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The low-level interpretation of images provides constraints on 3D surface shape at multiple reso-
lutions, but typically orly at scattered !ocatmns over the visual ficld. Subsequent visual processing
can be facilitated substantially if the scattered shape constraints are immediately transformed intwo

- visible-surface representations that unamhlguously specify surface shape at every image point. The

requircd transformation is shown to Icad to an ill-posed surface reconstruction problem. A well-
goacd variational principle formulation is obtained by invoking “controlied continuity,” a physically
nonrestrictive (generic) assumption about f»umccs which is nonetheless strong enough to guarantee
unique solutions. The variational principle, which admits an appealing physical interpretation, is
ld)cally discrelized by applying the finite elémcnt method to a piecewise, finite clement represen-
tation of surfaces. This forms the mathcmatlcal basis of a unified and general framework for
computing visible-surface representations. The computational framework unifics formal solutions
to the key problems of (i) integrating muluScale constraints on surface depth and orientation from
multiple visual sources, (ii) interpolating thbsc scattered constraints into dense, piecewise smooth
surfaces, (iii) discovering surface depth and orientation discontinuitics and allowing them to restrict
interpolation appropriately, and (iv) ovcrc.ommg the immense computational burden of fine resolu-
tion surface reconstruction. An cfficient surface reconstruction algorithm is developed. Tt exploits
multiresolution hicrarchics of cooperative relaxation processes and is suitable for implementation on
massively parallel networks of simple, lucally interconnected processors. The algorithm is evaluated
empirically in a diversity of applications.
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1. Introduction

Over thirty years ago, J.J. Gibson [1950] made the seminal conjecture that natural human perception
amounts to the perception of visible surfaces. 'The explicit representation of visible surfaces, an
intermediate goal of computational vision, has since attracted considerable interest.

The computational framework offered in this paper addresses, in a unified way, certain visual

information processing tasks involved in thc representation of visible surfaces. Particular emphasis

is placed on utilizing highly parallel, coopjemtivc processing to integrate surface shape information
over multiple visual sources, to fuse it across a multiplicity of spatial resolutions, and to maintain the

global consistency of the resulting distributed shape representations. The issues are first investigated

in terms of a surface reconstruction model rooted in mathematical physics. This. formal analysis is
augmented by an empirical study of the 1'e$ulting algorithms, which feature multiresolution iterative
processing within hicrarchical surface shape representations. The approach is guided by current
knowledge of how humans perceive visiblﬁ surfaces, while applications in machine vision provide
a testbed for the algorithms.

The remainder of this introductory section examines the role of surface representations in early
visual processing, outlines the key compwmtlonal problems that will be of primary concern, and
reviews some relevant prior work.

1.1. Early Visual Processing and Visihle-Surfacc Representations

Early vision comprises a sct of processes Which specialize in recovering the physical properties of
visible surfaces in a 3D scene from 2D images of the scene. They apply generic assumptions about
the physical world and the imaging process to infer 3D surface shape constraints by interpreting
specific image cues, such as stercoscopic disparity, motion, texture, contours, and shading. These
conceptually independent shape estimation processes fall into two broad categories.

The first category comprises what are commonly referred to as correspondence processes. They
operate over multiple image frames of a sdpne taken across space or over time. Paradigm cxamples
are stereopsis and structure from motion (see, e.g., the review articles [Poggio and Poggio, 1984]
and [Ullman, 1983]). Stereopsis is driven by computations on typically two image frames taken
simultancously, but from different spatial positions. The basic structure from motion computation
involves frames taken from the same position, but at different times. If correspondences can be
cstablished across the frames, between image features which originate from the same point on
a visible surface (not a trivial problem), then the depth (i.e., 3D distance) to such points can
be estimated by triangulation, given the dlisparity (ie, 2D displacement) between corresponding
features as well as some knowledge of the imaging geometry.

The sccond category of shape estimation processes involve computations on a single static
frame. Perspective projection of 3D scenes onto images imparts a systematic distortion to imaged
surface properties such as shading, texture, and contours. A major part of this distortion can be
attributed to the relative oricntations of \ﬁsible surfaces with respect to the viewer. In principle,
it is possible to estimate surface orientation by measuring and interpreting such distortions in the
image. This is the basis of practical approaches to recovering surface shape from shading; texture,
and contours {Ikeuchi and Horn, 1981; Ho and Brooks, 1985; Kender, 1980; Witkin, 1981; Brady
and Yuille, 1984]. !

The combined output of the shape estimation processes is best collected into intermediate
representations of the 3D shapes and configurations of visible surfaces, which we will refer to
as visible-surface representations. Notable among proposed visible-surface representations are the
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depth and ncedle maps of Horn [1982], the intrinsic images of Barrow and Tenenbaum [1978), and
the 2%-1) sketch of Marr and Nishihara [1978]. For humans, the perception of visible surfaces is
gencrally immediate, involuntary, and scems to precede (object) recognition. This strongly suggests
the existence of a visual process that autonomously computes visible-surface representations. Aside
from the perceptual cvidence, the availability of explicit visible-surface representations can also
substantially facilitate subscquent surface analysis tasks in machine vision.

Since carly visual processing provides relative surface shape estimates with respect to the
viewer, it is most natural to define the basic shape primitives of visible-surface representations in a
viewer-centered coordinate system. Morcover, the primitives should be computationally compatible
with the local depth and orientation measurements (as well as discontinuities) that are provided by
the various shape estimation processes. These criteria are satisfied by a particularly appealing class
of local, piecewise shape primitives known as finite clements,

A crucial realization is that shape estimates can be provided at multiple resolutions. Indeed,
multiresolution spatial frequency channels have been identified psychophysically in the human
visual system (c.g., [Braddick er al, 1978]). Their existence has influenced the design of early
visual algorithms (e.g., [Marr, 1982]). In addition, machine vision research has demonstrated that
multiresolution processing cffectively bridges fine and coarse image structure, while it simultaneously
increases computational ecfficiency (e.g., [Rosenfeld, 1984]). Hence, a multiresolution organization
of visible-surface representations is most desirable [Terzopoulos, 1982, 1983a].

1.2. Key Problems of Visible-Surface Reconstruction

The main topic of concern in this paper is the development of a visible-surface reconstruction process
responsible for generating and dynamically maintaining visible surface representations. Whether
the intention is to model human vision or to design competent artificial vision systems, this process
must solve four key problems [Terzopoulos, 1983b, 1984]: (i) the constraint integration problem,
(i) the interpolation problem, (iii) the discontinuity problem, and (iv) the computational efficiency
problem. We elaborate on each of these problems next.

(i) The Constraint Integration Problem: Each specialized visual process may be thought of as a
quasi-independent source of information partially constraining the shapes of visible surfaces.
The human visual system is reliable and robust because it integrates the various processes,
cnabling them to complement one another. The integration of multiple sources of information
introduces redundancy, which is nccessary not only to resolve potential ambiguities, but also
to overcome the detrimental effects of noise and inaccuracies in the initial shape estimates.
The constraint integration problem is fundamentally one of devising an effective means of
integrating all available surface depth and orientation constraints (and discontinuities) within a
cooperative visible-surface reconstruction process.

(i) The Interpolation Problem: 1t is widely accepted that initial descriptions of images ought to
make explicit the occurrence and local 2D structure of image featurcs that are correlated to
salient events on physical surfaces (markings, boundaries, etc.). This is the essence, for instance,
of Marr’s “primal sketch™ representation of significant image irradiance changes (edges) [Marr,
1982]. Generally, such salient features do not occur everywhere over the visual ficld. The
initial representation of images as a sparse set of features implies that surface shape constraints
generated by the specialized processes will also be scattered over a subset of image points. It
is fascinating, however, that the human visual system systematically interprets visual stimuli
such as sparsc random dot stercograms as coherent 3D surfaces [Julesz, 1971]. Indeed, these
stercograms continue to clicit perceptions of dense surfaces, cven when the density of dots
carrying disparity information has been reduced until depth is unspecified over 98 percent of
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the visible surface arca (sec Fig. 1). It therefore appears that the surface reconstruction process
is smoothly “filling in the gaps.” This phenomenon has been the subject of some psychophysical
investigation (c.g., [Collett, 1984]). The interpolation problem of visible-surface reconstruction
challenges us to devise a scheme, consistent with human perception, for propagating shape
information into indcterminate regions (devoid of shape estimates) from places where it is
available.

Figure 1. A sparse random dot stereogram. Binocular fusion of this sterecogram reveals a planar surface as a
central, opaque, textured square suspended nearer in depth over a similarly textured background. Vivid depth
discontinuities scparate the dense surfaces.

(iv)

i (iii) The Discontinuity Problem: Visual discontinuities result from significant, spatially-localized

changes in the physical world, particularly abrupt changes in surface structure. Both depth
and orientation discontinuitics are perceptually relevant and provide vital boundary conditions
for surface reconstruction. Discontinuitics in depth occur at occluding coutours, along which
a surface in the scene occludes itsclf or another surface. Oricentation discontinuities occur at
creases or cusps of an otherwise continuous surface. In addition to the perception of coherent
surfaces, random dot stercograms elicit vivid perceptions of surface discontinuitics at abrupt
disparity changes (sce Fig. 1). The discontinuity problem amounts to (1) finding both dcpth
and orientation discontinuitics in surfaces, and (2) decaling with their presence during visible-
surface reconstruction; i.c., allowing discontinuitics to limit the otherwise smooth interpolation
of shape constraints.

The Computational Efficiency Problem: Visible-surface reconstruction at the resolution of the
image imposcs an immense computational burden on both biological and artificial vision sys-
tems. Nevertheless, visible-surface representations must be computed quickly if they are to
be of any practical value. It is generally accepted that to achieve the necessary performance,
visual algorithms and mechanisms must emphasize paraliclism [Ballard et al., 1983]; however,
visible-surface reconstruction is compute bound to the point where the fundamental limitations
of massivcly parallel mechanisms, particularly with respect to global interprocessor commu-
nications, Icad to severe inclficiencies. 'The computational cfficicncy problem is to develop a
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visible-surface reconstruction process that not only exploits parallelism, but also overcomes co-
opcrative communication bottlenecks to compute visible-surface representations quickly, given
suitable architectures. For the reasons outlined in the foregoing scction and following our
previous work [Terzopoulos, 1982, 1983a], our solution to this problem hinges on the idea of
multiresolution structuring of visual representations and associated cooperative processcs.

1.3.  Prior Work

There has been some prior work relating to the computation of visible-surface representations.
Barrow and Tenenbaum [1979] describe an approach to reconstructing smooth surfaces from noisy
visual data. "This approach did not apply to general classes of surfaces, however, and the proposed
relaxation algorithms were not supported by a firm mathematical analysis. Nevertheless, Barrow
and Tenenbaum’s [1978] basic model of intrinsic images and much of the philosophy underlying
their computation seems appropriate, and it has influenced our approach.

