Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.1. Memo No. 801 _ September, 1984

The Bescription of Large Systems

Kent Pitman

Abstract

In this paper, we discuss the problems associated with the description and manipulation of large
systems when their sources are not maintained as single files. We show why and how tools that
address these issues, such as Unix MAKE and Lisp Machine DEFSYSTEM, have cvolved.

Existing formalisms suller {rom the problem that their syntax is not easily scparable from their
funetionality, In programming languages, standard “calling conventions”™ exist to insulate the caller
of a function from the syntactic details of how that fiinction was defined, but until now o such
conventions have cxisted to hide consumers of program systems from the details of how those
systains were specified.

We piopose a low-level data abstraction which can sugport notations such as those used by MAKE
and DEFSYSTEM without requiring that the introduction of a new notation be accompanicd by &
comipletely differcnt set of tools for instentiating or otherwise manipulating the resuliing system.

Lisp is used for presentation, but the issues are not idiosyncratic to Lisp.

Kevwords: Compilation, Large Systems, Lisp, System Maintenance.

This report describes rescarch done st the Artificial Tutellicence Laboratory of the Massachiuselts Institute

of Technology. Support for the luboratory’s artificial intellizence rescoreh has been providedd in part by the

Advanced Rescurceh Projects Ageney ol the Department of Oetense under Office of Naval Research contract
o) L oa AL

NOGOTA-20-C-0805, in part by Natinnal Science Fourdation grants MOS-THZ1T ond pMCS-8117633, and in
part by the IBM Corporation.

The views and conclusions contained in this documeni are those of the suthors, and should not be interpreted
as wepresenting (he policies, exprossed o fmplicd, of tie Department of Defense, of dhe MNationa! Science
Formdation, or of (e 1EM Corpordion,

@ Massachusels Iostitute of Technology, 19384

I. Introduction

For reasons of modularity and editing convenience, the source code for large program systems is
rarely maintained as a single file. Instead, it is typically broken into a number of smaller files
which together make up the system.

Since system tools such as cditors, compilers, loaders and printers tend to be designed to deal with
files rather than systems, some extra mechanism is generally required in order to allow their users
to deal with systems that span multiple files. In the next scction, we trace the evolution of tools
for system building, identifying the important issues that carly tools sought to address.

We then present an overview of two system specification languages, Unix! MAKE and Lisp Machine
DEFSYSTEM, which illustrate the level of technology currently available to programmers for dealing
with these issues. Most criticisms which can be made about existing tools are at the syntactic level.
The tools address the right issues, but their syntax can be a stumbling block, inhibiting the
expression of certain kinds of relations and the ability to make extensions to the tools’ original
functionality. It is not possible to vary the syntax without rewriting most or all of the underlying
support.

We conclude by proposing an organizational strategy which decouples syntax and functionality.
This makes it possible for a programmer to develop alternate system maintenance tools without
having to reimplement every aspect of the original tools.

To make the discussion more concrete, we will give several examples of specification languages
that could be built under the proposed framework. However, it is important to understand that
the purposc of this paper is not to arguc in favor of any particular notation. Rather, we wish
to illustrate that our proposed organizational strategy cstablishes an appropriate framework for
developing alternate notations such as these. As an appendix, we offer a sample implementation of
these specification languages in Lisp Machine Lisp in order to further clarify any issucs left
vague by the examples used in the body of the paper.

II. Background

There are a number of standard maintenance operations performed on systems. These operations
inctude (but are not limited to) the creation of hardcopy listings, copying or renaming the files which
make up the source of the system, loading uncompiled source files (e.g., into a lisp interpreter),
and compiling changed source files.

For a system maintained as a single monolithic file, it is rcasonably obvious how most of thesc
maintenance operations can be performed. Getting hardcopy of the system source is as simple as
getting hardcopy of any other file; compiling the system is as simple as compiling any single file.

For a more complex system, where the source spans more than one file, performing these operations
may be considerably more complicated. In that case, to get a listing, onc must ask that cach of
the source files be printed. To compile the system, one must ask that cach of the source files be
compiled and, in some cases, that the compilation occur in a ccertain order. To load the system
may be similarly complex due to another (not necessarily identical) set of ordering constraints.

A Need for Abstraction

It used to be that breaking a system into multiple files meant that one had to remember all the
names of the files and manipulate cach as a scparate object. Programming environments had some
primitive understanding of files and operations to be performed upon files, but had no explicit
understanding that groups of files could work together as a single unit.

"{Unix is a tr;xdciﬁ:n‘k of Bell Tabs.

It was common practice then (and still is today) to create batch files holding the commands
necessary to accomplish a particular manipulation. For example, the programmer might have kept
a file containing code for compiling and loading a particular system and another file containing
code for hardcopying its sources:

i: Batch sequence to compile/load system.
(LOAD (COMPILE-FILE "MACROS.LISP"))
(LOAD (COMPILE-FILE "UTILITY.LISP"))
(LOAD (COMPILE-FILE "MAIN.LISP"))

COMPILE-AND-LOAD-MYSYS.LISP

;3 Batch sequence to hardcopy system sources.
(HARDCOPY-FILE "MACROS.LISP")

(HARDCOPY-FILE "UTILITY.LISP")
(HARDCOPY-FILE "MAIN.LISP").

HARDCOPY-MYSYS.LISP

Common though it may have been to manipulate systems indirectly through such batch files, it was
quite clumsy. It mecant that any time a change to the system was made, all the relevant batch files
had to be updated. If not updated carefully and completely, the batch files could casily become
inconsistent, leading to confusing effects. Also, because information about the structure of a system
was procedurally embedded, the only way a utility could be written to apply a new operation to the
system was by creating yet another scparately-maintained batch file.

Not surprisingly, programmers have moved away from this batch method of maintaining their
systems and toward the notion that a system should be defined abstractly in some central place
and then manipulated as a unit rather than as a set of unrelated individual components (files).
A First Approximation ' ,
Here is a simple example of the sort of code nceded to implement the kind of tool we are
discussing:

(DEFVAR *SQURCE-INFO* (MAKE-PLIST))

(DEFUN SYSTEM~SOURCES (SYSTEM) (GET *SOURCE-INFO* SYSTEM))

(DEFUN DEFINE-SYSTEM-SOURCES (SYSTEM &REST SOURCES)
(PUTPROP *SOQURCE-INFO* (COPYLIST SOURCES) SYSTEM))

(DEFUN HARDCOPY-SYSTEM (SYSTEM)
(MAPC #'HARDCOPY-FILE (SYSTEM-SOURCES SYSTEM)))

(DEFUN COMPILE-AND-LOAD-SYSTEM (SYSTEM)
(MAPC #'(LAMBDA (FTLE) (LOAD (COMPILE-FILE FILE)))
(SYSTEM-SOURCES SYSTEM)))
Given this level of support, a system would be “defined” by writing simply:

(DEFTINE-SYSTEM-SOURCES 'MYSYS
"MACROS.LISP" "UTTLITIES.LISP" "MAIN.LISP").

Once defined, such a system could be manipulated by requests such as these:

(HARDCOPY-SYSTIM 'MYSYS)
(COMPILE-AND-LOAD-SYSTEM 'MYSYS)

Partial Ordering of Dependencies

One problem with this formulation is that the relationship between the modules of a system may
be quite complex. For example, some of the files in a system may not depend on other files and
the whole systein may not need to be recompiled just because one file has changed. To try to
account for this, the definition of COMPILE-AND-LOAD-SYSTEM might be changed to read:

(DEFUN COMPILE-AND-LOAD-SYSTEM (SYSTEM)
(LET ((COMPILE-FLAG NIL))
(DOLIST (FILE (SYSTEM-SOURCES SYSTEM))
(SETQ COMPILE-FLAG
(OR COMPILE-FLAG (NEEDS-COMPILATION? FILE)))
(IF COMPILE-FLAG (COMPILE-FILE FILE))
(LOAD (BIN-FILE FILE))))).

With this revised definition, files in a systein’s source file list would have a left-to-right dependency
relation. Consider again the system defined by:

(DEFINE-SYSTEM-SOURCES 'MYSYS
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP").

If MACROS.LISP is changed, UTILITIES.LISP and MAIN.LISP will have to be recompiled.
But if MAIN.LISP is changed, it is the only file which will get recompiled.

Simple left-to-right dependency is useful for some applications, but may cause a lot of unnceded
work in others. The reason is that the actual ordering may only be partial, but a full ordering is
forced by this notation.?

