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Abstract. In this paper we examine the reconstruction of functions of any dimension
from hyperplanar projections. This is a generalization of a problem that has
generated much interest recently, especially in the field of medical imaging.
Computed Axial Tomography (CAT) and Nuclear Magnetic Resonance (NMR) are
two medical techniques that fall in this framework. CAT scans measure the x-ray
density along lines through the body, while NMR scans measure the hydrogen
density along planes through the body.

Here we will examine reconstruction methods that involve backprojecting the
projection data and summing this over the entire region of interest. There are two
methods for doing this. One method is to filter the projection data first, and then
backproject this filtered data and sum over all projection directions. The other
method is to backproject and sum the projection data first, and then filter. The
two methods are mathematically equivalent, producing very similar equations.

We will derive the reconstruction formulas for both methods for any number of
dimensions. We will examine the cases of two and three dimensions, since these are
the only ones encountered in practice. The equations are very different for these
cases. In general, the equations are very different for even and odd dimensionality.
We will discuss why this is so, and show that the equations for even and odd
dimensionality are related by the Hilbert Transform.

© Massachusetts Institute of Technology, 1984
This report describes research done at the Artificial Intelligence Laboratory of

the Massachusetts Institute of Technology. Support for the laboratory’s artificial
intelligence research is provided in part by the System Development Foundation.




1. Introduction

~ In this paper we will examine the reconstruction of functions of any dimension
from hyperplanar projections. This is a generalization of a problem that has
generated much interest recently, especially in the field of medical imaging.
Computed Axial Tomography (CAT) and Nuclear Magnetic Resonance (NMR) are
two medical techniques that fall in this framework.

CAT scans measure the x-ray density along lines through the body. Reconstruc-
tion of the density distribution results in a 2-dimensional image from line projections.
The line projections are degenerate hyperplanar projections for the 2-dimensional
case.

NMR scans measure the hydrogen density along planes through the body.
Reconstruction results in a 3-dimensional density distribution. The reconstructed
distribution is usually sliced along an arbitrary plane to produce a 2-dimensional
image for display purposes.

Here we will examine reconstruction methods that involve backprojecting the
projection data and summing this over the entire region of interest. Such methods
produce a smeared image, so it is necessary to undo this smearing. There are
two methods for doing this. One method, known as the rho-filtered layergram,
is to filter the projection data first, and then backproject this filtered data and
sum over all projection directions. The other approach is to backproject and sum
the projection data first, and then filter. The two methods are mathematically
equivalent, producing very similar equations. They differ in that in the first case
the filtering need only be performed in one dimension, while in the second case,
filtering must be performed in N dimensions. One dimensional filtering is generally
easier to implement.

We will derive the reconstruction formulas for both methods for any number
of dimensions. We will examine the cases of two and three dimensions, since these
are the only ones encountered in practice. The equations are very different for these
cases. In general, the equations are very different for even and odd dimensionality.
We will discuss why this is so, and show that the equations for even and odd
dimensionality are related by the Hilbert Transform.
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2. Convolution Followed by Backprojectionand Summation

Following (Louis and Natterer 1983), we first introduce some notation. Let RN
be the N-dimensional real space, and let SN ~! be the set of directions in RV. §VN-1
is formed from all unit vectors in RV,

SN-1 = {z € R" such that |z| = 1} (2.1)

Let us consider the following problem. The density of the object under study
will be denoted by f(x), x € RV. We are given projections p(s,n), n € SN~! and
wish to reconstruct f(x). Figure 1 illustrates the geometry of the problem for CAT
and NMR. p(s,n) is defined by

ps,m)= [ f(x)dx

§=X-I

= [ #6)6(s —x-n)dx (2.2)

RN

The Fourier Transform of f (x) and its inverse are given by

Fw)= [ fix)ei¥Xdx (2.3)
RN
76 = (em) ™ [ Fw)eXdu (2.4)
RN

The problem of reconstruction from hyperplanar projections is most naturally
handled in polar coordinates because the arguments to the projection p(s,n) can
be thought of as polar coordinates in projection space. In N-dimensional polar
coordinates, the Fourier Transform of f(r,m) and its inverse are given by

Flpa)=2" [ [ F{r, m)e=IPMN=1gy g (2.5)
SN-1 R
firm) = (@0 N2t [ [ P(p, @)@ mpN-1dp da (26)
SN-1 R

The N-dimensional Fourier Transform of f(r,m) and the one-dimensional
Fourier Transform of the projection p(s,n) are related by the projection theorem
(Appendix A).