The interpolation problem is related to classical spline approximation. A number of well-known
surface approximation methods for scattered data are reviewed by Schumaker [1976). Grimson
[1983] employed one of these methods for the continuous interpolation of visual surfaces from depth
constraints; a minimization scheme involving a particular functional containing sccond derivatives
(he referred to it as the “quadratic variation™). Brady and Horn [1983] observe that this functional
is related to the bending energy of a thin plate (a connection noted by Duchon [1977]), and the
thin platc model was developed further by Terzopoulos [1983a] (see also [Blake, 1984]).

Interestingly, thin plate interpolants have appeared in other areas, including the interpolation
of aircraft wing deflections [Harder and Desmarais, 1972], interpolation of meteorological ficlds
[Wahba and Wendclberger, 1980], and the interpolation of digital terrain maps [Briggs, 1974:
Bolondi et al., 1976]. In this latter paper there is some concern for the presence of discontinuities
(faults).

Following Ullinan [1979] and others, Grimson [1983] pursued “biologically feasible,” parallel
and iterative algorithms for surface interpolation. A serious drawback of algorithms which satisfy
these criteria is that they often converge excruciatingly slowly for problems of reasonable size.
The idea of multiresolution surface reconstruction exploiting multigrid relaxation methods was
shown to overcome this problem while adhering to biological feasibility [Terzopoulos, 1982, 1983a].
‘The multiresolution methodology yields cfficient algorithms not only for the surface reconstruction
problem but for other visual problems as well [Terzopoulos, 1984].

In retrospect, although progress has been made, a satisfactory computational theory of visible-
surface representations has been clusive. This is largely a consequence of the significant technical
obstacles encountered in devising formal solutions to all four key problems of visible-surface
reconstruction within a unified computational framework. The difficulty of the task appears to have
cvoked some skepticism as to the actual computability (hence, even the uscfulness) of intrinsic
surface representations [Witkin and” Tenenbaum, 1983]. Based on the theoretical generality of
our approach and the accompanying empirical results, however, we believe such skepticism to be
premature., “

2. Mathematical Analysis of Visible-Surface Reconstruction

Let the true distance from the viewer to visible surfaces be given by the function Z(z,y). where
@ and y are the image coordinates. Low-level visual processes generate a sct of noisc corrupted
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surface shape estimates (i.c., constraints) {¢;} which can be expressed in the abstract notation

C; = ﬁ,[Z(fI?,y)] + €4, (1)
where £; denote measurement functionals of Z(z,y) and ¢; denote associated measurement errors.
Stated simply, the visible-surface reconstruction problem is to reconstruct, as faithfully as possible,
the depth function Z(z,y) from the available constraints {c; }.

2.1. The 1lI-Posed Nature of the Problem and Regularization

The problem is made nontrivial by the nature of the constraints. First, constraints are contributed not
by onc, but by multiple specialized carly visual processes. Hence, slightly inconsistent measurements
provided by different processes that happen to coincide will locally overdetermine surface shape.
Sccond. constraints arc not dense, but scattered sparsely over the visual ficld. Therefore, while
they may restrict surface shape locally, they do not determine it uniquely everywhere; there remain
very many feasible surfaces that are consistent with the constraints. Third, the measurements are
subject to crrors and noisc. High spatial frequency additive noise, regardless how small its (RMS)
amplitude, can locally perturb the surface (orientation) radically.

In view of the above three considerations, we cannot conclude in general that the solution
will exist, nor that it will be unique, nor that it will be stable with respect to measurement
errors. Mathematical problems for which the existence, uniqueness, or stability of solutions cannot
be guaranteed a priori are said to be ill-posed [Tikhonov and Arscnin, 1977). Visible-surface
reconstruction can thus be characterized as a fundamentally ill-posed problem.

llI-posed reconstruction (or inverse) problems are the rule rather than the exception in early
vision [Poggio and Torre, 1984]. Ill-posed problems cannot be solved in general, without imposing
some additional restrictions on possible sotutions. This is the basis of a number of systematic
appreaches, notably the regularization methods introduced by Tikhonov and others (sce [Tikhonov
and Arscnin, 1977] aud references therein). Duda and Hart [1973, Scc. 7.4] mention a basic form
of regularization (essentially spatial smoothing) for combating the effects of noise in images. A
more sophisticated class of regularization methods is discussed in the context of low-level vision by
Poggio and Torre [1984].

Through regularization, ill-posed problems can be solved by reformulating them as variational
principles that are cffectively computable. Unlike the original problems, the variational principle
formulations are well-posed. i.c., it is possible to guarantee the existence, uniqueness, and stability
of their solutions under nonrestrictive conditions. Reformulation proceeds with the introduction of
suitable stabilizing functionals, notably the class of stabilizers proposed by Tikhonov and Arsenin
[1977, pp. 69-70]. These stabilizers can be interpreted as spline functionals that impose smoothness
assumptions on the admissible solutions (by restricting them to Sobolev spaces of smooth functions).t
Pragmatically then, this type of regularization is essentially equivalent to optimal approximation by
generalized splines ['erzopoulos, 1985a]. We pursue the generalized spline approximation point of
view, since splines are familiar and since they suggest helpful physical interpretatiors.

2.2. A Variational Principle

The abstract theory of optimal spline approximation is well-developed and a close connection has
been established with variational principles involving the constrained minimization of (semi-) norms
in (semi-) Hitbert function spaces [Laurent, 1972]. Let ¥ be a lnear space of smooth functions and
let S(») be a functional defined on ¥ which measures the (lack of) smoothness of a function in

! Generic smoothness assumptions are generally the weakest (least committal) assumptions that one can make
about feasible solutions and still obtain well-posed formulations.
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X. Furthermore, let P be a functional on ¥ which provides a measurc of the discrepancy between
the function and the given constraints. Consider the following variational principle:

VP: Find uw € X such that

£ (u) = inf £(v), @)
where the energy functional
€(v) = S(v) + P(v). (3)

This variational principle will serve as a formal statement of the visible-surface reconstruction
problem: The best reconstruction of the depth function Z(z,y) from the available constraints will
be given by the solution u(z,y), the smoothest function in the admissible space ¥ which is most
compatible with the constraints,

Before proceeding to specify the smoothness functional $(v) and the penalty functional P (v),
it should be noted that, if the solution exists, it satisfies the nccessary condition for the minimum
given by the vanishing of the first variation 6,

0&(u) =68 (u) +6P(u) =0, (4),

which expresses the so called Euler-Lagrange equations.

2.3. Generalized Spline Functionals

For an appropriate smoothness functional §(v), we turn to the multidimensional splines studied
by Duchon [1977] and Meinguet [1979], generalizations of the classical univariate splines [Ahlberg,
et al., 1967). The subclass of (2D) surface splines relevant to our problem can be characterized as
members of a suitable space of admissible functions v(z,y) which minimize the functional

//,Z( ) ((’)xﬂay:)" J)z dz dy. (5)

The positive integer m dictates the order of the partial derivatives that occur in the functional,
which in turn determines the order of continuity posscessed by the admissible functions. The Euler-
Lagrange equation satisfied by the minimizing function u(z,y) is an iterated version of Laplace’s
equation: (—1)"A™u = 0, where Au = ugy + Uy, is the Laplacian of u.

Low order surface splines have interesting physical interpretations involving equilibria of elastic
bodies. Two special cases are of interest. For m = 1 the functional reduces to

o]} = // (v +v?) dzdy, (6)

which is proportional to the small deflection energy of a membrane (c.g., rubber shect), while for

m=2,
|v|2 :1./ f (v, + 202, + v2,)) dedy, (7)

is proportional to the small deflection bending encrgy of a thin plate (with zero Poisson ratio)
[Courant and Hiibert, 1953]. Duchon [1977] refers to the minimizers of |v|§ as thin plate splines.

Since thin plate splines are the natural 2D analogs of cubic splincs, |v|§ finds fi‘cqucnt usage in
surface interpolation problems [Schumaker, 1976]. In particular, it has been employed for visual
surface interpolation [Grimson, 1983; Terzopoulos, 1983a].

The physical interpretations make it clear that membrane splines offer a lower order of
continuity than thin plate splincs. Since the physical forces in the membrane are due primarily
to its surface tension, it generates minimal arca surfaces. Although minimal arca surfaces are
continuous, they need not have continuous first partial derivatives; i.c., they are C° surfaces. For
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instance, a sharp corner would result readily if an idealized physical membrane were subjected to
the deflecting force of a knife edge. In contrast, the restoring forces in a physical thin plate are
duc primarily to its flexural rigidity. A thin plate would not crease when deflected by a knife cdge.
Thin plate splines therefore maintain continuity as well as continuous first partial derivatives; i.e.,
they generate C! surfaces.

24. Controlled Continuity and the Thin Plate Surface Under Tension

Generic smoothness assumptions are justified in pursuing a regularization approach to the visible-
surface reconstruction problem, inasmuch as the coherence of matter tends to give rise to smoothly
varying surfaces relative to the viewing distance, over some range of scales; however, smoothness
assumptions clearly do not hold arbitrarily across surface discontinuitics, some of which persist
across all scales. This introduces significant complications for classical spline approximation or
regularization methods; the continuity of spline functionals (or stabilizers) must be controlled at
discontinuities in order to preserve them.

A stabilizer providing the necessary local continuity control can be realized as a weighted
combination of gencralized spline functionals of more than one order m [Ierzopoulos, 1985a). We
propose the following smoothness functional:

r0) = 5 [ [ e {renod + 202y od) + (L= 1l (62 +42)} dody, (9

where ) denotes the image domain, and p(z,y) and 7(z,y) are real-valued weighting functions
whose range is [0, 1]. This controlled-continuity stabilizer is a weighted convex combination of the
thin plate spline functional |v|3 and membrane spline functional |v|f integrands. The associated
Euler-Lagrange ¢quation is
ad d J a 2

922 (puge) + B2y (2puzy) + 2y° (huyy) — 92 (nue) - 3y (nuy) =0, (9)
where p(z,y) = p(z,y)7r(z,y) and (=, y) = p(z,y)[1—7(z,y)], with natural (i.c., free) boundary
conditions. The functional §,-(v) can be thought of as a thin plate surface under tension, where
p(z,y) is a spatially varying “rigidity” and [1 — 7(=z,y)] is the spatially varying “surface tension.”
It generalizes the unidimensional splines under tension of Schweikert (see [Ahlberg, ef al., 1967])).

The local continuity properties of the thin plate surface under tension functional can be
controlled at any point (z,y) € Q by specifying the valucs of the continuity control functions
p(z,y) and 7(z,y) at that point. As 7 approaches 1 the functional tends to a thin plate spline (a
C! surface) whereas towards the other extreme, 0, the functional tends to a membrane spline (a
C? surface) with intermediate values characterizing a hybrid C! surface that blends the properties
of both constituent splines. p determines the overall potency of the smoothness functional.

