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Abstract
Image analysis problems, posed mathematically as variational principles or as partial differential
cquations, are amenable to numerical solution by relaxation algorithms that arc local, iterative,
and often parallcl. Although they arc well suited structurally for implementation on massively

parallel, locally-interconnected computational architectures, such distributed algorithins are seriously -

handicapped by an inherent inefficicncy at propagating constraints between widely separated
processing elements.  Hence, they converge extremely slowly when confionted by the large
representations necessary for low-level vision. Application of multigrid methods can overcome
this drawback, as we established in previous work on 3-D surface reconstruction. In this paper, we
develop efficient multircsolution itcrative algorithms for computing lightness, shape-from-shading,
and optical flow, and we evaluate the performance of these algorithms on syathetic images. The
multigrid methodology that we describe is broadly applicable in low-level vision. Notably, it is an
appealing strategy to use in conjunction with regularization analysis for the cfficient solution of a
wide range of ill-posed visual reconstruction problems.
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1. Introduction

Variational principles and partial differential equations have played a significant role in
the mathematical formulation of low-level visual information processing problems (representative
examples include [Horn, 1974, 1975; Ullman, 1979; Horn & Schunck, 1981; Ikeuchi & Horn;
1981; Narayanan ef al, 1982; Bajcsy & Broit, 1982; Hummel & Zucker, 1983; Grimson, 1983;
Terzopoulos, 1982, 1983; Nagel, 1983; Hildreth, 1984; Brady & Yuille, 1984]). An attractive feature
of variational and differential formulations (once discretized) is the possibility of computing the
desired solutions by a popular class of numerical relaxation algorithms. These iterative algorithms
require only local computations which can usually be performed in parallel by many locally
communicating processors distributed in computational networks or grids.

Local, parallel algorithms are appealing in the context of low-level vision [Rosenfeld et
al., 1976; Ullman, 1979; Ballard et al, 1983]. At a certain level of abstraction they do not
appear incompatible with the apparcut Structtxre of advanced biological vision systems. Moreover,
they are ideally suited to implementation on massively parallel computers with numerous simple,
locally interconnected processing elements. Such potentially powerful architectures will certainly
proliferate, pending imminent advances in VLST technology [Batcher, 1980; Hillis, 1981].

The desired solutions to many visual problems appcar to possess certain global properties
(consistency, smoothness, minimal cnergy, etc.), which are expressed formally by the variational

principle or associated partial differential equation formulations.! Given only local communication

capabilities among processing elements, however, global properties can only be satisfied indirectly,
typically by iteratively propagating visual constraints across the grid network. Indirect propagation
can result in substantial computational inefficiency, since the computational grids necessary for low-
level vision applications tend to be extremely large. Convergence of the iterative process is often
so slow as to nearly neutralize the computational power offered by massive parallclism. Indeed,
for fine discretizations on large grids, excruciatingly slow convergence rates have been observed in
iterative algorithms for computing lightness [Blake, 1984; sec also Horn, 1974], shape-from-shading
[Ikeuchi & Horn, 1981; Smith 1982], optical flow [Horn & Schunck, 1981; Nagel, 1983], 3-D
surfaces [Grimson, 1983; Térzopoulos, 1982, 1983], and other visual rcconstruction problems.

Since spatial locality of computation is dependent on spatial resolution, local (e.g., nearest
neighbor) computations on a coarse grid over a given region are analogous to more global
computations on a fine grid over the same region. This suggests the possibility of counteracting
the sluggishness of global interactions by deploying local iterative processes over a multiresolution
hicrarchy of grids. This is the basis of multigrid relaxation methods which are gaining popularity
in applied numerical analysis [Hackbusch & Trottenberg, 1982]. The computational structure of

! Variational and differential formulations can be related through the Euler-Lagrange equations of the calculus
of variations, given appropriate continuity and symmetry (or sclf adjointness) conditions [Courant & Hilbert,
1953]. '
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multigrid methods bears an interesting analogy to the multiresolution nature of spatial frequency
channels in the human carly visual system [Braddick, et al, 1978]. The methods are also related
to certain multiresolution image processing structures that have been proposed, notably pyramids
[Rosenfeld, 1984].