F(p,a) = P(p, ) (2.7)
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(a) Projection geometry for CAT scans

(b) Projection geometry for NMR scans

Figure 1
3
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o So, if we examine the inverse Fourier Transform of f(x) in polar coordinates,
we get

f(x) = (2m) N2 / / F(p,a)e’*®X|p|N"1dp da
SN-1 R

= / {(2#)"1\72"1 /P(p,a)ej”a'xlplN"ldpv da (2.8)
R

SN-1

We see from (2.8) that f(x) can be obtained by computing the expression in
brackets, and smearing this function over all directions. This smearing is simply the
backprojection-summation operation. Most authors (e.g. Chiu et.al. 1980, Lewitt
1983, Shepp 1980) normalize the backprojection operation by dividing by the
surface area of a unit sphere in N dimensions. Let Ay be this factor.

o
Av= [ da= (2.9)
SN-1 I‘(-Iz\i)
With the inclusion of this normalization term, we can rewrite f(x) as
f"’ﬁ ) 1 .
1= [ [AN(zw)*Nz-l [ Plo, )Xo "1dplda (2.10)
AN
SN-1 R
The bracketed expression is the inverse FT of a product. It can also be expressed
as a convolution. »
An(er) Vet [ Plp,a)ei®X|pN-1dp
R
— (2m) ! [ 002t P(p, @)(2m) =N 21 Ve X
R .
= pla-x,0) Q FT! [F(%)]—121_N7r1"'2&]p|N"1} where @ = convolution
= p(s,a) ® g(s) (2.11)
Where g(s) = FT—I{[r(g-)]—lzl—Nwl-%;plN-l}  (2.12)
with Fourier Transform G(p) = [F(%’-)]"IZI_Nwl“%IplN"l (2.13)
We will treat the cases of N even and odd separately.
Case N Even
— The fact that N is even can be used to advantage by introducing the cosine
transform.
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o(6) = () [ (D2 aH e
UG I A G R

= 02" Na¥ [ N cos(sp)dp
= P32 N2~ FT(V) cos (47 )5~V

N ~% E(_]Y_)(_l)¥s—N (2.14)

=2

Strictly speaking, the integral only converges for 0 < N < 1 (Gradshteyn and
Ryzhik 1980). It has been argued using convergence functions (Horn 1973) that the
same form holds for all V. This is not quite correct.

This can be seen by considering the total area of g(s), / o, g(s)ds. This must
equal 0 since G(p = 0) = 0 for N even and positive. But, when N is even, 1/sV
always positive and g(s) cannot possibly integrate to 0.

This discrepancy can be resolved by taking g(s) to be a generalized function
(Gel’fand and Shilov 1964, nghthlll 1958) rather than an ordinary function. Thus,

g(s) can be defined as

g(s) = lim g(s)

2l-Np—3 1 ( 1%L if |s| > e
Where ge(s) = _N 1“ 2 i ls| <
T NPT

wlz

(2.15)

wl
s[z

91-N

(%)

To simplify notation, we will write s~ to denote the generalized function

lim (2.16)

L if |s] <€

% if |s|] > €
(1-N)eN

We will continue to write ;1,7 for the ordinary function.

The deblurring function blows up rapidly at the origin, for all values of N.
This may introduce numerical problems when trying to actually compute the
convolution.

Notice that g(s) has an infinite region of support. Therefore the reconstruction
of f(x) at a single point will depend on all values of the projection p(s,n).
Reconstruction in this case is not local.

The above formula is only valid for N even. When N is odd, formally applying
the formula yields 0 everywhere, with the possible exception of the origin, because
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the factor of cos(&™) is 0. At the origin, we get 0 times a function that goes up
as s~V Therefore the case of N odd must be treated separately to get meaningful
results.!

Case N Odd
When N is odd we have from (2.13)

G(p) = [L(R)] 12Nt = ¥ N (2.17)

The differentiation operator has transform jp, and the N — 1 derivative, N
odd, has transform p™~1(— 1)_2" So,

1 _ _N w1 dV-1
g(s) = *“N—Ql Nl G e o
I'(%)

(2.18)

In this case g(s) is a differential operator. Its region of support is limited.
Therefore the reconstruction of f(x) at a single point will depend only on values of
the projection p(s,n) that include the point of interest. Reconstruction in this case
is local.

Summary

In the convolution-backprojection method, each projection must be filtered
before backprojection and summation. The filtering function is

-Np—% I—‘igl(—l)ﬂ -N if N even
— 2.19
9(s) 2i-Narl=¥ ol (- —)M P i N odd (2.19)
In CAT, N =2 .
g(s) = —5—s -2 (2.20)
In NMR, N = 3
1 d°

These special cases agree with (Chiu et.al. 1980), (Shepp 1980), and
(Tanakaffi1979).

