MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 804 November 1984

Planning of Minimum-Time Trajectories for Robot Arms

Gideon Sahar and John M. Hollerbach

Abstract: The minimum-time path for a robot arm has been a long-
standing and unsolved problem of considerable interest. We present a gen-
eral solution to this problem that involves joint-space tesselation, a dynamic
time-scaling algorithm, and graph search. The solution incorporates full dy-
namics of movement and actuator constraints, and can be easily extended
for joint limits and workspace obstacles, but is subject to the particular
tesselation scheme used. The results presented show that, in general, the
optimal paths are not straight lines, but rather curves in joint-space that
utilize the dynamics of the arm and gravity to help in moving the arm faster
to its destination. Implementation difficulties due to the tesselation and to
combinatorial proliferation of paths are discussed.

Acknowledgments: This paper describes research done at the Arti-
ficial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory’s research is provided in part by the Systems
Development Foundation, in part by the Office of Naval Research under
contract N00014-81-0494, and in part by the Defense Advanced Reserach
Projects Agency under Office of Naval Reserach contracts N00014-80-C-0505
and N00014-82-K-0334.

(©Massachusetts Institute of Technology 1984

1 Introduction

The determination of the time-optimal path for manipulators is an im-
portant problem in robot trajectory planning. This paper presents a general
solution to this problem involving joint space tesselation and graph search
that is made relatively efficient through use of time-scaling properties of
dynamics. The minimum-time requirement imposes constraints on the ve-
locities at each point on our grid, so that tesselation in velocity space is
not needed. Our algorithm takes into account a full dynamic model of a
manipulator and actuator torque limits in arriving at the time-optimal tra-
jectory, i.e. the path and the time dependence along the path, from any
given starting state to any final state. Kinematic constraints due to joint
limits and the presence of obstacles are quite easily incorporated into the
solution. '

Attempts in the past at solving this problem have fallen short of a gen-
eral solution. Most commonly, researchers have linearized the dynamics
in order to apply standard techniques of linear optimal control theory to
the solution. The earliest attempt along these lines appeared in (Kahn,
1969; Kahn and Roth, 1971), where the expected bang-bang solution with
multiple switching points was derived. Approaches based on dynamics lin-
earization have recently been cast into doubt due to time-scaling proper-
ties of dynamics (Hollerbach, 1983a, 1983b, 1984), since it can be shown
that the velocity product terms have the same significance relative to the
acceleration dynamic terms for all speeds of movement. Thus the main
presumption used to justify linearization, namely that the velocity product
terms can be ignored because they are only significant at higher movement
speeds, is fundamentally wrong.

A second class of solutions do take into account the full dynamics but
presume a bang-coast-bang form of control, again by analogy to the lin-
ear optimal case. Scheinman and Roth (1984) assume a bang-coast-bang
control form for each joint where (1) each control has a maximum of two
switching points and (2) the total positive torque time is equal to the total
negative torque time. Their solution is an iterative one, where they set a
time, solve for the distances covered and the velocities attained, and adjust
the switching times until a satisfactory solution is found. Our results indi-

cate that these presumptions about control are in general not valid for the
true time-optimal solution.

Brown (1984) independently developed an approach based on a state
space tesselation and graph search, which nevertheless differs from our ap-
proach in critical ways. Brown presumes a bang-coast-bang solution with
fixed switching points; all possible combinations of bangs and coasts yield
9 distinct torque patterns. At a given point in state space all 9 torque
patterns are applied for a set period of time, and the dynamics are inte-
grated to find the resultant state space point. The resultant state space
point is rounded to the nearest neighbour in the tesselation. The network
is searched via standard procedures to find the fastest trajectory. Again,

~ the presumption on control makes his solutions non-optimal.

Purely kinematic approaches were used by Luh and Walker (1977), Luh
and Lin (1981), and Lin, Chang and Luh (1983), who attempt to find the
sequence of time intervals that minimize the total time spent on moving
between two points in space. The three approaches differ in the details
of the algorithms, but they all suffer from the same shortcomings: the
dynamics of the arm are not considered at all, so that the constraints
consist of sets of bounds on position, velocity, and acceleration. These
bounds are imposed by the weakest configuration of the arm, so that the
motion in other areas of the workspace is sub-optimal. In addition, all three
algorithms require as input a set of knot points, which define a path. This
path is not necessarily the best possible one.

