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Abstract

An important common sense competence is the ability to hypothesize causal
relations. This paper presents a set of constraints which make the problem of
formulating causal hypotheses about simple physical systems a tractable one. The
constraints include: 1) a temporal and physical proximity requirement, 2) a set of
abstract causal explanations for changes in physical systems in terms of dependences
between quantities, and 3) a teleological assumption that dependences in designed
physical systems are functions. '

These constrainls were embedded in a learning system which was tested in two
domains: a sink and a toaster. The learning system successfully generated and
refined naive causal models of these simple physical systems.

The causal models which emerge from the learning process support causal
reasoning — explanation, prediction, and planning. Inaccurate predictions and failed
plans in turn indicate deficiencies in the causal models and the need to rehypothesize.
Thus learning supports reasoning which leads to further learning. The learning
system makes use of standard inductive rules of inference as well as the constraints
on causal hypotheses to generalize its causal modcls. »

Finally, a simple example involving an analogy illustrates another way to repair
incomplete causal models.
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CHAPTER 1
INTRODUCTION

The Problem

““Common sense reasoning” subsumes a vast repertoire of familiar but hard to
articulate skills for understanding and dealing with the world. One of the most
important skills underlying common sense is the ability to recognize and describe

regularities in the world in terms of causal relations. Causal descriptions enable us

" to generate useful explanations of events, recognize the consequences of our actions,

reason about how to make things happen, and constrain hypotheses when expected
- events do not occur. Without the ability to construct causal descriptions, we would -
be unatle to impose any order on the bewildering changes that pervade our everyday
experiences; we would be unable to understand or control our environments.
Imagine waking up in the morning to find the refrigerator door ajar and the food
spoiled. One can construct an explanation easily, even if Aone‘is not quite awake.
People commonly turn down the volume control on the home stereo before turning
the power on, %mticipating and knowing how to prevent a possibly unpleasant jolt.
When the lamp does not work, we will sooner or late; change the bulb, check the

‘plug, and check the fuse.

Goals of this Work
This thesis investigates ways to construct causal descriptions of physical systems

which undergo continuous changes. The learning process produces a causal model

— aset of rules which make explicit the causal mechanisms underlying the behavior

of the system and its parts. The particular goals of this work are: A

o To present common-sense heuristics and a learning procedure which show how
causal models of physical systems can be hypothesized. o

¢ Toshow how a causal model can be refined by generalizing over further experienée.

. To show how a learned causal model can support causal reasoning, particularly.
planning.

e To illustrate how representations for quantities provide a basis for qualitative

reasoning which supports both learning and planning.




o To demonstrate how causal models'can be extended through the use of analogy.

Key Idcas — Constraints on Causal HIypotheses

This thesis argues for a set of constraints on causal explanations which make the

problem of formulating causal hypotheses a tractable one. These constraints are:
e Temporal and physical proximity. '

This constraint reflects the common sense notion of causality which states thzit
causally connected events are contiguous in space and time.
o Causal explanation abstractions.

 Changes and causal relations are represented perspicuously in terms of changing
values of quantitiés and dependences between quantities. This representation
language exposes constraints which reduce the number of causal explanation types.
to a manageable size. ‘

~e Teleological assumptions.

Assumptions about the nature of dependences between parameters in demgned

physical systems can be used to test causal hypotheses.

The Domains

A learning system, with these embedded constraints to guide it, was tested in
two experimental domains: 2 sink, the familiar kind of sink one finds in kitchens

* and other places, and a toaster.

The Kitchen Sink
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These part'icular devices were chosen for several reasons. They are composed
of many parts without being overwhelmingly complex. They display continuous
changes which can be modelled by qualitative representations for quantities. Water-
rises in the sink; bread turns to toast in the toaster. Because external inputs control
their behavior, planning problems can be posed. External ihputs of the sink in¢lude
the setting of the faucet and placement of the stopper. For the toaster, external
inputs mclude the depressmg of the lever, the placement of the bread, and the
setting of the thermostat ' o S

In addition, the sink displays an equxhbnum state — water flowing in at the tap
and out at the safety drain. The problem of explaining why water rising in the sink

‘does not overflow will illustrate how abstract causal explanations can effectively

constrain the set of admissible causal hypotheses so that the correct one can be
generated quickly. _ ,
Finally, the toaster will demonstrate how the learning system can produce

usable causal models of electronic devices without resorting to a wiring diagram.

‘T his thesis is concerned with naive rather than expert causal hypothesxzxng and

reasoning.

A Preview

Causally connected events are often temporally and spatially contiguous. This
principle is easy to see in reasoning about sinks and toasters. Pulling the plug
makes the water flow out immediately. The.controls on the blender across the
counter cannot affect the toaster. This pr1nc1ple is embodied in heuristics whlch

guide the recognition of causality.




These heuristics capture a useful, but not always correct notion of causality.
Causes and cffects may appear to be quite separated in time when the causal chain
is hidden. Furthermore, some causal relations involve interactions which occur over

large distances without an apparent medium, e.g. gravity.

Further experience provides opportunities to generalize causal models originally
constructed on the basis of a single experience. Various generalization heuristics
allow conditions to be dropped, boundaries on the closed systerﬁ to be better
 circumscribed, and dependerices between parameters to be recognized. For example,
two observations of the toaster for two different settings of the thermostat lead
to the recognition of the correspondence between the thermostat sctting and the

darkness of the resulting toast.

o tA oid t Toast? -

- Quantities model the continuous changes which occur in physical systems and
expose constraints which can be exploited. Qualitative reasoning with quantities

supports both learning of and planning with causal models.

. The most interesting problem posed for the learning program in the sink domain
is to understand what is happening when the water reaches the level of the safety
drain and stops rising. This is a passive change of behavior; no overt, external
action occurs. The learning program solves this problem by making an imagina.tiire

though tightly constrained conjecture about the function of the safety drain.




‘Why did the Water Stop Rising?

The learning program knows from its background knowledge about equilibrium
states that either 1) no influences, or 2) balancing influences, could be the explanation
for the change. At this point in the learning session, the learning system already
knows that the faucet being on and the presence of the water column makes the
water rise. These causes are intact, so equilibrium must be the explanation. Since
.only one influence is explicitly known, there must be an unknown influence of
opposite direction, i.e., one which makes the water fall. These inferences lead to
~ the identification of the saféty drain as the causal culprit. Without the reasoning
_ afforded by quantities, the learning program would have been hard put to construct -

the correct causal explanation in this situation.

The ‘rgésoning which the causal model supports also pfo;»'ides feedback about
deficiencies in the model. When plans fail, this can indicate an incomplete or
too-abstract model. Analogies can help when the causal model is deficient by

mapping missing information from other areas of knowledge.

~ The most int‘erestiihg of the planning problems in the sink domain is one that

cannot be solved with the causal model as it exists after the initial learning session
is complete. The problem is this: how to make the water rise above the safety drain.
The planner, by reasoning in terms of quan_titie.s, realizes that the equilibrium state
at the safety drain must be changed to a state of increase. However, it finds no way
to do so. The problem is solved finally by extending the causal model through the

use of an analogy. This analogy is illustrated below.




Chapter 2 presents the representation language for describing physical systems
and their changes. Chapter 3 describes the constraints on causal hypotheses
exploited by the learning system and the heuristics and procedures based on these
" constraints which are used to hypothesize and refine causal models. This chapter is

the core of the thesis. Chapter 4 shows that learning has taken place by describing
how a planner can use the causal models which emerge from the learning process.
Chapter 5 discusses analogy as one way to extend causal models. Chapter 6 recounts
-the accoinplishments of this thesis, discusses limitations, and suggests areas for

further research.

How This Work Fits In

Previous work in artificial intelligencé has addressed acquiring descriptidns of
static or non-causal structures or concepts [Winston 75, Michalski and Chilausky 80,
Michalski 83, Mitchell 82], representing causality [Rieger 76, Rieger and Grinberg
| 77], representing and reasoning about structures which undergo changes [Hayes 79,
de Kleer 79, Forbus 84, Kﬁipers 82, de Kleer and Brown 83, Simmons 83, Weld
84] , and representing continuous changes in physical systems in terms of quantities
[Forbus 84]. ' ”

This thesis builds on this foundation and shows how causal models of physical
~ systems which undergo continuous changesban be hypothesized and refined. The
‘ideas presented hopefully point the way towards further research on ihte‘grating ‘

learning and common sense reasoning systems.
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CHAPTER 2 : N
REPRESENTING PHYSICAL SYSTEMS AND TIEIR CHANGES

The input to the learning program is English text. This text substitutes for visual
perceptions and describes the structure of the sink and toaster and the changes
that occur over time. The text is translated by a parser which is part of a general
natural language/knowledge rcpresentation system. This chapter summarizes the
knowledge representation language of this system, describes its time representation,
and shows how physical systems and their changes can be represented within this
framework. The entire parser /representation system is described in [Katz 80, Kataz
and Winston 82, Doyle and Katz 84]. '

Relations and Truth-Values

The basic structure in the knoWledge representation scheme is the relation.

Relations havg the following form: .
< SUBJECT nELATION OBJECT> .
Somev exaﬁxplgs areg |
' <STOPPER IN DRAIN>
<COILS PART-OF TOASTER> .
<WATER-¢0LUMN 'CONNECTED-TO TAP>

Any SUBJECT or OBJECT may itself be a <SUBJECT RELATION OBJECT>> triple and

OBJECTS can be omitted:
< <WATER APPEAR> IN BASIN>

Truth-values are attached to each relation, either TRUE or FALSE. |

 The rarT-oF relation enables hierarchical structural descriptions of the sink and

the toaster to be constructed.
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Topological Description of the Sink

‘ Relations Can Change

Before. change can be represented, there must be a representation for time.
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Our time representation is simpler than others that have appeared in the artificial
intelligence literature,. [Allen 81, McDermott 82, Vere 83, Simmons 83). [Simmons 84]
is an excellent discussion of the important issues for designing a time representation.

The basic unit of time is the interval,"which is represented by specifying two
moments, one being the beginning of the interval, the other being the end of the
interval. Moments themselves are the primitive intervals and they meet at points.
Time is divided into a sequence of moments at the finest level of resolution, and
all intervals are defined on these moments. Moments are conveniently represented
as integers. } |

As an example, the interval <3,8> starts at the beginning of the third moment
and stops at the end of the eighth moment. An interval such as <5,5> is
well-defined. This interval is exactly the fifth moment.

In principle, it would be useful to be able to define intervals on top of other

. intervals, rather than on moments only, to any number of levels. Then seconds,

minutes, hours, days, etc. would be easy to represent. (See [Allen 81) for a solution).
The two-level partitioning of time into moments and intervals is sufficient to support
the temporal reasoning the learning program needed to do. .

- Another limitation in our time representation is the absence of any 1nformat10n

‘about scale, i.e., about the absolute duration of any particular moment. (See [Vere
83] for a solution and [Simmons 84] for a discussion). Once again, there was no
'need for this kind of infarmation to support the research at hand, so the issue was-

not addressed. Only information about the ordermg of events was necessary, not
about their relative durations. :

The interaction between the parser and the time representation is clean and
simple. The parser Strips temporal adverbs from sentences and makes them available

to the knowledge system. There is an internal clock which keeps track of the current

~*" moment, the “now”. Temporal adverbs adjust the clock as follows:

e INITIALLY - sets the clock to 1

o ALREADY - sets the clock to 0 e, sometlme in the past.

° ALWAYS - sets the clock to —o0, i.e., for all tlme

. NEXI - advances the clock once.

LATER - advances the clock twice, to create an intermediate interval during

®

which nothing changed.

“When a relation is inserted into the knowledge base; both a truth-value and an

interval are assigned to it, representing when that relation has that truth-value.
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The starting moment of the interval is always the current moment given by the
internal clock. The stopping moment is, by default, +oc. Relations are assumed to
be persistent, _

Finally, it is possible to represent how relations can change. The interval /truth-
value construct is generalized to a history, a list of interval/truth-value pairs. If a

relation is asserted again, it is not created anew, rather the history of the relation

is modified according to the following rules:

e If the value has not changed; do nothing.
e If the value has changed and time has passed; close the previous interval and

create a new persistent interval with the new value.
As an example, the following set of sentences,

Initially, the stopper is in the drain.
Later, the stopper is not in the drain.
Next, the stopper is still not in the drain.

Later still, the stopper is in the drain again.
"~ would be represented in the knowledge base as:

N1 . <STOPPER IN DRAIN>’
(1-TRUE-2) (3-FALSE-5) (6-~TRUE->>)

Note tha_£ the ﬁnél interval is an open interval, while the others have been closed.

For the purposes of this research, it was critical to be able to represent a
sequence of events, in which the learning'pfogram would look for causal relations.
It was necessary to be able to control the exact temporal ordering of relations in :
the knowledge base. The particular interaction between the parser and the time
represeniation described above might be called the “sequence-of-events” mode.

Other interactions between the parser and the time representation are possible.

Quantities Capture Continuous Change

" Truth-value histories represent how propositional statements about the world
change, but they are not well-suited to representing how properties of objects can
change. In physical systems, changes often occur continuously. The representix@ions

for quantities described in this section capture continuous properties of physical
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objects. They are borrowed from Ken Forbus’ seminal work on representing and
J Yy P g

reasoning about physical processes [Forbus 84].

Quantities are alwaﬁ associated with a physical object and the possible values of

a quantity correspond to well-defined states of the object. The values of quantities

‘are symbolic, not numeric. An ordering is imposed on the set of values of every

quantity, so it is possiBlé to reason about the relative magnitudes of different values
of a quantity. It is also possible to compare the relative magnitudes of values of

different quantities. However, no information about absolute magnitudes is given.

A quantity has two parts, an amount and a rate. ‘The rate is the first derivative
of the amount. As an example changes in the temperature of the coils in a toaster

can be represented as:

QUANTITY-1 '<COILS QUANTITY TEMPERATURE>
(1-TRUE->)

AMOUNT-1 <TEMPERATURE AMOUNT> ,
(1-coLp-2) (3—CHANGING—4) (5-—}10'1"—5) (6-CHANGING-7)
(8-coLp->)

 RATE-1 _ <TEMPERATURE RATE>
(1-zERO-2) (3-POSITIVE-4) (5-2ERO-5) (6-NEGATIVE-7)
(8-zerO->) '

The rate of one 'q_uantity may be the amount of another. A more powerful
representation for the flight of a rock might involve another quantity called velocity
whose amount is the same as the rate of the height. Higher-order derlvatxves can

be represented as well.