Reconstructed surfaces must be able to faithfully preserve known depth and orientation
discontinuities, while not introducing spurious discontinuitics at other locations. This can be
accomplished if (i) away from known depth and oricntation discontinuities, the reconstructed
surface possesses (at least) the C! smoothness of a thin plate, maintaining both continuity and
continuous derivatives, (i) at known oricntation discontinuitics, it exhibits just the C” smoothness of
a membrane, maintaining continuity only, and (iii) at known depth discontinuitics, the smoothness
functional is deactivated so that the reconstructed surface is free to “fracture™ locally. Hence,
Spr(v) will be manipulated as follows: At all non-discontinuity points (z,y), p(z,y) and 7(z,y)
should be nonzero. At orientation discontinuity points, 7{z, y) is sct to zcro. At depth discontinuity
points, p(z,y) is set to zero. Mechanisms for automatically detecting discontinuitics by computing
continuity control functions optimally according to local criteria are considered in a subsequent
section.
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2.5. Penalty Functionals

Assuming independently distributed measurement errors ¢; with zero mcans and variances of‘ the
optimal measure of incompatibility is a weighted Euclidean norm of the discrepancy between the
admissible function and the data c;:

Plo)=3 S eilLib] - i), (10

where the «; are nonncgative real-valued weights (ideally oy is inversely proportional to o?:
i.e, a; = 1/Xo?) [Kimeldorf and Wahba, 1970]. This penalty functional can also be employed
(suboptimally) when the above assumptions do not hold strictly.

Appropriate measurement functionals £; for surface reconstruction may be synthesized from
generalized kM-order derivatives:
v
£t ['U] - ij‘ayk“j (zo9:) ’
k = 0 yiclds simple cvaluation functionals £;[v(z,y)] = v(z:,y;), which will be employed to
model the local depth constraints
e =v(zi, ) + € = d(x;,y.-)~ (12)
The components of the local surface normal n(z;,y:) = [vz (i, ¥:), vy (zi, v:), —1], which deter-
mine local surface orientation, can be handled by the first order (kK = 1) derivative functionals
Lilv(z,y)] = vz(zi, i) and L;[v(z,y)] = vy(zi, v:) and yield analogous expressions for the local
orientation constraints:

i=0,1,... k. (11)

i =ve(5i,93) + & = Do)

¢i =vy(Tiy Yi) + € = Qg y,)-
Other potentially relevant functionals such as directional derivatives can be accommodated straight-
forwardly with the above notation.

It is convenient to scparate the various constraints into threc scts; the set 7 € D of image
points at which depth constraints dz, ,,.) occur, and the sets ¢ € P and ¢ € @ at which orientation
CONStraints p(g, 4,) and q(z, 4,) occur respectively. The penalty functional can then be expressed as
a sum of three components

(13)

1 1 1
P(v) = 2 Z O‘di[”(i”ia ?/a‘)—d(:c.-,y.«)]2+§ Z api["’w(xi, ?/i)"P(z.v,yi)]z‘*’E Z aq,‘[”y(xia yi)'"q(zs,ys)]z’

i€D i€P ic€Q
(14)
where the a; parameters are now distinguished as ag;, @yp;, and ay,.

2.6. A Physical Model for Visible-Surface Reconstruction

The variational principle formulation of the surface reconstruction problem has an appealing
physical interpretation which is illustrated in Fig. 2. The thin plate surface under tension may
be visualized as an clastic surface, planar in its natural state, whose clastic bending energy S, (v)
stabilizes surface shape so that it varies smoothly in between constraints (but not at discontinuities).
Constraints deflect the surface according the penalty functional P (v), which can be interpreted as
the total stretching energy of a sct of ideal springs attached to the constraints, The left part of
the figure shows the clastic surface whose deflection u(z,y) at equilibrium is determined by an
infrastructure of scattered depth constraints. The local depth estimate is encoded as the vertical
height of the constraint and the tightness of cach constraint is' controlled by associated spring
stiffness «eg;. The right part of the figure illustrates an orientation constraint cocrcing the local
surface normal. The spring stiffness is determined by the constraint parameters a,,, and «y;.
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orientation constraint

surface normal

Figure 2. The physical model. Thin plate surface under tension and depth constraints (left). Local influence
of an orientation constraint (right).

2.7. Existence, Uniqueness, and Stability of the Solution

Existence, uniqueness, and stability of the solution u(z,y) to the variational principle VP are
guarantced when €y (v) = Spr(v) + P(v) is a norm in the admissible space ¥. Unfortunatcly,
gencralized spline functionals ]vlfn are a priori only semi-norms (of a particular class of Sobolev
spaces). The null spaces N of functions that map to zero under the scmi-norms are simply the
(M = ("31) dimensional) spaccs of all polynomials over R2 of degree less than or cqual to m - 1
[Meinguet, 1979]. The penalty functional P(v) can force &), (v) to be a norm, however, if it at
least constrains N to a unique polynomial. A possible set of conditions for this to occur is that the
L; include cvaluation functionals at an N -unisolvent set of points (i.c., a set of M points which
define a unique polynomial in the null space of the smoothness functional). In particular, since the
maximum order of gencralized splines in the stabilizer Sy (v) is m = 2, its null space is the space
of lincar polynomials. Thus, the following proposition can be proven [Terzopoulos, 1984]:

Proposition. The solution u(z,y) will exist, be unique, and stable given any one of the following
minimal conditions

(i) three noncolinear depth constraints,

(i) two depth constraints as well as a single p or q constrain,

(iii) a single depth constraint as well as a single. p and a single q constraint,

(iv) a single p and a single q constraint with the “center of gravity” of the surface fixed.

These minimal conditions will hold in practice, due to the large number of constraints typically
available from carly shape estimation processes (the fixed center of gravity condition can be imposed
when necessary). Consequently, the visible-surface reconstruction problem may be considered well-
posed, hence cffectively computable in gencral.

Satisfying the conditions for a well-posed problem essentially guarantees that a unique state of
stable cquilibrium will exist for the plate/spring system (the minimal energy state pr(u)). In this
context, the controlled continuity assumption about surfaces, as embodiced by the thin plate surface
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under tension model, is physically nonrestrictive but nonctheless powerful enough to guarantee the
existence of unigue solutions to the variational principle.

3. Discretization

It is extremely difficult, if not impossible, to obtain an analytic solution to the variational principle
duc to the irregular occurrence and geometry of constraints and discontinuities. For our purposes,
the only viable approach is to convert the continuous surface reconstruction problem to an equivalent
discrete problem whose solution can be computed numerically. To this end, finite elements make
ideal local surface shape primitives for use in visible-surface representations [Terzopoulos, 1982,
1983a]. The finite element method [Strang and Fix, 1973] is a general, powerful, and mathematically
rigorous approximation technique which guides the selection of appropriate clements and governs
their interactions according to the nature of the variational principle.

The finite clement method offers substantial flexibility in discretizing domains with irregular
shaped boundarics. Although the use of irrcgularly shaped clements to discretize such domains
may not present a feasibility problem with regard to distributed biological mechanisms, it makes
nontrivial the mapping of elemental computations onto regularly interconnccted processing networks
typically provided by VLSI technology. In this paper we restrict ourselves to regular finite clements
in order to facilitate such mappings. Since the goal is to obtain a particularly fine discretization, at
the resolution of the image, the restriction to fine regular clements will not jeopardize our ability
to accommodate the irregular occurrence of constraints or discontinuities.

3.1. The Discrete Equations

The domain 1 is tessellated into square clement subdomains with sides of length k. Nodes are
located at clement corners and shared by adjacent clements. This results in a planar and uniform
square grid of nodes that is ideally suited to VLSI implementation. The nodes are naturally
indexed by (i,7) for ¢ = 1,...,N; and j = 1,..., N,, where N, and Ny are the number of
nodes along the « and y axis respectively of the (rectangular) domain §2. The total number of nodes
is N = Ny x Ny. The reconstructed surface is represented by an assembly of (nonconforming)
finitec elements, cach of which is a six-point (full) quadratic interpolant defined locally within its
particular subdomain. The unknown displacement (surface depth), at node (z, 7) is denoted by the
variable vf" ;= v(th, 7h). Taken together, the displacement variables are denoted by the vector

vh € RN, Once this vector is determined by solving a discrete version of the variational principle,
the local interpolants are known cxactly and, consequently, they explicitly represent depth and
orientation everywhere over the surface.

The proposed square, quadratic clement leads to the following O(h?) formulas for the required
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partial derivatives at an arbitrary node (¢, 7) [Ferzopoulos, 1983a:
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Note that the formulas are finite difference expressions. Their appearance is due to the uniformity
and low order of the element and their relative simplicity will facilitate the calculations substantially,

Subs[ituting the above expressions with the constant approximations p(z,y) = pf‘,j and

7(z,y) = 7} " into (8), and noting that the area of cach clement is h%, we obtain the discrete
functional
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Although by no means a nccessity, it is both natural (in view of common image discretization)
and convenient to assume that the constraints coincide with nodes (¢, ) of the grid. Hence, to
obtain a discrete expression for P(v), we collect the nodes at which the various constraints occur
into three sets; the set (z,7) € D at which depth constraints d" occur, and the scts (z,5) € P

and (7,75) € @ at which oricntation constraints p - and ql occur. Using symmetric difference
approximations for the partial derivatives in (13), thc discrete penalty functional may be written in
terms of the nodal variables as
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The energy-minimizing vector of nodal displacements u” satisfies the cquilibrium condition
Vé‘/f‘,(uh) = VS;’T(u") + VP"(uh) =0, (18)
whcrc V is the gradient operator. Since the discrete functional &7 (u") is a quadratic form in the

u; J, the above cquation defines a lincar system of simultancous cquatu)ns that are satisfied by u®
The discrete problem amounts to solving these nodal equations.
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3.2. Computational Molecules

To progress towards cxplicit cxprcssnons for the nodal equations, we first dctcrmmc the partial
derivatives of S * (u*) and P*(u®) with respect to an arbitrary nodal variable u ;- Letting
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we obtain - '
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the discrete version of (9). Next, for (7,7) e DN PNQ,
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The above expressions specify the nodal equations implicitly. Each constituent term in (round)
parcntheses can be represented graphically as a basic computational molecule. Computational
molecules will be interpreted both as spatial representations of the nonzero cocflicients in the nodal
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cquations, and as local computations involving multiplications and additions of specific proximal
nodal variables. The former interpretation will facilitate the construction of individual nodal
cquations given some local structure of constraints and discontinuitics, while the latter will lead
directly to local iterative algorithms for solving the resulting simultaneous linear system.

3.2.1. Basic Molecules

22 38 83 8
’
8
O O, Q)

0

SR

Figure 3. Plate molecules (a) and membrane molecules (b).
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Eg. (20) is a convex combination of two components; the first stemming from the thin plate
energy functional, the sccond, from the membrane energy functional. Each constituent term yiclds
a basic computational molecule (sce Fig. 3). a sct of linked aroms indicated by circles. The central
node (z,7) is indicated by a double circle in each molecule. Fig. 3(a) illustrates the ten plate
molecules obtained from the terms of the first component, while Fig. 3(b) shows the four membrane
molecules obtained from the terms of the second component. Each atom contains the coefficient of

the associated nodal variable (aside from the y ; and n factors).