The new development that facilitates the approach presented in this pa-
per is the discovery of a fundamental time-scaling property of manipulator
dynamics. This property was utilized to solve for the time-optimal trajec-
tory along a predetermined path by (Bobrow, 1982; Bobrow, Dubowsky,
and Gibson, 1983; Dubowsky and Shiller, 1984). The equations of motion
are written in terms of the distance along the Cartesian path taken by
the arm, and the bounds on the torques/forces obtainable from the motors
are used to construct a curve in distance-velocity space that constitutes
an upper limit on the performance of the arm. A set of switching points
is then found that move the arm as close as possible to the limit curve.
In his Ph.D. thesis, Bobrow proves the optimality of this algorithm. One
actuator is always saturated, and the others adjust their torques so that

some constraints on the motion are not violated. The only problem with it
is that the path has to be known beforehand. A very similar approach was
developed later by Shin and McKay (1983), with the only difference being
a parametrization of a path in joint space instead of in Cartesian space.

Hollerbach (1983a, 1983b, 1984) independently developed the time-
scaling property of dynamics in joint space and used a simplified form
of this property to scale a fixed velocity profile for maximum speed given
actuator constraints. This general formulation has been discretized for our
optimization algorithm.

The next section introduces the problem in a more rigorous fashion, and
describes the way with which we manage to work in state space, yet tesselate
only in joint space. Section 3 introduces the Dynamic Scaling algorithm,
which is used to calculate the times of travel along each segment of the grid,
along with the required torques and the possible velocities at the end of the
segment, given initial conditions on position and velocity at the beginning
of the segment. Section 4 presents results of a 2-D simulation, and section
5 concludes with a discussion.

2 The General Solution

The objective is to move the arm from point A to point B in state space
in minimum time. Given are:

e the kinematic and inertial parameters of the manipulator,

e the dynamic equations

7 =H(0(1))8(2) + 6(1)TC(8()8(2) + 8(0(2)), (1)

where r is the vector of joint torques, # is the n-dimensional joint-
space position vector, H is a n X n symmetric inertia matrix, C is
a n X n X n tensor, n is the number of joints, and g is a gravity
dependent vector, and

e constant bounds on the torques/forces available from the motors,

n<r<r, (2)

which can be made state dependent without modifying the algorithm.

The main idea behind our algorithm is to tesselate joint space into a
grid. The requirement for time-optimality, together with the dynamics of
the arm, constrain the number of velocities possible at each position node,
given the position and velocity at the previous node, so that there is no
need to tesselate velocity space. A tree of all possible state-space paths can
be constructed, and then searched for the minimum-time path.

In terms of assigning velocity tesselations to each position node, the
results of (Bobrow 1982) show that one actuator is always at a torque
bound. Therefore, there are at most 2n possible transitions from a given
state to a neighbouring position. The time scaling algorithm presented in
the next section determines for each transition the velocity at this neigh-
bouring position and the transition time. Many of these 2n transitions can
be discarded immediately, due either to saturation in one of the actuators
causing the torque in one of the other motors to exceed its bound, or to a
contradictory situation where the velocity is in the direction opposite to the
position increment. In our 2-D implementation, the number of solutions at
each state space point was usually two or less.

2.1 Graph Search

The graph search can be made considerably more efficient through the
use of some general search techniques: (1) best first search, which chooses
to expand the best path so far, and (2) branch and bound, which uses
an upper bound on the travel time to eliminate any path with a partial
cost larger than the upper bound. The choice here was to first run the
algorithm with a very sparse grid, and use the time found, rounded up in
some suitable manner which depends on the magnitude of the result, as the
upper bound for a second run with a finer grid.

The procedure for finding the optimal path follows.

1. Form a queue of paths, containing an empty path (one with only the
starting node).

2. Until goal is reached (success), or the queue is empty (failure):

(a) Remove the first path from the queue.

(b) Calculate the positions of the next points reachable from the
current (last in path) point.

(¢) For each one of the next points, the dynamic scaling algorithm,
as will be described in the next section, is used to find the pos-
sible velocities at the next points, and the times of travel.

(d) New paths are formed from the old path and from all admissi-
ble new points (a point is inadmissible if one of the calculated
torques exceeds its bound, if the velocity of one joint is in the
opposite direction to its position increment, or the current total
time of travel exceeds the upper bound.)