In earlier work, we developed an efficient surface reconstruction algorithm based on multigrid
relaxation methods [Tcrszoulos, 1982, 1983] and we suggested, as has Glazer [1984], that multigrid
methods are broadly applicable in low-level computer vision. After a brief overview of multigrid
mcthodology, we apply it to three other vision problems: the well-known problems of computing
lightness, shape-from-shading, and optical flow from images. We develop novel multiresolution
algorithms for each problem. Our cmpirical results indicate that these algorithms offer order-of-
magnitude gains in efficiency over their conventional single level counterparts.

2. Multigrid Methodology

Pioneering investigations into multigrid methodology include the work of [Fedorenko, 1961],
[Bakhvalov, 1966], [Brandt, 1973, 1977], and [Nicolaides, 1977]. It has been applied to many
boundary value problems (see [Brand, 1982] for an extensive bibliography) and there has also been
some development in the context of variational problems [Nicolaides, 1977; Biandt, 1980].

2.1. Multigrid Relaxation Methods

Multigrid relaxation methods takce advantage of multiple discretizations of a continuous
problem over a range of resolution levels. The coarser levels trade off spatial resolution for
direct communication paths over larger distances. Hence, they effectively accelerate the global
propagation of information to amplify the overall efficiency of the iterative relaxation process.

The inherent computational sluggishness of local iterative algorithms can be studied from a
spatial frequency perspective. A local Fourier analysis of the error function (or, more conveniently,
the dynamic residual function) from one itcration to the next shows that high-frequency components
of the error — those components with wavelengths on the order of the grid spacing — are short-
lived, whereas low-frequency components persist through many iterations [Brandt, 1977]. Hence,
common (L, or Lg,) error norms decrease sharply during the first few iterations, so long as there are
high-frequency components to be annihilated, but soon degenerate to a slow, asymptotic diminution
when only low-frequency components remain (see Fig. 1). This suggests that while relaxation is
inefficient at completely annihilating the error function, it can be very cfficient at smoothing it.
From this point of view, the grid hicrarchy cnables the efficient smoothing properties of relaxation

to be exploited over a wide range of spatial frequencics.

Empirical studies of model problems (Poisson’s cquation in a rectangle) indicate that multigrid
methods can converge in esscntially order O(N) number of operations, where N is the number of
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Figure 1. Asymptotic error reduction by relaxation. The mean square (dynamic residual) error is plotted
as a function of the iteration number for a sequence of (Gauss-Seidel) relaxation iterations of a surface
reconstruction algorithm. The curve exhibits a typical behavior of local iterative methods: Convergernce is
rapid during the first few iterations, but quickly degenerates to slow asymptotic error reduction,

nodes in the grid [Brandt, 1977]. This can be compared to typical complexities of O(N3) operations
for the solution of model problems by standard (single level) relaxation. As a consequénce,

multigrid methods potentially offer dramatic increases in efficiency over standard relaxation me 1ods
in low-level vision applications, since N tends to be very large (order 10* to 108, or more). For’
comparative complexity analyses, the total computational expense of multigrid methods may be
measured in convenient machine independent units. The basic work unit is defined as the amount
of computation required to perform one iteration on the finest grid in the hierarchy.

Our adaptation of multigrid mcthods to visual processing has a number of features: (i)
multiple visual representations covering a range of spatial resolutions, (ii) local, iterative relaxation
processes that propagate constraints within each representational level, (iii) local coarse-to-fine

prolongation processes that allow coarser representations to constrain finer ones, (iv) ﬁnc-to-co‘arse
restriction processes that allow finer representations to constrain and improve the accuracy of COET‘SCI‘
ones, and (iv) (recursive) coordination schemes that enable the hicrarchy of representations and

component processes to cooperate towards increasing efficiency.

In multigrid methods, the intralevel processes usually are basic relaxation methods such as
Gauss-Scidel or Jacobi relaxation, the prolongation processes are local Lagrange (polynomial)
-interpolations, and the restriction processes are local averaging opcrations. The exact form of these
operations is problem-dependent.

2.2. Discretization

Appropriate relaxation processes can be derived by local discretization of the continuous
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problems. The finite element method [Strang & Fix, 1973], a gencral and powerful local
discretization technidue, can be applied directly to variational principle formulations of visual
problems [Terzopoulos, 1982]. When the visual problem is posed as a partial differential equation,
local discretization may be carried out using the Jinite difference method [Forsythe & Wasow, 1960].