" The above example shows how quantities fit into the overall representational

scheme. If the values placed in histories are generahzed from truth-values to arbitrary

values, then quantities can be represented without any addxtxonal machmery

The set of possible values for a quantity and the ordering imposed on that set is

called a guantity space [Forbus 84]. Usually the quantity space is a total ordering,

but partial orderings are possible too. The quantity space for the amount of the

coils’ temperature is:

(coLp -> nor)
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The quantity space for the rate of the coils’ temperature is:
(NEGATIVE —>> ZERO —>> POSITIVE)

Quantities extend the ability to represent change along two dimensions: first,
continuous as well as discrete changes can be represented; second, the direction of
a change can be represented, because of the ordering imposed on the set of values
for a quantity. Representing directions of change can support reasoning about the
next value .of a quantity and equilibrium states. Quantities not only add a richer

representation for change, they add reasoning power as well.

'Depéndences Capture Causality

The task of the learning program is to identify causality. Causality can be
represehted in terms of quantities in a concise manner. A quantity that can be
affected by another quantlty is functlonally dependent on that quantity. It is useful
to define two kinds of dependences, the function and the influence [Forbus 84].-

An example of a function is:
' FUNCTION:1 <Q-1 FUNCTION Q-2> . NEGATIVE

. The independent quantity or causing quantity is Q1 and the dependent 'quantity
is Q2. A dependence is usually signed, to indicate whether it is a direct or inverse

dependence. The meaning of this function is:

" e when the independent quantity’s amount increases, the dependent quantity’s
amount decreases .
e when the independent quantity’s amount decreases, the dependent quantity’s

amount tncreases

The definition of a direct (positive) function is symmeﬁrical in the obvious way.

- The meaning of an influence such as
INFLUENCE-1 * <Q-3 INFLUENCE Q-4> " POSITIVE
is slightly different:

o when the in-dcpendent quantity’s amount is positive, the dependent quantity’s

rate is positive (and the dependent quantity’s amount is increasing)
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e when the independent quantity’s amount is negative, the dependent quantity’s

rate is negative (and the dependent quantity’s amount is decreasing)
A negative influence is defined in the obvious way.

A function is a dependence between the amounts of two quantities or the rates of
two quantities. An influence is a dependence between the amount of one quantity
and the rate of another. It is possible, by chaining influences through several

quantities, to represent higher-order derivatives.

It is also useful to define the correspondence, which is a relation (in the
mathematical sense) between the values of two quantities. A correspondence
‘represents an observation about empirical links between the values of two quantities
- but it is not yet clear which quantity is independent and which is dependent.

A correspondence such as:
CORRESPONDENCE-1 <Q-5 CORRESPONDENCE Q-6> NEGATIVE

means there is a one-to-one correspondence between the values in the onme
quantity’s quantity space and the values in the reverse of the other quantity’s

quantity space. A correspondence is symmetric. -

Causal Rules Cap{:ure Behavior-

The représentation of causality afforded by quantities facilitates the construction
of causal models of physical systems by the learning program. Causal models consist
of a set of causal rules defined on a set of physical objects and a set of quantities
associated with those physical objects. The causal model makes explicit the causal
relations underlying behavior. Causal rules describe causality at two levels: At
the quantity level in terms of independeﬁt quantities, dependent quantities, and
dependences, and constraints on the ranges of the values of the quantities. At the |
physical level in terms of a set of preconditions and a set of effects, both of which
are relations on physical objects, and the times thesg relations hold. The quantity,
level aids the learning program in the recognition of causality, because quantities
and dependences support abstract causal explanations. The physical level provides
a means for describing causality in terms of objects and relations at the physical
real-world level for use by a planner.

An example of a causal rule illustrates its form:




THE OBJECTS ARE
THE DRAIN
THE WATER

THE QUANTITIES ARE
THE FLOW OF THE DRAIN
THE HEIGHT OF THE WATER

THE DEPENDENCES ARE |
<FLOW INFLUENCE HEIGHT> NEGATIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <DRAIN CONNECTED-TO WATER> TRUE
(T} <DRAIN CONTAIN STOPPER> FALSE
(T) <DRAIN PART-OF BASIN> TRUE
(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE
" (T) <WATER CONNECTED-TO SAFETY> FALSE
(T) <WATER IN BASIN> TRUE

- THE QUANTITY-PRECONDITIONS ARE
(T) <HEIGHT AMOUNT> BELOW-SAFETY
<HEIGHT RATE> ZERO

THE PHYSICAL-EFFECTS ARE v
(T+2) <DRAIN CONNECTED-TO WATER> FALSE
(T+2) <WATER CONNECTED-TO DRAIN> FALSE
(T+2) <WATER IN BASIN> FALSE

THE QUANTITY-EFFECTS ARE .
(T) <FLOW AMOUNT> POSITIVE

(T) <FLOW RATE> ZERO
(T) <HEIGHT RATE> NEGATIVE

 (T+2) <HEIGHT AMOUNT> ZERO
{T+2) <HEIGHT RATE> ZERO

sal

This causal rule describes how water flows out of a drain.

14
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CHAPTER 3
PROPOSING AND GENERALIZING TIIE CAUSAL MODEL:

LEARNING

Learning systems are often described by specifying an initial representation,
a target representation, and a learning procedure. Using this frainework, the
construction of causal models can be described as follows:

The initial representation is a temporally ordered sequence of events describing
behavicrs of the physical system being investigated.

The target representation is a set of causal rules which describes the various

behavicrs of the physical system in terms of causal relations; each causal rule

is a déscription of causality at two levels: the abstract level of quantities and
dependences and the real-world level of physical objects and relations. The set of
causal rules makes up the causal model. '

The task of the learning system is to recognize causality in the sequence of events
and render the identified causal relations in the form of causal rules. This chapter
explains the learning procedure in full detail. This procedure was implemented in

" a learning system called JACK (Justifiably Assimilating Causal Knowledge).

Identifying Causality

The common sense view of causality that the learning program exploits is the

~ following: Two events which are causally connected are contiguous in space and

time. This is a useful, but not always correct notion of causality, as will be discussed

later. , ,
Repetltxon of conJo1ned events is a]so a clue to causality 'but is not used by the

~ learning program as a basis for proposing causal relations. If this heuristic were

to be used alone, some kind of thresholding mechamsm would be needed, which

~would likely be ad hoc. However, causal relations do have to satisfy repeata.bllxty

after being proposed.

"Temporal Adjacency

A statement of the form “A causes B” almost always implies “B immediately
follows A”. This is not always correct, but this is the assumption which forms the

basis for the temporal adjacency heuristic. This heuristic is used as follows:
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The learning program looks for two changes, one immediately following the other
in time. More specifically, because causal relations can be represented succinctly
by dependences between quantities, the learning program looks for the pattern of

one quantity’s value changing immediately after another quantity’s value changed.

The following diagram illustrates:

(ind-q) (dep-q)
CAUSE EFFECT
Event Qi changes Qz changes
Time ¢ ; f——>
t 4+l

Temporal Adjacency

Whenever such a pattern appears in the sequence of events, the learning program

suspects causality, and the two quantities may be linked in a dependence.

. 'However, the temporal adjacency heuristic does not provide enough constraint
by itself because coincidences are possible. Additional constraint is provided by the

~ physical connectedness heuristic.

Physical Connectedness

In our common sense view of causality, in order for two events to be causally
connected, there must be some kind of medium between the two along which
“forces” or “agents” which mediate the causality -can propagate. This medium
might be, for exémple, a mechanical, rigid connection or a fluid coﬁpling.. For
the learning program to identify causality, the exact nature of the medium is not

important, just whether a medium does in fact exist.

Physical connectedness is tested by determining if there is 2 CONNECTED-TO
-relation between the two objects associated with the quantities whose changes
satisfied temporal adjacency. Since the connecTED-TO relation is transitive, the

physical connectedness heuristic can be satisfied by a chain of objects.

The two heuristics — temporal adjacency and physical connectedness - are

‘combined as illustrated in the following diagram:
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Temporal Adjacency and Physical Connectedness

In sﬁmmary, the identification of causality has two éteps. First, two quantities
are found, one changing immediately after the other. Second, it is verified that the
objects which the two quantities are asso'ciated with are physically connected.

There is a theme of reasoning at two levels throughout this 'researrch. The temporal

adjacency heuristic operates at the quantity level; here causality is suspected. The

. physical connectedness heuristic,operétes at the physical level; here causality is

reinforced. _ » '
Coincidences can be defined and recognized. A coincidence is two events

. which satisfy the temporal adjacency heuristic, but do not satisfy the physical

connectedness heuristic.

Limitations and Extensions of the Heuristics

The two heuristics given above for identifying causality are general and powerful

enough to be sufficient in a large number of situations. However, they can fail to

identify some classes of causally connected events. This section discusses the limits.

of the two heuristics and some simple extensions.

Consider first the temporal adjacency heuristic.
It is not strictly true that causality always implies that the cause immediately
precedes the effect in time. For instance, in the case of purely mechanical, rigid
connections, the cause and effect occur simultaneously. Think about pushing on

one end of a rod. There is no delay before the other end of the rod starts mdving.
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However, the physical connectedness heuristic is already powerful enough in
some cases to supply sufficient constraint to correctly identify causality when the

temporal adjacency heuristic fails because of simultaneity.

Consider the following situation:

CAUSE EFFECTS

Event Q! changes Q2,Q3 change

i ! ]
Time & 4 !

t t-+1

N 4

There are three possible interpretations of causality:

DEPENDEN7 YPENDEN\C E

.otpsuoeuct ‘DEPENDENCE
/

: DEPENDENCE , DEPEADENCE
7. >(Q2)

The correct interpretation is the one which displays the same topology as the
‘graph of the physical connectedness relations on the physical objects associated

with the quantities.

CONN To nn» T0
@@
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" Since the CONNECTED-TO relation is symmetric, at least one of the dependences
must be given a direction independently (e.g. by the temporal adjacency heuristic -
or if a change in a quantity is due to an external action) to “seed” the constraint
propagation. Otherwise, the independent quantities and the dependent quantities

would not be distinguishable. If any cycles exist in the dependence and connectedness
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graphs, they too must be individually seeded.

Another flavor of causality that is captured neither by temporal adrjacency
nor simultaneity is the “delayed” reaction. But delayed reactions are really just
delusions; there is no real temporal discontinuity. The problem is that the structural
description being used to understand the causality is too abstract, so that the
causal mechanism is hidden. If enough lower-level detail were added to the model,
then a causal chain would be revealed, and each causal relation in the chain would

satisfy either temporal adjacency or simultaneity.

The solution then, is to have the capability for higrarchical descriptions - both
structural and temporal. A hierarchical partitioning of time was discussed in the
chapter on knowledge representation; a hierarchical description of structure would
be a uscful parallel. These descriptions could support a hierarchical description
of causality so that what looked like a delayed reaction at one level, would be
a continuous causal chain at a lower level. [See Allen 81, Davis et al 82, Davis
83, de Kleer and Brown 83, for work that has addressed the issue of hierarchical
- descriptions]. o

To summarize: When events in time are adjacent, the temporal adjacency heuristic '
_is applicable. When events in time are simultanéous, the physical connectedness

heuristic can sometimes disambiguate. When events in time are discontinuous, .

perhaps the model can be fleshed out until all events are adjacent or simultaneous.
"~ Consider now the physical connectedness heuristic. '

- A problem with the physical connectedness heuristic is that it is incapzible of
- handling situations which involve “forces at a distance”. More accurately, it is
' incapable of modelling phenomena such as gravity, magnetism, heat exchange, etc.
unless some kind of medium is proposed. This level of understanding can be likened -
to that of nineteenth-century physicists who proposed the “ether” to explain the

propagation of electromagnetic radiation within the solar system.

This problem can be partially addressed by relaxing the physical connectedness
_ reql.iirement to physical prozimity. However, there is a danger of removing too much
‘constraint and it is not at all clear when two objects are near enough to possibly

affect each other.

A better idea is to consider only objects which are part of the same physical
system. Two objects are part of the same device if their rarT-OF hierarchies join.

This heuristic embodies a teleological assumption about parts of a device being
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intended to interact. The structure of the physical system itself is used to draw
boundaries within which to look for causal relations.
These heuristics for proposing causality effectively prune the space of admissible

hypotheses. No heuristic is perfect though; these can pass incorrect hypotheses.
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Constraint at the Quantity Level

" There are only a finite number of Ways to explain changes in»dépendent quantities
in terms of dependences and chémges in independent quantities.- Representing
" changes and causality in terms of quantities and dependences exposes constraints
that collectively define a kind of syntax of causal explanation. In particular, three
kinds of knowledge at the quantity level can constrain the hypothesizing of causal

relations.

e Discrete vs. continuous change.’

Types of changes in quantities are linked to types of dependences.

Type of chaﬁge o Type of change ~_ Type of

" in independent quanﬁty in dependent quantity - dependence
discrete . discrete function
discrete continuous influence

continuous continuous - function
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e Signs and directions of change.

The signs or directions of change of quantities and dependences have to be

consistent.

Direction of change or Directibn of change or Sign of
sign of independent quantity sign of dependent quantity dependence
+ + o+
+ - -—
-— + -—
- - +

e Second-order causal explanations.

Define the state of a quantity to be its dxrectlon of change and the signs of the
impinging contributions on that quantity. There are a ﬁmte number of ways in

whmh the state of a quantlty can change.

ngrgnt state Add + Add —  Del+ Del —

Constant C (0,[]) I D x x
Increase I (+,[+]) | I E C x

" Decrease D (—,[—]) E D x C
Equilibrium E (0,[+,-]) E E D I

For example, a decreasing quantity can change to a steady qué.ntity because
a single negative contribution went away or beca.use the quantity achleved an
equilibrium state when a positive contribution was added.