(e) Add new paths to the queue and sort it such that the path with
the smallest cost is on top.

3 The Dynamic Scaling Algorithm

The previous section described the global solution to finding the optimal
path. This section describes the local solution for the minimum traveling
time between nodes, the achieved velocity for each permissible transition,
and the corresponding torques. We rely on a reformulation of the dynam-
ics of a manipulator, which indicates how the underlying dynamics change
when the time dimension of a trajectory changes (Hollerbach, 1984). Sup-
pose the time dependence along a fixed path is changed from 0(t) to 8(r(t)),
where the time scaling factor r(t) is a strictly increasing function of time
with r(0) = 0 and r(¢;) = t; for some t; > 0. Then the joint torques r'(t)
for the time-scaled movement are related to the original movement torques
r(t) by:

do(r)

r(6) = P[r(r) - g0C)] +F HEE) S +g00) ()

This general formulation is now discretized, with known position 8(: —1)
and 6(7), respectively, at the beginning and end of the segment, and known
velocity 8(z — 1) at the beginning of the segment. Instead of looking at the

beginning of the segment (i.e. point ¢ — 1), consider the mid-point. Define
an average velocity and acceleration

Bi - 1) A0(z)

.10 0(3) - 0% - l)

0i-3)= Y, (5)
where the distance A@(7) = 6(z) — (¢ — 1) is covered in time At. The
important point here is that no functional relationship is assumed between
0(: - 1) and 0(: - 3), but rather that these relationships are used as pre-
dictors that could be subject to correction. By assuming a linear velocity
(constant acceleration) we can find the velocity at the end of the segment:

(4)

o) =220 _ (i 1) (©

Substituting this into our definition of the average acceleration, we obtain:
.10 A8() L8(i-1)

0i-3)=2%w Q

Suppose the time of travel was As instead of At. The new average
velocity and acceleration at the mid-point are related to the old by

(i~ 3) = 20— 3) (®)

8'(i - -) = Atzo(z - -) ét—gf—’é(i ~1). ©)

We call these quantities scaled”. If the scaled velocity and acceleration
are substituted into the equations of motion (1), an equation for 7', the
torque required to cover the distance in As, in terms of 7, the torque that
was used when the distance was covered in At, is obtained:

At — As
As?

Rewriting equation (10) as a quadratic equation for As:

As(r' —g)+2AsH - 0(i — 1) — [At*(r —g) + 2AtH-6(: — 1)] = 0 (11)

o = g) +2 H-0:-1)+g (10)

Al

These are n equations for the unknown As, one for each joint, which are
found by substituting the torque bounds for 7. They all have to be satisfied
simultaneously in order to achieve optimality without violating one of the
constraints. This development leads to a simple procedure to calculate the
minimal time to travel from point ¢z — 1 to point ¢, and the combination of
the torques that will do it:

1.

4

Calculate 0(z — 1/2),_@(1’ —1/2), and 8(i — 1/2), using the known
0(x — 1), A06(2), and 0(7 — 1), and an arbitrarily chosen At (setting
At =1 is the most efficient).

Solve the equations of motion (1) for the corresponding r.

For each joint, use equation (11) to find As, where 7' is the vector of
given torque bounds. Do it for every one of the bounds.

Use all the As found in step 3, together with the corresponding torque
bound, to calculate the torques for the other joints from equation (10).
Retain only those time/torque combinations that do not exceed the
bounds.

The permited velocities at the end of the segment can be calculated
from equation (6), with At replaced by As.

Implementation

The minimum-time algorithm is illustrated by simulation with a two
degree of freedom, planar manipulator (Horn, 1975; Brady, Hollerbach,
Johnson, Lozano-Perez, and Mason, 1982, chapter 1) on a Symbolics 3600
Lisp Machine. The equations of motion are

1 -
= [I1 -+ Iz + Z(mllf + mzlg) <+ mzlf + M2lllzczlal

1 1 o 1 . . .
+(Ig <+ Zmzt; -+ §m21112C2)92 - -2-171211[28203 - m21112320102 (12)

1 1
+[§m21261+2 + 11(5"11 + m2)cslg

Figure 1: A 2 degree of freedom planar arm. l; = I, = 0.5m, m; = 50kg,
my = 30kg, I} = 5kg - m?, I, = 3kg - m?,

1 1 - 1 "
= (I + Zmﬂ% + §m21112¢2)91 + (L + Zmzl:)az

1 . 1
+'2-m21112329f +'§m212¢1+z g
(13)

where 0;, l;, m;, and I; are the joint angle, length, mass, and moment of in-
ertia, respectively, of link 7, s;(c;) are the sine(cosine) of joint ¢ variable, and
ci+2 is cos(6; + 6;). The values for the link lengths, masses, and moments
of inertia were taken from (Asada, 1984) (Fig. 1). The torque bounds were
chosen as

—350Nm < 7, < 350Nm (14)
—100Nm < 75, < 100Nm .