The basic idea behind the finite element method is that a global approximation can result from
interactions among many very simple local approximations. This is accomplished by tessellating
the continuous domain into a large number of small subdomains or elements E whose dimensions
depend on a fundamental size h. The approximation within elements depends on a small number of
parameters — the values of the solution, and/or some of its derivatives, at a set of nodes associated
with each element. The power of the method stems from the fact the local approximations can be
based on low-order polynomials, This makes it relatively easy to express the continuous functional
as a discretc summation over all the element contributions. If the variational principle is quadratic,
the resulting discrete problem takes the form of a large system of linear equations A*u* = f?,
where u” is the vector of nodal variables. The finite element method can also be characterized as a
systematic procedure for generating finite element approximating spaces whose local-support basis
functions make A" sparse (i.e., most of its elements are zero).

The finite difference method is applied differently. Typically a grid of nodes with spacings
proportional to a parameter A is set up over the domain. The diffcrential operator is then replaced
by finite difference equations involving nodal variables at ncighboring nades. The collection
of finite difference cquations defines a discrete system which approximates the given differential
equation. If the differential operator is linear (as are the Euler-Lagrange equations of quadratic
variational principles) and a linear finite difference approximation is employed, the discrete system
is again a linear system APu? = f*. Although the total number of nodes N is generally large, each
finite difference equation involves only a few nodal variables. Therefore, the linear system is again

sparse.

While the finite difference method is generally casier to apply, the finite element method offers
a much sounder convergence theory, as well as a flexibility that allows the spatially nonuniform
discretization of domains having complicated shapes. Nonetheless, both discretization techniques
yield large, sparse systems of linear equations in a wide range of visual applications. A great deal
of effort in numerical analysis has been directed to the solution of such systems, which turn out to
“be especially well suited for solution by local, parallel, itcrative methods, particularly the relaxation

methods that we have been discussing.

2.3. Multigrid Structure and Coordination

Our spatially uniform discretizations of the continuous visual problems in this paper will
yield uniform grids at cach level of the multigrid hierarchy. Application of multigrid methods
can be simplified substantially given a 2:1 decrease in grid resolution from any level to the next
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Figure 2. Possible gnd organization of a multiresolution algorithm. A small poruon of three levels of the 2:1
multigrid hierarchy is shown. Only nearest-neighbor mterproccssor connections a&e included.

coarser level. Fortunately, this resolution ratio appears to be near optima(y with regard to multigrid
convergence rates [Brandt, 1977]. Fig. 2 illustrates a portion of three Egrlds of a 2:1 multigrid
hierarchy. In a serial implementation the central processor operates at cach grid node sequentially,
whereas in a fully parallel implementation, each node represents a scp%arate processing clement
i
|

within a distributed local-interconnect architecture (sce Fig. 2).

The multiresolution visual algorithmé to be described utilize sim;fple injection Ij——y for
the fine-to-coarse restrictions, bilincar interpolation I;_;—; for the coazrse-to-ﬁne prolongation,
and an adaptive multigrid coordination scheme which was employed sué&ccssfully in our surface
reconstruction algorithm (sce [Terzopoulos, 1982, 1983] for details). 'I;he general coordination
scheme first performs a sufficient number of relaxation iterations to solve ?w coarsest level discrete
system AMu® = f*1 to desired accuracy (procedure SOLVE), and then proceeds to the finest level
[ = L according to
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procedure FMG
uh « SOLVE (1, uM, fM);
for [« 2 to L do
begin
VR T utier g
MG (I, vh, fh)
end;

applying the multigrid algorithm

procedure MG ({, u, g)
if =1 then u«~ SOLVE (1, u, g
else
begin
for i—1 to ny [while ...] do u« RELAX (I, u, g);
Ve D ug
d— Ahi-1y 4 I,S,I_l(g——A"‘u); }
for i1 to ny [while ...] do MG ({—1, v, d);
Ueu+ Loy — Ty u);
for i1 to n3 do [while ...] u« RELAX (!, u, g)
end;
After n; relaxation iterations (procedure RELAX) have been performed at level !/, MG performs a
restriction to the next coarser level { — 1, It then calls itself recursively on the coarser level ng
times. Finally, it performs a prolongation from the coarser level back to level I, following up with
ng more iterations on level . The equations on the coarsest level [ = 1 may be solved to desired
accuracy with sufficiently many iterations (procedure SOLVE). One can rcadily show that when MG
is invoked on level X it calls RELAX a total of ny*~!(ny + n3) times on level ! £ 1 and it calls
SOLVE ny*—! times on level 1. In general, most of the relaxation iterations are performed on the

coarser levels [Hemker, 1980].

