joint behavior of several cells. '

This requires the compiler to identify situations in which cach of a group of cells is in a known state. Itcan
do so when, for example, a command has been received by a CONS-NODE cell from a particular type of
cdr-requesting cell. When this happens, the state of both cells is completely determined: the requesting cell
must be waiting for a reply to its request, and the cons is starting to reply. The compiler would now be free to
expand its viewpoint to include both cells, if only the language allowed the user to tell the compiler which
states can send GET-CDR commands to CONS-NODEs.

A related shortcoming that can be traced to CLY’s cellular view of the machine is the excessive amount of
code devoted to message handling in most CL1 programs. C1.1's support for message transmission cannot be
made significantly more powerful because message transmission is a non-local phenomenon and CL1
maintains only a local model of the machine’s behavior. Because the code implementing our communications
protocols was often spread over several lexically distant locations, we found it difficult to define abstractions
for them. The macros we did write came in cooperating sets: DEFMAKER, DEFOBJECT, and FORK all usc the
OWNER convention, and DEFCOMMAND and DEFOBJECT both use the command channel convention, These
macros do not precisely abstract the conventions they use but rather particular, tocal. ways of using them.
When we revised the code to increase parallelism and reduce message transmission, the macros usually failed
to capture the resulting patterns,

b ks
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For cxample, when the initialization of a cell involved more than the OWNER protocol, DEFOBJECT was no

“longer uscful (and could not be extended to be useful). I.ikewisce, macros defined with DEFCOMMAND failed

in the presence of tail-recursion. Each of these macros expands into a form that waits on a result and returns
it. When, as in the evaluation of the THEN or ELSE expressions of a CONDITIONAL, we intended the result
from a command to be sent not to the originator of the command but to some other continuation, we had to

revert to constructing the command explicitly.

It was exactly CL.T’s relative inability to allow users to define abstractions of message-passing cliches that
defeated an attempt to implement the rule-based language Amord [7] in CL1.

Yet, the clearest indication of the underlying problem is how difficult CL1 code can be to read. When
hand-simulating the cxecution of a C1.1 program, onc’s finger must jump from page to page, following chains
of causality that were rcal enough to the programmer but are only implicit in the code. This is graphically
demonstrated by the code for the interface between OPERAND-CONSes and ALISTs, in which no indication is
given as to which TRANSMIT corresponds to which INPUT.

These symptoms all reflect a single disorder. There are two kinds of causality vectors in CI.1,
state-transition and message-transmission, but CL1 explicitly represents only the first. Because of this, code
must be grouped inconveniently, common patterns of causality are difficult to abstract, the behavior of the
code is hard to rcason about, and the compiler can have only a weak modecl of the computation. For the sake
of both the user and the compiler, then, a programming language must make all causality explicit.

We are implementing a successor to CL1 that does not distinguish betwcen state-transition and
message-transmission, or cquivalently, between objects and messages. By unifying these two kinds of
causality into a single construct, the new language, called CGL. (for Connection Graph Language) allows all
causality to be made explicit. This proposal realizes the duality between message and recipient that can be
seen in the protocol for creating and chaining together new ALIST cells. That protocol can be described
either as a collection of processes passing an object around, or as a single process moving from object to
object. We will report on CGL. in [5].

To demonstrate how this unification can relicve some of the problems we experienced, consider the
breakdown of our simple macros when we optimized our code. The way in which our proposal addresscs this
issuc can best be understood by considering an analogy between a CM compiler and a Scheme compiler. In
[12]. Steele demonstrates how a compiler with a strong understanding of the simple semantics of Scheme can
case the macro writer’s task by reliably optimizing the results of macroexpansion. The macro writer is freed to
concentrate on the semantics of the macro. We want macros as simple as those defined by DEFMESSAGE and
DEFOBJECT to cxpress communications protocols without paying a runtime penalty. Thus we want a CM
compiler to perform the kinds of optimizations we performed by hand on the results of expanding our simple
macros. For this even to be theoretically possible requires that the compiler have a non-local model of the
computation; for it to be reliable and cfficient requires that that model be simple.  We hope that our
unification of state-transition and message-transmission will play the role that the lambda construct plays in
Scheme.

The CL1 distinction between state-transition and message-transmission was derived from the CM
architecture, which makes exactly that distinction. This correspondence determines an obvious assignment of
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events in the virtual machine to events in the physical machine. Once we unify our two forms of causality, the
compiler acquires considerably more freedom in deciding what quantities move about in the hardware and
which stay fixed in processor cells. The BIND command, for example, moved four quantitics in its ficlds
down a chain of OPERAND-CONS cells, cach of which has only two state variables. The compiler ought to
have the option of keeping the processes embodicd by propagation of BIND commands fixed and streaming
chains of OPERAND-CONScs over them,
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