4.1 Tesselation of joint space

The manner of tesselation is illustrated in Fig. 2 for this two-link manip-
ulator. The joint positions are first tesselated by connecting the beginning
and final nodes by a straight line and dividing this line into k equal inter-
vals. The remainder of the position grid is defined normal to this line by
translating the tesselated points at integer multiples of the point spacing.
From a given position node three paths are allowed: one path is parallel to

10

B
Figure 2: The basic grid unit

the original straight line and skips one grid point (from A to C), the other
two paths connect diagonally relative to the first path in the direction of
the goal (from A to B and A to D). See Fig. 3 for an example of a 3 x 3
grid.

The number of paths leaving each node is limited to 3 as a compromise
between representation of path curvature and combinatorial proliferation
of possible paths. This did create difficulties due to discontinuities, which
were handled with special measures described later. Given the influence of
the choice of the tesselation number k on the number of paths and hence
on computation time, a usual value of k¥ = 15 was used. The largest value
of k used was 20. To further reduce the search, the two corners of the
rectangular grid not on the diagonal connecting the start and the goal were
cut away as it was noticed that the optimal paths generated by the planner
tended to concentrate around the diagonal.

4.2 The problem of corners

One implication of tesselating space into a rectangular grid is that the
motion may be discontinuous: when moving from point A to C through B
(Fig. 2), the velocity has to drop to zero at point B, or change direction
instantaneously, which implies infinite accelerations. Therefore the corner
has to be smoothed out by, for example, fitting a circle between points A and

11

C. Since our local algorithm is defined for a straight line, the circle would
have to be approximated by a sequence of straight lines. This solution
is impractical because of the combinatorial expansion of states along the
straight line sequence from start to goal, given the possible new states with
each application of the time scaling algorithm.

Without corner smoothing, the velocity vector at the corner point B
(Fig. 2), for example, is not aligned with the direction vector A to C.
Globally, the arm has to decelerate sharply after the corner B to reach point
C, and the effect on the algorithm is to discard any non-straight-line path
as too costly. This technical problem with our tesselation is unacceptable
since it is unlikely that a joint-space straight-line path is always optimal.

A heuristic approximation was used of redefining the direction but not
the magnitude of the velocity vector at the corner point B to lie along B-C.
For the rationale, assume that the true path between A and C is indeed a
circular arc and that the velocity along the arc is approximately constant.
Now let the radius of the circle shrink gradually, until the circle becomes a
point at B. The accelerations required to keep the arm on the circle grow,
until in the limit of the point they become infinite. The magnitude of the
velocity, however, does not change, so that the magnitude of the velocity
going into the circular arc is the same as the velocity magnitude coming
out of the other side of the arc. In the limit, the same is true of point B.

4.3 Complexity

By counting the possible number of paths on a grid, such as the one in
Fig. 3, the worst-case complexity for our planar example is estimated as
O(4*), where k is the number of points along one dimension of the grid.
This calculation assumes that only two velocities are possible at the end of
each segment, given some initial conditions at the beginning of the segment.
This assumption is based on observations during the simulation of many
examples. It is a conservative assumption, inasmuch as in many segments
only one possible velocity was retained, whereas there were never more than
two.

Another complexity factor is the sorting time for the least costly path
in the queue. With queues of thousands of paths the sorting operation re-

12

2-4°+4%+4
goal

start

4

Figure 3: Number of possible trajectories at each node

quires minutes, which makes this algorithm too impractical. Based on this
experience, the sorting operation was eliminated and the new path was in-
serted in the appropriate place in the already sorted queue. In our Lisp
Machine implementation the improvement by simple merging was some-
what offset by creation of extraneous lists, leading to address space and
garbage collection problems that increased running overhead by a half.