The optional [while ...] clauses denote conditions that may be checked during the
computation and used to terminate some iterations. Dynamic conditions, typically convergence
rates measured by error norms, are incorporated into adaptive coordination schemes, whereas fixed
schemes are controlled only by the constants ny, ng, and nz [Brandt, 1977]. Although adaptive
schemes tend to be more efficient in practice, fixed schemes lend themselves better to theoretical
analysis and, morcover, they are casier to implement on distributed local-interconnect architectures
due, in part, to the absence of error norms which require global computations.

3. The Lightness Problem

The lightness of a surface is the perceptual correlate of its reflectance. Irradiance at a point
in the image is proportional to the product of the illuminance and reflectance at the corresponding
point on the surface. The lightness problem is to compute lightness from image irradiance, without
any precise knowledge of cither reflectance or illuminance.
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3.1. Analysis

The retinex theory of lightness and color proposed by Land and McCann [1971] is based on the
observation that illuminance and reflectance patterns differ in their spatial properties. Illuminance
changes are usually gradual and, therefore, typically give rise to smooth illumination gradients,
while reflectance changes tend to be sharp, since they often originate from abrupt pigmentation
changes and surface occlusions. Horn [1974] proposcd a two-dimensional generalization of the
Land-McCann algorithm for computing lightness in Mondrian scenes, consisting of planar areas
divided into subregions of uniform matte reflectance.

Let R(z,y) be the reflectance of the surface at a point corresponding to the image point (z, y)
and let S(z,y) be the illuminance at that point. The irradiance at the image point is given by
E(z,y) = S(z,y) X R(z,y). Denoting the logarithms of the above functions as lowercase quantities,
we have e(z, y) = s(z,y) + r(z,y). Applying the Laplacian operator A gives d(z,y) = Ae(z,y) =
As(z, y)+ Ar(z,y). In a Mondrian, illuminance is assumed to vary smoothly so that As(z, y) is finite
everywhere, while Ar(z, y) exhibits pulse doublets at intensity edges separating ncighboring regions.
A thresholding operator 7' can be applied to discard the illuminance component: T[d(z,y)] =
Ar(z,y) = f(z,y). Hence, the reflectance R is given by the inverse logarithm of the solution to
Poisson’s equation '

Ar(z, y) == f(fE, y)’ in Q,
where Q is the planar region covered by the image.

Horn solved the above partial differential equation by convolution with the appropriate
Green’s function. We instead pursue a local, iterative solution based on the finite difference
method. Suppose that 1 is covered by a uniform square grid with spacing A. We can
approximate Ar = ry; + ryy using the order A% approximations oy = (1, ; — 2rf ; +1F_, ;)/h?
and ryy = (tF ;4 —2r}; +12,_;)/h® to obtain a standard discrete version of Poisson’s equation
(hpy 400y j+ b+t —4rt)/h® = f} ;. This denotes a system of linear equations with

sparse coeflicient matrix.

Rearranging, the Jacobi relaxation step is given by

(nt1) Ly (n) (n) (n) (n)
= Z(I?H,jn 1y i T —h2fi{j),

where the bracketed superscripts denote the iteration index. Jacobi relaxation is suited to parallel

synchronous hardware, whereas the Gauss-Scidel relaxation step given by

Rntl) 17y (n) n (ntl) | (n) | on (n4l) g
Tig = g(‘m,:’ Tl BRI EE R Y e - K7

is more suitable on a serial computer and, moreover, requires less storage.
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Figure 3. Synthesized Mondrian images. These images, input to the algorithm, contain patches of uniform
reflectance and a left-to-right illumination gradient. The three smaller images are increasingly coarser sampled
versions of the largest image which is 129 x 129 pixels, quantized to 256 irradiance levels.