For example, it is easy to imagine our system being constructed so that if the file MACROS. LISP
changed, both UTILITIES.LISP and MAIN.LISP would nced to be recompiled, but if just one
Oof UTILITIES.LISP or MAIN,LISP changed, only that one file would require recompilation.

Because this simple notation provides no way to adequately cxpress such complex relations, it must
be judged inadequate to handle the “gencral case.” Nevertheless, there are cases where it would
be adequate, and it would be nice to use it (or somcthing cqually simple) for those cases.

Orthogonal Dependency Types

Another problem with our original formulation concerns multiple, independent dependency chains.
Dependency information for compilation might not be the same as dependency information for
producing a runtime environment.

If the only goal is to compile a system, there might be many files which do not need to be
loaded because they contain utilitics used only at runtime. Alternatively, if the goal is to load an
alrcady-compiled system, some files (for example, those containing only macros used at compile
time) might not be necessary. I both compilation and loading are to be interleaved, a third
ordering might arise.

An adequate notation for describing systems nceds to offer a notation for stating different kinds
of dependency relations, and should probably be extensible (allowing the addition of new kinds of
dependencies).

*In general, notations must be chosen with extreme care; an ill-chosen notation can have a very adverse
effcct on specifications that use it, making them secm to imply things which are in fact false. For a more
complete discussion of such issucs, sce [Mackinlay 84].

I11. Existing Tools

The Unix MAKE Facility

The Unix MAKE facility [Feldman 78] is frequently pointed to as a model of “the right way to
define a system.”™ It is syntactically simple and provides a reasonable amount of power.

A makefile contains Unix shell commands augmented with information about which code
modules depend on which others. When the make command is invoked, it is as if all the
shell commands were exccuted except that some shell commands may be “optimized out™ if the
dependency information specifies that they are not necessary to preserve correctness.

To make things concrete, here is a sample of how a system might be specified in a makefile:

mysys: a.o b.o
cc a.o b.o -1m -o pgm
a.o: incl a.c

ccC -C a.c
b.o: incl b.c
cc -¢c b.c

The first tine defines that there is some module called mysys which nceds to be updated if a. o
or b.o are cver out of date. The indented line following that line specifies how to do the update;
specifically, it links the compiled files a. 0, b. o, and standard library m. The third and fifth lines
define modules a.o and b. o, saying that they depend on . c¢ source files and also on some file
called inc1 (which they presumably reference internally via #include).

To make comparison easicr, we could pretend that MAKE used LLisp expressions rather than requiring
a special parser. In such case, a makef i1e might contain an expression like:

(DEFINE-FOR-MAKE MYSYS

(MYSYS ("a.o" "b.o")
(LOAD-IF-NOT-LOADED "a")
(LOAD-IF-NOT-LOADED "b")
(LOAD-IF-NOT~LOADED "m"))

("a.O" (ll-inc"ln Ha.cﬁ)
(COMPILE-FILE "a.c"))

(Hb.oﬂ ('l—inc]" Hb.cll)
(COMPILE-FILE "b.c")))

One problem with MAKE is that not all the information in a makefile is explicit. For example,
the fact that the system sources are incl, a.c, b.c is nowhere explicit. There is nothing (other
than hoping that .o files are not source files and anything clse is) which identifies them as the
source files. A programmer wanting to write a utility for producing hardcopy of a system’s sources
would not be able to drive the utility off of the information contained in the makefile.

MAKE offers no theory of how to include or process additional information. For example, having
the tail of cach module clause (the part after the colon in the original Unix syntax) say how to
build the module is fine for a compiled-only language, but is not reasonable in a language like
lisp which embraces the notion of an interpreter and a compiler that can share the load. There is
no obvious way to extend MAKE in an upward-compatible fashion in order to allow specification
of commands for compiling modules as well as commands for loading them. ‘There is also no
provision for adding other kinds of information, such as an alternate notion of what it means for
modules to be out of date or how to handle circular dependencics.

In fact, MAKE amounts to little more than a batch facility with a simple but inflexible provision
for ignoring unneccessary commands. Just as with normal butch files, to do two operations (e.g.,
compile and load) requires two batch files. While it might be syntactically convenient for some
common applications in compiled-only linguages under Unix, MAKE docs not represent a theory
of how to maintain systems.

The DEFSYSTEM Facility

The Lisp Machine DEFSYSTEM facility [Weinreb 81] bills itself as a “‘gencral and extensible” tool
for maintaining systems broken into sceveral files. It provides a means of noting what files belong
to what modules, what modules depend on what other modules (both for compilation and for
loading), and is cxtensible to allow the addition of new system-building “transformations™ (such as
calls to alternate compilers and loaders).

Information about the structure of a system is defined with the DEFSYSTEM special form. Later,
MAKE-SYSTEM can be called to perform a pre-defined set of operations upon the system.

Here is a sample system description written in DEFSYSTEM notation:

(DEFSYSTEM MYSYS
:MODULE MACROS ("inc1"))
:MODULE A ("a"))
:MODULE B ("b"))
:MODULE MLIB ("m"))
:FASLOAD MLIB)
:COMPILE~LOAD MACROS)
:COMPILE-LOAD-INIT A (MACROS)
(: FASLOAD MACROS)
(:FASLOAD MLIB))
(:COMPILE-LOAD-INIT B (MACROS)
(:FASLOAD MACROS)
(:FASLOAD MLIB A)))

The :MODULE? clauscs specify which files belong to cach of the modules. For example, the INCL
module refers to the file "inc1.1isp", the A module refers to "a.1isp", etc

The : FASLOAD clause for MLIB says that "m,1isp" is a standard library which must be loaded.
This definition docsn’t specify when it might be recompiled; presumably that is handled by some
other agency.

The :COMPILE-LOAD clause for MACROS says that "inc1.1isp" is part of the system and must
be recompiled if changed, but it has no particular preconditions to be satisfied prior to compilation
or loading.

The ;COMPILE-LOAD-INIT clauses for A and B specify various kinds of dependency information.
Both must be recompiled not only if they themselves change, but also if MACROS changes. Before
compiling A, onc must first load MACROS; before loading A, one must first load MLIB. Before
compiling B, onc must first load MACROS; before loading B, onc must first load MLIB and A.

Although names like :COMPILE-LOAD may look like function names, they are not. They
simply declare that compilation and/or loading may nced to occur under certain circumstances.
DEFSYSTEM unotation, unlike that of MAKE, is declarative rather than procedural. Because of
this, MAKE-SYSTEM can perform more than one kind of opcration (for cach DEFSYSTEM form),
where MAKE could only perform one (for cach makefile). For example, given certain arguments,
MAKE-SYSTEM will compile a system. Given different arguments, it will simply load an already-
compiled version of the system. '

e N W Wan e NI PN

On the other hand, the set of operations that MAKE=-SYSTEM will perform is pre-defined and not

extensible. This means that if someone wanted to add a new utility (e.g., for hardcopying sources)
there would be no way to do it because there is no user-advertised mechanism for asking for a
list of a system’s source files. The information is present and is used internally by various system
utilities, but is not advertised to users as part of the standard abstraction.

*In Lisp Machine Lisp, symbols preceded by a colon arc “keywords” interned in a canonical “keyword
ackage.” By special decree, keywords are sclf-quoting (ie.. bound to themselves). Hence, ' 1 FOO0 and : F0O
e} . { &
evaluate (o the same thing, : FQ0O.

Another gripe commonly heard about DEFSYSTEM is that it was designed to handle hard cases,
but that for simpler tasks it is generally cumbersome and unpleasant to use.

Still another problem, which contributes to the overall feeling of clumsiness, is that there is no
transitivity of dependency information between DEFSYSTEM modules. Hence, if DEFSYSTEM is
told that C.LISP dcpends on B.LISP and that B.LISP depends on AL LISP, DEFSYSTEM will
not infer that C.LISP depends on A.LISP. Technically, it would be incorrect to do otherwise
because it may be the case that the part of B.LISP which depends on A.LISP is not used by
C.LISP. However, the result of this decision on the part of the DEFSYSTEM designers is that
large DEFSYSTEM forms tend to take on a pyramidal shape as later compile-load specifications are
forced to specify an enormous number of dependencies explicitly:?