4.4 Results

The results of two simulated runs of the algorithm are shown, with initial
and final velocities taken to be zero. Figures 4-6 show the path for moving
from [—0.5,—1.0] to [0.5,1.0] in joint space, which took 0.836 seconds of
simulated time. The figures illustrate the tendency of the algorithm to find
a path which is not a straight line, neither in joint-space nor in Cartesian
space, but is not too far from being one in joint space. The best path
tends to be one where the arm rearranges slightly its configuration, so that
dynamically it will be easier to move. Therefore, joint 6, starts by moving
backwards. Figure 6 shows the magnitudes of the acceleration and velocity

13

in Cartesian space. Note the similarity to a bang-coast-bang profile, in
terms of acceleration.

In contrast, moving from a fully extended position ([0.0,0.0] in joint
space) along the Cartesian x-axis, to the point [z,y] = [0.5,0.0] ([/3,27 /3]
in joint space), results in a straight line, both in Cartesian space and in
joint space (Figures 7-9). This is the result of the particular configuration
of the arm, where the elbow is pointing down, and gravity does not have
much effect on the motion. Therefore, the fastest path is also the shortest
one, a straight line in joint space, which for this configuration happens also
to be a straight line in Cartesian space. This motion was accomplished in
0.525 seconds of simulated time.

From these, and many more results emerges a pattern: usually, the
fastest path is close to a straight line in joint space. Although the grid
was not fine enough to be able to say so conclusively, it seems that the
path is symmetric about the mid-point between the starting point and
the destination. The torques tend to switch twice at the most, so one
heuristic used by Scheinman and Roth (1984) seems to be justified (see the
Introduction), but contrary to their other heuristics, only one joint torque
is at a maximum at a time, and the total positive torque time is not equal
to the total negative torque time.

5 Discussion and Conclusions

A method for finding minimum-time paths for manipulator arms, given
dynamic, kinematic, and geometric constraints was developed. The method
is based on the creation of a state-space search tree representing all possible
solutions, and searching it for the best one. The search tree is smaller than
one would initially expect, because velocity space was not actually tesse-
lated. Instead, it was recognized that the requirement for time-optimality
limited the number of possible velocities at the end of each segment.

The algorithm as currently formulated and implemented is not suitable
for routine off-line trajectory planning, as even a 15 x 15 grid required
minutes to hours of computation. We see the current primary benefit as
providing the first idea of what the minimal time path looks like, however
long the computation time, which was not possible by any means before.

14

From this knowledge it would be possible to compare the performance of
more efficient trajectory planning methods and perhaps develop a method
that is faster but sufficiently close to optimal. It might be possible to
improve the algorithm itself by new graph search methods or hierarchical
methods that zero in on the optimal path while restricting the state space
expansion. The Lisp Machine itself is quite slow for numerical operations,
and a more algebraically tuned system might speed the algorithm consid-
erably. Finally, it may be possible to recast the a,lgonthm into a faster
parallel computation.

Several methods were examined for pruning the search tree of possible
paths, but further improvements are required. Ideally, one would like a
lower bound estimate of the cost from any point in state space to the goal
in order to aid graph pruning (Winston, 1984), by a process of comparing
the sum of this estimate and the current cost at the state space node to the
upper bound. If a path can be thrown out early, then no time is wasted on
its descendents. We had considered as a lower bound the time to travel from
the present node to the goal while accelerating only and without endpoint
velocity constraint, but we cannot prove this bound is valid. It seems that
a true lower bound would presume some form of analytic solution to the
very problem we are trying to solve.

The present tesselation, which allows from each node only three direc-
tions of motion, may exclude better paths. It would be desirable to find
better tesselation techniques that allow finer resolution of direction and
distance, yielding better approximation of curves by straight line segments,
yet curbing the combinatorial proliferation of nodes and retaining efficient
management of the grid. With a finer direction tesselation, the corner
problem would be diminished. Lacking that, better solutions to the corner
problem are required, since the present approximation implies unrealizable
infinite accelerations at the corner point. Along the same lines, the current
restriction to directions where at least one joint moves closer to the goal
should be relaxed, since conceivably a solution might involve temporarily
moving diametrically away from the goal.