We note ia passing that Poisson’s equation Ar = f is the Euler-Lagrange equation for the
variational principle associated with a membrane problem. The solution can be characterized as
the deflection v(z,y) = r(z,y) of a membrane subject to a load f(z,y), and it minimizes the
potential energy functional &(v) = [ [ $(v2 + v2) — fvdzdy [Courant & Hilbert, 1953]. Blake
[1984] offers an alternative variational principle for lightness. Posing the lightness problem as
a variational principle permits the direct applicationi of the finite element discretization method,
which for instance does not require a uniform discretization of 12,

3.2. Results

A four level multiresolution lightness algorithm (with grid sizes 129 X 129, 65 X 65, 33 X 33, and
17 X 17) was tested on a synthesized Mondrian scene consisting of patches of uniform reflectance,
subjected to an illumination which increases quadratically from left to right. The original image,
which is 129 X 129 pixels in size, and three coarser-sampled versions are shown in Fig. 3. All
images are quantized to 256 irradiance levels. The grid function f};, shown in Fig. 4, was
computed by maintaiﬁing only the peaks in the Laplacian of r* ;. Zero boundary conditions were
provided around the edges of the images, and the computation was started from the zero initial

approximation r}* ; = 0.
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Figure 4. The grid function f?; on each level. These functions were obtained by maintaining only the peak
in the Laplacian of rf; at each level. :

Fig. S shows the reconstructed Mondrian which now lacks most of the illumination gradient.
Reconstruction of the image from the functions shown in Fig. 4 required 33.97 work units. The
total number of iterations performed on each level from coarsest to finest respectively is 142, 100,
62, and 10. In comparison, a single-level lightness algorithm- required about 500 work units to
compute a solution of the same accuracy at the finest level in isolation. The single-level algorithm
requires at least as many iterations for convergence as there are nodes across the surface, since
information at a node propagates only to its nearest neighbors in one iteration. The multilevel
lightness algorithm is much more efficient because it propagates information more effectively at the

coarser scales.

4. The Shape-From-Shading Problem

In general, image irradiance depends on surface geometry, scene illuminance, surface
reflectance, and imaging geometry. The shape-from-shading problem is to recover the shape of
surfaces from image irradiance. By assuming that illuminance, reflectance, and imaging geometry
are constant and known, image irradiance can be related directly to surface orientation.

4.1. Analysis

Let u(z, y) be a surface patch with constant albedo defined over a bounded planar region (.
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Figure 5. The reconstructed Mondrian. This is the solution computed after 33.97 work units by the four-level
lightness algorithm. Most of the illumination gradient in Fig. 3 has been eliminated.

The relationship between the surface orientation at a point (z,y) and the image irradiance there
E(z,y) is denoted by E(p, ¢), where p = u, and ¢ = u, arc the first partial derivatives of the surface
function at (z,y). The shape-from-shading problem can be posed as a nonlinear, first-order partial
differcntial equation in two unknowns, called the image-irradiance equation: E(x,y) — R(p, ¢) = 0
[Horn, 1975].. Surface orientation cannot be computed strictly locally because image irradiance
provides a single measurement, while surface orientation has two independent components. The
image irradiance equation provides only onc explicit constraint on surface orientation.

Ikeuchi and Horn [1981] proposed an additional surface smoothness constraint and the
use of sufface occluding contours as boundary conditions. Since the p—¢ parameterization of
surface orientation becomes unbounded at occluding contours, however, surface orientation was
reparameterized in terms of the (bounded) stereographic mapping: f = 2ap, g = 2aq, where
a=1/(1+v1+p?+¢?).

These considerations are formalized by a variational principle involving the minimization of
the functional

ettio) = [ [+ 1+ v vy s} [ [ 15— R 00 oy

The first integral incorporates the surface smoothness constraint. The second is a least-squares term
which coerces the solution into satisfying the image irradiance equation by treating the equation as

10
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Figure 6. Lambertian sphere images. These synthetic images input to the algorithm show a Lambertian
sphere distantly illuminated from the viewing direction. The three smaller images are increasingly coarser
sampled versions of the largest image which is 129 X 129 pixels, quantized to 256 irradiance levels.

a penalty constraint weighted by a factor . Other variational formulations for shape-from-shading
have been suggested, e.g., [Brooks & Horn, 1984].

The Euler-Lagrange equations are given by the system of coupled partial differential equations

Af - X[E(xy y) - R(f: g)]Rf =0,
Ag — NE(z,y) - R(f, )|y = 0.