The number of second-order causal explanations for changes in quantities is
reduced considerably by a felicity condition [VanLehn 83] which excludes tradeoff
situations. In general, contributions of opposite direction may resolve to a net change
in either direction rather than an equilibrium state. Furthermore, equilibrium states
may not be stable; they may be easily perturbed to a positive or negative tradeoff

situation.

An éx;imple from the sink domain illustrates how constraint at the quantity level
facilitates the identification of causality.

Durmgr the learning session, after the faucet is turned on and while the stopper
is in the drain, the water rises to the level of the safety drain and stops. JACK

realizes that either no influences or balancmg influences could be the cxplanation
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for the change. At this point in the learning session, the learning program already
knows that the faucet being on and the presence of the water column makes the
water rise. These causes are intact, so cquilibrium must be the explanation. Also,
the unknown contr‘ibu'tion must be of opposite direction, i.e., it must make the

water fall. All of this reasoning ultimately leads to the identification of flow at the

safety drain.

WATER \
coLumn

INFL\,EmAENCE -

2ERO

POSIT IVE SAFETY\ POSITINE

An Equilibrium State

Without the reasoning available at the quanﬁity level, particularly the repre-

sentation for equilibrium states, the learning program would have failed to construct

the correct causal explanation in this situation.

Tradeoffs and Overdetermined Systems

The number of &ependenées in the various types of causal explanations at the
quantity level outlined above is in all cases minimal. If a quantity is not steady, a

single dependence explains why it is changing. If a quantity is steady, either there

are no dependences, or if evidence indicates an equilibrium state, there are exactly -

two dependences. ‘

In general, a chahging quantity can be the result of any number of interacting
. dependences (except zero), all sharing the same dependent quantity, whose net
effect is to move the quantity in a particular direction. Similarly, an equilibrium
‘state can be achieved by any number of dependences greater than one, again all
sharing the same dependent quantity, whose net effect is a state of balance.

However, the following qualitative checks can be performed to see if the set of
~ dependences is at least not inconsistent with the observed change in the dependent

- quantity.
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e For 2 non-steady quantity, there must be at least one dependence in the set of
dependences whose contribution has the correct sign. (The sign of a dependence’s
contribution is the resolution of the sign of change of the independent quantity
and the sign of the dependence).

¢ For a steady quantity, if there are no dependences, that is sufficient explan;ition.
Otherwise, the quantity is in a state of equilibrium. In this case, there must be
at least one dependence in the set of dependences in each direction.

The amount of constraint may not be sufficient when there are several dependences
to resolve. For instance, if a quantity is decreasing, three negative influences and
one positive influence may not be a correct explanation, because the magnitude of
the single positive influence might be greater than the sum of the magnitudes of
the negative influences. ' ‘

When there are several depéndences which " satisfy the causality-proposing
heuristics, the complete and correct way to verify that the net effect of the
dependances is consistent with the change in the dependent quantity is to sum
the contributions of all the dependences But thls would requxre knowledge about
the absolute magnitudes of quantities and perhaps even an equation to represent
the functional relationship captured by the dependence. This kind of quantitative
information is not available. Therefore, tradeoff situations are not allowed. ‘

This felicity condition [VanLehn 83] does not preclude overdetermined systems '
where several dependences contribute to move a quantity in the same direction.
The Iearning program can construct correct causal explanations in these situations.
They are the only situations in which JACK can construct causal explanations

which involve more than the minimal number of dependences.

Making Hypotheses

JACK learns by proposing causal explanations for changes in quéntities. This
" section outlines how the causality-proposing heuristics and knowledge about
quantities constrain the hypotheses which the learning program generates to explain

changes.

Given a change in a (dependent) quantity, JACK tries to construct a causal
~ explanation in terms of dependences and independent quantities with the following

procedure:

Step 1.
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Different kinds of changes in quantities are associated with different kinds of
causal explanations in terms of dependences.
e If the quantity has stopped changing, look for no .dependences or balancing
dependences.
e If the guantity has begun changmg, look for a new dependence or a broken

equilibrium state.

Step 2.
If JACK cannot explain changes in terms of known dependences, then the

causality-proposing heuristics are used to propose new dependences. This is when
learning takes place. The learning program proposed new dependences by searching
for a change in an independent quantity and an associated physical object which
satisfy either:

e temporal adjacency or sxmultanelty and physical connectedness, or

e temporal adjacency or simultaneity and same device

with the change in the dependent quantity and its associated physical object.

Step 3.
" The type of a new dependence is chosen accordmg to the followmg rules

e If the amount of the dependent quantity changed and the amount of the

independent quantity changed, then the dependence is a function.

e If the amount of the dependent quantity changed and the rate of the independent
~ quantity changed, then the dependence is a znﬂuence L |

e If the rate of the dependent quantity changed and the rate of the mdependent
. quantity changed then the dependence is a function.

Functions are csusal‘relations between the amounts or rates of two quantities.
Influences are causal relations between the amount of one quantity and the rate of

another.

Step 4.

The sign of a new dependence is chosen accordmg to the following rules

) If the directions of change of the two quantities are of the same sign, then the
7 dependence is positive (direct). ,
‘e If the directions of change of the two quantities are of opp051te sign, then the

dependence is negative (inverse).
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The direction of change of any quantity is found by locating the previous value
and the current value in the quantity’'s quantity space. If it is not possible to

determine the directions of change of the two quantities, then the dependence is

left unsigned.

If the changes in the two quantities satisfy simultaneity and neither is attributable
to an external action, then it is not possible to determine which quantity is
independent and which is dependent. In this case, a correspondence is proposed

rather than a dependence.

Proposing dependences is the first step in constructing new causal rules. The
dependences represent the description of causality at the quantity level. The next

section explains how the description of causality at the physical level is constructed.

Preconditions and Effects

Causality can be described concisely at the level of qoo.ntities but there are
two reasons why this is an inadequate representation. First, it is too abstract - a
‘representation of causality must also describe objects and relations at the physi'col,
real-world 'level_ to support planning. Second, a representation of causality must .
include not only explicit causes, but also the enabling conditions which must hold -
for the causality to be realized. A good éxample is the operation of a gun. Pulling
the trigger is the direct, overt event which causes the bullet to be fired. However,
unless the safety lock is off, the gun will not fire. The release of the szifety lock
is a precondition which must hold before the causal relation between pulling the
trigger and the bullet firing can be realized.

Similarly, there may be indirect effects which result when a causal relation is
realized. Some side effects of a fired gun are the recoil of the gun and the odor of
the ignited gunpowder. It is particularly important to represent side effects which
can only be realized indirectly, through a causal relation whose primary effect is
something else. ,

The quantlty level of causal rules provides a concise rendering of causal relations.
‘Changes in independent quantities result in changes in dependent quantities
through dependences. The physical level of causal rules allows an arbitrary number

of preconditions and side effects to be represented for each causal relation.

Precondltlons and effects are either relations on physical objects or constraints on

the ranges of values for quantities.
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When a dependence is asserted between two quantities, this is only the first step

in constructing a causal rule. The preconditions and effects which make up the

physical level of the causal rule must also be identified.

The procedure for constructing the physical level of a causal rule is:

Collector:
Given the independent quantities, the dependent quantities,

the associated physical objects, and the change's’which are
the primary cause and effect in a causal rule,
Collect the values of the quantities and relations on the
physical objects which held at the time the primary cause
occurred. These are the precondltxons
Collect the values of the dependent quantities and relations
on the physical objects associated with the dependent
quantities which changed at the time the primary effect

occurred These are the eﬁ”ects

~ . \

ECORDITIONS .
OO O P;\A»;Eno

|
| THESE RELAT\ONS
: WHICH HELD v -
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reconditions_and Effects

// FFFECTs

THESE Rfu‘rlo»s
WHICH CHANGED
AT T2

- Normally, effects are assumed to be persistent. However, an effect which involves

a continuous change is tracked to see if a limit value is reached. If so, this value is

“included in the causal rule as a long-term effect.
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Earlier, it was stated that the first attempt to arrive at a causal explanation for a
change in a quantity involves éhecking known dependences and dctermining if the
independent quantities changed in the expected way. What JACK actually does is
check known causal rules and determine if the indepbende,nt quantities changed in
the expected way and all preconditions were satisfied. '

The procedﬁre for identifying preconditions and effects can be either over-general
or over-specific. Spurious preconditions and effects may be included. Relevant
preconditions and effects may be missed. A later section which discusses how causal

rules can be generalized over further experience addresses this problem.

Imagination Orders the Explanation Hierarchy

JACEK first tries to explain changes in quantities by appealing to former experience
encoded in existing causal rules. This kind of explanation does not involve an
hypothesis. . _ - ' - V |

If such an e}vtplanation‘ is not fort}xcoming, JACK tries to pi‘opo_se 2 new
dependence. This type of explanation assumes that the primary cause of the change
in the dependent quantity is an observable change in an independent quantity.
This is the nominal situation for the learning program. However, the last satisfied
precbndition — which may not be manifest in an observable change in a quantity
- sometimes plays the role of primary cause. Because preconditions can become
satisfied in different orders, different instantiations of a causal rule ma.y display

“different primary causes. ' i »

Therefore, if an explanation involving a change in an independent quantity and
a depéndence is not forthcoming, JACK searches for a change in a relation on a
physical object. This physical ob_)ect a.nd the time of the change also must satisfy
the temporal and physical proximity requxrement - ‘

The explanation now is that the change establishes a precondition for a
dependence whose dependent quahtity is the quantity which changed. The unsatisfied
precondition was preventing the causal relation from being realized. The change
in the d.ependvent' quantity was latent, and the now-satisfied precondition was the
important cause, not an unobservable change in an independent quantity. This type
of causal explanation proposes a new dependence and a new quantity.

An example from the sink domain illustrates how this hypothesizing can work.
While there is water in the basin, the stopper is removed from the drain and the‘

water bevlns to fall.
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CAUSE EFFECT

Event <STOPPER IN DRAIN> FALSE <WATER-HEIGHT RATE> NEGATIVE

4

Time & } }
t t

Since the flow at the drain is not observable, the learning program cannot know
about this influence directly. But JACK does know that the drain, which is touching
the water (physical connectedness), underwent a change, namely the stopper was
‘removed from it, as the water began to fall (simultaneity). This evidence is sufficient
to propose a mew quantity for the drain, and construct a new dependence and
causal rule, one of whose preconditions states that the stoppexj must not be in the
drain. '

If there is no observable evidence about a cause for a change in a quantity, a
final attempt to construct a causal explanation might be made by using analogy. If -
another situation matches well with the current one, it may support an hypothesis
about an unobservable independent qﬁantity, or even an unobservable physical
object and change which establishes a precondition. The analogy would proceed by
matching observable effects of the two situations, and then trying to map the causal .
explanation in the known situation onto the current situation. This explanation -
would have to satisfy the temporal and physical prqximitj constraint as well.

Although the use of analogy to construct causal models was not implemented,

its use to extend causal models was, and is explored in Chapter 5.

JACK learns by making hypotheses to explain changes in quantities. JACK may
make several attempts to construct causal explanations. Each type of explanation
is more imaginative than the prévious because each successive type of explanation
proposes more to compiete an adequate causal explanation. |

In summary, these are the types of causal explanations JACK tries to construct

(m order) when confronted with a change in a quantity:

The Explanation Hiefarchy

-e Identify a known dependencevand causal rule in the existing causal model.
~ What is proposed: nothing. , :
o Identify a change in a quantity which satisfies the temporal and physical proximity
heuristics. By hypothesis, this quantity is the independent quantity.

What is proposed: dependence, causal rule.
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e Identify a change in a relation on a physical object which satisfies the temporal

~ and physical proximity heuristics. By hypothesis, this relation is a precondition.
What is proposed: independent quantity, dependence, causal rule.

e Identify a similar causal rule which explains a similar change in a similar quantity
and which satisfies the temporal and physical proximity heuristics. By analogy,
the causal explanation is transferable.

What is proposed: physical object, relation, independent quantity, dependence,

causal rule.

Resolution and Boundaries

JACK’s ability to construct causal explanations. is. limited by the level of
resolution at which a physical system and its changes are presented and by the
implicit boundaries [Kirsh 84] on the space of candidate causes and preconditions
imposed by the ca.usahty-proposmtf heuristics.

JACK is provided with a structural description of a devxce at a single level of

resolution — roughly what can be seen from theé exterior of the device. JACK is not

allowed to “open up” the device to know of additional components and connections.

The temporal resolution is matched to the visible changes undergone by the parts
of the device. - , » |

The heuristics of temporal adjacency, simultaﬁeity, and physical connectedness
allow JACK to make causal hypotheses about interactions which are visible. The
same device heuristic essentially allows the learning program to hypothesize new
connections between components. o . .

The use of the heuristics is ordered so that the boundaries on the space of
candidate causes and preconditions is expanded as JACK searches for a causal
explanation for a change. These heuristics embody the notion of a closed system

whose internal behavmr is not impinged upon by events outside the system’s

boundarnes

Generalizing Over Further Experience

" Causal models are originally constructed on the basis of a single experience with a

physical system. Any form of the causality—proposing heuristics can admit incorrect

oor incomplete hypotheses. More likely than not, causal models will need refincment.

The next few sections discuss ways to recognize deficiencies in causal models and

ways to generahze causal models to repair such dcﬁcxenmes
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Spurious Preconditions and Effects

Preconditions and effects at the physical level of a causal rule are collected by
noting, respectively, what relations held, and what relations changed when the
causation was manifest. Spurious effects are less likely because of the additional
constraint, but this procedure does not guarantee the exclusion of either spurious
preconditions or effects. However, an irrelevant precondition will never prevent a
causal relation from being realized, and an irrelevant effect will not necessarily
occur. Therefore, any precondition or effect which is respective]y, unsatisfied or
unrealized when a causal rule is otherwise intact, can be dropped. This pruning is

a kind of generalizing from negative examples

An example from the sink domain illustrates how a spurious precondition can
be recognized and dropped. When JACK first attributes the recession of the water
in the sink to the removal of the stopper from the drain, there is a bar of soap
' Aﬂoatmg in the water. JACK includes but later drops the presence of the soap as a

precondltlon when the water flows out again sans soap.