The algorithm is easily extended to handle configuration constraints due
to joint excursion limits and to workspace obstacles, when the latter are
converted to obstacles in joint space (e.g., Lozano-Perez, 1982). Since these

15

translate into forbidden regions in joint space, the grid nodes within the
forbidden regions are excluded from the tesselation. The ease of incorporat-
ing obstacle avoidance is a general feature of joint space tesselation, as also
noted by (Brown, 1984), and is an advantage over trajectory representation
by parameterized paths.

Finally, the algorithm presented here indicates that the fastest motion
between two points is close to a straight line in joint space. The curvature
at the beginning and end of the path in Fig. 4 may represent an interac-
tion between the shortest path in joint space and the natural dynamics of
the movement. Presently, it cannot be completely ruled out that tessela-
tion problems contributed to some extent in forcing a nearly straight-line
solution in joint space. B

The complexity of the state-space search may currently rule out six
degree of freedom implementations, but an implementation on a three joint
manipulator seems possible. Conceivably a sparser grid might yield knot
points for conventional polynomial interpolation that would nevertheless
give superior paths. In addition, our algorithm can serve as a starting point
for the development of faster, less exact algorithms, and for the verification
of their results.

6 Acknowledgments

This paper describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory’s research is provided in part by the Systems Development Foundation,
in part by the Office of Naval Research under contract N00014-81-0494, and
in part by the Defense Advanced Reserach Projects Agency under Office of
Naval Reserach contracts N00014-80-C-0505 and N00014-82-K-0334.

16

6,
7 >
1
2
E 2
E N
% C goal
a
A“‘
. - K ,
-2 -y O “ 2
‘. x(m)
P
-1}
L start
.’»
Tip position

Figure 4: Moving from (-0.5,-1.0) to (0.5,1.0): the path in joint and

Cartesian spaces

17

- 2¢ - 4,
$ 4
N g3l
3 1t Ez
> >
F 1l
go 1 §
Time (sec.) o 2
-1l Time (sec.)
Velocity, Joint 1 ’ Velocity, Joint 2
-~ 40
&t ; Ai"_rr] Ng 30
g 9 b— ' % 20
- Time(sec.) & 30
S - <
§® 2 o 1
s £-10 Time(sec.)
i =10 E .20
-12] ,
[3 "‘ < -30 A .
Acceleration, Joint 1 cceleration, Joint 2
z : %
300 J 2 eo
40
§ 200 § P |
100} —
i " 8 i)
o 2 40 me (sec.)
. ; 60
100} LTime (sec.) 80
-200! -100 .
Torque, Joint 1 Torque, Joint 2

Figure 5: Moving from (—0.5, —1.0) to (0.5,1.0): velocity, acceleration, and
torque at the joints

18

L))

Velocity (m/sec.)
N

.
Time (sec.)
Velocity magnitude

40,
30}
20}

10

T —=""-"mI s

1
Time (sec.)

Acceleration (m/sec.2)

-10}

Acceleration magnitude

Figure 6: Moving from (—0.5,—1.0) to (0.5,1.0): magnitude of tip velocity
and acceleration in Cartesian space

4 ﬂ
¢ (1}
(6]
=5
[]
wiN
|

2
-1}

2L
Tip position
Figure 7: Moving from (0.0,0.0) to (-x/3,2n/3): the path in joint and

Cartesian spaces

20

3 o ﬁ 7r
(2]
¢ 6}
-1} o
3 34
2 -2 >3}
8.3l 83
s 1
0 rimesecs ° (soct
. ime (sec Time (sec.)
Velocity, Joint 1 Velocity, Joint 2
& 18 - ~ 80,
. ’o' N -
3 3
& g 1 <
§ - Time (sec.) §
= -10} -
s 1
s .15l H Time (sec.)
$-20 '§
L -25 < .
< Acceleration, Joint 1 Acceleration, Joint 2
- 350
§ 500
g 250
200
3
* 150
100 o Y
80 o — J‘, -20{ U Time (sec.)
ime (sec -40
Torque, Joint 1 Torque, Joint 2

Figure 8: Moving from (0.0,0.0) to (—=/3,27/3): velocity, acceleration,
and torque at the joints

21

N

Velocity (m/sec.)
-l

1
Time (sec.)
Velocity magnitude

L)
5} Time (sec.)