(defsystem KBE
(:name "Knowledge-Based-Editor")
(:short-name "KBE")

:module LET "KBE: LISPM2; LET" :package KBE)

:module LETS "KBE: LMLIB; LETS")

:module PP "KBE: LMLIB; GPRINT")

:module BASE ("BASIC" "MOISE™ "SETS" "CONDITIONS" "ENGLISH"
"SYSTEM-MAGIC" "FLAVOR-MAGIC"))

:module MACRO ("MACRO"))

:module KVARS "KVARS")

—~—

:fasload PP)
:fasload LET)
:fasload LETS)
:compile-load-init BASE (PP)
(:fasload PP LET LETS)
:) (:fasload PP))
~(:compile-load-init MACRO (PP)
: (:fasload PP LET LETS BASE)
(:fasload BASE))
(:compile-load-init KVARS (PP MACRO)
(:fasload PP LET LETS BASE MACRO)
(:fasload BASE))
(:compile-load-init KMAC (PP MACRO)
(:fasload PP LET LETS BASE MACRO KVARS)
(:fasload BASE KVARS))
(:compile-Toad-init IMAC (PP MACRO KMAC)
) (:fasload PP LET LETS BASE MACRO KVARS KMAC)
(:fastoad BASE KVARS KMAC))
(:compile-load-init MBOX (PP MACRO)
. (:fasload PP LET LETS BASE MACRO KVARS IMAC)
(:Tasload BASE KVARS IMAC))
(:compile-load-init BEHAVEL (PP MACRO TMAC)
(:fasload PP LFT LETS BASE MACRO KVARS IMAC)
(:fasload BASE KVARS IMAC MBOX))
(:compile-load-init KUTIL (PP MACRO IMAC BEHAVE)
(:fasload PP LET LETS BASE MACRO KVARS IMAC BEHAVE)
(:fasload BASE KVARS IMAC MEOX BEHAVE))

o~~~ o~

(:compile-load-init MAGIC (PP MACRO TIMAC BEHAVE SIMPLE [D1 SOCIETY)
(:fasload PP LET LETS BASF MACRO KVARS IMAC
BIHAVE KUTIL SIMPLE EDI SOCICTY STNDRD ZMAGTC)
(:fasload BASE KVARS TMAC BFHAVE KUTTL ED1
SOCIETY STNDRD BRIDGE ZMAGIC))

*This example is taken directly from a real program system developed by the MIT Programmer’s Apprentice

sroup. The full definition is much longer, describing the relations between about 90 files, grouping them into
A o o tel

about 50 logical modules.

0

DEFSYSTEM is cxtensible, but in addition to its other problems, much of the data available to
extension writers is in the form of special variables which are available while its “transformations”
are happening. To illustrate this, we include an excerpt from the Lisp Machine Manual section
describing state variables which can be used in writing DEFSYSTEM cxtensions:

SI:*SYSTEM-BEING-MADE* Variable
The internal data structure which represents the system being made.

SI:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-BEFORE* Variable
A list of forms which are evaluated before the transformations are performed.

SI:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-AFTER* Variable
A list of forms which arc cvaluated after the transformations are performed.

SI:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-FINALLY* Variable

A list of forms which arc evaluted after the body of MAKE-SYSTEM has comipleted. This differs
from SI:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-AFTER* in that these forms are cvaluated

outside the “compiler context,” which sometimes makes a difference.

SI:*QUERY-TYPE* Variable

Controls how questions are asked. [ts normal valuc is : NORMAL. :NOCONF IRM means no questions

will be asked and :SELECTIVE asks a question for cach individual file.

(ST:DEFINE-MAKE-SYSTEM-SPECIAL-VARIABLE var val [defvar-p]) Special Form

Causes var to be bound to val, which is cvaluated at MAKE-SYSTEM time, during the-body of the
call to MAKE-SYSTEM. This allows you to define new variables similar to thosc listed above. If
defvar-p is specified as (or defaulted to) T, var is defined with DEFVAR. It is not given an initial
value. If defvar-p is specificd as NIL, var belongs to some other program and is not DEFVAR’ed

here.
Because information is procedurally embedded in this way, it may not be explicit at arbitrary times.
Also, it imposes a lot of pre-defined mechanism for talking about systems which might not be
convenient or even relevant in certain situations.

Thesc problems with DEFSYSTEM's design make it difficult to develop tools which interface to
those provided with DEFSYSTEM. The net result is that the DEFSYSTEM formalism is far less
flexible than we might want it to be.

1V. Proposal

Both DEFSYSTEM and MAKE offer interesting functionality, but that functionality is tightly bonded
to the accompanying syntax. Neither sceks to provide a theory of how to allow specification of a
system without binding the user to a particular syntax.

No matter what the nature of the specification language, the kinds of high level operations to
be performed upon systems is not going to vary. We will still want to edit, compile, load, and
hardcopy systems. Henee, rather than propose yet another system description language with a new,
improved notation, we will propose a framework in which syntax and functionality are permitted
to vary independently.

[n this section, we review the details of the proposal, but its essence is the suggestion that associated
with every system there should be some ebject which responds appropriately to a pre-defined sct
of operations which support appropriate maintenance of the system. Put another way, we assert
that a key problem in previous system maintenance utilities is that they cither were not object
oriented or did not use their objeet oriented nature to their best advantage.

Any sort of generic operations facility (e.g., that provided in T [Rees 84] or Act-11 [Theriault
83]) would suffice to implement this proposal. Wherever possible, we will use an abstract function-
calling syntax for presentation. In places which call for examples from a particular language, we
will use Lisp Machine Lisp for presentation purposes.

Basic Protocol

By studying opcrations that arc typically performed upon files, we can make a list of the
common operations we might expect to be performed upon systems. One obvious choice is
the update operation, which includes compilation or translation from onc language to another,
parser gencration, efe. Another is instantiation, which includes the loading of files or the execution
of some kinds of sctup code. Other uscful operations might be editing, hardcopying, and archiving.

To support these operations, we define the following functions:

(SYSTEM:GENERATE-PLAN system operation) — actions
Given the name of an abstract operation (such as :UPDATE, : INSTANTIATE, or :HARDCOPY),
returns a list of actions (abstract plan steps) which will accomplish the operation.

(SYSTEM:EXECUTE-PLAN system actions)
Exccutes a list of actions (or plan steps), such as thosc returncd from a SYSTEM: GENERATE~PLAN
request.

(SYSTEM:EXPLAIN-PLAN system actions)
Types out an explanation of what would be the effect of executing actions.

(SYSTEM:SOURCE-FILES system) — files
Returns a list of the source files for the system.

To this basic set, we will add the following two functions. It might be argued that they are
superfluous in the presence of the above functions, but in practice having them will greatly
enhance the clarity of some code. By adding them to the standard protocol, we encourage a clearer
programming style and standardize on terms:
(SYSTEM:EXECUTE-ACTION system action)

Executes a given action (plan step).

(SYSTEM:EXPLAIN-ACTION system action)
Types out an explanation of what would be the effect of executing action.

FFor convenience, we'll also define that il the argument given to EXPLATIN or EXECUTE is the name
of an operation rather than a sct of steps, then the plan will be generated automatically, This
allows us to say:

(SYSTEM:EXECUTE-PLAN system :UPDATE)
and (SYSTEM:EXPLAIN-PLAMN system :UPDATE)

where formerly we would have had to say:

(SYSTEM:EXPLAIN-PLAN system (SYSTEM:GENERATE-PLAN system :UPDATE))
and (SYSTEM:EXECUTE~-PLAN system (SYSTEM:GENERATE-PLAN system :UPDATL)).

Defining systems

Under our proposal, systems are described using the DEFINE-SYSTEM special form. It creates a
system object and stores it globally for use at a later time. It has the syntax:

(DEFINE-SYSTEM name type . options).

The exact nature of the options will vary depending on the gpe of the system. For some systems,
it may just be a list of files. For others, it might be a more complex data structure specifying
specific dependency information. This proposal is designed explicitly to avoid taking a stand on
what goes in this portion of the system specification.

To support this kind of type-specific option processing, we need functions to digest a type-specific
options list;

(SYSTEM:PROCESS-OPTIONS system options-1ist)
Processes an options-list, such as the body of a DEFINE-SYSTEM form. This might, but nced not
necessarily, be done by mapping SYSTEM: PROCESS-OPTION down the options-list.

(SYSTEM:PROCESS-OPTION system name . data)
Processes a single option with given name and data. The option name :NAME must be handled.
Handling of any other option is at the discretion of the particular system type.