A
h 4h
Bisdi;
B
W 00 W OOC
4h3 4h?
A
aP?— 1,5 _QPH- LJ p" ,
—or Pi-1j 2h TVt
O )
ac?,,'-x o . “4?,,‘-{-1 o
4h? 4h?
b
h ['s PR
¥gij—1 Tt b
— 2h ."._l 2h l,]+l

Figure 4. Depth constraint molecule (a) and orienlation constraint molecules (b).

Similarly, the depth constraint term in (21) can be represented by the depth constraint molecule

shown in Fig. 4(a). Associated with it is the factor (ld,'{ 1-dh

,]°

which is indicated underncath the

molecule. The remaining orientation constraint terms of (21) are represented by the orientation

constraint molecules and associated factors shown in Fig. 4(b).
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3.2.2. Molecular Summation within Smooth Regions

The formation of nodal cquations within continuous regions can be visualized as a process of
molecular summation. During molecular summation, the basic molecules combine at the central
node, coincident atoms summing together.

When (¢, 7) is an interior node, away from constraints and discontinuities, p, = Th] =1, and
only the plate component of (20) contributes to the cxpression for the partial denvauvc Hence,
the equilibrium condition (18) reduces to the nodal equation

20 h 8 h h h h
0=73%;~ 2 (“*’—1,1 tuyt ot “i,j+1)
2 h h h h
+ -’-7,_2 (ui—l,j—-l + Uitg,5-1 + Ui q,5+1 + Uitl,g 1) (22)
1 h h h h
TR (“i—z,z’ +Uig, it Ui+ u,-,,-+2) ‘

This equation can be represented by the composite nodal molecule illustrated in Fig. 5(a), which
results from the summation of the plate molecules in Fig. 3.

Figure 5. Interior node molecules. (a) Away from disconlinuities. (b) At interior orientation discontinuities.

Note that the computational molecule for the center of the region is a factor of A% (due to the
clemental area) times an order O(h?) finite differcnce approximation for the bihanmonic operator
[Abramowitz and Stegun, 1965, p. 885], the Euler-Lagrange cquation associated with the thin plate
spline. This is an cxpected consequence of the particular clement employed which yielded finite
difference approximations for the second partial derivatives of v%.

If node (2, 5) is a depth constraint, the first term in (21) takes part in the nodal cquation. The
cffect can be represented as a summation of the depth constraint molecule and associated constraint
factor with the nodal molecule for (7, 5) shown in Fig. 5(a).

Similarly, if (z — 1, 7) or (¢+1,7) arc p constraints, or (¢,5 — 1) or (¢, j + 1) arc q constraints,
the other terms in (21) participate in the nodal cquation. Again this can be represented as the
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summation of computational molecules. Specifically, the upper left molecule in Fig. 4(b) sums with
the nodal molecule if (¢ — 1,5) € P, the upper right only if (z + 1,7) € P, the lower left only if
(¢,7 — 1) € Q, and the lower right only if (3,7 + 1) € Q.

3.2.3. Molccular Inhibition at Discontinuitics

If (s, 5) is a discontinuity, cither uf; or n?; or both may be zero, thus nullifying the summation
of specific molecules. This crucial influence of the discrete continuity control functions near known
discontinuities will be referred to as molecular inhibition. It was convenient for expressing (20) and
(21) to discretize u(z,y), p(z,y), and 7(z,y) over the same sct of nodes. Although orientation
discontinuitics can be situated at these nodes (since u,’.‘, ; is defined at an oricntation discontinuity),

it is better to position depth discontinuitics on the links half way between nodes (since uf‘, j is
undcfined at a depth discontinuity). Discretizing 7(z,y) on links does not present a problem in
practice. As a general rule, a discontinuity may inhibit a molecule only if it coincides with a
constituent atom or link.

First consider orientation discontinuities. At an orientation discontinuity, 7 j = 0 and only
the second component of (20) contributes to the nodal equation. In effect, the plate molecules are
inhibited and replaced by the membrane molccules of Fig. 3. At an interior oricntation discontinuity
(¢,7), away from depth discontinuitics, all four membrane molecules superpose to yield the nodal
molecule shown in Fig. 5(b), which represents the nodal equation

h h h h o R _
Ui =Wy~ Uiy T U~ Ui =0, (23)
The equation will be recognized as —h? times a standard finite difference equation for the Laplacian

[Abramowitz and Stegun, 1965, p. 885]. It too appears as a consequence of the Euler-Lagrange
cquation associated with the membrane spline.

Since an orientation constrain cannot meaningfully coincide with an orientation discontinuity,
oricntation discontinuity nodes inhibit orientation constraint molecules. On the other hand, depth
constraint molecules are not inhibited by orientation discontinuities since it is perfectly reasonable
to locally constrain a membrane spline in depth.

Because smoothness constraints are unsuitable at a depth discontinuity node (7, 5) (i.e., p;; =
0), a nodal cquation cannot involve nodal variables separated by or coinciding with a depth
discontinuity. Conscquently, depth discontinuitics inhibit all of the basic computational molecules.
Fig. 6(a) illustrates examples (disregarding constraints) of nodal molecules for boundary nodes
(marked as double circles) which are near depth discontinuity nodes (marked by X’s). Examples of
nodal molecules at boundary orientation discontinuities (double circles) next to depth discontinuities
(X’s) are shown in Fig. 6(b).

4, Detection and Localization of Surface Discontinuities

An important feature of our framework for computing visible-surface representations is the uni-
form trcatment of constraints and discontinuitics, essentially as localized and independent surface
shape primitives. This facilitates the parallel integration of discontinuity information, along with
shape constraints, over the various carly shape cstimation processes. It is convenient to think of
discontinuity information as being collected into a discontinuity map which is in registration with



Terzopoulos Computing Visible-Surface Representations 17

Figure 6. Molecular inhibition at discontinuities. (a) Nodal molecules at boundary nodes (double circles) near
depth discontinuity nodes (X's). (b) Nodal molecules at boundary orientation discontinuities (double circles)
next o depth discontinuities (X's).
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the reconstructed surface. ‘Technically, the map comprises the nodal variables {p:‘]} and {Ti}:j}
representing the discrete continuity control functions.

Any carly visual process can participate in initializing the discontinuity map according to its
own local hypotheses about the occurrence of discontinuitics. In general, this prior discontinuity
information will be partly incomplete and inconsistent, since it derives from narrowly specialized 2D
image analysis. In evolving a globally consistent surface, the visible-surface reconstruction process
performs a crucial task: it brings the prior discontinuity information into consonance with the 3D
shape constraints collected from all the carly processes. This raiscs the problem of detecting and
localizing both depth and orientation discontinuitics during reconstruction. The current section
investigates this problem for the (impoverished) case in which no prior discontinuity information
is available. We first propose a straightforward scheme which exploits the regularizing properties
of the surface model, then a more sophisticated approach that extends the variational principle to
optimally estimate discontinuities according to gencric expectations about their local structure.

4.1. Regularization Based Discontinuity Detection

From one perspective, surface discontinuity detection shares much in common with traditional
approaches to image intensity edge detection. In particular, it is possible to detect discontinuities
by applying thresholded local differencing operations to the reconstructed surface which, like the
image, is a regularly sampled function. Because they are easily corrupted by image noise, however,
local edge operators such as Laplacians perform poorly [Rosenfeld and Kak, 1982] without a
smoothing prefilter, say a Gaussian [Marr and Hildreth, 1980]. Interestingly, the thin plate surface
under tension performs the necessary smoothing on the sparse and noisy shape constraints (standard
low-pass filters such as Gaussians are inapplicable to sparse data). This regularizing effect permits
the reliable computation of numerical derivatives for detecting discontinuities [Bakhvalov, 1977,
Scc. 5.4; Poggio and Torre, 1984; Terzopoulos, 1985a). In addition to exploiting the regularizing
effect of the thin plate surface under tension, the discontinuity detection scheme described next
is easily accommodated within the distributcd computational structure of our framework, and it
permits relevant criteria such as psychophysically measured limits on stereofusion to impact on
discontinuity detection.

Consider the random dot stereogram in Fig. 7 which depicts a set of planar surfaces stacked in
depth. Fig. 8 shows a single continuous surface gencrated by the surface reconstruction algorithm
from sparsc stercoscopic disparitics provided the Marr—Poggio-Grimson (MPG) sterco algorithm
[Grimson, 1985]. Fig. 9 dramatizes a portion of the reconstructed surface in cross section as it passes
across a depth discontinuity. The C*! surface overshoots constraints near the discontinuity because
its smoothness conflicts with the sudden change in depth. The surface is clearly inappropriate as-a
final solution near depth discontinuitics, but the local incompatibility can signal the occurrence of
these discontinuities. )

Opposing bending moments are imparted to the surface by the constraints on either side of
the discontinuity. The surface inflection (sec Fig. 9), where the bending moment undergocs a sign
change, localizes the depth discontinuity. For a thin plate spline u(z, y), the bending moment per
unit length parallel to the z—z planc is proportional to —u,,, while its counterpart parallel to the
y-z planc is proportional to —u,, [Szilard, 1974]. The sum of orthogonal bending moments gives
the total moment M = —(uz; +uyy) = —Au, the negative Laplacian of the deflection function. It
can be computed readily at a node (2, j) of the discrete surface using the standard approximation:

1/ p h h h h .
M;; = Y (ui-~l,j U TSI R R o T 4”:’,3’) : (24)
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Figure 7. Synthesized random dot stereogram. When fused, the stereogram depicts four planar surfaces
stacked one atop the other in depth.

The zero crossings of M for the reconstructed surface in Fig. 8 are shown on the left in
Fig. 10 as black contours. Most of these correspond to weak inflections due to slight ripples in the
reconstructed surface. A measure of significance is therefore necded to detect true discontinuities
while weeding out spurious, weak inflections. The magnitude of the local depth gradient (surface
tilt) is a suitable significance measure for depth discontinuitics. Hence, an inflection point will

be considered significant if G = |Vu| = {/u2 +u2 exceeds a limit ¢4 (it is more efficient to

use the square of this expression u2 + u2, or even |ug| + |uy|). Employing the usual discrete
approximations, we obtain

1 2 2

G"sJ' = m [(u:}"ﬁ—l,j - u?—l,j) + (u?,j—{»-l - u:"l,j—l) ] (25)

The right half of Fig. 10 shows the significant inflection points where G;; > tg with tg = 1.

Adding these significant points to the discontinuity map (by setting the associated pf:]- to zero)

fractures the continuous surface to yield as a solution the reconstructed stack of surfaces shown in
Fig. 11.