!Actually, if we consider g(s) to be a function of N, it happens that it is an entire function,
and therefore can be defined even when N is odd. Such an approach is taken in (Gel’fand and
Shilov 1964) to obtain a differential operator when N iz odd.
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3. Backprojectionand Summation Followed by Convolution

In this method, we first form the backprojection of the projection data, sum
over all directions, and then filter. As before, the backprojection is normalized by
Apn. The backprojection-summation b(x) is obtained by

b(x) = AR} / p(x-n,n)dn

§N-1
= A3} / / f(x)6(x -n —x'-n)dx'dn
SN-1 RN
= / F(xNAR f 6(x -n —x'-n)dndx
RN SN-1
= 60 ® ¥ .1

The backprojection-summation operation is equivalent to convolving the density
function f(x) with the blurring function h(x). We need to find what h(x) is. In
Appendix D it is shown that

on T
é(x-n)dn = ———— (3.2)
s/ xIT(E)

Therefore the blurring function is
P(N ) onEt
2t lxII‘(L)
1 I‘(N )
I VAr(EE)
We would like to find another function, g(x) that will undo the blurring caused
by h(x). g must be the convolutional inverse of h i.e. g(x)® h(x) = 6(x). We observe
that since h is symmetric, g must also be spherically symmetric. Therefore, in this

section we may take g = g(r). The best way to find g is to take Fourier Transforms.
From above, we must have

h(x) =

(3.3)

&) = g5 | (.4

Using the result in Appendix C concerning the FT of |r|¥, we have, with
k=-—1

: (& N
(p) =m" grlg( 22)2”‘1ﬂr(1,(2))|pll -

= 2N 1r%- ‘r<N>|p|‘ N (3.5)
G(p) = 2! Nal~% (N)IPIN”1 | (36)

As before, we will treat the cases of NV even and odd separately.
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Case N Even

In the case of N even, we can use the results of Appendix C to determine the
inverse FT of G(p).

N+N-1
o(r) = 2 Npl=¥ 1 ,N-1 -% ( - )T—N—N+1
r(¥) I(=%%)
(N -1
1-N 3) _1-2N
_ 3.7
e ey &)

Most of the comments that were made about convolution-backprojection for
N even also apply here. Specifically, the deblurring function blows up at the
origin. Also, its region of support is infinite rather than local. As before, g(r) is a
generalized function.

The above formula is only valid for IV even. When N is odd, the factor I‘(l—’é-]!)
is undefined. Therefore, the case of N odd must be treated separately.

Case N Odd

This is solved in exactly the same manner as in the convolution-backprojection
method. When N is odd we have from (3.6)

G(p) = 21N rl=¥ _L_pN-1 (3.8)
(%)

The Laplacian operator, V2, has transform —p2. So,

g(r) = 21"No1-% E(—l:lg—)(—1)ﬁ?vN -1 (3.9)

Where V¥~ indicates to take the Laplacian %‘i times. This is equivalent to

2k

A D) DT PR | (3.10)

11 12 ik 8:1:?132:?2-'-8:5?,:

This is the same form as was obtained with the convolution-backprojection
- method, except the differentiation in one dimension has been replaced by a series of
Laplacians. As before, g(r) is a differential operator. Its region of support is limited.
Therefore the reconstruction of f(x) at a single point will depend only on values
of the backprojection b(x) in a small neighborhood about the point, which in turn
depend depend only on values of the projection p(s,n) that include the point of
interest. Reconstruction in this case is local.
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Summary -

In the backprojection-convolution method, each projection must be filtered
after backprojection and summation. The filtering function is

1
() = WI‘NF———-——Tz———(l;g(__ﬁL_)rl‘zf_l - if N even (3.11)
21—Nn1'fr(l%)(—1)~rv”“1 i IV odd
In CAT, N = 2
g(r) = ~$r‘3 (3.12)
In NMR, N =3
g(x) = —%Vﬂ (3.13)

. These special cases also agree with (Chiu et.al. 1980), (Shepp 1980), and
(Tanaka 1979).
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4. Comparisonof Even and Odd Dimensional Reconstruction
In this chapter we will discuss why the reconstruction equations look so

different in even and odd dimension. To make the discussion concrete, consider the
convolution-backprojection method. To repeat, we have (2.13)

_ -~ 1 _
Glp) = 2N~ ¥ |1

(%)
The filtering function is (2.19)
(0 2l-Np—% %(—1)%3’]\7 if N even
g\s)= _ _N 2 N—1 jN-1 .
21-Ngl=3 f(l‘!g)‘(“l)—g‘ﬁﬁ__l if N odd

It is possible to explain the differences by noting that lplN"l = pN~1 when

N is odd. This leads to the second form above, in which the filtering operation is
equivalent to differentiation. When N is even, then |p|N ™1 = pV~1sgn(p). Since
multiplication in the transform domain corresponds to convolution in the spatial
domain, we can try to perform the convolution directly. So let us redo the analysis
for N even, using this approach.