Creating System Objects
The DEFINE-SYSTEM special form is supported by a normal function, called CREATE-SYSTEM,
which has the syntax: '

(CREATE-SYSTEM name type options).

CREATE-SYSTEM returns an object representing the system, but does not store it in any global place.
Such an object is called an anonymous system. CREATE-SYSTEM (and hence DEFINE-SYSTEM)
works by creating an object of the designated system flavor and then calling appropriate functions
to sct its name and process its options.

Extensibility
To be appropriately extensible, cach implementation would have to define how these functions

related to the generic operations facility provided by that language. For cxample, on the Lisp
Machine, the interface to flavors might look like: ’

(DEFUN SYSTEM:PROCESS-OPTIONS (SYSTEM OPTIONS-ALIST)
(SEND SYSTEM :PROCESS-OPTIONS OPTIONS-ALIST))

(DEFUM SYSTEM:PROCESS-OPTION (SYSTEM NAME &REST DATA)
(LEXPR-SEND SYSTEM :PROCESS-OPTION NAME DATA))

.
.

Exploiting Inheritance

Languages which provide generic operations and facilities for type inheritance would probably offer
at least two pre-defined types.

A type called SYSTEM should be at the base. Tt should have no properties other than identifying
the object as a system. Designers who wish (o start over “from scratch™ in designing new types
of systems adhering to the protocol we propose would start with the SYSTEM type and work from
there.

Another type, which we shall call VANTLLA~SYSTEM, might offer some very general functionality
which might be of usc to many kinds of systems. Using whatever inheritance mechanism was
appropriate to (he language, implementors of many new system types might be able to inherit from
this slightly less gencral type rather than starting from scrateh and building their system type from
type SYSTEM. Naturally, VANTLLA-SYSTEM would inherit from SYSTEM.

In the Lisp Machine, for cxample, customizing can frequently be done by mixing VANTLLA-SYSTEM
into the new flavor and adding or changing a tfew methods. Nothing prevents the designer from
starting from scratch and implementing all the methods from scrateh; but this will typically involve
more work than is necessary.

A typical system flavor might look like:

(DEFFLAVOR system-type (...1instance variables...)
(VANILLA-SYSTEM))

followed by definitions of new or customized mcthods.

For example, on the Lisp Machine, the :PROCESS-OPTIONS method might be expected to be
defined by:

(DEFMETHOD (VANILLA-SYSTEM :PROCESS-OPTIONS) (OPTIONS)
(DOLIST (OPTION OPTIONS) -
(SEND SELF :PROCESS-OPTION OPTION)))

This is defined as part of VANTLLA-SYSTEM to save cveryone the trouble of writing that same
method. In fact, VANILLA-SYSTEM might cven define : PROCESS-OPTION to use : CASE method
dispatch (so that handling cach kind of option may be defined by a separatec DEFMETHOD form).
If so, we might expect to also find definitions such as these in VANTLLA-FLAVOR:

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :FULL-NAME) (NAME)
(SETQ FULL-NAME (STRING NAME)))

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :SHORT-NAME) (NAME)
(SETQ SHORT-NAME (STRING NAME)))

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :NAME) (NAME)
(IF (NOT SHORT-NAME) (SETQ SHORT-NAME (STRING NAME)))
(IF (NOT FULL-NAME) (SETQ FULL-NAME (STRING NAME))))

(DEFMETHOD (VANILLA-SYSTEM :OTHERWISE :PROCESS-OPTION) (NAME &REST DATA)
(FERROR "Bad option: ~S~%Data: ~S" NAME (COPYLIST DATA)))

Presumably, systems inheriting from VANTLLA-SYSTEM would define additional : PROCESS-OPTION
methods for any specifications appropriate to them,

Modular Extensions

Given these basic facilitics, it is casy to make modular extensions. The function HARDCOPY-SYSTEM
discussed carlier could be written simply as:

(DEFUN HARDCOPY-SYSTEM (SYSTEM)
(MAPC #'HARDCOPY-FILE (SYSTEM:SOURCE-FILES SYSTEM)))

Likewise, a facility for saving a snapshot of a system’s source files to another directory might be
written:
(DEFUN ARCHIVE-SYSTEM (SYSTEM ARCHIVE-DIRECTORY)
(DOLIST (FILE (SYSTEM:SOURCE-FILES SYSTEM))
(COPY-FILE FILE ARCHIVE-DIRECTORY)))

There’s no reason the user should necessarily have to write things like this himself, In general, it’s
nice to have system libraries that have this sort of thing pre-defined. The important thing is that
if they were not primitively provided, they would be no problem to write as extensions because a
basic sct of operations has been chosen which leuds itself to modular extension.

Fven the fancier options to DEFSYSTEM, such as the : SELECTIVE option, fall directly out of this
modularization. For example, the esscnce of the :SCLECTIVE option is captured by:

(LET ((PLAN (SYSTEM:GENERATE-PLAN system :UPDATE)))
(FORMAT T "~&To update ~A:" system)
(DOLIST (STEP PLAN)
(SYSTEM;EXPLAIN-ACTION system STEP))
(UNLESS (HOT (Y-OR-N-P "Ready to go ahead? "))
(SYSTEM:EXECUTE-PLAN system PLAN)))

U]

Variations are also simple. For example, per-step querying could be achieved by:

(DOLIST (STEP (SYSTEM:GENERATE-PLAN system :UPDATE))
(SYSTEM:EXPLAIN-ACTION system STEP)
(UNLESS (NOT (Y-OR-N-P "OK? "))
(SYSTEM:EXECUTE-ACTION system STEP)))

Systems with Simple Dependencies

Until now, not much has been said about what kind of information should go into the options
portion of a DEFINE-SYSTEM form,

In the simplest case, all we might want to specify is the sct of files involved. So, for example, we
might imagine a kind of system called SIMPLE-SYSTEM in which the options section was just a
list of files, so that the system we carlier specified by:

(DEFINE-SYSTEM-SOURCES 'MYSYS
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP")

would now be spccified by:

(DEFINE-SYSTEM MYSYS SIMPLE-SYSTEM
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP").

Contrast the simplicity of this approach with the MAKE specification of:

(DEFINE-FOR~-MAKE MYSYS
("main.bin" ("utilities.bin" "macros.bin" "main.lisp")
(LOAD-IF-NOT-LOADED "macros.bin")
(LOAD-IF-NOT-LOADED "utilities.bin")
(LOAD (COMPILE-FILE "main.lisp")))
("utilities.bin" ("macros.bin" "utilities.lisp")
{(LOAD-IF-NOT-LOADED "macros.bin")
_ (LOAD (COMPILE-FILE "utilities.lisp")))
("macros.bin" ("macros.lisp")
(LOAD (COMPILE-FILE "macros.lisp"))))

or the DEFSYSTEM form:

(DEFSYSTEM MYSYS
:MODULE MACROS ("macros"))
:MODULE UTIL ("utilities"))
:MODULE MAIN ("main"))
:COMPILE~LOAD MACROS)
:COMPILE~LOAD-INIT UTIL (MACROS)
(:FASLOAD MACROS)
: (:FASLOAD MACROS))
(:COMPILE-LOAD-INIT MAIN (MACROS UTIL)
(:FASLOAD MACROS UTIL)
(:FASLOAD MACROS UTIL))).

The system defined by this DEFINE-SYSTEM form is a first-class object which can be inspected -
and manipulated by the abstraction functions proposced in the last section,

NN N N~

Systems with Complex Dependencies’

Consider now a system with a sct of macros (in MACROS . LISP) that cxpand into calls to functions
in some utility package (in MACRO-SUPPORT . LISP). It should be an abstraction violation for the
consumers of the macro package to have to know what support is nccessary for the package to
run. Yet with DEFSYSTEM, the specification must be written:

(DEFSYSTEM MYSYS
(:MODULE MACROS ("macros"))
(:MODULE MACRO-SUPPORT ("macro-support"))
(:MODULE FOO ("foo"))

:COMPILE-LOAD MACRO-SUPPORT)

:COMPILE-LOAD MACROS)

:COMPILE-LOAD-INIT FOO (MACROS)
(: FASLOAD MACROS)
(:FASLOAD MACRO-SUPPORT))

L~ e~

) _
A user interested in abstraction might object to having to spccify FOO’s dependency upon
MACRO-SUPPORT cxplicitly. Certainly uscrs of DEFSYSTEM have complained that this lack of
abstraction makes very large systems very hard to specify and maintain using DEFSYSTEM.