The limit ¢; must be large cnough so that weak inflection points are rcjected as possible
discontinuitics, while not so large as to-miss many true depth discontinuitics. A possible criterion
for choosing t4 in applications to stercopsis of opaque surfaces is suggested by Panum’s limiting
casc: i.e., when a surface is tilted so much from the viewer that it begins to occlude itself from one
eye, causing stercopsis to fail. Human stercofusion limits have been measured psychophysically.
Using pairs of points at different orientations, Burt and Julesz [1980] measurced a roughly isotropic
disparity gradient limit of approximately 1 between fusion and diplopia. Intcrestingly, this is only
half the Panum limit.

It is not inconsistent with these findings to usc the disparity gradient limit ¢4 to detect
significant depth discontinuitics in conjunction with the isotropic bending moments M; ; to localize
these discontinuitics. The required local support computations can be perforined in parallel at cach
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Figure 8. Single surface reconstructed from the stereogram of Fig. 7.

grid point over the surface. Analogously, significant orientation discontinuitics may be detected
when the magnitude of the bending moment |M; ;| of the surface exceeds a limit ¢, (points of
high curvature), and thcy may be localized at relative extrema of the bending moment (positions
of locally highest curvature). The sign of a bending moment extremum indicates the sense of the
orientation discontinuity; negative signals a concave crease, and positive, a convex crease. Curvature
peaks were also employed in a scheme for detecting surface orientation discontinuities proposed by
Langridge [1984].

4.2, Discontinuity Detection by Variational Continuity Control

On the one hand, experimentation on natural data with the regularized approach to discontinuity
detection demonstrates the feasibility of discovering many of the more significant discontinuities
during surface reconstruction (results are presented later). On the other hand, certain inherent
inadequacics of this simple scheme can often lead to poor surface reconstructions. The shortcoming
arc due to a basic conflict caused by smoothing. While rcgularization climinates noise, making
reasonablc estimation of surface derivatives possible in continuous regions, it tends to obscure
discontinuitics [T'erzopoulos, 1985a). It can result in poor detectability and localization of the more
subtle discontinuitics, a common problem with smoothing cdge operators in general [l.cclerc and
Zucker, 1984].
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L significant inflection

\% insignificant inflections

Figure 9. Cross-section of a reconstructed surface across a depth discontinuity. The significant and insignificant
inflections of the surface are indicated.

The problem can be resolved by exploiting more fully the controlled continuity model to
prescrve surface discontinuities and, morcover, to incorporate a priori expectations about dis-
continuity structure into the variational principle for surface reconstruction. So augmented, the
variational principle cstablishes a beneficial cooperation between the interpolation process, which
smoothly propagates shape information across regions, and the complementary discontinuity pro-
cess, which delimits these regions. Thus it optimally reconstructs the piecewise continuous surfaces
and discontinuitics simultaneously ta achieve the best possible surface shape.

As was mentioned in the previous section, the smoothness of the thin plate surface under
tension is incompatible with any sudden transitions imposed by the scattered shape constraints.
This implies that its potential encrgy of deformation is generally greater at what ought to be
interpreted as surface discontinuitics. Any local reduction in the continuity of the surface reduces
the incompatibility and locally reduces potential energy. This can be seen from (8); S,r(v)
considered as a function of (v, p, 7), decreases as cither p(z,y) or 7(z,y) arc made zero over more
of Q. 'This suggests that discontinuitics can be discovered in the course of solving the variational
principle, by allowing the surface to crease and fracture as necded to reduce the total energy
below the minimum obtainable with a single smooth surface. The inscrtion of discontinuitics must,
however, incur some energy increase, otherwise p(z,y) = 0 everywhere would trivially minimize
the cnergy.



Terzopoulos Computing Visible-Surface Representations 22

Figure 10. Bending moment zero crossings (left) and detected depth discontinuities (right) for the reconstructed
surface in Fig, 8.

The variational continuity control approach to detecting discontinuities involves augmenting
the original encrgy functional £, (v) = S,,(v) + P(v) with the discontinuity functional D(p,7)
(explained shortly) to obtain the new variational principle

Find u, p, and v such that

€(u,p,7) = inf £(v,p,7), (26)
where the energy functional
5(”» P, T) = S(’U,p, T) + ’D(v) -+ D(ﬂ, T)‘ (27)

The solutions u(z,y), p(z,y), and 7(z,y), satisfy the threc coupled Euler-Lagrange equations,
which express the vanishing of the first variation with respect to each independent function

0 0

L a d a ,_ _ _
64€ (v, p,7) =0 =5—5(uum) 920y (20usy) + ﬁ(uuyy) - 5;(%) - 5-1;(77%);
6o& (u,p,7) =0 = T(vl, + 2% +vyy) +[1-7)( vty ) + 6,0(p, 7);
5:€ (u,5,7) = 0 =p|(v2, + 202, +0,) = (2 + )] +&:0(5,7).

(28)
Note that the first equation is identical to (9).

The functional D(p,7) maps the depth and orientation discontinuity configurations p(z,y)
and 7(z,y) into positive energics (this is analogous to the role of §,.(v) with respect to ). In its
simplest f()rm the functional can increase monotonically with the total number of discontinuitics;
eg. D(p.7) = [ o Ball — p(=,y)] + Bo[l — 7(z,y)] dx dy, where By and B, are positive encrgy
scaling paramcterb for the dcpth and oricntation discontinuity contributions, respectively.

More interestingly, significant advantages accruc in the detection of weak or subtle disconti-
nuitics if the functional can be designed so as to bias the solution according to generic constraints
about the local structure of discontinuitics. Uscful constraints can, for cxample, be based on
Gestalt principles of good continuation — discontinuitics tend to be arranged along contours, these
contours tend to be continuous, etc. This may be accomplished readily by assigning potential
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Figure 11. Rcconstructed surfaces and discontinuities.

energies to various local discontinuity configurations on the (2, 7) grid of nodes for the discrete
problem. Encodings of local cdge configurations that favor good continuation have been employed,
for instance, in relaxation labeling curve enhancement processes [Zucker ef al., 1977] and in Markov
random ficld image restoration models [Geman and Geman, 1985).

In our current implementation, the discrete discontinuity functional is a weighted nodal sum
of potential cnergy quanta D{:j and 05:]- over depth and oricntation discontinuity configurations
respectively: ‘

DMe",7*) = ) 1BEDL(P*) + BLOL(r)). (29)

t,7 :

We employ a heuristic encoding which favors the formation of continuous and smoothly curving
contours by locally assigning higher energics to isolated discontinuitics, terminations, sharp bends,
junctions, and rcgions. Fig. 12 illustratcs some of the configurations, and the (numeric) cnergies
associated with them and their rotationally symmetric counterparts. Just as for computational
molecules, the circles denote nodes (4, §), while the X’s denote discontinuities (positions where p"
or 7% are 0). The quanta in Fig. 12(a) constitute foj for depth discontinuitics, which occur on
links between nodes as explained previously. They are equivalent to the configurations found in
[Geman and Geman, 1985). Fig. 12(b) depicts some of the oricntation discontinuity configurations
cncoded by 023" Orientation discontinuities coincide with nodecs.
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Figure 12. Some local configurations and associatcd energy quanta for depth discontinuities (a) and orientation
discontinuities (b).

The discrete variational principle simultancously governs the values of the displacement nodal
variables of the surface as well as the nodal variables in the discontinuity map. Although the cnergy
functional &, ;(v) has a unique minimum (given the conditions of Scc. 2.7) for fixed p and r, this
is no longer the casc for € (v, p,7) which allows variation of the continuity control functions in the
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minimization. The nonconvexity of the energy landscape makes this a much more difficult problem
to solve numerically. In the discontinuity detection cxperiments to be presented in Sec. 6.5, we
propose a strategy for cfficiently obtaining good, though not necessarily optimal solutions.

5. Overview of the Multiresolution Surface Reconstruction Algorithm

Application of the finite element yiclds the discrete problem of solving a lincar system of simul-
taneous equations. This system has computationally desirable properties; i.e., its matrix is sparse,
banded, symmetric, as well as positive definite (for fixed p(z,y) and tau(z,y)) when the available
constraints satisfy the conditions for a well-posed problem. The sparseness of the matrix, a direct
conscquence of the local support of the finite clement, is evident from the nodal equation of an
interior node; rows associated with intcrior nodes have only 13 nonzero entries, while nodes at and
near discontinuitics have even fewer. The N x N matrix however, tends to be extremely large in
practice, since the number of pixels N in a typical image can range from 10 to 10® or greater.
This combination of properties suggests the application of iterative techniques such as (parallel)
Jacobi or (sequential) Gauss-Seidel relaxation methods [Hageman and Young, 1981]. Relaxation
methods lead to distributed algorithms, and the parallel variants may be implemented concurrently
on nctworks of many simple, locally-interconnected processors.

5.1.  Nodal Relaxation Computations

A local-support nodal relaxation computation can be obtained at node (7,7) by expressing uf‘
in terms of the remaining variables in the nodal cquation determined by the local structure of
constraints and discontinuities. The nodal relaxation computation may be constructed automatically
by applying our simple rules governing the summation of basic computational molecules:

(i) Plate, depth constraint, and oricntation constraint molecules sum at interior (non-discontinuity)
nodes.

(i) Mcmbrane and depth constraint molecules sum at orientation discontinuity nodes.
(iii) Orientation discontinuitics inhibit plate and orientation constraint molecules.
(iv) Depth discontinuities inhibit all basic molecules.

For instance, at a depth constraint node away from discontinuities, the Gauss-Scidel relaxation
computation becomes

(n+1) _ 1 ( (n+1)  (n) (n+1) | (n) )
R 2 + oy 5 [h Uity U1y T T Y G

n-1 n+1
5 2 (o ) (50)

+1 +1
Y] ( & _1) + “Si)z gt “fng 7+ uz(ng)+2) + adi,jdi,j] ;

where we have suppressed the discretization superscript & and instcad introduced the bracketed
iteration indices. At an unconstrained depth discontinuity, we obtain
(n+1) (1) () pmr) ()
ui,j '—4( 1- 1_7+ H]j' tJ 1+ui,j+1 . (31)
Note that the nodal relaxation computations do not change from onc iteration to the next, so long
as the influencing constraints or discontinuities remain unperturbed.
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5.2. Multiresolution Relaxation

A scrious problem with iterative techniques, in general, is their slow convergence rates for large
problems. This inherent incfficiency is due to the fact that information must propagate incrementally
across large rcpresentations from nodes to their near ncighbors in accordance with the nodal
relaxation formulas.2 We have developed highly efficient iterative algorithms that overcome this
problem for surface reconstruction [Terzopoulos, 1982, 1983a] as well as for certain other visual
problems [Terzopoulos, 1984]. These algorithms achieve cfficiency by exploiting multiresolution
relaxation methods [Fedorenko, 1961; Brandt, 1977; Hackbusch and Trottenberg, 1982).

Briefly, the multiresolution surface reconstruction algorithm features (i) multiple representations
of surface shape over a range of spatial resolutions, (ii) local, iterative (relaxation) processes
that propagate smoothness constraints within each representational level, (iii) local coarse-to-fine
(prolongation) processes that allow coarser representations to constrain finer ones, (iv) fine-to-coarse
(restriction) processes that allow finer representations to constrain and improve the accuracy coarser
ones, and (v) a multilevel coordination strategy that enables the hierarchy of representations and
component processes to cooperate towards increasing the computational efficiency, usually by orders
of magnitude.