For N even, we have

G(p) = 2N~ F N1 sgn(y) (4.1)
I(7)
Now the inverse transform of pV=1 is
-1y N-1 Av—1 4!
FT=H{p" 7} =(=9)"""5n= (4.2)
And the inverse transform of sgn(p) is
FT~sgn(p)} = = (4.3)
T8
Putting it all together, we get
Ny Ly dVTI TG
g(s)—-2 n 21‘(-12!)( :’) dsN_] s
= o=V 7r_!21——-——1N ()N NNV — )N
I'(y)
=2"Nyp=% ———F(]]X J1)¥s (4.4)
I'(7)

0
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This is exactly the result obtained through direct transformation using the
formula in Appendix C. This shows that the basic difference between even and odd
dimensions is that raising the magnitude of p to an odd power is equivalent to
differentiating the function % in the spatial domain. To make the similarity more
apparent, we can rewrite the correction function as

_N N1 gN-1 ] .
o) — 9l-N 1 Q’F(l%)jN I;LN_I(?J;) if N even (45)
- “N_1-X N—1 dN-1 . :
21-Ngl 21,(1%)31\’ 1(29,,46(3) if N odd

The above expressions for g(s) form a Hilbert Transform (Bracewell 1965) pair.
The Hilbert Transform of an even function is an odd function, and the transform of
an odd function is even. Thus the Hilbert Transform can be regarded as correcting
the antisymmetric differentiation when N is even.

This analysis does not carry over to the backprojection-convolution case. This
is because it is not possible to define sgn(p) in more than one dimension. Nor can
the Hilbert Transform be defined. However, the underlying principle is the same.
That is, the correction function must be spherically symmetric in all cases. When
the dimensionality of the problem is even, this leads naturally to derivatives of
even order. When the dimensionality of the problem is odd, we are not allowed to
use the odd derivatives, because they are not symmetric functions.

Acknowledgment: 1 are grateful to B.K.P. Horn for suggesting this field of
research, and for his many valuable suggestions and discussions. Thanks also to A.
Yuille for his comments and suggestions.
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Appendix A

In Appendix A we prove the projection theorem (Mersereau and Oppenheim
1974) in polar coordinates. Let p(s,a) be the projection of f(x) along a plane
perpendicular to a. Then the one-dimensional Fourier Transform of p and the
N-dimensional Transform of f are related as follows.

P(p,a) = /p(s,a)e—j"pds

R
=/ / f(x)8(s — x - @) dxe 7% ds

R RN
=_/2—1 / /f(r,m)&(s—rm-a)[rlN_ldrdme_j"”ds

R SN-1 RN
= 91 / /f(r,m)|r[N_le_j”’m'adrdm

SN-1 R

— F(p,a) (A1)

The FT of p(s, a) equals the FT of f(x) evaluated in the a direction.

12
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Appendix B

In Appendix B we derive the Fourier Transform of a spherically symmetric
function and the inverse transform. Let f(x) = f(r) with Fourier Transform
F(w) = F(p). In polar coordinates the elements of x and w can be defined by

zg =rsinfy---sinn_o
N-2
T = rcosbi_ H sinf;, 1< k< N-2
1=k
ZN_1=rcosln_2

wo = psinagp:--sinay_2
N-2
WE = PCOS ap_1 H sine;, 1<k N-2
i=k
WN-1 = pCOSAN_2

The Fourier Transform is given by

= [ fe)e*wix (B.1)
RN

sin g+ sin O 2 sin g sin ay 2+
. Jcosfpsinfy--sinfy_gcosagsinay-sinay_g
—jrp
4+ e 4+

F(p) = /_O; /:.../: f(r)e cosOy_gcosay_2

N~1sin! 6. sinV "2 0y _odfp- - -dOn—_> dr

(B.2)