Armed with our ncw DEFINE-SYSTEM proposal, a ncw notation could be developed to handle
the situation. We might, for cxample, propose a notation where rather than say “FOO0 depends on
MACRO-SUPPORT” explicitly (as happens in DEFSYSTEM), we could say “Using MACROS causes a
need for MACRO-SUPPORT.” Such a notation might look like:

(DEFINE-SYSTEM MYSYS MODULAR-SYSTEM
(:MODULE MACRO-SUPPORT ("macro-support"))
(:MODULE MACROS ("macros")
(:CAUSES
(:NEEDS
(:INSTANTIATE MACRO-SUPPORT))))
(:MODULE FOO ("foo")
(:NEEDS
(:UPDATE MACROS)))
) ,
To argue for or against somic particular new notation is not the point of this paper. The real
point is that the proposcd framework provides a means of introducing alternate notations in a way
that docs not intecfere with existing notations and tools. Existing tools can operate correctly upon
systems created with new notations such as this because it is the functional behavior of systems
which has been standardized, not the notation.

In [Robbins 84], still another notation (to accompany a tool called BUILD) is proposed for specifying
module dependency information. Although the data abstractions proposed in this paper were not
designed with BUILD in mind, they scem appropriate to support it anyway. Had the proposed
framework alrcady been in cffect, it would probably have been considerably simpler for Robbins
to experiment with his new notation,

Systems with “ldiosyncratic™ Dependencies

Some systems may have very complicated file dependencies. In some cascs, for example, code may
have cvolved in a way which demands that an carlicr copy of itself be loaded in order to support its
compilation or instantiation. 'The description of such systems and how they are to be constructed
may require a complex notation. This is acceptable only if it does not affect the simplicity of
notation usced to describe simple systems.

Some users have suggested that the complexity of DEFSYSTEM stems from the fact that the same
notational devices must be used for all kinds of systems, whether simple or complex. In this new
proposal, systems can be classified into different kinds, cach with their own notation. We have
illustrated that simple systems might require only the specification of the files involved and nothing
clse, while some more complex systems might be specified in terms of inter-file dependencies.

For the completely general case, however, special “one-shot”™ notations can still be developed to
handle the specific needs of situations which are not yet sufficiently weli-understood to be handled
by a more standard notation. For cxample,

(DEFFLAVOR HAIRY-SYSTEM () (VANILLA-SYSTEM))

(DEFMETHOD (HAIRY-SYSTEM :CASE :GENERATE-PLAN :UPDATE) ()
'"((:LOAD "Foo")
(:COMPILE "Foo") ;Needs self to compile
(:LOAD "Foo™")
(:LOAD "Bar")))

(DEFINE-SYSTEM MY-HAIRY-SYSTEM HAIRY-SYSTEM) ;needs no options
(SYSTEM:EXECUTE-PLAN (SYSTEM 'MY-HAIRY-SYSTEM) :UPDATE)

A slight generalization of this idea leads to another kind of system, which allows the. system
maintainer to specify explicitly how to handle cach kind of :GENERATE-PLAN request:

(DEFFLAVOR PREPLANNED-SYSTEM ((FILES '())
(PLANS '()))
(VANILLA-SYSTEM))

(DEFMETHOD (PREPLANNED-SYSTEM :PROCESS-OPTIONS) (OPTIONS)
(SETQ FILES (CAR OPTIONS))
(SETQ PLANS (CDR OPTIONS)))

(DEFMETHOD (PREPLANNED-SYSTEM :GENERATE-PLAN) (OPERATION)
(LET ((P (ASSQ OPERATION PLANS)))
(COND (P (CDR P})
(T (FERROR "No plan for operation ~S" OPERATION))))).

Having done this, the same system could be re-written:

(DEFINE-SYSTEM MY-HAIRY-SYSTEM PREPLANNED-SYSTEM
("Foo" "Bar")
(:UPDATE
(:LOAD "Foo")
(:COMPILE "Foo") ;Needs self to compile
(:LOAD "Foo")
(:LOAD "Bar"))
).
This notation has some of the character of the batch files discussed carlicr, but is much better
integrated with existing tools. Users of a systein could load or compile it without knowing how
it was defined. Later, il system dependencies changed or if a new notation became available, the
system’s specification could be changed without notifying the users.

Systems with- Dependencies to be Inferred by the Compiler

Some people have objected to the idea that a system description language should be nceded at
all. Their claim is that the compiler should somchow be able to infer compilation dependencies
by recognizing and recording assumptions made during compilation.

This sort of inference is not completely reliable because compilers cannot always accurately detect
compilation dependencies induced by changes to the state of the global environment during
compilation. The problem stems from the presence in Lisp of powerful state-affecting primitives
such as EVAL-WHEN and the general ability of macros to read or alter global state during
compilation.

To sce the problem, consider a data-driven macro facility such as the following, which maintains
its statc both in the compiler and in the runtime environment:

(DEFUN EXPAND-DEFINITION (OP NAME BODY)
(SELECTQ OP
((DEFINE) ---)

(OTHERWISE ---)))

A.LISP

(DEFMACRO DEFINE (NAME . BODY)
(EXPAND-DEFINITION 'DEFINE NAME BODY))

B.LISP

(DEFINE FOO ---)

C.LISP
If the definition of EXPAND-DEFINITION had changed, it would obviously have to be recompiled.
On the other hand, the definition of DEFINE, while it dircctly refers to FXPAND-DEFINITION,
is not affected by the change to EXPAND~DEFINITION. So A.LISP and C.LISP would have to
be recompiled, but'B. LISP would not.
To complicate matters, however, suppose that instead of the above definition, EXPAND-DEFINITION
had been defined by:
(DEFUN EXPAND-DEFINITION (OP NAME BODY)

(FUNCALL (GET OP 'EXPANDER) NAME BODY))

In that casc, a scemingly unrclated change such as a change to a definition elsewhere such as:
(DEFUN (:PROPERTY DEFINE EXPANDER) (NAME BODY) -..)
could affect the expansion of FOO, causing C.LISP to nced recompilation.

There might be a temptation to suggest that the compiler notice that the second argument to GET
in EXPAND-DEFINITION is the constant symbol EXPANDER and that a function stored on an
EXPANDER property was changed. Some special cases might be handled this way, but in general
the problem can become arbitrarily complex and a correct analysis may be uncomputable. Consider
the difliculty required in understanding the implications cven of:

(EVAL-WHEN (EVAL COMPILE)
(DEFUN DEFINE-EXPANDER (NAME BODY) -..)
(DEFUN FOO-EXPANDER ---)

(MAPC #'(LAMBDA (X Y) (PUTPROP X Y 'EXPANDER))
"(DEFINE FOO ---)
'(DEFINE-EXPANDER FOO-EXPANDER ---))).

This is the sort of thing that we might imagine a sufficiently advanced compiler being able to do, but
we might not be willing to pay for the overhead needed to deduce the information. Performance
issucs arc especially important in systems which must perform interactively and allow for user
intervention, incremental development, and runtime redefinition. 'The cost to the programmer of
having to specify module dependencies may be very cheap in comparison with the cost of his

“having to sit idlc waiting for the machine to deduce them.

The detection of loadtime dependencics is made similarly difficult by the ability of the programmer
to include unconstrained toplevel forms in a file, to be exccuted at load time.

Of course, the real problem is probably that unconstrained changes to global state are not well
understood and may even be a bad idea. There are many active language design cfforts which seck
to show that languages which employ global state should just be thrown out the window. Until
such efforts succeed, however, the problem of how to specify and manipulate large systems will
remain an important onc.

And if it ever does happen that languages become sufficiently constrained that all the dependencies
can be inferred mechanically, our data abstractions will still provide a needed interface between the
new dependency-inference technology and the standard maintenance utilities for loading, compiling,
hardcopying, etc. The only thing we might expect to change is that complicated notations for
describing systems might give way to simpler oncs. So cven if the dependency information were
complex, onc might cventually only need to write:

(DEFINE-SYSTEM MYSYS ULTIMATE-SYSTEM
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP")

and the rest of the information could be inferred mechanically.

Such a syntax might be sufficiently attractive that pcople would want to rewrite all their systems
using it. But in the interim, while pcople converted the definitions of their systems to usc this
simpler notation, systems defined using older notations could continue to work correctly and
compalibly under protective cover of our abstraction mechanisms.