Discretizing these equations on a uniform grid with spacing h using standard finite difference
approximations yields the Jacobi relaxation scheme

+1 n n n n
£, — ot 1 4 N[y - R(EE, ™, 82 CYI R,
(n+1) n 5 (n) (n) n
gl = ogh ) e N[Ey - R(EE T ek R,

where (p[f?,j] = [f?—l,j + f?—f—l,j + P?,j—-l + f:",j-u]/’1 and 45{&"‘,;,‘] = [8?--1,,' + g?+1,j -+ 8?,3'_1 +g?.j+1}/4
are local averages of f* and g* at node (i, 5) (a factor of 1/4 has been absorbed into \), R, =
OR[Sf, and Ry, = R /dg. On a sequential computer, we prefer to use the analogous Gauss-Scidel
relaxation in our multilevel algorithm, due to its greater stability, faster convergence, and reduced
memory requirements. Appropriate boundary conditions can be spccified at occluding contours in

the image.

1
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Figure 7. Surface normals of the Lambertian sphere. The solution at the four resolutions that were obtained
after 6.125 work units are shown.

4.2. Results

A four level shape-from-shading algorithm (with grid sizes 129 X 129, 65 X 65, 33 X 33, and
17 % 17) was tested on a synthetically-generated image of a Lambertian sphere distantly illuminated
from the viewing direction by a point source. The original image, which is 129 X 129 pixels in size,
and three coarser-sampled versions are shown in Fig. 6. All images arc.quantized to 256 irradiance
‘levels. For the Lambertian surface, we employed the expression R(f,g) = max|0, cos:], where
cosi = [16(fsf +geg) + (4 = 12 = g2)(4 — 12— g2)]/{(4 + J2 + ¢2)(4 + /2 + g2)] and where f, and
g, are the light source direction components [Ikcuchi & Horn, 1981], and analogous expressions
for its derivatives RB; and R,. Thc oricntation of the surface was specified around the occluding
contour of the sphere, and by treating the contour itself as a possible orientation discontinuity, the
grid functions f and g were allowed to make discontinuous transitions across it. Computation was

started from the zero initial approximation f == g = 0.

12
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Figure 8. Surface representations of the Lambertian sphere. The depth representations on the left were
generated by a four-level surfaceé reconstruction algorithm in 8.8 work units using the normal vectors in
Fig. 7 as orientation constraints. On the right, the orientation constraints are depicted as “needles” on the
reconstructed surfaces. Only the three coarsest levels are shown, since the finest resolution surface is too dense
to render as a 3-D perspective plot.

13
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The solution computed at the four levels after 6.125 work units are shown in Fig. 7. The
total number of iterations performed on cach level from coarsest to finest respectively is 32, 10, 4,
and 4. In comparison, a single-level algorithm required close to 200 work units to obtain a solution
of the same accuracy at the finest level in isolation. As in the casc of the lightness problem, the
single-level algorithm requires at least as many iterations for convergence as there are nodes across
the surface, since information at a node propagates only to its nearest neighbors after each iteration.
Convergence is somewhat faster, however, because shading information is available at every node
inside the occluding contour to constrain surface shape according to the image irradiance equation.
In any case, the multilevel shape-from-shading algorithm is again much more efficient because it
enables information to propagate quickly at the coarser scales.

To obtain a representation of the surface in depth, the surface normals in Fig. 7 were
introduced as orientation constraints to a four-level surface reconstruction algorithm with identical
grid sizes [Terzopoulos, 1984a]. The normal vectors were first transformed from the f—g
stereographic parameterization used in the shape-from-shading algorithm to the p—¢q gradient space
parameterization used in the surface reconstruction algorithm using the formulas p = —4f/(f% +
g?—4) and ¢ = —4g/(f? + g% —4). Nodes outside the occluding contour of the sphere were treated
as depth discontinuitiés. Fig. 8 shows the surfaces generated by the algorithm at the three coarsest
resolutions. The reconstruction required an additional 8.8 work units.

5. The Optical Flow Problem

Optical flow is the distribution of apparent velocities of irradiance patterns in the dynamic
image. The velocity field and its discontinuitics can be an important source of information about
the configurations and motions of visible surfaces. The optical flow problem is to compute a
velocity ficld from a temporal series of images.