The transform of a spherically symmetri¢ function is also spherically symmetric.
So we can take a; = 0 without loss of generality. The integration over r need only
be performed from 0 on up, as long as a factor of 2 is included. Using the facts
that
T i+
/ sinf0df = 73 2/ (T)
0 I(3+1)

— i

r—\
B3l
p

and

/-ou' gIBcost 2 g g VZ3 %) I‘(v + %)Jv(ﬂ)

13
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o™ We have
T : T ,
F(p) =2 / yr¥=ldr / sin® 8o dbp- - - /0 sin™ 3 9 _3 dfn_3 /0 e IPeos N2 GinN =200 o dOn_o
- N1
F(z+1) WAL
—9 N-14 3 fall INEA=1Y
f sertan T (w2 )t )7 roteny gy
= @m)¥ ¥ [ ¥ Iy (ra)f(r) dr (B.3)

Interchanging r and p and dividing by (21r)N gives us the inverse Fourier
Transform

1) =@ ¥ [T ¥ R de (B.4)

14
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AppendixC

In Appendix C we apply the spherically symmetric form of the Fourier
Transform to the function f(r) = r*. Since r = |x| and p = |w|, we will assume in
this appendix that r and p are non-negative. From Appendix B we have

Flo)= @) 4o ¥ [ rhry (o) f(r)dr

o0
= (27r)£2ip1"'12!/(; r%J%_l(rp)rkdr
Let 2z =1rp
N _ponN [P Ny
= (27)2p , 2 Ty _y(2)dz

Ntk
— N+ 2 T(5 )p—N—-k (C1)

r(-$)
Using the fact that

* LT
[) T Jp(:z;) d:z: =2 f—(—i_—_;q_—l-)*

Interchanging r and p and dividing by (27r)N gives us the inverse transform of

F(p) = pF. —_
f(r) = 2*n—¥ ___Ig@),_N_k (©2)

15
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AppendixD

- In Appendix D we derive an expression for f[gn-16(x - n)dn This integral is
obviously independent of the direction of x, but is dependent on its magnitude.
We can express n in polar coordinates, and let x lie along the last component of n,
since the orientation of n is arbitrary. Define n by

ng = sin fy- - -sin Oy _o
N-2
ng = cos O _1 II sinf;, 1< k< N-2
1=k
ny_1 = cosOn_so

Using the facts that

1
/6(kx) dxr = p
i+l
f sin*0d9 — ni LUE)
0 r(3+1)
and
I(})=vr
We have

27 pm T )
/ 6(x-n)dn = /0 /0 /o 6(|x| cosOn_2)sinl 8;- - -sinV "2 Oy _odby- - -dOn_2

SN-1
1 I-\(:+1)
= 2™ 1.]—:-[0 ( 7I‘(z + 1))

N-1
22

L (D.1)
IXII‘( )

16




Gennert Reconstruction {rom Projections

References

Bracewell, R.N. (1965) The Fourier Transform and Its Applications, McGraw-
Hill, N.Y.
Chiu, M.Y., Barrett, H.H., and Simpson, R.G. (1980) Three-dimensional

Reconstruction from Planar Projections. Journal of the Optical Society of
America, Vol. 70, No. 7, (July).

Gel'fand, I.M., and Shilov, G.E. (1964) Generalized Functions: Volume 1:
Properties and Operations, Academic Press, N.Y.

Gradshteyn, 1.S., and Ryzhik, IL.M. (1980) Table of Integrals, Series and
Products, Academic Press, N.Y.

Horn, B.K.P. (1973) DDD: Density Distribution Determination, Vision Flash
36, A.I. Lab, M.I.T., Never published.

Lewitt, R.M. (1983) Reconstruction Algorithms: Transform Methods. Proceedings
of the IEEE, Vol. 71, No. 3, (March).

Lighthill, M.J., (1958) Introduction to Fourier Analysis and Generalised
Functions, Cambridge University Press, Cambridge.

Louis, A.K., and Natterer, F. (1983) Mathematical Problems of Computerized
Tomography. Proceedings of the IEEE, Vol. 71, No. 3, (March).

Mersereau R.M., and Oppenheim, A.V. (1974) Digital Reconstruction of Multi-
dimensional Signals from their Projections. Proceedings of the IEEE, Vol. 62,
No. 10, (October).

Shepp, L.A. (1980) Computerized Tomography and Nuclear Magnetic Resonance.
Journal of Computer Assisted Tomography, Vol. 4, No. 1 (February).

Tanaka, E. (1979) Generalised Correction Functions for Convolutional Techniques
in Three-dimensional Image Reconstruction. Physics tn Medicine and Biology,
Vol. 24, No. 1.

17