Fig. 13 depicts the structure of the algorithm schematically. In this particular case, only three
levels are shown. Note the 2:1 resolution reduction between adjacent levels. Not only does this
ratio simplify the component processes considerably, but it is also nearly optimal with regard to
total computation to convergence (this is conveniently measured in machine independent work
units, where a work unit is the amount of computation required for a relaxation iteration on the
finest level) [Brandt, 1977). The diagram illustrates the intralevel relaxation processes, as well as the
fine-to-coarse restriction and coarse-to-fine prolongation processes that communicate between levels.
The figure shows synthetically generated scattered orientation and depth constraints consistent with
a hemispherical surface. The algorithm reconstructs a dense representation of surface at three
resolutions. The sparse information at any particular scale can be thought of as a set of constraints
which defines a discrete surface approximation problem at that level. It is natural then to view the
multiresolution surface reconstruction algorithm as iteratively solving a coupled hierarchy of discrete
surface reconstruction problems.® For a detailed description of the algorithm see [Terzopoulos,
1982, 1983a].

6. Experimental Analysis of the Algorithm

The multiresolution visible-surface reconstruction algorithm was tested on a variety of data sets
including synthetic data, structured light (lascr) range data, automated stercopsis and photometric
stereo data from natural images, and digital terrain model data. Some results are prescnted
in this section (for further details and examples, see [Terzopoulos, 1984]). In all the examples

Z 1t is possible to accelerate the basic relaxation methods so that fewer iterations are required. However, prac-
tical accelerated methods such as the conjugate gradient method, successive overrelaxation, and Chebyshev
semi-iteration use global procedures o determine the acceleration parameters. In parallel implementation,
the greater complexity of the globally accelerated methods and, even more importantly, the communications
costs of performing the global operations nullifies any potential gains.

% A recursive multilevel coordination strategy was employed in the experiments described next. The recursive
strategy activates only a single level at any one time. We have recently developed a concurrent strategy
based on a multilevel variational principle [Terzopoulos, 1985b]. Concurrent coordination maintains all
levels active simultaneously, thus achieving full parallelism.
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Figure 13. The structure of the multiresolution surface reconstruction algorithm. Iterative relaxation processes
operate at each level. Fine-to-coarse and coarse-to-fine processes transfer information between levels. Synthetic

orientation and depth constraints input to the algorithm are shown at the top. The dense multiscale surface
representation is output at the bottom.
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presented, the intralevel process was Gauss-Scidel relaxation and the algorithm was started from
zero initial approximations on all the levels. The border nodes on each grid were preset as depth
discontinuity nodes to introduce natural boundary conditions which free the reconstructed surface
on the boundary of (2. 4

6.1. Synthetic Data

The first two examples involve randomly placed depth constraints. The left half of Fig. 14
shows 15%-density constraints at three resolutions. These constraints were obtaincd by sampling
a hemisphere whose z values were multiplied by a radial sinusoid. The nodes outside the circular
region occupied by the constraints were specified as depth discontinuitics. The reconstructed surface
representation is shown on the right half of Fig. 14. In Fig. 15, the 15%-density depth constraints
shown on the left arc samples of a stacked set of planar surfaces at three resolutions. In this
example, depth discontinuities were placed along the circular arcs bounding the planes, and along
the outer edges of the grids. The reconstructed surface representation is shown on the right half of
Fig. 15. This example indicates that discontinuities can be placed along arbitrary contours within {2
to prevent surface shape from being degraded by unwanted smoothing over sharp depth changes.

The next examples involve reconstructions from orientation constraints. The left half of Fig. 16
shows in perspective a set of orientation constraints over a square region. On each of three scalcs,
the region is divided into four quadrants each containing constant orientation constraints, and the
nodes along their boundaries are preset as orientation discontinuitics. The surfaces reconstructed
by the three-level algorithm are shown on the right half of the figure. Since absolute depth cannot
be determined solely from orientation constraints, a relative depth reconstruction results, with the
center of gravity of the resulting pyramidal surface resting near the z—y plane.

The left half of Fig. 17 shows 30%-density scattcred orientation constraints consistent with a
hemispherical surface at three resolutions. The reconstructed surface representation is shown on
the right. All nodes outside the hemispherical surface patch were specified as depth discontinuities.
Again, the center of gravity of the surface rests near the z—y plane.

The next examples demonstrate the integration of both depth and orientation constraints. The
left half of Fig. 18 shows 15%-density depth constraints consistent with a hemispherical surface at
three resolutions. On the right are 15%-density orientation constraints consistent with the same
surface. Nodes outside the surface have been specified as depth discontinuities. The reconstructed
surface is shown in Fig. 19. Whereas in the previous example (Fig. 17) only relative depth can be
determined for lack of any depth constraints, in the present example the additional depth constraints
enable the absolute depth of the surface to be determined at all points, hence the surface is “raised”
to the correct height above the base plane. In addition, note that (10%) uniformly distributed
noise has been added to the constraint values. With the given constraint parameters, the surface is
slightly bumpy on the finest level. This can be reduced by decreasing the constraint parameters, in
effect, loosening the springs of the physical model.

6.2. Structured Light Data

The multiresolution algorithm was applied to the reconstruction of several objects from raw
range data supplicd by a laser rangefinder constructed by P. Brou at MIT. The scan resolution
in the y direction is half that in the z direction. A four-level surface reconstruction algorithm
was cmployed in the cxamples. The data was introduced as depth constraints at the finest level
and transferred to the coarser levels by successive 2 x 2 averaging between levels. To expedicntly
scgment the objects from the background, valucs smaller than a threshold were treated as depth
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Reconstruction of a surface from depth constraints. (Grid dimensions; N = N;“ = 17,
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parameters: ag" = 2.0/h;. Computation: 24.25 work units.)

65. Grid spacings: hy = 0.4, hy = 0.2, hy = 0.1. Constraint
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Figure 15.  Reconstruction of planes with circular depth discontinuities from depth constraints. (Grid
dimensions: N* x NJ* = 22 x 17, N}* x Nj* = 43 x 33, N}» x N} = 85 x 65. Grid spacings:
hy =04, hy = 0.2, hy = 0.1. Constraint parameters; ag” = 2.0/h;. Computation: 20.375 work units.)
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Figure 16. Reconstruction of a pyramidal surface with orientation discontinuities from orientation constraints.
(Grid dimensions: N} = NJ* = 17, N** = N}» = 33, N}» = N}» = 65. Grid spacings: h; = 0.4,

hy = 0.2, hy = 0.1. Constraint parameters: a,’? = af,” = 4.0/h;. Computation: 19.5 work units.)
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Figure 17. Reconstruction of a hemispherical surface from scattered orientation constraints. (Grid dimensions:
NP = N =17, N}» = N]» = 33, N}* = N]» = 65. Grid spacings: hy = 0.4, hy = 0.2, hg = 0.1,

Constraint parameters: o’ = ay’ = 4.0/h;. Computation: 22.125 work units.)
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Figure 18. Depth constraints (feft) and orientation constraints (right) consistent with a hemisphere at thrce
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Figure 19. Reconstruction from depth and orientation constraints in Fig. 18. (Grid dimensions: Nf‘ =
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Figure 20. Reconstruction of a lightbulb from range data. (Finest grid dimensions: N/ x N = 257 x 281.
Grid spacings: h; = 0.8, hy = 0.4, hy = 0.2, and hy = 0.1. Conslraint parameters: aghi = 0.2/h;.
Computation: 9.78 work units.)

discontinuities. Fig. 20 shows the reconstructed surface of a lightbulb. The algorithm smoothes the
noisc in the data and rcconstructs the missing points.

6.3. Natural linage Data

In this scction. we apply the multiresolution surface reconstruction algorithm to depth data orig-
inating from natural images. The cxamples involve photometric stereo, and two binocular stereo
algorithms applicd to terrain stercopairs.

6.3.1. Photometric Sterco Data

Photometric stereo is a technique that uses multiple (usually 3) images of a scene from the same
vicwpoint, but with differing illumination [Woodham, 1981]. Assuming that the surface material
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Figure 21. Image of a matte white torus.

is known and that the viewer and lightsources arc far from the object, the method determines
the surface oricntation from the image irradiance. Our surface reconstruction algorithm provides
a noise resistant technique for computing depth from the surface orientation data provided by
photometric sterco. We demonstrate this with the image of torus in Fig. 21. The photometric sterco
data (gencrated by a system implemented at MIT by K. Ikeuchi) was introduced as oricntation
constraints on a two-level algorithm. Aside from sporadic missing data, the constraints on -the
coarse level are dense, whercas only every other node on the fine level is a constraint. Fig. 22
shows the orientation data and the reconstructed torus. '

Our method for reconstructing surfaces from scattered orientation constraints can be compared
to a variational scheme for obtaining relative depth from dense surface gradient information reported
by Horn and Brooks [1985]. Their proposed least squares integral [ f(vz — p)? + (vy — q) dz dy
will be recognized as being a continuous version of the orientation constraint penalty functional. By
virtue of the additional smoothness functional S, (v), however, our surface reconstruction algorithm
can deal with oricntation constraints that arc scattcred. It also can integrate depth constraints from
other sources to arrive at absolute surface depth.

6.3.2. Correlation Based Stereo Data

At the top of Fig. 23 is a stercopair on which Kass’s [1983] corrclation based sterco algorithm
was run. The output of the sterco algorithm is shown on the lower left, with brightness proportional
to disparity. 'I'he algorithm has failed to produce a match in the ncutral grey patches, so disparity
is unknown in these arcas. To apply the multiresolution algorithm, the disparity data on the finest
level were reduced by factors of two, through averaging, to three coarser levels, Relatively small
constraint parameter values were chosen in order to counteract the potentially detrimental cffects
of false matches and noise in the disparity data. The reconstructions on the three coarsest levels
arc shown as 3D plots in Fig. 24 (the finest level was too dense to represent this way). Fig. 25
shows isoclevation contour maps of the solution on all levels.
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Figure 22. Reconstruction of the torus (right) from the crientation constraints provided by photometric stereo
(left). (Grid dimensions Nt = N/ = 51 and N2 = NJ* = 101. Constraint parameters: ali = 4.0/h;.
Computation: 52.0 work units.)

6.3.3. Feature Based Sterco Data

The next example involves disparity constraints generated by the MPG sterco algorithm
[Grimson, 1985]. A three-channel version of the sterco algorithm was run on the stercopair at
the top of Fig. 26. The output of the stereo algorithm is shown on the lower part of the figure.
Disparity information is provided only along zcro crossing contours at the three finest scales. In
the figure, the darkness along contours is proportional to disparity. This disparity data was input to
a four-level surface reconstruction algorithm. The constraints on the coarsest level were derived by
averaging the constraints from the next finer level. The reconstructions on the three coarsest levels
are shown as 3D plots in Fig. 27. Fig. 28 shows isoclevation contour maps of the solution on all

levels.