In preceding examples, we have shown how allowing multiple notations to cocexist compatibly in
the same cnvironment can be used to allow system maintainers flexibility in choosing a notation
which is appropriate for a particular application. Here we sec a second reason for allowing multiple
notations: to case the transition from cach gencration of system description languages to the next.

V. Summary

We have motivated the need for system-definition tools, specified some criteria which such tools
should satisfy, and proposed a sct of tools which satisfy those criteria.

System maintenance tools should be data driven, allowing new tools to be written as extensions to
the existing tools, driving off the same data.

The tools should be general purpose, allowing arbitrary kinds of systems to be built from them.
However, the need for gencrality should not infect the notation, making common cases notationally
too complex to specify conveniently.

We have suggested that these ends should be achieved through a protocol-based approach. The
proposcd approach deemphasizes the particular syntax used to specify a system and emphasizes
the importance of making systems with a well-defined functional behavior.

The proposal provides for the construction of systems which satisfy a pre-defined functional
protocol. This protocol allows system maintenance utilities to access and manipulate the system
specification. The proposed functions provide an interface for finding what files make up a system
and inquiring about how to perform system maintcnance operations such as editing, compilation,
instantiation, and hardcopying.

Because a system can be asked to produce a plan for an operation such as compilation without
actually performing the opcration, it is possible to write programs which inspect the plan, possibly
optimizing it or presenting it for interactive approval, before exccuting it.

The proposal also provides for the possibility of having multiple system description languages
available in the same environment at the same time. This capability allows a system maintaincr
the freedoom to choose the notation which is right for a given application, without requiring those
who need to manipulate {compile, load, erc.) the system to know which notation was uscd.

Examples have been given to illustrate how the various features of this proposal work together in
a varicty of situations to provide uscfulness and flexibility.

16

‘ References
[Bonanni 77] I.. E. Bonanni and A. L. Glasser, “SCCS/PWRB Uscr’s Manual,” Bell Laboratories,
Murray Hill, NJ, November, 1977.
[Feldman 78] S. I. Feldman, “Make—A Program for Maintaining Computer Programs,” Bell
Laboratories, Murray Hill, NJ, August, 1978.
[Mackinlay 84] J. Mackinlay and M. Genesereth, “Expressivencss of Languages,” Proceedings of
the National Conference on Artificial Intelligence, University of Texas, Austin, TX, August, 1984,
[Rees 84] J.-Rees, N. Adams and J. Mechan, The T Manual, Computer Science Department, Yale
University, New Haven, CT, January, 1984,

[Robbins 84] R. Reobbins, BUILD-—A System Construction Tool, Working Paper 261, Artificial
Intelligence Laboratory, MIT, Cambridge, MA, 1984,

[Steele 84] G. 1. Steele, Jr., Common LISP: The Language, Digital Press, Burlington, MA, 1984.

[Theriault 83] D. G. Theriault, Issues in the Design and Iinplementation of Act2, Technical Report
728, Artificial Intelligence Laboratory, MIT, Cambridge, MA, Junc, 1983.

[Weinreb 811 D. Weinreb and D. Moon, Lisp Machine Manual, Fourth Edition, MIT Artificial
Intclligence Laboratory, July, 1981,

Acknowledgements

Dan Brotsky, Dan Carncse, Henry Licberman, Chuck Rich, Patrick Sobalvarro, Dick Waters, and
Dan Weld read drafts of this paper, providing support and commentary. Comments by Waters
and Brotsky, who read multiple drafts, played an especially important role in improving the clarity
and organization of my presentation.

Stephen Gildea provided useful background documentation and answered questions about Unix
and its MAKE [acility.

Appendix A: Examples

These examples are provided to illustrate how the code in Appendix B might be used in practice.

Fxample 1

Consider a system made of three files, "foo"”, "bar", and "baz". Such a system could be
described conveniently by a DEFINE-SYSTEM form using the SIMPLE-SYSTEM notation as
follows:

(define-system Examplel simple-system
"oz:ps:<zippy>foo.lisp" "bar.lisp" "baz.lisp")

It could also be described using the MODULAR-SYSTEM notation. For example,

(define-system Examplel modular-system
(:module ml "oz:ps:<zippy>foo.lisp")
(:module m2 "bar.lisp"

(:needs (:instantiate ml)
 (:update ml)))
(:module m3 "baz.lisp"
(:needs (:instantiate m2)
(:update m2))))

In this case, the SIMPLE-SYSTEM notation is obviously to be preferred since it makes clear the
simplicity of the rclationships between the files. In other cases, however, SIMPLE-SYSTEM is not
going to be powerful enough to express the inter-module relationships, as our nest example will
illustrate. :

Example 2

There is a file called "MACROS" which requires compile time support from "MACRO-HELPERS".
The result of the expansions of these macros needs support from "MACRO-SUPPORT-1" and
"MACRO-SUPPORT-2" at compile time and "BASIC" at runtime. Uscrs of "MACROS" should
not have to know about these support files, so we want the fact that any time a module says it
needs "MACROS", all the other dependencics are added implicitly.

There is a file called "META-MACROS". The macros in that file will expand into calls to macros
in "MACROS", though its consumect should not have to know this.

There is a file called "UTILTITTES" which needs "MACROS" at compile time and "BASE" at
runtime. It uses the functions in "BASE" explicitly, so must specify an cxplicit dependency upon
it even though it happens that "MACROS" provides an implicit dependency.

There is a file called "MAIN" which depends upon "UTTLITIES™ at runtime and "META-MACROS"
at compile time,

(define-system Example2 modular-system

(:
(:
(:
(:

(:
(:

(:causes

(

full-name "The Second Example")
module base "0Z:PS:<FOO>BASIC.LISP")

module macro-helpers "0Z:PS:<{FOO>MACRO-HELPERS.LISP")
module macros "OZ:PS:<FOO>MACROS.LISP"

(:needs

(:instantiate macro-helpers))
(:causes.

(:needs

(:instantiate base)
(:update macro-support))))
module macro-support ("0Z:PS:<FOO>MACRO-SUPPORT-1.LISP"
"0Z:PS:<FOO>MACRO-SUPPORT-2.LISP"))
module meta-macros "OZ:PS:<FOO>META-MACROS.LISP"

(:needs
(:update macros))))

(:module util "OZ:PS:<FOO>UTILITIES.LISP"

(:needs

(:update macros)
(:instantiate base}))

:module main "0Z:PS:<FOO>MAIN.LISP"
(:needs

(:instantiate util)
(:update meta-macros))))

The cquivalent in DEFSYSTEM would be:
(defsystem Example2

(:
:full-name "The Second Example")

:module BASE ("0Z:PS:<FOO>BASIC.LISP"))

:module MACRO-HELPERS ("0Z:PS:<FOO>MACRO-HELPERS.LISP"))
:module MACROS ("O0Z:PS:<FOO>MACROS.LISP"))

:module MACRO-SUPPORT ("OZ:PS:<FOO>MACRO-SUPPORT-1.LISP"

(
(
(
(
(

P e W W W P NP N

short-name "EXAMPLLE2")

"QZ:PS:<FOO>MACRO-SUPPORT-2.LISP"))

:module META-MACROS ("O0Z:PS:<FOO>META-MACROS.LISP"))
:module UTILITIES ("OZ:PS:<FCO>UTILITIES.LISP"))
:module MAIN ("OZ:PS:<FOO>MAIN.LISP"))

:compile-Toad BASE)

:compile-Toad MACRO-HELPERS)

:compile~Toad MACROS NIL (:FASLOAD MACRO-HELPERS))
:compile-Toad MACRO-SUPPORT)

:compile-Toad META-MACROS)

:compile-load-init UTIL (MACRO-SUPPORT MACROS)

(:FASLOAD MACRO-SUPPORT MACROS)
" (:FASLOAD BASE))

:compile-load-init MAIN (MACRC-SUPPORT MACROS META-MACROS)

(:FASLOAD MACRO-SUPPORT MACROS META-MACROS)
(:FASLOAD UTIL BASE)))

Note, however, that cven in this small cxample, we can sec the characteristic pyramidal shape that
DEFSYTEM's dependency clauses tend to take on.

" Appendix B: Code

ivs —%- Mode:LISP; Package:USER; Base:10; Fonts:MEDFNB -*-

vis System

111 SYSTEM

vis Any flavor which claims to satisfy the SYSTEM protocol should
i+i Include this flavor in its component flavors list.