Making Bett_er Hypotheses

A causal rule may fail to explain apparently similar events because the causal
relation it describes may subsume-a chain of causality, or may itself be part of.
a larger causal structure. Such an incomplete causal description may be missing

relevant dependences, preconditions, and effects.

When the effects listed in a causal rule do not obtain despite all known

- preconditions being satisfied, this is evidence that the causal model is incorrect

or at least incomi)lete. JACK might resume fhe search for an hypothesis where it

originally terminated and try to geﬂerate a causal explanation which covers both
the new and previous events. A better idea is to try and determine why the causal
model failed by comparing the situation where it failed to the situations where it
did not fail. Any differences can support new hypotheses which can then be tested
by the causality-proposing heuristics. Differences reveal causes in rehypothesizing
just as changes reveal causes in mltlal hypothesizing. Rehypothesizing is a kind of
generahzmg from both positive and negative examples. On the other hand, JACK’

' initial hypotheses are based on explanatxons of a single posmve example.

The procedure for rehypothesmmg is:
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Rechypothesizer: '
Given two situations, one where a causal rule provides a causal
explanation and one where it does not,
. Compare the two situations.
Until an adequate causal explanation which covers both
situations has been constructed,
For each difference,

Try to construct a causal explanation.

An example from the toaster domain illustrates how a better causal model can
result when JACK is forced to rehypothesize because the current model fails.

Part of JACK’s initial model of the toaster includes an influence between the
position of the lever and the temperature of the coils. This model works fine until
the tonster’s plug is pulled from the outlet. JACK compares (see Appendix V for
a description of the matcher) the state of the toaster at'the time of the initial
hypothesis and at the time of the failure and discovers the difference involving the
plug. The plug now becomes a candidate for affecting the coils. JACK asserts a
new dependence between a new quantity associated with the plug (which we might
call cﬁrrént) and the temperature io.f the coils. One of the new preconditions is that
. the plug must be in the outlet. | _ - . A ,

To see how differences play the same role in rehypothesizing as changes do in
initial hypothesizing, imagine that JACK'’s first experience with the toaster had
involved the lever being already down and the plug being put in the outlet last. In
this case, JACK would have made the better hypothesis first. S

Dependences in Devices

There are additional situations in which deficiencies-in causal models can
‘be recognized, if one assumes that dependences are always functions (in the
mathematical sense) from the independent quantity’s quantity space to the dependent -
‘quantity’s quantity snace. One-to-many relations between parameters of a device
make little sense because they imply random behavior. This is an oversimplified, -
but useful teleological assumption about the nature of dependences in designed
physical systems. If a one-to:many relation is ever obscrved, this is -‘evidence that

the causal model is incomplete and a better hypothesis is needed.
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This assumption is buttressed by a felicity condition [VanLehn 83] which requires
dependences to be monotonic functions. This condition guarantees one-to-one
correspondences between quantity spaces across dependences, which makes some
qualitative reasoning easier. For example, increasing an independent quantity
must increase (or decrease) the corresponding dependent quantity. Many-to-one
dependcnces in physical systems also can be useful, e.g., to transform a wide range
of inputs into a finite set of stable states — but they were avoided in this work.
Therefore, further experience with dependences should result in nothmg more than

the possible parallel expansions of the appropriate quantity spaces.

An example from the toaster domam illustrates how the teleological assumption
about dependences can enable the leafning program to recognize incomplete causal
models. ' ' N ' '

The toaster produces toast of a certain darkness the first time through. JACK’s
initial model includes a dependence between the temperature of the coils and the
darkness of the toast but this dependence cannot explain why a second piece of
toast comes out lighter. On each occasion, the plug was in, the lever was down, and
the coils heated up. JACK compares the two situations to find an explanation for
_ the difference between the two pieces of toast. JACK finds that the thermostat dial
was set differently in‘the two situations and asserts a function between the setting
of the thermostat dial and the darkness of the toast. The learning program does
not actually discern the thermostat mechanism or the heat exchange process which
controls the darkness of the toast. However, the abstract causal relation JACK

does propose is accurate to the resolution available, and useful.

This kind of analysis does not apply to rates of quantities because of another
resolution limitation' Values in quantity spaces for rates are limited to negative,
zero, and posmve It is not possible to determine if a qua.ntlty is changing faster

this time than at a prevxous time.

The Learning Session in the Sink Domain

This section contains an annotated transcript of the learning session in the sink
domain. The sequence of events (the actual input to the learning program) appears
“in dtalic type. (The sequence of events also appears in Appendix I). The causal
ex_plahations JACK ¢onstructé- to understand these events are given in bold type.

Comments appear in normal type.
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Already, the tap, the faucet, and the basin are part of the sink.
The drain, the safety, and the stopper are part of the basin.

These two sentences create a hierarchical structural description of the sink.

The stopper is in the drain.
The faucet’s position is closed.
The light-switch’s setting ts off.
T_he window’s height ts down.

The adverb already signifies that the relations so far described have held since

some indeterminate time in the past. The learning session proper begins here.

Initially, the faucet’s position is open.
The light-switch’s setting 1s on.
Thinking at t==1.

The adverb #nitially starts the mternal clock at 1.
The learning program is told o priori which changes are due to external actxons
. and does not try to explam them. These include turning the faucet on and off, and

turning the light on and off.

Nezt, a water-column appears between the tap and the basin.
The water-column’s width is steady. -
Thinking at t==2.

The adverb nezt ticks the clock once.

JACK observes that both the faucet’s position and the light switch’s setting
changed at t==1. Either of these changes could explain the change in the water
column’s width at t=2 because both satisfy the tempqral adjacency heuristic.
However, the light-switch fails to satisfy either the physical connectedness heuristic
or the same device heuristic with the water column. On the other hand, the faucet
does satisfy the physical proximity requirement. The water column is connected
to the tap and the tap and faucet are part of the sink. The same device heuristic .
cnables JACK to hypothe51ze about the plpe - which is not visible - connectmg
- the faucet and the tap.
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Asserting a function between
the position of the faucet and

the width of tlie water-column.

This dependence satisfies

the temporal adjacency and same device heuristics.

The width of the water-column increased because

the position of the faucet increased.

When JACK asserts a dependence to construct a causal explanation, he gives
the justification for the new dependence (which causality-proposing heuristics were

satisfied), and the explanation supported by the new dependence.

wm*rV N@n,o; | : ‘
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OPEN AT 1 ) . POSITINE AT 2

Nezt, water appedrs in the basin.
" The water-column is connected to the water.
The water ts connected to the drain.

The water 's height s increasing.

Thinking at t==3.
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Asserting an influence between
the width of the water-column

and the height of the water.

This dependence satisfies

temporal adjacency and phy§ical connectedness.

The height of the water is increasing because

the width of the water-column is positive.

This explanation is straightforward. Notice that the learning program finds a
non-intuitive two-link chain of ‘causality between the faucet, the water column, and
the water in the basin. JACK treats the water column and the water as separate
" objects. He does not know that the water column and the water are the same
“stuff”. This curiosity notwithstanding, the causal explanation that the learning

program finds is useful.
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L‘ate}, the water is cohnecte.d. to ihe safety. |

' The. water’s height is equal to the safety’s height.
The water’s height s stqddy. | |
Thinking at t==4. -

Thinking at t=S5.




36

The adverb later ticks the clock twice. This creates an intermecdiate interval
during which no additional changes occur. The water rises to the level of the safety

drain during this interval.
The height of the water has reached a stable value.

When a changing quantity reach-es a stable value, this event is included as a
long-term effect in the causal rule which includes the appropriate dependence. A

demon makes these addenda.

"I am proposing a new quantity for the safety.

Please give a name for this quantity.

> flow

Asserting an influence between
the ﬁow of the safety and
the helght of the water.

_ This dependence satisfies -

simultaneity and physical connectedness.

.The height of the water is not changing because
there is an equilibrium between
the flow of the safety and

the width of the water-column.

The water has now reached the safety drain and has stopped rising. JACK knows
that a steady quantity has two possible explanations. Either there are no influences
or there are balancing influences. Since the faucet is still on, the only possible
explanation is that an equilibrium state has been achieved. Unfortunately, there is
no other independent quantity in sight, so the learning program must make a more
imaginative conjecture. JACK tries to find an objec‘t which satisfies the physical
proﬁ:imity requirement with the water and which just underwent a physical change
of some kind (to satisfy the tempora.l proximity requlrement) The assumption is
that the change is a newly-satlsﬁed precondition which is now enabling a latent
causal relation.

The object and change that the learmng program finds are the ‘safety dram and
the fact that the water is now touchmg the safety drain. This is in fact an enabling -
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~ condition for water to flow out of the safety drain. There is an equilibrium state

between water flowing in at the tap and flowing out at the safety drain. 7
Once the safety drain has been identified as the causal culprit, assigning a

quantity to it and forming a new dependence to complete the causal explanation is

straightforward.

TRUE AT §

ICONNECTED TO N @

&UANT 1TY-0F
ZERD AT &

AT 5

QUANTITY -OF

—_—

Posrrwa AT 5

Later, the faucet s posztwn 15 closed

Thinking at t= 6.
Thinking at t=="17.

- Nézt, the water-column disappears. -

The water’s height is decreasing.
Thinking at t==8.

The width of the water-column decreased because

the position of the faucet decreased.

The height of the water is decreasing because

the flow of the safety is positive.
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A previouély learned dependence explains why the water column disappears when
the faucet is turned off. With the faucet off, for just a moment water continues to
flow out of the safety drain until enough has flowed out to actually break contact
with the safety drain. For that short moment, the positive half of the equilibrium
state has been bfoken because the water column has disappeared, but the negative
half of the equilibrium state is still intact and some water flows out. JACK has no

trouble understanding this situation.

Nexzt, the water is not connected to the safety.
The water’s height is steady.
Thinking at t=9.

The height of the water has reached a stable yalue.

" The height of the water is not changing because
there is nothing affe‘cting_it.

The height of the water is now steady because enough water has flowed out to
- break contact with the safety drain. From JACK'’s viewpoint, a precondition on
the remaining negative half of the equilibrium state has become unsatlsﬁed a.nd :

‘there are now no mﬂuences on the height of the water.
Later, soap is in the water.

- Thinking at t'=10.'v
Thinking at t==11.

Later, the stopper is not in the drain.
The window’s height is up.

" The water’s height is decreasing.

'Thinking at t=12.
Thinking at t==13.

Iam proposing a new quantity for the drain.
Please give a name for this quantity.

> flow

‘Asserting an influence between
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the flow of the drain and

the height of the water.

This dependence satisfies

‘simultaneity and physical connectedness.

The height of the water is decreasing bec_z‘mse'
the flow of the drain is positive.

The height of the water begins to fall when the stopper is pulled from the drain
and the window is opened. The change in the window’s height is eliminated as
a candidate explanation because the window does not satisfy either the physical
connectedness or the same device heuristic with the water. Since, the learning

program cannot perceive flow at the drain directly, it is unable to construct a causal

- explanation in terms of a change in an independent quaﬁtity. Instead, JACK looks -

for a change in a physical object which satisfies temporal and physical proximity.

The only such object and change JACK finds is the drain and the fact that

the stopper has just been pulled from the drain. Assﬁmihg that this change is
a just-satisfied precondition for a newly discovered causal relation, the learning
program assigns a new quantity to the drain, asserts a new influence, and constructs
a new causal rule. This rule includes another precondition which states that soap
must be in the water because this was true when the rule was formed. This spurious

precondition will be pruned by later expcrience.
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STOPPER

CONTAIN
FALSE AT '3

@ . COMNECTED - 'ro -

QUANTITY -0% QUANTITY - oF

INFLVENCE - <
/7

POSITIVE AT 13 . NEGATIVE AT 13

‘Later, t'he- water disappears.
Thinking at t=14.
~ Thinking at t==15.

The height of the water has reached a stable value.

The height of the‘a‘water is not changing because

- there is nothing affecting it.

 When the water finally disappears, this event is included as a long-term effect of
the causal rule just constructed which describes how flow at the drain causes the
water’s height to fall. Such long-term effects will happen as long as the preconditions
of the pertinent causal rule hold persistently. In this case, the stopper must remain

out of the drain.
Finall_y, nothing ts changing.

This completes the initial learning session in the sink domain. The figure below
shows the quantities and dependences JACK uses to causally explain the observed

behavior of the sink.
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FAVUCET
PuSITIiON
AN MOUNT

These‘ are the quantity sp.:.tces of the quéntities of the sink.
* Faucet l.’osi‘tiqnb(cwsi«:‘n ~> OPEN)

Water C_olumnWidt;h (zero -> PQSITIVE)

Water H;eig_ht (zs:ﬁo —# BELOV\"-SAFETY -> SAFETY)

.Safety. Floﬁ (zERO —> POSITIVE) |

brain Flow (zero -‘>' Ppsxr#yp) '

The set of causal rules which make up JACK’s full causal model of the sink
" (including preconditions and effects) appear in Appendix II. This model has been
refined over further experience. The transcript of these expenences appear in the

next chapter

The Learning Sessxon in the Toaster Domam

This section contains an annotated transcnpt of the learmng session in the
"toaster domain. As in the previous section, the sequence of events which describes
changes in the toaster over time appear in italic type. (This sequenée of events
‘also appears in Appendix IMM). The causal explanations JACK constructs for those ‘
changes appear in bold type. Comments appear in normal type.

Already, the lever, the plug, the dial, and the slot are part of the toaster.
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The coils are part of the slot.

These sentences form a hierarchical structural description of the toaster.

The coils’ temperature s cold.
The lever’s position ts up.

The dial’s setting s D.

The plug is in the outlet.

The bread 1s in the slot.

The bread’s shade ts white.
The faucet’s position is closed.
The light-switch’s setting is on.
The window’s height ts up.

These sentences describe the state of the toaster in terms of physical relations

and values of quantities.

Initially, the lever’s position s down.
The faucet’s position is open.