6.4. Digital Terrain Map Data
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Figure 23. Natural terrain stereopair (top) and output of Kass’ stereo algorithm (bottom). The images were
256 x 256 pixels, quantized to 256 levels (provided by the US Defensc Mapping Agency).
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Figure 24. Reconstruction of terrain in Fig. 23. (Grid dimensions: N}' = N =33, Nl = N} = 65,
N}» = N}» =129, N} = N+ = 257. Grid spacings: hy = 0.8, hy = 0.4, kg = 0.2, hy = 0.1.
Constraint parameters: g™ = 0.01/h%. Computation: 29.0 work units.)
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Figure 25. Isoelevation contour maps of the reconstructed terrain in Fig, 24,

A four-level surface. reconstruction algorithm was applied to contoured terrain clevation data.
A contour map of the Black River Gorges (published by the UK Ministry of Defense) was
digitized manually on a digitizing tablet by J. Mahoney. The 256 x 256 digital contour array is
shown at the top of Fig. 29. The constraints input to the algorithm are shown at the bottom
of the figure. The elevation of the contours is proportional to brightness. Local averaging was
used to derive the constraints on the coarser grids from those on the finest grid. The terrain
reconstructions on the threc coarsest levels are shown as 3D plots in Fig. 30 (the fincst level is too
dense to represent this way). Fig. 31 shows isoelevation contour plots of the reconstructed terrain
on all levels. The reconstructed contours on the finest level can be compared subjectively with
the digitized contours in Fig. 29, but note the reconstructed contours depict elevations half way
between the original constraint contours for an unbiased comparison. The reconstructed contours
are somewhat smoother than the (predigitized) contours in the original map —. the jaggedaess
introduced by manual digitization has been reduced. The cextent of the smoothing can be regulated
by adjusting the constraint paramcters. Shaded image renditions of the reconstructed terrain using
reflectance map techniques for hill shading [Horn, 1981] are shown -at the bottom of Fig. 31. Terrain
reconstructions using the thin plate surface under tension model were compared to reconstructions
using the simpler membranc spline model (Laplacian smoothing). The former gives good results,
whercas the latter generally suffers from insufficient smoothness and produces flat spots across
terrain pcaks [Terzopoulos, 1984] (see also [Bolondi et al., 1976)).
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Figure 26. Natural terrain stereopair (top) and output of the MPG stereo algorithm (bottom). The images
were 512 x 512 pixels, quantized to 256 levels (provided by the US Army Engineer Topographic Labs).
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Figure 27. Reconstruction of data in Fig. 26 on the three coarsest levels. (Grid dimensions: Nfl = N;“ =33,
N} = NJ* =65, NI = N}» = 129, N)* = NJ* = 257. Grid spacings: hy = 0.8, hy = 0.4, hg = 0.2,
he = 0.1. Constraint parameters: g™ = 0.01 /h}. Computation: 31.0 work units.)
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Figure 28. Isoelevation contour maps of the reconstructed terrain in Fig. 27.

6.5. Discontinuity Detection Experiments

The forcgoing examples have shown that the surface reconstruction algorithm can handle disconti-
nuities that are prespecified. In the next two sections, we present examples involving the automatic
dctection of discontinuitics.

6.5.1. 'The Regularization Approach

The acrial view stereopair of Fig. 32 was input to the MPG stereo algorithm which generated
the sparse disparity map shown on the top of Fig. 33. The finest level densc disparity map gencrated
by a four-level surface reconstruction algorithm is shown at the iower left of the figure. Darkness
is proportional to disparity. The discontinuitics found from this disparity map, using a disparity
limit G;; > tq = 1 are shown at the lower right as whitc contours After the detected points are
added to the discontinuity map, the surface reconstruction algorithm continues iterating from the
tentative approximation on the left. The amount of additional computation required is relatively
small, since the tentative surface is a fairly good approximation in most places. At convergence, the
reconstructed surface has fractured along the contours to give the solution on the right. Portions
of the main discontinuitics around the buildings have been found, but contours are broken and

shifted.

The next example involves the synthesized random dot stercogram in Fig. 7. 'The depth
constraints generated by a three-channel version of the MPG sterco algorithm are shown in Fig, 34
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Figure 29. Digitized contour data (top) and constraints (bottom). The patch to the lower right represents a
lake.
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Figure 30. Reconstruction of data in Fig. 29. The terrain reconstruction on the three coarsest levels is
represented as 3D surface plots. (Grid Dimensions: N* = N = 33, N}» = N} = 65, N}» = N}» =
129, N,’“ = N;“ = 257. Grid spacings: h; = 0.8, hy == 0.4, hy = 0.2, hy = 0.1. Consiraint parameters:
agh = 0.5/h2)
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Figure 31. Isoclevation contour map (top) of the data in Fig. 30 and shaded representations of the reconstructed
terrain (bottom).
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Figure 32. Aerial view of a hospital complex. The stereopair was provided by the UBC Faculty of Forestry.
Images are 320 x 320 pixels.

(the finest Jevel dimensions are 320 x 320). The constraints on the coarsest level were obtained by
averaging those on the next finer level. Fig. 35 shows the smooth disparity maps initially computed
by a four-level surface reconstruction algorithm. Fig. 36 shows the discontinuitics detected from
these maps with ¢4 = 1. The discontinuitics have been superimposed onto the final disparity maps
in Fig. 37. Better performance is obscrved in this case due to the simpler surface structure, but the
contours, while mostly intact, are quite ragged.

In general, not detecting true discontinuitics affects surface shape more adversely over larger
regions than introducing some spurious ones within a continuous surface. Discontinuity points
are missed by the thresholding operation, and no adjustment of the global limit can be expected
to producc perfect results. Note, however, that the surface reconstruction algorithm does not
break down. Rather, the reconstructed surface degrades as it “lcaks” through the gaps. The
discontinuity detection procedure may be improved by allowing the disparity limit to vary spatially,
or by modifying it during multiple passcs. On the first pass, surface shape is poorest, so a fairly
conservative limit should be set to reduce the number of false detections. Conservative limits fail
to detect many discontinuities, but as more discontinuitics are identificd, surface shape improves
and limits can be lowered in subscquent passes to find the less prominent discontinuities.

6.5.2. The Variational Continuity Control Approach

A multipass scheme is also cmployed in the variational continuity control approach to cfficiently
obtain good solutions. An cxample will be used to cxplain the strategy. Fig. 38 shows depth
constraints randomly sampled from a sct of sloping plancs that form discontinuitics along their
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Figure 33. Discontinuities in the aerial stereogram. Disparily contours generated by stereo algorithm (top),
full disparity map generated by the surface reconstruction algorithm at the finest level (lower left), and detected
discontinuities superimposed on the disparity map (lower right).
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Figure 34. Depth constraints for the random dol stereogram.

extremities. A single continuous surface can be reconstructed from these constraints as shown, but
it smooths over the depth discontinuitics and rounds out the orientation discontinuities.

The algorithm finds both kinds of discontinuities and reconstructs a surface which preserves
them. When the surface smooths through a depth discontinuity, two spurious regions of high
curvature border the discontinuity. These spurious regions can casily be mistaken for oricntation
discontinuitics. 'I'o avoid this unwanted intcraction which can substantially slow down the optimiza-
tion process, the algorithm postpones the orientation discontinuity detection phase until all depth
discontinuitics have been found. The surface cvolves in several steps over which the parameters
Bt and B in (29) are modificd. Each step consists of first Aipping the value of the continuity
control parameter (pf-', ; or T'-’:j) from 0 to 1 or converscly, if this lowers the cnergy (27), and then
running the reconstruction algorithm to convergence (which always results in equilibrium, since the

variational principle is convex for fixed pf’,j and r,-’:j).

For depth discontinuitics, ﬂg‘ is initially sct to a high valuc that hcavily penalizes their insertion,
then lowered in steps. This strategy of least commitment finds the prominent discontinuitics carlicst,
improving the surface as it does so, and Icaves the more subtle ones for later. It results in the
flipping of relatively few variables in cach stage, hence the solution is obtained cfficiently. Beginning
with the continuous surface Fig. 39(a), Fig. 39(b-d) illustratcs the steps of the cvolving discontinuity
detection process, during which discontinuitics arc determined with increasing accuracy as ﬂ,’; is
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Figure 35. Full disparity maps without discontinuities.

lowercd. The energy can be lowered further still if ﬂ"; is then increased slightly to eliminate
spurious discontinuities in Fig. 39(d). Note that since the surfaces have now scparated, a very large
increasc would be -nceded to flip a truc discontinuity point (a hystercsis effect). The improved
surface in Fig. 39(c) results. Next, the orientation discontinuity detection phase is activated and it
runs in the same way, but modifics ﬂg. In this example, the orientation discontinuities arc found
in only one step.

Fig. 39(f) shows the final solution. The depth and orientation discontinuities have been made
explicit and are preserved by the réconstructed surface. Incidentally, the global optimum of the
variational principle has been found in this example; however, this procedure can gencrally be
cxpected to yield good, though not necessarily optimal approximations. Its main attractions are
that it is dcterministic and cfficient.

7. Discussion and Research Directions

Several issucs concerning the framework for computing visible-surface representations are discussed
in this scction, and dircctions for futurc rescarch arc suggested. The discussion focuses on
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Figure 36. Detected discontinuities.

discontinuity detection, choosing constraint parameters, handling rivalrics in constraints, grouping
constraints, invariance propertics of the surface reconstruction model, and visible-surface analysis.
[Terzopoulos, 1984, Ch. 11] contains a more extensive treatment of these and other issucs, including
multiresolution relative depth representations of surfaces, and the possibility of computing visible-
surface representations “instantancously” by analog networks.

7.1.  On Discontinuity Detection

Some recent work in image restoration is of rclevance to the problem of piccewise continuous
surface reconstruction. A piecewise. constant image model employed by Blake [1983] for image
reconstruction is interesting in that it incorporates “weak constraints™ which can be broken at a cost.
The resulting optimization problem-is related to our variational continuity control approach, but
more restricted. Blake used an adaptive mcthod, which he referred to as “graduated nonconvexity,”
to obtain good soluticns to the nonconvex problem. It has not been established however whether
this interesting method applics to the sparse data case as well.

Geman and Geman [1985] used Markov random ficld models with associated Gibbs distributions
to restore piccewisce constant images corrupted by additive Gaussian noise. The restoration secks
a maximum a posteriori cstimate of the original image, given the degraded image, and includes
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Figure 37. Discontinuities and final disparity maps.

an cxplicit “line process” that estimates the locations of step cdges in intensity. This work was
restricted to densc image data. The Gemans' approach was adopted with encouraging results to
surface reconstruction from sparse depth constraints by Marroquin [1984]. His markov random field
model, while less restrictive than the Gemans' piccewise constant one, in fact models a membranc
splinc whose smoothness is insufficient for computing visible-surface represcntations. A line process
essentially equivalent to the Gemans® was incorporated to estimate depth discontinuities. The
numerical solution strategy in both of the above studies was stochastic optimization using the
Mctropolis algorithm and simulated anncaling to optimize the nonconvex functional [Kirkpatrick
et al., 1983]. This strategy can find optimal solutions, but for such large reconstruction problems it
has been observed to converge notoriously slowly. Based on our experience, we believe that it can
be accclerated, perhaps enough to make it practical, through the use of multiresolution processing.