(defflavor system () ()
(:required-methods
:process-options
:process-option
:source-files
:generate-plan
texplain-plan
rexecute-plan
rexplain-action
:execute-action))

20

;344 Vanilla System

i34 VANILLA-SYSTEM

;3 A vanilla system knows about names and how to process options,

i+ but has no interesting options it is willing to process that would
;33 make it useful as something to instantiate.

(defflavor vanilla-system ((short-name nil) (full-name nil)) (system)
(:method-combination (:case :base-flavor-last
rgenerate-plan
iprocess-option
texplain-action
:execute-action))
:settable-instance-variables)

113 :NAME (to VANILLA-SYSTEM)
;1: Returns the name of the system
;13 Long name 1is preferred over short name where both are available.

(defmethod (vanilla-system :name) () (or full-name short-name))
133 :PRINT-SELF ... (to VANILLA-SYSTEM)

111 For debugging convenience,
i35 (PRIN1 mysys) types something 1ike: #<SYSTEM "My System" 343324>
i3+ (PRINC mysys) types something 1ike: My System

(defmethod (vanilla-system :print-self) (stream level prinl? &rest ignore)

level ;ignored
(let ((my-name (send self :name)))
(cond ((not prinl?) (format stream "~A" my-name))
(t
(format stream "#<~S ~A ~0>"
(typep self) my-name (%pointer self))))))

i+: :DESCRIBE (to VANILLA-SYSTEM)
11 Does that part of the explanation relevant to the flavor.
113 Other flavors mixing this in should use :AFTER or :BEFORE
i+ daemons to modify this method.

(defmethod (vanilla-system :describe) ()
(format t "~2&~A is a system of tlype ~S.~%" self (typep self))
self)

21

i3+ Options Facility
:PROCESS-OPTIONS options (to VANILLA-SYSTEM)

i+1 Maps across the given options, digesting them.
(defmethod (vanilla-system :process-options) (options)

(dolist (data options)

(Texpr-send self :process-option (car data) (cdr data)))

self) '
;+: :PROCESS-OPTION opt-name . opt-args (to VANILLA-SYSTEM)
;i3 :NAME Sets defaults for all name types.
:SHORT-NAME Sets the short name (overrides :NAME if given).
;17 :LONG-NAME Sets the long name (overrides :NAME if given).
;3 otherwise Signals an error.

(defmethod (vanilla-system :case :process-option :name) (data)
(if (not short-name) (setg short-name (string data)))
(if (not full-name) (setq full-name (string data))))

(defmethod (vanilla-system :case :process-option :short-name) (data)
(setg short-name (string data)))

(defmethod (vanilla-system :case :process-option :full-name) (data)
(setg full-name (string data)))

(defmethod (vanilla-system :otherwise :process-option) (key &rest data)
(ferror "The option ~S is not known to ~S.~%Data: ~S"
key self (copylist data)))

I
(XA}

22

;331 Planning/Executing Actions
i3i :GENERATE-PLAN action (to VANILLA-SYSTEM)

;13 This method returns abstract information about how to perform
i+ a specified ACTION. The reply is in the form of a 1ist of the
i3y form ((MSG1 . MSG-ARGS1) (MSG2 . MSG-ARGS2) ...), such that
i3 sending each MSG (with the given MSG-ARGS) to the object in

i1y order will accomplish the action in question.

i1 :UPDATE How to compile (or otherwise update) the system.

;13 ‘INSTANTIATE How to Toad (or otherwise instantiate) the system.
113 otherwise An error results if the action isn't defined.

(defmethod (vanilla-system :otherwise :generate-plan) (key &rest data)
" (ferror "The object ~S does not know how to ~S.~%Data: ~S"
self key (copylist data)))

i1+ :(EXECUTE-PLAN plan (to VANILLA-SYSTEM)

i+s The steps of the PLAN are executed,

;11 PLAN may be either a plan name (a symbol) or a list of steps
i+1 such as that returned by a :GENERATE-PLAN message.

(defmethod (vanilla-system :execute-plan) (plan)
(cond ((symbolp plan)
(send self :execute-plan (send self :generate-plan plan)))
(t
(dolist (step plan)
(lexpr-send self :execute-action step))))
self) -

i1s :(EXPLAIN-PLAN plan (to VANILLA-SYSTEM)

i3+ The steps of the PLAN are explained.

;13 PLAN may be either a plan name (a symbol) or a list of steps
i1 such as that returned by a :GENERATE-PLAN message.

(defmethod (vanilla-system :explain-plan) (plan)
(cond ({symbolp plan)
(send self :explain-plan (send self :geneirate-plan plan)))
(t
(dolist (step plan)
(Texpr-send self :explain-action step))))
self)

;+s ‘EXECUTE-ACTION name . args (to VANILLA-SYSTEM)

i35 :EXPLAIN-ACTION name . args (to VANILLA-SYSTEM)

y3+ Sending :EXECUTE-ACTION causes a given action to occur.

;14 Sending :EXPLAIN-ACTION describes what a given action would
i+vy do if performed.

;+: These messages are handled by :CASE method dispatch.

111 :LOAD Load a (Lisp) file.

i1s :COMPILE Compile a (Lisp) file.

i34 Otherwise an error.

(defmethod (vanilla-system :case :execute-action :load) (file)
(Toad file})

(defmethod (vanilla-system :case :execute-action :compile) (file)
(compiler:compile-file file))

(defmethod (vanilla-system :otherwise :execute-action) (key &rest data)
(ferror "The action ~S is not known to ~S.~%Data: ~S"
key self (copylist data)))

i1 :EXPLAIN-ACTION name . args (to VANILLA-SYSTEM)
133 If the action is valid but a description wasn't available, try
i to conjure up a plausible description based on the name of the

action and its arguments.

(defmethod (vanilla-system :otherwise :explain-action) (key &rest data) -
(cond ((not (memqg key (send self :execute-action :which-operations}}))
(ferror "The action ~S is not known to ~S, so can't describe it.~
~%Data: ~S" :
key self (copylist data)))
(t (format t "~&~A~B[~{~A~*, ~}.~]~%"
(string-capitalize-words key) data))))

vvis Simple System
i+ SIMPLE-SYSTEM

i1y A simple system is a system which has left-to-right file
;+: dependencies.

(defflavor simple-system ((source-files '())) (vanilla-system)
:gettable-instance-variables)

i+ tAFTER :DESCRIBE (to SIMPLE-SYSTEM)
i+: Tacks on some information about the files which make up this system.

(defmethod (simple-system :after :describe) ()
(format t "~&It has source files~{~<{~%~1:; ~S~>~t,~}.~%" source-files))

;33 tPROCESS-OPTIONS (to SIMPLE-SYSTEM)
;33 The only options allowed to a simple system is a list of file
;13 names with left-to-right ordering dependencies.

(defmethod (simple-system :process-options) (options)
(when options
(setq source-files '())
(let ((default-pathname (fs:merge-pathname-defaults (car options))))
(dolist (file options)
(setq default-pathname
(fs:merge-pathname~defaults file default-pathname))
(push default-pathname source-files))
(setq source-files (nreverse source-files)))
t)) _
i1s :GENERATE-PLAN :UPDATE (to SIMPLE-SYSTEM)
;13 To update this kind of system, one must compile and load each
i1y of its files 1in sequence.

(defmethod (simple-system :case :generate-plan :update) ()
(mapcan #'(lambda (file)
(list (1ist ':compile file)
(1ist ':load (send file :new-pathname
itype :bin))))
source-files))

133 :GENERATE-PLAN :INSTANTIATE (to SIMPLE-SYSTEM)
137 To instantiate this kind of system, one must simply load each
1oy of its files in sequence,

(defmethod (simple-system :case :generate-plan :instantiate) ()
(mapcan #'(lamhda (file)
(1ist (1ist ':load
(send file :new-pathname :type :bin))))
source-files))

25

i1+ Pre-Planned System
i+: PREPLANNED-SYSTEM

iv+ A preplanned system is a system which has its plans for manipulation
ivi specified explicitly rather than inferred.

(defflavor preplanned-system ((files '())
(plans "()))

(vanilla-system))
i3 tPROCESS-OPTIONS (to PREPLANNED-SYSTEM)

33 The clauses in the DEFINE-SYSTEM for this kind of system are
isi just (<plan-name> . <commands>).

- (defmethod (preplanned-system :process-options) (options)

(setq files (car options))
(setq plans (cdr options)))
ii: tGENERATE-PLAN (to PREPLANNED-SYSTEM)
;33 This does simple table-lookup to Find the plan.