.The bread is not z_:is'ible: '

".[v‘hinbkAi_ng é.t' t=1

J\%ezt, tl;e coils’ temperature 1is incfegsing.
Thinking at t=2.

Asserting an influence between
- the position of the lever and

the temperature of the coils.

This dependence satisfies

temporal adjacency and same device.

The temperature of the coils is increasing because

the position of the lever is negative.

Both the change in the position of the lever and the change in the position of the

faucet satisfy temporal adjacency with the change in the rate of the temperature
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of the coils. However, the faucet does not satisfy any physical proximity test with

the coils.
'\ PART-OF
, | \ PART-OF
QUANTITY - OF C : Qu‘um* \TonF

LEVER
PoSITION

TINFLUENCE = (  / ¢ols
AMOUNT 4

TEMPERATURE
RATE

DOWN AT 1 . ’ POSITIVE AT 2

~ The sink will continue to exhibit c}iahges but for clarity’s sa.ke, its behavior will

, yow be omitted.

Later, the lever’s position 1s up.
The couls’ temperature 1s hot.
The coils’ temperature ts steady.
The bread 1s vistble.

The bread’s shade is dark.

Thinking at t==3.

Thinking at t==4.

The temperature of the coils has reached a stable value.




44

This value “hot” is included as a long-term effect in the causal rule just constructed

which describes how the temperature of the coils increases.

There are two changes which JACK will try to explam — the lever has popped
up and the bread has turned to toast.

Asserting a function between
the temperature of the coils and
the shade of the bread.

This dependence satisfies

simultaneity and same device.

The shade of the bread increased because

the temperature of the coils increased.

- JACK first makes the inference that the bread’s darkness was changing
continuously-d.uring the time it was not visible. JACK asserts “The bread’s
shade is increasing.” at t=2 and “The bread’s shade is steady.” at t=4.

Then JACK looks back in the sequence of events to try and construct a causal
explanatmn
 Both the change in the position of the lever (by temporal adjacency) and the
change in the temperature of the coils (by simultaneity) are candidate causes.

Also, both the lever and the coils satisfy the same device heuristic with the bread.
| However, the bread and coils are closer in the pPART-OF hierarchy than the bread and
the lever. (The IN relation ifnplies the parT-OF relation. This inference is handled

by a demon):

PART -cV’ K PART-oF
PART-OF '\Pm‘r— oF
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Thus JACK chooses the coils as the causal culprit. Notice that the same device
heuristic enables JACK to handle an instance of “action at a distance”, in this case
heat flow.

%RV Yum -OF

BREAD

QUANTITY- OF QUANTITY -oF
FUNCTION +

POSITIVE AT 2 POSITIVE AT 2

There are more than one possible explanéﬁons for

the change in the positioni of the lever.

A function between

‘the temperature of the coils and -

~ the position of the lever.

This dependence satisfies

simultaneity and same device.

The position of the lever decreased because

the temperature of the coils increased.

or
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A function between

the shade of the bread and

the position of the lever.

This dependence satisfies

simultaneity and same device.

The position of the lever decreased because

the shade of the bread incrcased.

~ The figure above shows why JACK cannot distinguish these hypotheses. JACK
now does what reasonable learning programs do in such situations — he waits for
less ambiguous experience. Later, when JACK sees that the coils are always hot
when the lever pops up but the pieces of toast can be of any darkness, he will be

able to make a justified choice between these competing hypotheses.

: Nén:t, the-coils’ temperature ts decreasing.’

 The window’s height s down.

| Thinking at t==5.

The temperature of the coils is ﬂecreasing because

the position of the lever is positive.

JACK uses a known dépendence to construct a céusal explanation. The change in
the window’s height is ignored because it fails the physical proximity requirement.

Later, the cotls’ te;mp‘erature'isl cold.

Thinking at t==86.
Thinking at t="7.

The temperature of the coils has reached a stable value.
Another long-term effect.

Finally, nothing is changing.
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This completes the initial learning session in the toaster domain. The figure
below shows the quantities and dependences JACK uses to causally explain the

observed behavior of the toaster.

coiLs
TEMPERKATURE
RATE

FUNCTION +
h'Y

TNFLUENCE — N
7

7

:l‘hese are the qﬁa_ntity épaces of the quantities of the toaster.
Lever Position (DOWN -> up) |

Coils Température (coLp -> HoT)

Bread Shade (WHITE —> D@K)

- JACK will have cause (no pun intended) to refine this initial model of the toaster
when the plug is pulled from the outlet and when toast of varjring darkness is
prbduced. The transcript of these further experiences appears in the next chapter.
The final causal model of the toaster appears in Appendix Iv.

This chapter'has shown how the learning program goes from a sequence of events -
describing changes in a physical system to an explicit representation of the causality
which underlies the behavior of the physical system. 7 ' .

The goal of a learning system is not just to create new knowledge structures,
but to create new knowledge structures which can support reasoning which was
- impossible before the learning took place. The next chapter shows that this goal

has been achieved.
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CHAPTER 4
REASONING WITH THE CAUSAL MODEL:

EXPLANATION, PREDICTION, AND PLANNING

The definition of learning that guides this research is the following: Learning
is the creation of useful knowledge structures to facilitate reasoning that was not
possible before the learning took place. ”

The lcarning program described in this thesis constructs causal models of physical
systems. The models consist of a set of causal rules, each of which describes some
aspect of a physical system’s behavior in terms of causal relations.

- There are three kinds of causal reasoning that a causal model should support:
. .e'xplaining phenomena

e predicting phenomena

e constructing plans to generate phenomena ,

“This section shows how the learned causal model supports these kinds of reasoning
‘and also how these kinds of reasoning provide feedback about deficiencies in the
model. When predictions are inaccnrate or plans do not work this is evidence

that the causal model is mcomplete and rehypothe51z1ng is m order Thus learning "

supports reasoning which drives further learning.

Causél Ruies are If-Then Rul_es

A causal rule consists of a set of dependences between quantities at the quantity
level, and a set of preconditions and effects at the physical level. A causal rule can

be restated as follows:

Quantity Level

IF [the independent quantities change in the manner prescnbed by the
‘dependences]
THEN |the dependent quantities wzll change in-the manner prescribed by the '

dependences]

Physical Level _
IF [the preconditions are satisfied]
THEN [the effects will occur]
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The known results about rule-based inference apply to causal rules and have
been exploited implicitly by the learning program all along.

Explanation, prediction, and planning done at the physical level deals with
real-world objects, relations, and events. Reasoning at the quantity level can be
incomplete because the full set of preconditions is omitted. However, the abstractions
available at the quantity level which support hypothesizing also support qualitative
reasoning which can in some cases, go beyond what is modelled explicitly in the

causal rules.

Explana’t‘,ion,'Prcdiction and Planning is Done by Rule-Based Inference

Explanation of phenomena in the physical system is done by backward chaining
on the set of causal rules that makes up the causal model of the physical system.

This kind of explanation uses the existing causal model as is. It is different from

' the causal explanations which support hypotheses to create and modify the causal

model. _ , _
- The following is the procedure for doing explanation:

- Explainer:

Given an event,
Fxnd a causal rule whxch hsts tha.t event as an eﬂ'ect
If there is no such causal rule, stop '
The preconditions of that rule.and the time they hold are
‘the explanation. |
For each precondition,

~ Explain that precondxtxon

The following is an explanation in the sink domain for the appearance of water

in the basin. 7
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(T) <FAUCET PART-OF SINK> TRUE

(T) <FAUCET-POSITION AMOUNT> OPEN

T

(T+1) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T+1) <WATER-COLUMN CONNECTED-TO BASIN> TRUE

(T+1) < WATER-COLUMN-WIDTH AMOUNT> POSITIVE

]

(T+2) <WATER IN BASIN> TRUE

An Explanation-

Prediction of phenomena in the physical system is done by forward chaining on
‘the set of causal rules. '
The following is the procedure for doing prediction:

‘Predictor: ,
vaen a state of the physical system,

Find all causal rules whose precondmons are completely
satisfied.

1If there are no such causal rules, stop. ,
The effects of these causal rules and the time(s) they hold
are the prédiction.

Updéte the state of physical system according-to this set
of effects. ' '

Predict.

The following is a prediction from the sink domain about what wﬂl happen when

water is in the basin and the stopper is removed from the drain.
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(T) <WATER IN BASIN> TRUE
(T) <DRAIN CONNECTED-TO WATER> TRUE
(T) <DRAIN PART-OF DASIN> TRUE
(T) <STOPPER IN DRAIN> FALSE

!

(T) <WATER-HEIGHT RATE> NEGATIVE

!

(T+2) <WATER IN BASIN> FALSE
(T+2) <DRAIN CONNECTED-TO ‘WATER> TALSE
(T+2) < WATER-HEIGIIT AMOUNT> ZERO

\ Prediction
Planning also is done by backward chavining on causal rules. However, instead
of explaining an event, the task is to achieve a goal. A plan must specify how to -
make sbmethiﬁg happen. It must describe not only the pertinent causal relations,
but also the actz'o-ns which must be taken in order to achieve a gc;al
‘Because the planner must know about actions, it is told which states of the
physxcal system are externally settable.

The procedure for domg planmng is given below:

Achiever:
Gwen a goal to achieve,

" Find 2 causal rule which lists that goal as an effect.
If there is no such causal rule, fail.

' The preconditions of that causal rule and the time they
hold is the plan..
For each precondition which is neither externally settable;
nor already holds, '

Find a plan for achieving that precondition.

The following is a plan in the sink domain to make the water reach the safety
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drain.

(T) <FAUCET PART-OF SINK> TRUE

(T) <FAUCET-POSITION AMOUNT> OPEN

I

(T+1) <WATER-COLUMN CONNECTED-TO TAP> TRUE
(T+1) <WATER-COLUMN CONNECTED-TO BASIN> TRUE

(T+1) <WATER-COLUMN-WIDTH AMOUNT> POSITIVE

T

(T+2) <WATER IN BASIN> TRUE
(T+2) <WATER-IIEIGHT RATE> POSITIVE

I

(T+4) < WATER CONNECTED-TO SAFETY> TRUE

Pla

"~ The planner.disting'uishes the actions which are at the roots of the causal chains

in a plan.

Explanations, predictions, and plans are causal chains of events which are

relocatable in time. Each node in one of these structures describes states that hold
simultaneously. Links between nodes are justified by causal rules which describe a

causal relation between a set of preconditions and a set of effects.

"It may be possible to find more than one explanation for the same event, or
more than one plan for the same goal, if the physical system is overdetermined. A
causal model of an overdetermined system would list the same relation as an effect
‘in more than one causal rule. However, the implemented explainer and planner do

" not search for multiple solutions; they stop at the first one.

. Similarly, the same relation may appear as a precondition in more than one rule.
Unlike the explainer and planner, the predictor finds all possible changes which can
proceed from a given state of the physical system. A branching prediction violates
the teleological assumption about devices not being designed to produce one-to-many

behavior. This would be evidence that the causal model needs refinement.
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In addition, conflicts can arise if the structure of an explanation, pfediction,
or plan is non-lincar. A conflict would be, for example, one branch of a plan
undoing what was achieved in another branch. Such conflicts might be evidence
for spurious preconditions or effects or other deficiencies in the causal model. |
Fortunately or unfortunately, these situations did not arise in this research. Dealing
with contradictions and resolving conflicts in planning has been discussed in other

research, such as [Sussman 75, Sacerdoti 77, Doyle 78].

The Pla.nner has Two Modes: Achieve & Prevent

The planner has two modes, and in this respect it differs from the explainer and
“predictor, and also from many other planners. In one mode, the planner generates
plans to achieve a desired event. This mode was discussed in the previous section.

In the other mode, the planner generates plans to prevent an unwanted event from.

_occurring.

Preventing a goal is harder than achieﬁng a goal because while any way of making
| something happen ‘is adequéte, if the task is to stop something from happening,
all the ways it can happen have to be inhibited. The preventer, given a goal to be
prevented, must find all the causal rules which list that goal as an effect; and for
each of these rules, it must prevent the effect from occurring. Curiously enough,
breaking individual causal rules is easier than satisfying them. The achiever has
to satisfy all of the preconditions (a f:onjunction) of a causal rule to ensure that
its effects will be realized, while the preventer only has to deny any one of the
preconditions (2 negated conjunction is a disjunction) of a causal rule to ensure
that the effects of that rule will not be reahzed ' '

Another way to prevent something from happening is to generate a normal
plan to achieve a mutually exclusive state, e.g. the same relation with a different -
truth-value or the same quantity with a different value. The current planner does
not try to do prevention planning this way. However, both modes. of the planner
do interact to produce complex plans which include both the achievement of some

states and the denial of others.

The procedure for preventing a goal is:
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Preventer:
Given a goal to prevent,
Find all causal rules which list that goal as an effect.
If there are no such causal rules, fail.
For each causal rule,
Find any }Srecondition which is either externally
settable, or does not hold.
The denied preconditions of these causal rules (one from
each) and the time they are denied is the plan.
If there are no such preconditions, then
For any precondition ‘
" Find a plan for preventing that precondition.

The following is a plan in the sink domain to pre\}ent water from collecting in

the basin.

(T) <FAUCET-?OSITION‘ AMOUNT> CLOSED °

2

(T+1) <WATER-COLUMN-WIDTH AMOUNT> POSITIVE

2

(T+2) <WATER IN BASIN> TRUE

A Prevention Plan

Conjunctions appear at the level of preconditions of individual causal rules in
plans to achieve a goal. Consequently, it is at this level that the achiever is sensitive
to incompleteness of the causal model. Conjunctions appear at the level of causal
.rules in plans to prevénf a goal. Similarly, it is at this level that the préventer is
sensitive to incompleteness of the causal model. _ |

Note that the possible incompleteness of the causal model at the level of the set

of causal rules does not affect the achieve mode of the planner. Only if the achiever

‘could not find a plan at all could a more complete model i)ossibly make a difference.
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Thus a plan generated by the achiever is guaranteed to work only if the causal

rules that makevup the plan are complete; a plan generated by the preventer

_is guarantecd to work only if' the causal model itself (the set of causal rules) is

complete.