Acceleration (m/sec.2)

‘Acceleration magnitude

Figure 9: Moving from (0.0,0.0) to (—=/3,27/3): magnitude of tip velocity
and acceleration in Cartesian space

22

Bibliography

1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

Asada, H. “Dynamic Analysis and Design of Robot Manipulators Us-
ing Inertia Ellipsoids”, IEEE Computer Society 1st Intl. Conf. on
Robotics, Atlanta, Georgia, March 13-15, 1984, pp. 94-102.

Bobrow, J.E. Optimal Control of Robotic Manipulators, Ph.D. Thesis,
UCLA, 1982.

Bobrow, J.E., Dubowsky, S., and Gibson, J.S. “On the Optimal Con-
trol of Robotic Manipulators with Actuator Constraints”, Proc. Amer-
tcan Control Coference, San Francisco, California, June 22-24, 1983,
pp. 782-787.

Brady, J.M., Hollerbach, J.M., Johnson, T.L., Lozano-Pérez, T., Aa.nd
Mason, M.T., eds., Robot Motion: Planning and Control, MIT Press,
Cambridge, Massachusetts, 1982.

Brown, M.L., Optimal Robot Path Pla.nning via State Space Net-
works, M.S., Dept. Mechanical and Aerospace Eng., Princeton, June
1984.

Dubowsky, S., and Shiller, Z. “Optimal Dynamic Trajectories for
Robotic Manipulators”, Fifth CISM-IFToMM Symposium on Theory
and Practice of Robots and Manipulators, Udine, Italy, June 26-29,
1984, pp. 96-103.

Hollerbach, J.M. “Dynamic Scaling of Manipulator Trajectories”, MIT
Artificial Intelligence Laboratory A.I. Memo 700, Jan. 1983a.

Hollerbach, J.M. “Dynamic Scaling of Manipulator Trajectories”, Proc.
of the American Control Conference, San Francisco, California, June
22-24, 1983b, pp. 752-756.

Hollerbach, J.M. “Dynamic Scaling of Manipulator Trajectories”, J.
Dynamic Systems, Measurement, and Control, 106, 1984, pp. 102-
106.

23

[10] Horn, B.K.P. “Kinematics, Statics, and Dynamics of Two-D Manip-
ulators”, MIT Artificial Intelligence Laboratory, Working Paper 99,
June 1975. .

[11] Kahn, M.E. “The Near-Minimum-Time Control of Open-Loop Artic-
ulated Kinematic Chains”, Stanford Artificial Intelligence Laboratory,
AIM 106, Dec. 1969.

[12] Kahn, M.E.,, and Roth, B. “The Near-Minimum-Time Control of
Open-Loop Articulated Kinematic Chains”, J. Dynamic Systems, Mea-
surement, and Control, 93, 1971, pp. 164-172.

[13] Lin, C.-S., Chang, P.-R., and Luh, J.Y.S. “Formulation and Optimiza-
tion of Cubic Polynomial Trajectories for Industrial Robots”, IEEE
Trans. Automatic Control, AC-28 (12), 1983, pp. 1066-1073.

[14] Lozano-Perez, T., “Task Planning,” Robot Motion: Planning and
Control, edited by Brady, Hollerbach, Johnson, Lozano-Perez, and
Mason, MIT Press, 1982, ch. 6, pp. 473-498.

[15] Luh, J.Y.S., and Lin, C.S. “Optimum Path Planning for Mechanical
Manipulators”, J. Dynamic Systems, Measurement, and Control, 102,
1981, pp. 142-151.

[16] Luh, J.Y.S., and Walker, M.W. “Minimum-Time Along the Path for
a Mechanical Arm”, Proc. IEEE Conf. Dectsion and Control, New
Orleans, Louisiana, 1977, pp. 755-759.

[17] Sahar, G., Planning of Minimum-Time Trajectories for Robot Arms,
Ocean Engineer Thesis, Dept. Ocean Engineering, MIT, September,
1984.

[18] Scheinman, V., and Roth, B. “On the Optimal Selection and Place-
ment of Manipulators”, Fifth CISM-IFToMM Symposium on Theory
and Practice of Robots and Manipulators, Udine, Italy, June 26-29,
1984, pp. 25-32.

24

[19] Shin, K.G. and McKay, N.D. “An Efficient Robot Arm Control Under
Geometric Path Constraints”, Proc. 22nd IEEE Conf. Decision and
Control, San Antonio, Texas, 1983, pp. 1449-1457.

[20] Winston, P.H. Artificial Intelligence, Second edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1984.