(defmethod (preplanned-system :generate-plan) (operation)
(let ((p (assq operation plans)))

(cond (p (cdr p))
(t (ferror "No plan for operation ~S" operation)))))

26

i++s Modular System
33 MODULAR-SYSTEM

;i3 A modular system is a system which allows specification of
i1+ inter-module dependencies, both implicit and explicit.

(defflavor modular-system ((modules nil}) (vanilla-system)
rinitable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

i3+ AFTER :DESCRIBE (to MODULAR-SYSTEM)

i3+ When a modular system is described, we tack on information
;3 saying how many modules it has and then we ask each module
i1+ to describe itself.

(defmethod (modular-system :after :describe) ()
(let ((m-Tist (send self :modules)))
(format t "~&It has ~D module~:P:" (length m-1ist))
(doTist (m m-1ist)
(send m :describe))))

133 :GET-MODULE name (to MODULAR-SYSTEM)
i+ Returns the component module with the given name (or NIL if none).
(defmethod (modular-system :get-module) (name)
(dolist (m modules)
(if (eq (send m :name) name) (return m))))

i34 :SOURCE-FILES
i1y Returns a Tist of the source files for the system.
(defmethod (modular-system :source-files) ()
(apply #'append
(mapcar #'(lambda (module)
(send module :source-files))
modules)))

i+ tPROCESS-OPTION :MODULE . spec (to MODULAR-SYSTEM)
i+ Declares how to handle the :MODULE option. Creates an object
i+ of type MODULE and lets it process the associated spec.

(defmethod (modular-system :case :process-option :module) (&rest spec)
(setq modules
{(nconc modules
(ncons (make-instance 'module
:system self

:spec (copylist spec))))))

27

ivs Module

i3+ MODULE

i1y A module is a collection of files to be used as a building
733 block for modular systems.

(defflavor module ((name nil)
(system nil)
(spec nil)
(source-files '())
(assertions '())
(needs '())
(causes '()))

()
:initable-instance-variahles
:gettable-instance-variables
:settable-instance-variables
(:method-combination (:case :base-flavor-last :process-assertion)))

117 AFTER CINIT (to MODULE)
113 See to it that if SPEC was given, it gets appropriately processed.
(defmethod (module :after :init) (&rest ignore)

(send self :process-spec spec))

;13 sPRINT-SELF ... (to MODULE)

i3+ For debugging convenience,

117 (PRIN1 mod) types something like: #<Module MYSYSeMOD1 234567>
1+ (PRINC mod) types something like: MOD1

(defmethod (module :print-self) (stream level prinl? &rest ignore)
level ;ignored ‘
(1et ((my-name (send self :name)))
(cond ((not prinl?) (format stream "~A" my-name))
(t) .
(format stream "#<{~S ~@[~Ae~]~:[Anonymous~;~:*~A~] ~0>"
(typep self)
(Tet ((sys (send self :system)))
(if sys (send sys :short-name)))
my-name
(%pointer self))))))

133 :DESCRIBE (to MODULE)
133 Details the. source files and dependency information
i+y for the module,.

(defmethod (module :describe) ()
(format t "~2& ~A~Q[~{~%~A~t,~}~]~%" self source-files)
(do ((n needs (cddr n))) ‘
{((null n))
(format t "~& ~S dependenc~BP: ~{~S~t, ~}.~%"
(car n) (length (cadr n)) (cadr n)))
(format t "~&")
self)

28

i+ :PROCESS-SPEC spec (to MODULE)

i3 Procéss the given SPEC absorbing relevant info.

;31 The NAME is only absorbed if name info isn't already set up.

143 This is because :PROCESS-SPEC may be recursively called on others'
i1+ assertion lists if there are included modules with specs of their
;33 own. In such case, we want to accept their attributes, but not

i+; their names.

;13 The ASSERTIONS are processed next, because presumably they specify
i+y prerequisites for this module and any files they need loaded should
i+ get set up before we set up the files particular to this module.

e
R

133 Finally, the FILES associated with this module are processed.

(defmethod (module :process-spec) (s)
(when s
(if (not name) (setg name (car s)))
(send self :process-assertions (cddr s))
(send self :process-files (cadr s))))

i+s :PROCESS-FILES files-1ist (to MODULE)
117 Adds file info given in FILES-LIST to the module's master FILES 1list.
(defmethod (module :process-files) (file-1list)
(if (atom file-11ist) (setq file-Tist (1ist file-list)))
(dolist (file file-Tlist)
(cond ((typep file 'fs:pathname)
(setq source-files {nconc source-files (ncons file))))
((stringp file)
(setq source-files (nconc source-files
(ncons (fs:parse-pathname file)))))
((symbolp file)
(send self :process-spec
(send (send system :get-module file) :spec)))
(t ‘
(ferror "Bad object in file 1ist: ~S - ~8" file self)))))

;31 :PROCESS-ASSERTIONS spec (to MODULE)

i3 Iterates across assertions, processing each.

(defmethod (module :process-assertions) (assertion-list)
(dolist (assertion assertion-l1ist)
(lexpr-send self :process-assertion assertion)))

29

i+i tPROCESS-ASSERTION . data (to MODULE)

vi+ This method is used to process dependency assertions, etc.
i+: for the given module. It uses case method dispatch:

;7+ :NEEDS Declares need to instantiate modules at certain times.
i3+ :CAUSES Declares assertions to be forwarded to the consumer.
143 Otherwise an error,

(defmethod (module :case :process-assertion :needs) (&rest data)
(tet ((p1 (locf needs)))
(dolist (item data)
(Tet ((marker (car item)))
(dolist (module-name (cdr item))
(when (not (memg module-name (get pl1 marker))) .
(Tet ((m (send (send self :system) :get-module module-name)))
73+ This may be overly conservative, but will work...
(send self :process-assertions (send m :causes))
(setf (get pl marker)
(nconc (get pl marker) (ncons module-name))))))))))

(defmethod (module :case :process-assertion :causes) (&rest data)
3 Filtering this is technically unnecessary, but it will keep
;3 redefinition from swamping us.

(dolist (item data)
(if (not (mem #'equal item causes))
(setf causes (nconc causes (ncons item))))))

(defmethod (module :otherwise :process-assertion) (key &rest data)
(ferror "The ~S assertion is not known to ~S.~%Data: ~S"
key self (copylist data)))

30

ivss User Interface
i1+ (CREATE-SYSTEM name type [options])

113 Creates a system object of the given TYPE, initializing it with
;vs with the given NAME and OPTIONS. Returns the created object without
134 storing it permanently anywhere.

(defun create-system (name type &optional options)
(1et ((system (make-instance type)))
(send system :process-option :name name)
(send system :process-options options)
system))

i+: (SYSTEM name)

i1y Gets the definition of some globally defined system object.
(defsubst system (name) (get name 'system})
113 (DEFINE-SYSTEM name type . options)

i1+ Creates and initializes a system with the given namse.
133 Stores the definition globally for access later.

(defmacro define-system (name type &body data)
\(setf (system ',name)
(create-system ',name ',type ',data))})

3

-

iy Utiltdity functions
(defun process-options (system options-alist)

"Tells SYSTEM to process the given OPTIONS-ALIST."
(send system :process-options options-alist))

(defun process-option (system option-name &rest option-data)
"Tells SYSTEM to process an individual option, given its NAME and DATA."
(1expr-send system :process-option option-name option-data))

(defun source-files (system)
"Returns a list of the source files for SYSTEM."
(declare (values files}))
(send system :source-files))

(defun plan (system operation)

"Returns a list of ACTIONS (plan steps) for doing OPERATION."
(declare (values actions)) ‘
(send system :generate-plan operation))

(defun execute (system actions)
"Tells SYSTEM to execute the given ACTIONS (pTlan steps)."
(send system :execute-plan actions))

(defun explain (system actions)
"Tells SYSTEM to explain the given ACTIONS (plan steps)."
(send system :explain-plan actions))

(defun execute-action (system action)
"Tells SYSTEM to execute the given ACTION (plan step)."
(send system :execute-action action}))

(defun explain-action (system action)
"Tells SYSTEM to explain the given ACTION (plan step)."
- (send system :explain-action action))

32