Both modes of the planner are useful, not only because they do the right thing in
many cases, but precisely because they can create situations in which deficiencies in
the behavioral model can become explicit. If a plan to achieve something fails, this
suggests a relevant precondition was missed (one involving objects and relations
out of sight, for instance) during the construction of the appropriate causal rule - a
precondition which is now unsatisfied. Similarly, when a plan to prevent something
fails, this suggests that unknown causal relations exist. Feedback generated by

failed plans indicate the need for better hypotheses to refine the existing causal

- model.

Qualitative Reasoning with Quantities

Plans are always constructed at the physical level, but the quantity level can aid

planning by supporting reasoning which can go beyond what appears explicitly in

‘the causal model.

Consider the planning probleni of achieving a goal which involves a state that
has never been observed before. Certainly, there can be no causal rule which lists

this state as an effect. However, if this state corresponds to a cbnjecﬁured value for

ia quantity which is greater, or less,-than -a value in the quantity’s quantity space

previously thought to be a limit, then the planner can look for a causal rule which
shows how the quantity can be made to change in the desired direction. Given the
felicity condition that correspondences between quantity spaces across dependences
are monotonic, such a plan should work as long as the preconditions are maintained
while the quantity is changing. The plan may fail because the quantity achieves a

stable or limit value before reaching the desired value or because the causal model

" is incomplete, but at least there is something to try.

This kind of reaéoning”allows the planner to generate a plan to pro&ucé toast
of an unprecedented lighter shade by extrapolating the dependence between the
setting of the thermostat dial and the shade of the resulting toast.

Recall the table which lists knowledge about second-order changes in quantities,

used in hypothesizing causal relations.




Current state Add + Add — Del + Del —

Constant C (0,] ]) I D X X

Increase I (+,[+]) 1 E  C X

Decrease D (—,[—]) E D X C
Equilibrium E (0,{+,—]) E E D I

For example, a state of equilibrium can be changed to a state of increase by
deleting the negative hall of the equilibrium. A state of decrease can be changed
to a stable state by adding a positive contribution and achieving equilibrium or by
deleting the negative contributioﬁf

The felicity condition which prohibits tradeoff situations simplifies this table
considerably. Without this restrictibn, there would be many ambiguous entries.
For example, adding a negative influence to a positive one could result in positive
tradeoff, negative tradeofl, or equilibrium. ’

This knowledge can be used by the planner to generate plans to achieve a state
for quantity which is different from its current sta.te". The achieve mode can add
contributions and the prevent mode can delete them.
 An example from the sink domain illustrates how reason‘ing’ with this knowledge

can facilitate planning. The planner is given the task of making the water rise
above the safety drain. Because this event has never occurred, there is no causal
rule which lists it as an effect. However, the planner does know that the height of
_the safety drain is an equilibrium value for the water’s height. It reasons that the
water can be made to rise above the safety drain by keeping the positive half of
the equlhbrxum state intact and inhibiting the negative half. Unfortunately, even
this reasoning is not enough because the plaﬁner can find no way to prevent flow
at the safety drain. The problem is ultxmately solved by using an analogy, which

is the subJect of the next chapter.

Reasoning with the Sink Model

This section contains an annotated transcript of causal reasoning problems in

4 the sink domain presented to and solved by the explainer, the predictor, and the
two complementary halves of the planner — the achiever and the prevénter. The
T. ability of these reasoning programs to solve these problems serves to demonstrate
that learning has taken place. When predictions prove wrong or plans do not work,
~ this is evidence that the causal model is incomplete. In these cases, JACK is called

back in to try and improve the model. The same conventions will be followed here
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as in the learning session transcript. The statement of the problems to the various
reasoning programs and the sequence of events appear in italic type. The responses

of the explainer, predictor, and planner appear in bold type. Comments appear in

normal type.

This reasoning session takes place immediately after the learning session. The

faucet is off, the stopper is out of the drain, and there is no water in the basin.

Late"r, the stopper 1s in the drain.
" Predict what will happen.
Nothing will change.

The predictor correctly determines that the sink is in a stable state. No causal

rules have their set of preconditions completely satisfied.

Make the water-column appeaf.'_

To ach1eve°
<WATER-COLUMN—WIDTH AMOUNT> POSITIVE
These must hold: '
<FAUCET PART-OF SINK > TRUE
<FAUCET-POSITION RATE> ZERO
<WATER-COLUMN-WIDTH AMOUNT > ZERO
<WATER-COLUMN-WIDTH RATE > ZERO
These should be set: .
<FAUCET-POSITION AMOUNT> OPEN

| Stop the water-column from appearing.

ATQ prevent: '
’ <WATER-COLUMN-WIDTH AMOUNT > POSITIVE
These should be set:
<I"AUCE’1 -POSITION AMOUNT> CLOSED
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The same goal is presented to the achiever and the preventer. The achiever finds
a causal rule which lists the desired goal as an effect. Satisfying all the preconditions
of this rule constitutes a plan for making the water column appear. The planner
always identifies the actions among the sct of conditions that must be satisfied to
carry out a plan.

The preventer finds the same causal rule. Since it is the only rule which lists the
appearance of the water column as an effect, it is the only rule the preventer has

to break. The preventer only has to inhibit a single precondition of a rule to break

it.

Later, the faucet’s position 1s open.
Predict what will happen,

Next, these will hold: ‘
<WATER-COLUMN CONNECTED-TO BASIN> TRUE
< WATER-COLUMN CONNECTED-TO TAP> TRUE |
< WATER-COLUMN-WIDTH AMOUNT > POSITIVE
" Next, these will hold: A
'<WATER CONNECTED- TO DRAIN> TRUE
' <WATER CONNECTED-TO WATER-COLUMN> TRUE
< WATER-COLUMN CONNECTED-TO WATER > TRUE -
'<WATER IN BASIN> TRUE |
<WATER-HEIGIIT RATE> PLUS
Later, these will hold: o
- <WATER CONNECTED-TO SAFETY> TRUE
<WATER-HEIGHT AMOUNT> SAFETY -
<WATER-HEIGHT RATE> ZERO
Next, nothing will change.

After the faucet is turned on, the predictor is invoked. It correctly predicts that
- as long as no further changes occur, the water column will appear .and the water

~will rise until it reaches the level of the safety drain.

Nezt, a water-column appears between the tap and the basin.

- The water-column’s width is steady.
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Nezt, water appears in the basin. _
The water-column s connected to the water.
The water 1s connected to the drain.

The water’s height 1s increasing.

So far, all of the predictor’s prophecies about what would happen when the
faucet was turned on have been fulfilled. The water will not quite reach the safety

drain, but only because the faucet will be turned off before it gets there.

Ezplair. why there ts water tn the bastn.

<WATER IN BASIN> TRUE

holds because:

First, these held: _ A
<FAUCET PART-OF SINK> TRUE
<FAUCET-POSITION AMOUNT> OPEN
<FAUCET-POSITION RATE> ZERO - |
<WATER-COLUMN-WIDTH AMOUNT > ZERO
< WATER-COLUMN-WIDTH RATE > ZERO

Then, these held: ‘
<WATER-COLUMN CONNECTED-TO TAP> TRUE

- <WATER-COLUMN CONNECTED-TO BASIN> TRUE
<WATER-COLUMN-WIDTH AMOUNT > POSITIVE

The éxplainer finds the correct causal explanation for the appearance of water
in the basin. It back-chained through the same two rules that the predictor just
forward-chained through. The explainer does not treat actlons (such as turning on

the faucet) specxally

 Nezt, the faucet’s position is closed.
Nezt, the water-column disappears..

The water’s height is steady.
Thinking at t=24.

The height of the water has reached a stable value.
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The height of the water is not changing because

there is nothing affccting it.

Because the éarlier prediction is not entirely corroborated, JACK returns to try

and explain what went wrong. If necessary, JACK will try to refine the causal

model. v
In this case, the préconditions for making the water rise became unsatisfied

before the water reached the safety drain. No rehypothesizing is necessary.

Make the water disappear.

To achieve:
<WATER IN BASIN> FALSE
These must hold:
<DRAIN CONNECTDD TO WATER> TRUE
<DRAIN PART-OF BASIN> TRUE
- <WATER CONNECTED-TO WATER-COLUMN> FALSE
- <WATER CONNECTED-TO DRAIN> TRUE
' <WATER CONNECTED-TO SAFETY > I‘ALSE .
<WATER IN BASIN> TRUE
-~ <WATER-HEIGHT AMOUNT > BELOW-SAI‘ETY
<WATER-HEIGHT RATE> ZERO
These should be set: - '
<DRAIN CONTAIN STOPPER> FALSE
<WATER CONTAIN SOAP> TRUE

The .planner generates a plan for making the water go away.

Later, the stopper is not in the drain.
 Predict what will h.appen.

Nothing will change.

- This prediction is based on an unsatisfied precondition in the rule which describes

"~ how water flows out of the drain - namely, there is no soap in the water. JACK

will now discover that this is a spurious precondition.
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The water’s height is decreasing.
Thinking at t==26.

This precondition is spurious:
At t=11, <SOAP IN WATER > FALSE.
- At t=26, <SOAP IN WATER> TRUE.

Water flows out of the drain whether or not there is soap in the water. This

precondition is flushed.

Later, the water disappears.

Finally, nothing is changing.

This completes the reasoning session in the sink domain which shows how the

explainer, predictor, and plamier can all use the causal model which was constructed

during the learning session.

Reasoning with the Toaster Model

This section contains an annotated transcript of solved causal reasoning problems
in the toaster domain. JACK will have three opportunities to refine the causal
model of the toaster when causal reasoning does not corroborate the behavior of
the toaster. Again, the problems and the sequence of events appear in italic type. -
JACK’s new hypotheses and the responses of the causal reasoning programs appear

in bold type. Comments appear in normal type.

This reasoning session takes place immediately after the initial learning session.

The toast has popped up and the coils have cooled down.

Later, the brea.d s not in the slot.
Nezt, the plug is not in the outlet.
Nezt, the new bread is in the slot.
The bread’s shade is white.
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Nezt, the lever’s position is down.

The bread s not vistble.
Predict what will happen.

Next, these will hold:
< COILS-TEMPERATURE RATE> POSITIVE
<BREAD-SHADE RATE > POSITIVE

Later, these will hold:
< COILS-TEMPERATURE AMOUNT > HOT
< COILS-TEMPERATURE RATE> ZERO |
<BREAD IS VISIBLE> TRUE .

., <BREAD-SHADE AMOUNT > DARK
<BREAD-SHADE RATE> ZERO

Next, nothing will change.

Notice that the prediction does not mention the lever popping up. This is because
JACK was unable to generate an hypothesis from the earlier, ambiguous experience

to explain this event.

Nezt, nothing is changing.

The prediction is not corroborated. This is evidence that the causal model is
incomplete. JACK compares the situation in which the causal model for the toaster
. was first constructed against the current situation. Any differences might explain

why the model worked then but not now.
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Thinking at t=14.

This precondition was missiﬁg:
At t=1, <PLUG IN OUTLET > TRUE.

At t=13, <PLUG IN OUTLET > FALSE.

Proposing a new quantity for the plug.
Please give a name for this quantity.

> current

Asserting an inﬂuence‘bctween
the current of the plug and

the temperature of the coils.

This ﬂependénce satisfies

same device.

The témperatux‘e of the coils is increasing- because
the positive of the lever is negative and

the current of the plug is positive.

JACK 1is able ‘to_ generate a causal explanatibn based on a difference which

is assumed to rei_'ca.llﬂa'pljecondition which became unsatiéﬁed. The plug being

in/out of the outlet is the only difference JACK finds. Furthermore, the plug and

~ the coils satisly the same device heuristic. The temporal proximity requirement

does not apply when JACK’s hypotheses are generated from differences between
two situations rather than from changes which are causes in a single situation.

Differences are an alternate way of generating candidate causes.
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Nezt, the dial’s sett_z'ng s M.
_ The plug is in the outlet.

Predict what @ill happen.

Next, these will hold:
< COILS- TEN.[PERATURE RATE> POSITIVE
<BREAD-SHADE RATE> POSITIVE -
Later, these will hold:
< COILS- TDMPERATURE AMOUNT > HOT
< COILS-TEMPERATURE RATE> ZERO
<BREAD IS VISIBLE> TRUE
' <BREAD-SHADE AMOUNT > DARK
' <BREAD-SHADE RATE> ZERO

Next, nothing will change.
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Nezt, the coils’ temperature is increasing.
Later, the lever’s position is up.

The. cotls’ temperature is hot.

The cozls’ terﬁperature 18 steady.

The bread’s shade ts medium.

Another prediction has gone awry. Two shades of toast (dark,medium) have
resulted from apparently the same increase in the coils’ temperature. (JACK cannot
perceive differences in the durations of the intervals during which the coils heat
up). The dependence between the coils’ temperature and the darkness of the toast
appears to be one-to-many. Because of the teleological assumption that dependences

in devices are functions, this is evidence that the causal model is incomplete. JACK

.compares the two situations to try to explain the difference.

At t=2, <DIAL-SETTING AMOUNT> D

At t=16, <DIAL-SETTING AMOUNT> M

Asserting a function between
the setting of the dial

and the shade of the Bread.

This dependence satisfies

same device.

The shade of the bread decreased because
the setting of the dial decreased.
JACK finds a new dependence which displays a satisfactory one-to-one correspon-

dence between values of the thermostat dial and shades of the resultmg toast. The
thermostat dial and the bread satxsfy the same device heurxstlc
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SETTING Fuwc N
\ AnounT,
D AT 2 . DARK AT 4

M AT 16 : MEDIUM AT 1%

At t=4, <BREAD-SHADE AMOUNT> DARK
- At t=18, <BREAD-SHADE AMOUNT > MEDIUM

- Asserting a function between
the temperature of the coils

and the position of the lever.

This dependén ce satisfies

same device.

The position of the lever increased because

the temperature of the coils increased.