5.1. Analysis

Horn and Schunck [1981] suggested a technique for determining optical flow in the restricted
case where the observed velocity of image irradiance patterns can be attributed directly to small
interframe motions of surfaces in the scene. Under these circumstances, the change in image
irradiance at a point (z,y) in the image plane at time ¢ and the motion of the irradiance pattern
can be related by the flow equation E;u + Eyv + Ey == 0, where E(z, y,t) is the image irradiance,
and u == dz/dt and v = dy/d¢t are the optical flow component functions. '

An additional constraint is necded to solve this lincar equation for the two unknowns u and v.
If opaque objects undergo rigid motion or deformation, most points have a velocity similar to that
of their neighbors, cxf:cpt where surfaces occlude one another. Observing that the vclocity field
varies smoothly almost everywhere, optical flow can be determined by finding the flow functions
u(z,y) and v(z,y) which minimize the functional

14
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€(u,v)=g2/L(u:+u§)+(v§+v§)dzdy+//n(Ezu+Eyv+Et)zd:vdy,

where « is a constant. The first term is the smoothness constraint, while the second is a least-squares
penalty expression which cocrces the flow field into satisfying the flow cquation. Related variational
formulations of the optical flow problem have been suggested (e.g., [Nagel, 1983], [Cornelius and
Kanade, 1983]).

The Euler-Lagrange equations for the functional £ are given by [Horn and Schunck, 1981]

Elu+ E,Eyv = o?Au— E,Ey,
E.Eyu+ Elv = o®Av — E,E,.

Assuming a cubical network of nodes with spacing k, where ¢, 5, and &k index nodes along the «, v,
and t axes respectively, we use the following finite difference formulas to discretize the differential

operators:
v [Ez]:}'l,j,k = i(E?+l,f,k - E?—l,j,k)’
(Bl e = %,;(_E?,jﬂ,k =Bl 1),
(Eijp = %(E",J‘,kﬂ = i),
Ay = —(sb[u ok ,J,k)
Aly = ——(¢[V k]~ ,’J, k) .
where ®[uf; ] = (ul_, ;o +ulx + Ul + Ul ) and
BIVE, ] = 1(v 5'~1,j,k + VB ik VR ik + VR k). Other approximations are possible, including

those suggested by Horn and Schunck which, however, require over four times the computation per
iteration to gain some improved attenuation of high frequency error. Given dynamic images over
at least three frames, a symmetric central difference formula [Ei}; , = o5 (B2 pi1 — B2 e_1)
would be preferable, provided it is stable.

Substituting the above approximations into the Euler-Tagrange equations and solving for
ul;x and v, . yiclds the following Jacobi relaxation formulas

o (nt1) vl
Ui g,k = Ofuf; ] - ,:J' & 2]k ,’
iJk
b (n)
h (n+l) n LAl h (n)
V i,k = ¢[V 47,k ]( ) hJ k(n) [F 4,7,k 4
1,7,

where pl; o = ((Ba)20)" + (Bl 0) + e and
viin = [Ea]l; o ®lul; o]+ [Ey)E; o PIVE; o]+ [Ei]}; . The natural boundary conditions of the zero
normal derivative are appropriate on the boundaries of surfaces. They can be enforced by copying

values to boundary nodes from ncighboring interior nodes.
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Figure 9. Lambertian sphere images. These synthetic images input to the algorithm at four resolutions depict
a uniformly expanding Lambertian sphere, distantly illuminated from the viewing direction. Frames for the
first time instant are shown to the left of frames for the second time instant.

5.2. Results

A four level optical flow algorithm (with grid sizes 129 X 129, 65 X 65, 33 X 33, and 17 X 17)
was tested on a synthetically-generated image of a Lambertian sphere distantly illuminated from
the viewing direction by a point source. The sphere expanded uniformly over two frames. The
first frame, which is 129 X 129 pixels in size, and three coarser-sampled versions are shown in the
left half of Fig. 9. The next frame, in which the sphere has expanded is shown in the right half
of the figure. All images are quantized to 256 irradiance levels. The velocity field was specified
around the occluding contour of the sphere, and by treating the contour as a possible flow field
discontinuity, « and v were allowed to make discontinuous transitions across it. The computation
was started from the zero initial approximation v = v = 0.

The solution computed on the three coarsest levels after 4.938 work units are shown in Fig.
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Figure 10. Velocity vectors for the expanding Lambertian sphere. The solution at the three coarsest resolutions
that were obtained after 4.938 work units are shown (the finest-level solution is too dense to depict).