Obviously, the line processes used in the above work as well as our own encoding of disconti-
nuity contour configurations is unpleasingly heuristic and in need of refinement. The discontinuity
map can be augmented by nodal variables to encode the local orientations of the curvilinear cle-
ments to a higher degree of accuracy. Such an encoding is employed by Zucker and Parent [1984)
in an optimization (rclaxation labeling) approach to finding contours in images. It appears that
ideas from their work can also be applicd to finding surface discontinuities within our framework.

A promising possibility is to cmploy 1D controlled-continuity stabilizers as formal models
of smoothness constraints along surface discontinuity contours in the z-y plane. A functional
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Figure 38. Scattered depth constraints consistent with sloping planes meeting discontinuously (top) and the
smooth reconstructed surface (bottom).

that naturally comes to mind is the curvilincar analog of the thin plate surface under tension:
$o Bo(8){Ba(5)(8%c/05%) +[1— Ba(s)](Dc/Ds)} ds, where s denotes arc length along discontinuity
contours ¢ € C. Here, 3, allows breaks, while §, allows angles (tanjent discontinuitics) to form
in the discontinuity contours. Again, additional energy penaltics must be associated with these
occurrences. Given our finite element representation of surfaces, curvilinear finite clements are
the natural local representation for discontinuity contours. The combined variational principle has
both a surfacc component and an analogous contour component. Although technically nontrivial,
a formulation of surface reconstruction generalized along these lines has very strong appeal.

7.2.  On Constraints — Parameters, Rivalries, and Grouping

The constraint (spring) parameters offer the flexibility to individually tune the coerciveness of cach
constraint on the reconstructed surface. In the special case of Gaussian error distributions, the
parameters should be inverscly proportional to the expected variances (a; = 1/ ,\o?). It ought to be
possible for the low-level visual processes to associate a variance estimate or confidence with each
constraint that they provide. In general, howcver, it's not obvious how to choose the constraint
parameters optimatly.

The constant of proportionality A~ can also be used to tune the overall smoothness of
the reconstructed surface. Cross validation techniques may be used to set A optimally (e.g.,
[Wahba and Wendelberger, 1980]). The basic criterion is to choose A so as to minimize over all
constraints the (weighted) discrepancy between each constraint and its value as estimated from the
surface reconstructed using the remaining constraints. Unfortunately, this involves computationally
expensive sequential algorithms. Intercstingly, the continuous tuning of surface smoothness is
analogous to the scale spacc filtering technique proposed by Witkin [1983] with the added attraction
that it can be applied to scattered data.

Although the variational principle was designed to account for measurement crrors in the
constraints, the possibility of massive rivalrics between constraints from different sources, such as
stereopsis and analysis of motion processes, was disrcgarded. Massive rivalrics are unnatural visual
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Evolution of the discontinuity detection process.

.

Figure 39

phenomena that can nevertheless occur, especially under contrived conditions, and they often lead

to multistable percepts [Attneave, 1971]. The framework can potentially accommodate rivalrics with

a mechanism that inhibits individual or entire sets of constraints by nullifying sclected constraint
parameters. This mechanism can be activated by a global arbitrator which monitors the contents

of visible-surfacc representations to detect rivalrics may also have access to higher level knowledge
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about the scenc. The arbitrator’s influence can account for multistébility.

A particular type of rivalry arises from transparent surfaces. For instance, a surface such as a
dirty window in front of a background scenc would lead to two well defined populations of depth
(and oricntation) constraints over the same visual angle, one from the window, the other from the
background. A transparency interpretation can be arrived at by an arbitrator which monitors the
surface reconstruction process looking for high approximation error between surface and constraints
over a significant arca. Under these conditions the arbitrator can trigger a constraint grouping
process which clusters the constraints into two populations, based on depth values, say. Multiple
surfaces can then be reconstructed over the same visual area for each resulting constraint population.
This scheme has been applied on a transparent surface random dot stercogram [Terzopoulos, 1984, .
Ch. 11}.

7.3.  On Invariance Properties of the Surface Model

As a transformation from sparse constraints to dense surfaces, the thin plate under tension model
can be shown to be invariant under (i.e. commutes with) certain image plane transformations
applied to the constraints; namely, translations, rotations, and similarity transformations. This
implies that surfacc shapes will be preserved through rigid motions of the scene or viewpoint
parallel to the image plane or along the view direction. These are essential invariance properties
for visible-surface reconstruction [Terzopoulos, 1982].

Note, however, that the thin plate spline, characterized by the small deflection apbroximation
[ [ o2 + 202, + 02 dzdy to the bending encrgy density of a thin plate, is not invariant under
arbitrary 3D transformations of the constraints. Thus, surface interpolation using this expression is
not invariant under changes in the view direction, as Blake [1984] points out. He shows that rotating
the view direction induces the 1D analog of the thin plate spline to “wobble,” and he demonstrates
that this effect is most pronounced as the (continuous) spline is inclined sharply with respect to the
viewer or is forced to bend sharply. Blake views this as a problem that should be eliminated by
cmploying the large deflection bending energy of the thin plate, a convex combination of the mean
and Gaussian curvatures of the surface v(z,y), which is view direction invariant,

Although &,,(v) can also be made view direction invariant by employing the large deflection
counterparts for the thin platc and membrane bending energics, this approach has a serious
technical drawback [Terzopoulos, 1984]: The large deflection formulas lead to an extremely difficult
nonlinear problem (e.g., the large deflection equations for the thin plate are two coupled nonlinear
fourth-order partial differential cquations known as Von Karmann’s cquations [Szilard, 1974]).

Fortunately, the surface rcconstruction model, as it stands, is not hampercd by the lack of
view direction invariance because the available constraints are usually sufficiently dense in practice
to tightly dctermine surface shape; as the view direction is varied, the reconstructed surface would
vary negligibly (note that Blake's experiments reveal a significant wobble effect just in the case
of extremely sparse constraints). IFurthermore, the cxplicit introduction of depth and orientation
discontinuities alleviates much of the wobble precisely at those places where Blake’s experiments
show it to be most pronounced on a globally continuous surface. An interesting psychophysical
experiment would be to determine whether there might be some slight variance in the surfaces
perccived by humans viewing sparse random dot stereograms while the dots undergo simulated
rigid 3D transforinations and, if so, whether the variations are consistent with the reconstruction
model (J. Mayhew, personal communication).
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7.4. On Visible-Surface Analysis

The visible-surface representation is an intermediate and volatile description of the 3D surfaces
in scenes. It drives ensuing processes which generate stable higher-level representations of shape
that are better tuncd to object recognition. The processing begins with visible-surface analysis
whose goal is to abstract from the numeric, viewer-centered representation a rich set of more
symbolic, object-centered features that are stable through viewpoint changes. The extraction of
geometric surface features is facilitated by the dense shape information provided by visible-surface
representations.

A promising approach to visible-surface analysis is to apply concepts from diffcrential geometry
[do Carmo, 1976]). For instance, a surface’s intrinsic geometry (including Gaussian curvature,
geodesics, etc.) is determined completely by the first fundamental form, which defines arc length
over the surface. It's extrinsic geometry (including normal curvature, principal curvatures, ctc.) are
determined by the sccond fundamental form, which describes the deviation of the surface from the
local tangent plane. The fundamental thcorem of the local theory of surfaces (usually attributed
to Bonnet) states that the analytic study of surface propertics consists of the study of the two
fundamental forms; i.e., the six fundamental tensor coefficients (which arc not all independent) as
functions of the two independent parameters of the surface. The fundamental forms are invariant
under changes in the parameterization, and togcther they determine surface shape up to rigid body
transformations. These properties make them ideal foundations for object centered symbolic surface
representations.

The visible-surface representation makes it possible to estimate the first and sccond funda-
mental forms on a point-by-point basis over the entire visible surface. . The finite element shape
representation reduces the computation of crucial local surface features such as the Gaussian curva-
ture, principal curvatures, and principal directions to the cvaluation of simple algcbraic expressions
of neighboring nodal variables (see [Terzopoulos, 1984, Ch. 11] for derivations). It is then a simple
step to determine the elliptic, hyperbolic, parabolic, umbilic, and planar points, as well as geodesics,
asymptotes, and lines of curvature.

For cxample, Fig. 39 shows the rcconstructed surface of a lightbulb. Fig. 40 shows the Gaussian
curvature K (z,y) computed for the reconstructed lightbulb surface of Fig. 20. The elliptic points
(K > 0) are shown in white, the hyperbolic points (K < 0) are shown in black, and the parabolic
(K = 0) points separate the two regions. Note the alternation in the sign of curvature at the
screw mount. Fig. 41 plots the computed field of principal directions for the lightbulb at the
two coarsest scales. These demonstrations illustrate the feasibility of reliably computing from these
representations higher-order intrinsic and extrinsic propertics of surface shape. The reliability can
be attributed to the regularizing properties of the thin plate surface under tension which overcomes
the potentially detrimental cffccts of noise in the data, while prescrving discontinuitics. For further
analysis of the kinds of features that can be computed from dense, numeric, representations of
surfaces see, e.g., [Brady et al., 1985] or [Medioni and Nevatia, 1984].

8. Conclusion

Constraints on surface shape, contributed by multiple low-level visual processes, can be computed
reliably at multiple resolutions, but only at scattered locations in the ficld of view. Subscquent
visual processing can be facilitated substantially if the scattered constraints are transformed into
visible-surface representations that make surface shape cxplicit everywhere. To accomplish this
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Figure 40. Elliptic (white) and hypcrbolic (black) points of the reconstructed lightbulb at four scales.

effectively, information must be integrated over multiple visual modalitics and fuscd across multiple
scales of resolution.

In this paper, we have developed a computational theory of visible-surface representations.
Within a unified computational framework, formal solutions were offcred to fundamental problems
of reconstructing visible surfaces: (i) integrating constraints on the depth and orientation of surfaces
across various modalitics and scalces, (ii) interpolating surface shape information into (piccewise)
smooth surfaces, (iii) discovering discontinuities in surface depth and orientation and cnabling them
to restrict interpolation, and (iv) efficiently maintaining consistency in distributed, multiresolution
visible-surface representations.

A visible-surface rcconstruction algorithm implements the framework. Extensive testing has
shown it to be viable. The algorithm coordinates coopcrative processes within a multiresolution
hicrarchy of surface representations to dramatically increase computational efficiency. It is well
suited to implementation on massively parallel networks of simple, locally interconnected processors.
Such computational nctworks are suggestive of biological mechanisms and are also well suited to
VLSI technology.
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