- JACK also finds an explanation for why the lever popped up. Earlier, there

~ were two competing hypotheses — either the change in the shade of the bread

or the change in the temperature of the coils caused the lever to pop up. Now
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JACK has seen the lever pop up for two shades of toast. This dependence would
be many-to-one, violating the felicity condition that dependcnces be monotonic
functions, hence one-to-one. JACK chooses the remaining hypothesis - the lever

pops up when the coils reach their maximum temperature.

PART-OF /‘
PART- oF

PART -0F

GUANT'TY"OF ‘ E - QUA“T‘TY‘OF

ColLs
TEMPERATURE
AMOUNT

LEVER
POSITION |
AMOGUNT,

FUNCTION +
. 4

HOT AT 4,13 UP AT 4,13

Nezt, the coils temperature 1s decreasing.
Later, the coils are cold.

Finally, nothing is changing.

Here is JACK's refined model of the toaster.
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AMOUNT, .

The quantity spaces of the quantities are:

Lever Position (DowN —-> up)
Plug Current (ZERO ~> POSITIVE) |

Coils Temperature (coLb —> HOT)

Dial Setting (M -> D)
- Bread Shade (WHITE > MEDIUM —>> DARK)

JACK's model of the ‘th‘erm'ostat mechanism in the toaster is abstract. JACK
does not know that a coil of metal expands until a circuit is brokeh and that
darker pieces of toast say in the toaster longer. Although the “guts” of the toaster
remain uﬁknowp, JACK’s model of the toaster is useful. For example, consider this

planning proBlem: '

Make the bread’s shade lighter.

To achieve: » .
- <BREAD-SHADE AMOUNT> LIGHT
These must hold:
< COILS PART-OF SLOT> TRUE
' <BREAD PART-OF SLOT> TRUE
<DIAL PART-OF TOASTER> TRUE
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<LEVER PART-OF TOASTER> TRUE
<PLUG PART-OF TOASTER> TRUE

< COILS-TEMPERATURE AMOUNT > COLD
<PLUG-CURRENT AMOUNT > POSITIVE

‘"These must be set:

<DIAL-SETTING AMOUNT> L
<PLUG IN OUTLET > TRUE
<LEVER-POSITION AMOUNT> DOWN

JACK is able to solve this planning problem by extrapolating the correspondence
due to the function between the setting of the thermostat dial and the darkness of
the toast. Because the function is assumed to be monotonic, a lower setting of the

dial should result in a lighter shade of toast.
This completes the reasoning session in the toaster domain.
Causal reasoning can provide feedback about deficiencies in a causal model at

any stage of its evolution. In the case of the toaster model, several inadequacies

were discovered when predictions proved inaccurate and plans di‘d not work. JACK

~ was able to generalize the model to explain these new phenomena by applying

generalization rules adapted to causal models and by exploiting constraints formed

from a teleological assumption about the nature of dependences in devices.

There is one more planning problém remaining in the sink domain which the
planner is unable to solve. The planner will not be able to solve this problem
until the causal model of the sink is extended via an analogy. The account of the
planner’s initial failuré, the analogy, and the final successful plan appear in the

next chapter.
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CHAPTER 5
EXTENDING THE CAUSAL MODEL:
ANALOGY '

A pervaéive common sense competence is the ability to apply knowledge from
former experience to new problems. Analogy involves comparing two domains, one
which is well understood, and one which is the subject of current investigation.
The driving assumption behind analogy is that if two domains are similar enough,

then constraints which hold in one domain will also hold in the other.

Analogy can be used to extend causal models by comparing the causal relations
modelled by causal rules. Successful.analogies result in preconditions and/or effects
being mapped over from one causal rule to another. Since causal rules support
explanation, prediction, and planning, analogies enhance the capabil.ity to do these

forms of causal reasoning. An example from the sink domain illustrates how this
works. '
The planner is given the problém of making the water rise above the safety
drain. It knows that the height of the safety drain is an equilibrium value for the
water’s height and concludes that it must change the equilibrium state to a state of
increase. This means preserving the positive half of the ecjuilibrium and bréaking
the negative half. The planner quicklj( determines that keeping the faucet on will
make the height of the water rise but it searches in vain for a way to stop the water
from flowing out of the safety drain. There is no known action which can inhibit

the operation of the safety drain.

* An analogy with the normal drain comes to the rescue. The planner knows that
water will not flow voutpf the normal drain when the st_opper is in. The analogy
leads to the discovery that the normal drain has ‘a stopper and the safety drain
does not. This knowledge is mapped over by adding a new precondition to the
rule for flow at the safety drain — the safety drain must not contain a stopper
either. The original planning problem can now be solved by plugging up the safety
drain, a previously unknown action which is now available to the‘pianner. The use
of analogy augments the causal rule which describes flow out of the safety drain.
The extended causal model enables the planner to solve a problem it would have

otherwise failed on.
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Issues in A_nalogy

e What to compare. . .

| "Finding an appropriate domain to compare to the given domain is not an easy
task. A solution is offered which is rather specific to this research and involves
abstracting to the level of quantities and dependences where causal descriptions
are summarized. This solution exposes a mbr_e general heuristic of comparing
summarized descriptions before comparing detailed descriptions. This solution is
- only a hedge, and does not propose any memory model or indexing/retrieval scheme.
These appear to be necessary clements of any general theory of selection.

e How to match. )

" The basic opcration of analogy is comparing two domains to determine how well A
they match. The partial matcher presented here comes in two parts. There is a

_ relational matcher and a causal rule matcher.
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¢ How to evaluate a match.

What constitutes a good match? Part of this problem is solved implicitly when
a good selection is made. But some parts of a concept are more important than
others iﬁ a given context. This issue is not addressed here beyond requiring that
matches be nearly, but not quite perfect.
e How to map. |

Once an analogy has been selected, performed, and justified, the final task is
to reap the results by mapping constraints over from the known domain to the
evolving domain. The mapper presented here uses the results of the matcher to
augment causal rules, moving knowledge in the form of preconditions and/or effects

from the source rule to the target rule.

What to Compare

The first step in doing analogy is determining what concepts to compare. Some
“kind of selection process should precedé the matching. Otherwise, the only option
is to blindly compare all pairs of known concepts in the hope of ﬁndmg two that
match well and form a useful analogy. A

This is the selection problem. The selection_problem is really two problems - -
relevance and retrieval. The selector must find another knowledge structure which
is relevant to the reasoning task at hand and the search process should be made

- efficient by making candidate knowledge structures easy to access.

In principle, both of these problems can be solved simulﬁaneously by employing
an appropriate indexing scheme. Unfortunately, the indexing problem seems to be
very complex and there does not appear to be a simple solution. Any knowledge
structure Lﬁight describe several different items and might support several different
kinds of problem solving tasks. Also, different knowledge structures might describe
different aspects of the same items. 4 '

Winston has noted that in less constrained analogy situations, causal relations

~should be matched first [Winston 80]. Because analogies in this work always and
only involve causal rules, some of .the problems involved in selection are implicitly
solved. The selection problem for this research reduces to locatlng causal rules
which describe similar causal relations on similar objects. Selection tries to ensure
- before the matcher is invoked that the knowledge structures being compared are
indeed. similar and that the results of the matching have a strong possxbxhty of

being useful in an analogy.
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The way to avoid doing a full match on preconditions and effects of causal rules
until it appears justified is to first match a description of the same knowledge which
captures the essence without the details. This is exactly the difference between the
quantity level and the physical level of causal rules. The way to select causal rules
for analogies is to compare their quantity levels. Only if they are similar there is

the matcher invoked to compare the more detailed physical levels.

The procedure for selecting causal rules for analogies is:

Selector:
Given a causal rule CAUSAL- RULE~1,

Tor each causal rule CAUSAL-RULE-2 in the set of other causal
rules until success,
Compare pairs of dependences, one from CAUSAL-RULE-
1 and one from CAUSAL-RULE-2 with the relational
network matcher. | o '
If all dependences match, succeed. .
Call the causal rule matcher on CAUSAL-RULE-2 and CAUSAL-

RULE-1.

- The planner stalled on the prbblem of making the water rise above the safety
drain when it could find no action -which prevents water from flowing out of
the safety drain. The causal rule which describes flow at the safety drain is now
“identified and the selector tries to find a different but relevant causal rule which
can be used in an ahalogy. .

The quantity level of the causal rule which depicts flow at the safety drain
describes a single mﬂuence between the flow at the safety dram and the hexght of
the water. _ ' ‘ _

There are five other rules to consider. Two of these rules - the ones which describe
the causal links between turning the faucet on and off and the appearance and
disappearance of the water column - describe discrete changes, functions rather
than influences, and are quickly eliminated. Another rule describes the equilibrium
at the safety drain. This rule has two dependences and cannot match. Yet another
rule describes how water rises when the water column 1is present This rule comes
close to matching because it also describes an influence which changes the height

of the water. However, the directions of the influences clash - one describes how
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the water can rise, the other how it can fall.
The rule which the selector finally chooses is the rule which describes flow at the

normal drain. Both rules describe negative influences on the height of the water.

[/ DRAIN
Flow
AMGUNT/ .

INFLUENCE - ' | INFLOENCE -

WATER
HEIGHT
RATE

A Seleéﬁon

Although the procedure for doing selection for analogies presented here is highly
specific to this research, it does expose a principle which is applicable to the problem
in general. The idea is to find relevant knowledge structures by comparing abstract,
summarized descriptions of those knowledge structures first. Only if the abstract
- descriptions match well is the full matcher invoked to do a detailed comparison of

“the kndwledge_ structures. Thus selection can be merely another form of matching.
The difference is that selection involves matching at an abstract level. The small
investment made by matching at an abstract level avoids committing the matcher
to doing detailed comparisonns until there is some assurance that the effort will bear

some fruit.

How to Match

There are two matchers. One works on the relational network which is the
foundation of our knowledge represehtation scheme. This matcher concerns itself
with nodes and arcs in the relational network. The other matcher works on causal
rules, which are built from objecté and relations in the relational network. The causal

rule matcher uses the results of the relational network matcher. These matchers are
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not as powerful as others that have appeared in the artificial intelligence literature
[Winston 80, 82, Brotsky 80}, but they serve to support the use of analogy in this

research The matchers are described in Appendix V.

How to Map

Once an analogy is selected, performed, and justified the last thing to do is to
reap the results of the comparison by mapping information from one causal rule
to another. The assumption behind analogy is that relations or constraints which
hold in one concept will hold in another if the two are similar enough. '

The mapper uses the results of the causal rule matcher. The preconditions and
-effects that did not match are the concern of the mapper. |

The following is the procedure for mapping preconditions and effects from one

causal rule to another:
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Mapper:
Given a target causal rule and the lists of unmatched states

(preconditions or effects), unmatched objects and matched
objects from the causal rule matcher and the relational
network matcher,
For each unmatched state (precondition or effect) consisted
of a SUBJECT, RELATION, OBJECT and VALUE, | |
Construct a matching state for the target causal rule
.iaccording to the following:
Map the RELATION exactly.
Map the vaLUE exactly.
For the suBiecT and omJECT,
If they are relations, identify their
values and map them as states.
If they are objects,
If they appear in the matched
objects list, map the correspond-
ing o’bjecté. :
If they appeaf in the un-
matched ob'jecfs' list, generate
another object in the immediate
class which contains the un-
~ matched object and map the

new object.

There is one precondition which»’ does not match when the rule which describes
flow at the normal drain is cbmpared to the rule which describes flow at the safety
drain. This precondition says that the stopper must be out of the normal drain. The
mapper maps this precondition by preserving the relation N and the value FALSE,
substltutmg SAFETY for DRAIN whxch are correspondmg ob_]ects, and generatmg a

- new STOPPER
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A Mappin

bA Successful ‘Annlog}r

This section contains an annotated transcript of a planning problem v&hich
originally fails and then succeeds after mxssxng knowledge is prov:ded by means of
an analogy. , , ’

The input to the program is in ttalic type. The program’s responses are in bold

type. Comments appear in normal type.

Make the water’s height greater than the safety’s height.

The problern is to make the water’s height rise above the safetjr drain. In its
experience with the sink, the learning program has never seen the water above the
safety drain, therefore there is no causal rule in the causal model which lists this
state as an effect. _ : ' - _

However, the planner does know that the height of the safety drain corresponds
to an equilibrium state for the water’s height. It reasons that the water can be
made to rise above the safety drain by changing the equlhbrlum state to a sta.te of
increase, i.e., by breaking the negative half of the equilibrium state.

Hence the planner identifies the causal rule which describes flow at the safety
drain - the negative half of the equilibrium state. Here it gets stuck. The planner

can find no way.of disabling any of the preconditions for flow at the safety drain.

" To achieve:
. <WATER- HEIGHT AMOUNT> ABOVE- SAI“ETY

is not possible.
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An analogy now helps to solve this planning problem. The first step is finding
another causal rule to use in the analogy. Selection is done by comparing the
summarized descriptions of causality appearing at the quantity level of causal rules.
The assumption is that if rules match well at the abstract quantity level, there is

a good chance they will match well at the dctailed physical level and be useful in

an analogy. _
The selector finds that the quantity level of the causal rule describing flow at

the normal drain matches best with the quantity level of the causal rule describing

flow at the safety drain.

<DRAIN-FLOW INFLUENCE WATER-HEIGHT > NEGATIVE
<SAFETY-FLOW INFLUENCE WATER-HEIGIIT > NEGATIVE
Matched Objects:_(DRAIN—FLOW SATETY-FLOW), WATER-HEIGHT

The matcher compares DRAIN.FLOW to SAFETY:FLOW by exploring the networks
surrounding these two nodes. This matching reveals the following matched and

unmatched preconditions.

'Matched preconditions:

 <DRAIN CONNECTED-TO WATER> TRUE
' <SAFETY CONNECTED-TO WATER> TRUE

<DRAIN PART-OF BASIN> TRUE
<SAFETY PART-OF BASIN> TRUE

<WATER CONECTED-TO WATER-COLUMN > FALSE
- <WATER CONECTED-TO WATER-COLUMN> FALSE

<WATER CONNECTED-TO DRAIN> TRUE
. <WATER CONNECTED-TO SAFETY> TRUE

ZWATER IN BASIN> TRUE
<WATER IN BASIN> TRUE




79

"Unmatched Preconditions:
<DRAIN CONTAIN STOPPER> FALSE

The mapper maps the relation involving the stopper over to the causal rule

describing flow at the safety drain.