10 as velocity vectors in zy-space. The total number of iterations performed on each level from
coarsest to finest respectively is 40, 5, 4, and 3. In comparison, a single-level algorithm required
37 work units to obtain a solution of the same accuracy at the finest level in isolation. Again,
the multilevel algorithm is more cfficient because it propagates information quickly at the coarser
scales. Glazer [1984] also reports improvements consistent with ours with regard to the convergence
rate of a multilevel optical ﬂow algorithm relative to a single level algorithm. He employed the

Horn-Schunck relaxation formulas for his implementation.
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6. Multigrid Methods, Regularization, and Stochastic Relaxation

A primary purpose of low-level visual processing is to reconstruct relevant physical charac-
teristics of 3-D scenes from their images. We have considered in this paper three different visual
reconstruction problems — the computation of lightness from an image (a 2-D, static reconstruction
problem), shape-from-shading (a 3-D, static problem), and optical flow (a 2-D, dynamic problem).
It was possible to apply multigrid methods because cach of these problems was formulated as a
variational principle or associated partial differential equation.

As inverse mathematical problems, visual reconstruction problems tend to be mathematically
ill-posed, in that existence, uniqucness, and stability of their solutions cannot be guaranteed a
priori [Poggio and Torre, 1984]. Among the systematic techniques that have been developed to
tackle ill-posed problems is the method of regularization [Tikhonov and Arsenin, 1977]. Through
regularization analysis, ill-posed visual problems can be restated as well-posed variational principles
by restricting the possible solutions with appropriate stabilizing functionals. In general, the
smoothness properties of stabilizers must be controlled near discontinuities [Terzopoulos, 1984b].
Interestingly, the same stabilizer was used to impose the smoothness constraint in both the shape-
from-shading and optical flow problems.

A major attraction of regularization analysis is that it leads systematically to variational
principles which permit advantageous use of multigrid relaxation methods. As a visual algorithm
design strategy, regularization analysis applicd in conjunction with multigrid inethodology promises
to impact on a broader spectrum of visual reconstruction problems, including image reconstruction
and discontinuity detection [Geman and Geman, 1984], stereopsis [Marr and Poggio, 1977],
registration [Bajcsy & Broit, 1982], motion field interpolation [Hildreth, 1984], shape-from-contour
[Brady & Yuille, 1983], and structure-from-motion [Ullman, 1979].

An issue of concern is that the regularization of visual reconstruction problems cannot always
be cxpected to lead to convex variational principles having a unique absolute extremum, without
relative extrema. Unfortunately, classical relaxation or gradient descent methods are not directly
applicable to nonconvex variational principles, since they often get trapped in relative extrema.
Stochastic relaxation algorithms (such as simulated annealing) do not suffer this disadvantage
[Kirkpatrick ef al, 1983; Hinton & Sejnowski, 1983]. Nonetheless, since stochastic relaxation
searches for absolute extrema with processors that are restricted to local interactions, it too suffers
serious inefficiencies in propagating constraints. The inherently slow convergence rates are further
aggravated by the nondeterministic nature of the local computations. Multigrid methods may
amcliorate these problems by facilitating constraint propagation through the use of coarser scales.

7. Conclusicn

Many important problems in low-level computer vision can be formulated as variational

18




TERZOPOULOS . MULTIGRID RELAXATION METHODS

principles or as partial differential cquations. A particular source of such formulations is the
regularization analysis of ill-posed visual reconstruction problems. Once discretized, variational and
differential formulations are amenable to numerical solution by iterative relaxation methods, which
readily map into massively parallel computer architectures. However, distributed local-support
computations are inherently inefficient at propagating constraints over the large network or grid
representations that are encountered in computer vision applications.

In our previous work on surface rcconstruction'algorithms, we established that multiresolution
relaxation techniques can overcome this incfliciency, without sacriﬁcing the local-interconnect nature
of the computations. This has been corroborated in the present paper by successfully applying
multigrid methods to the well-known problems of computing lightness, shape-from-shading, and
optical flow from images. The novel multiresolution algorithms that we designed in the context
of each of these problems were shown to be substantially more efficient than the published single
level versions.

Beyond its effectiveness as a‘(local) convergence acceleration strategy, our adaptation of
multigrid methodology also leads to iterative algorithms that compute mutually consistent visual
representations over a range of spatial scales. Multiresolution representations appear to be crucial
in interfacing low-level visual processing to subsequent tasks such as recognition, manipulation,
and navigation. ’
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