Proposing a stopper as in
<DRAIN CONTAIN STOPPER> FALSE

With this new information, the planner now can successfully gencrate a plan to
make the water rise above the safety drain. The preconditions for the rule which
shows how water can be made to rise must be satisfied, and some precondition for

the rule which shows how water flows out the safety drain must be inhibited.

- To achieve:
<WATER-HEIGHT AMOUNT > ABOVE SATETY

These must hold: .
< WATER-COLUMN CONNECTED-TO TAP> TRUE
<WATER-COLUMN CONNECTED-TO BASIN> TRUE
<WATER-COLUMN-WIDTH AMOUNT > POSITIVE

These should be set:

.~ <SAFETY CONTAIN STOPPER> TRUE

Analogies extend the causal model by augmenting causal rules. Problems in
explanation, prediction, and planning which fail because the causal model is
incomplete can become solvable aﬂ:ér it is extended through analogies.

Although this is the only -p-lace where analogies are employed in this work, they
~ could be applied in the learning process itself. Learning is motivated by the need to
explain chaﬁges in the visual environment, and results in the construction of causal
rules. Conceivably, causal explanétions for changes could be based on analogies
with known causal rules. This kind of analogy would be more difficult because it
would involve comparing a causal rule to an unstructured situation, rather than
comparing two known causal rules. This problem mlght be the sub_]ect of future

research.
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CHAPTER 6
LOOKING BACK, AROUND, AND AHLEAD

This Work

This section reviews the accomplishments of this thesis in terms of the issues

addressed, the solutions offered, and the principles behind those solutions.

This thesis presents a learning system which hypothesizes and refines causal
models of simple physical systems by constructing causal explanations for observed
changes in these systems. The j)roblem of formulating causal h'ypotheses 15 made
tractable by a set of constraints on causal relations which are embedded in the

learning syétem. This is the main result of this thesis.

These constraints are:

e Temporal and physical proximit&. - ' e

Four heuristics capture the common sense notion that causally connected events
are contiguous in space and time. Temporal proximity is tested by the temporal
~adjacency or the simultaneity heuristic. Physical proximity is tested by the physical

connectedness heuristic or the weaker same device heuristic.

o A finite sct of abstract causal explanations for changes in terms of quantities'anc.l
dependences.

Shifting the representation for changes and causality to the level of quantities
and dependences exposes various constraints that reduce the set of viable causal
explanations. The constraints exposed by this perspicuous representa’cion include:
o Types of changes in dependent quantities are linked to types of changes in

independent quantities and types of dependences. .

o The signs or directions of change of quantltles and dependences have to be
N consxstent

K There are a finite number of explanatlons for second-order changes in quan’cltxes

The set of second-order causal explanations is simplified considerably by a fehcxty 4

: condmon which excludes tradeoff sxtuatlons

e~

e,
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These constraints collectively define a kind of syntax of causal explanation which

the learning system exploits to hypothesize causal relations.

Thé causal rules which make up JACK’s causal models are constructed at two
levels — at the quantity level in terms of independent quantities, dependences, and
dependent quantities, and at the physical level in terms of preconditions and effects.

Preconditions embody the notion of enabling conditions for causal reclations.
They also permit causal explanations to be hypothesized in terms of the last of a

set of preconditions becoming satisfied.

JACK is able to refine causal models by generélizing over further experience.
The generahzatxon rules JACK uses include: "
e Given two positive examples of a causal relation, any unsatisfied precondmons

or unrealized effects can be dropped. '

This is a variant of the well-known drop-condition specialization rule [Wmston
75). _ A
e Given a p051t1ve and negatxve example of a causal relation, any dlfferences are
| likely to include a missing precondition. ‘

This mductlon rule harks back to the time-tested near-miss idea [Winston 75}

. The causal models which JACK constructs support causal reasoning (explanation,.
prediction, and planning) which in turn provides feedback about deficiencies in the
causal models. Inaccurate predictions.and failed plans reveal situations where the

above generalization rules can be fruitfully employed.

A teléological assumpﬁionb that dependences in devices are functions, and a-
felicity condition that requires these functions to be monotonic together constrain
- dependences to be one-to-one. Thus one-to-many or many-to-one behavior also lead
JACK to try to refine the existing model. 7 -

Analogies»are another way to improve an existing causal model. Causal rules
are compared first at the summarized quantity level, then at the physical level.

Differences between otherwise well-matched causal rules are mapped over.

Other Work

This section describes the relations between this research and other previous and

current research efforts.
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The representations for qu:intitics and dependences are borrowed directly from
Ken Forbus’ seminal Qualitative Process Theory [Forbus 84]. Also, the causal rules
which JACK constructs are reminiscent of Forbus’ process descriptions.

' The abstract causal explanations employed by the learning system were inspired
originally by Chuck Ricger’s work on representing causality [Rieger 76).

Pat Hayes’ object-based histories [Hayes 79] implicitly include the notion of
tempbral and physical proximity defining boundaries on causal interactions.

The physical proximity principle is similar to Randy Davis’ locality principle
[Davis 83] — used to generate candidate faults in the troubleshooting of electronic
circuits. Modelling and troubleshooting employ some of the same kinds of reasoning.

The inductive inference rules used to generalize causal models over experience are
variants of rules introduced in Patrick Winston’s landmark thesis [Winston 75]. In
addition, Ryszard Michalski has treated induction comprehensively [Michalski 83]
and Tom Mitchell has prov:ded valuable xn31ghts on the xnductxon of conjunctive
concepts [Mitchell 82].

Johan de Kleer pioneered the use of causal and teleological reasoning in the
domain of expert analysis of circuits [de Kleer 79]. This contrasts with the more
* naive modelling of physical systems in this work.

" The rule-based causal reasoning programs which perform explanatxon, predlctlon,

and planning, ‘have roots which go all the way back to STRIPS [Flkes and Nilsson

71].
The use of analogy to construct and refine conccpts has been mvestlgated
frultfully in [W mston 80] and [Gentner 83].

Tuture Work

 This section discusses limitations.of the current learning system and where
appropriate, 1dcnt1ﬁes solutions from other research efforts, as well as thoughts on

extensions to this work.

All learning systems are limited ultimately by any fixed representation language.
JACK is limited by the representation language for describing physical systems
and their changes and the representation language used to describe the various
constraints on ca,usal hypotheses. A v

The temporal and physical proximity heuristics capture a useful common sense
notion of causality but exclude at least two classes of causal relations — those that

‘involve “action at a distance”, and those that involve “delayed reactions”.
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Part of the problem is the limited ability to construct hierarchical de‘scriptions.
The PART-OF relation supporjﬁsrbnly crude hierarchical structural descriptions. More
importantly, there is no ability to “open up” a physical system by expanding
to a description at a lower level. Similarly, the time representation does not
support nested intervals which could partition time at several levels of resolution.
If both structure and time could be represented hierarchically, then “delayed
reactions” might be explained vby constructing a causal chain at a lower level
of resolution. [Davis et al 82] offers ideas about represénta'tionsA for hierarchical
structural descriptions. Allen has a hierarchical time representation [Allen 81].

JACK does successfully model an instance of action at a distance when he

. proposes a dependence between the temperature of the coils and the darkness of the

toast. However, this is somewhat fortuitous. JACK uses the same device heuristic

in this situation, effectively proposing a physical connection between the coils and

~ the toast. Thus JACK géts the right answer for the wrong reason. JACK does not

model the heat exchahg_e as an instance of action at a distance because there is no
available representation for this class of causal relations.

If there was an abstract, explicit representation of what a causal relation is,

- perhaps it would be possible to derive context-dependent heuristics for identifying

causality — heuristics like the ones used in this thesis, but also more relaxed versions

of temporal and physical proximity which{would not exclude instances of action

at a distance and delayed reactions. These heuristics should be ordered so that
levels of resolution and boundaries denoting Whei'g the closed system ends would be
systematically eipznded until a viable hypothesis was constructed. Such a learning
system could dynamically a,ugment‘ the language used to représent constraints on
causal relations. This capability would address the fixed representation bottleneck
problem in learning systems. These conjectures identify a difficult, but potentially

fruitful area in which to expand this thesis.

* Another limitation of the current representation language is the simplified set of
causal explanation abstractions for understanding states of physical systems. The

most complex abstraction available is the equilibrium state. An extended version

*of the learning system might model positive and negative tradeoff situations and .

make use of more complex abstractions built up from many dependences, such as

feedback loops..

The role of a,na'logy both in extending and hypothesizing causal models is another

area for possible exploration. Analogies could be used to generate hypotheses which
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could then be tested by some version of the temporal and physical proximity
constraint. Analogies also might be uscful in “opening up” a system, i.e., in
hypothesizing invisible components and connections to construct causal explanations.
Analogy is a huge problem which subsumes the issues of indexing, partial matching,

and transferring knowledge ~ each a difficult problem in itself.

JACK’s hypotheses are justified by satisfying the temporal and physical proximity
requirements, by matching one of the abstract causal explanations, and by not
violating teleological assumptions about the nature of dependences in devices.
-JACK can distinguish competing hypotheses only byrordering them according to~
the version of physical proximity they satisfy (physical connectedness or same
device), and by how much must be proposed to complete one of the abstract causal
explanations.

Because JACK’s ability to order competing hypotheses is limited, and because
models are always generalized over a finite set of expericnces, JACK’s theories are
‘always sensitive to the local maximum problem. In other words, a causal model
* ‘may adequately explain some finite set of experiences, yet still have latent, possibly
gross deficiencies. v |

JACK already uses inductive inference rules for refining causal models and in the
“worst case, would need a dependency-directed backtracking capability for retracting - A
hypotheses. A better way to address the local maximum problem is to give JACK
the ability to gather more context-dependent jusﬁiﬁcation for hypotheses to better
distinguiéh them immediateiy, rather than waiting for more revealing experience.
JACK needs the capability to design experiments to distinguish and test hypotheses.

The methodology of science obviously provides some abstract guidelines. The
ability to design experiments relies Von‘ such skills as recognizing parameters and
finding ways to isolate them. Being able to change levels of resolution and exﬁand
boundaries on the closed system can also aid in the deéi’gnof experiments. In
addition, analogies can suggest‘ experimenﬁs. The issue of how to design experiments

identifies a most intriguing direction in which to extend this thesis.
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THE SINK SCENARIO
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This appendix contains the sequence of events which makes up the learning

session in the sink domain.

~ Already, the tap, the faucet, and the basin are part of the sink.

The drain, the safety, and the stopper are part of the basin.

The stopper s in the drain.
The faucet’s position is closed.
The light-switch’s setting s off.
The window’s height is down.

Initially, the faucet’s posiiton is open.

The light-switch’s setting is on.

Nezt, a water-column appears between the tap and the basin.
The water-column’s width is steady. S
Nezt, water appears in the basin. v

The water-column s connected to the water.

‘The water is connected to the drain.

The water’s height 1s increasingf

Later, the water 1s connected to the safety.
The water’s height 1s equal to the safety’s hezght
The water’s height is steady.

Later, the faucet’s position is closed.

Nezt, the water-column disappears.

The water’s height 1s decreasing. _

Nezt, the water 15 not connected to the safety.
The water’s height 1is steady.

Later, soap is tn the water.

Later, the stopper is not in the drain.
The window’s height is up.
The water’s height is decreasing.

Later, the water disappears.

Finally, noth'z;ng s changing.




Later, the stopper is in the drain.

Later, the faucet’s position s open.

Nezt, a water-column appears between the tap and the basin.
The water-column’s width ts steady. :

Nezt, water appears in the basin.

The water-column is connected to the water.

. The water is connected to the drain.

The water’s height is increasing.

Nezt, the faucet’s position is closed.
Nezt, the water-column disappears.
The water’s height is steady.

Later, the stopper is not in the drain.
The water’s height is decreasing.”

Later, the water dzsappears

Fmally, nothmg 18 changmg
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This appendix contains the six causal rules which make up the causal modecl of
the sink. Refinements and extensions to the causal model were made at various

times. The results of these changes are noted in the appropriate places.

This causal rule describes how turning the faucet on makes the water column

appear.

CAUSAL-RULE-1

THE OBJECTS ARE
THE FAUCET -
THE WATER-COLUMN

THE QUANTITIES ARE
THE POSITION OF THE FAUCET ~
THE WIDTH OF THE WATER-COLUMN

. THE DEPENDENCES ARE
‘ <POSITION FUNCTION WIDTH> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <FAUCET PART-OF SINK> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <POSITION “AMOUNT> OPEN
(T) <POSITION RATE> ZERO
(T) <WIDTH AMOUNT> ZERO
(T) <WIDTH RATE> ZERO

THE PHYSIC‘AL-EFFLCTS ARE

(T+1) <WATER-COLUMN CONNECTED-TO BASIN> TRUE
(T+1) <WATER-COLUMN CONNECTED-TO TAP> TRUE

THE QUANTITY-EFFECTS ARE
(T+1) <WIDTH AMOUNT> POSITIVE
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This causal rule describes how the water rises eventually to the level of the safety
drain as long as the water column is present (and by the previous rule, the faucet

is on).

CAUSAL-RULE-2

THE OBJECTS ARE
THE WATER-COLUMN
THE WATER

THE QUANTITIES ARE
THE WIDTH OF THE WATER-COLUMN
THE HEIGHT OF THE WATER

THE DEPENDENCES ARE
<WIDTH INFLUENCE HEIGHT> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE

- (T) < WATER-COLUMN CONNECTED-TO TAP> TRUE
(T) <WATER-COLUMN: CONNECTED-TO BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <WIDTH AMOUNT> - POSITIVE
(T) <WIDTH RATE> ZERO :

(T) <HEIGHT AMOUNT> ZERO
(T) <HEIGHT RATE> ZERO

THE PHYSICAL-EFFECTS ARE , S :
(T+1) <WATER CONNECTED-TO DRAIN> TRUE ‘ °
(T+1) <WATER CONNECTED-TO WATER-COLUMN> TRUE
(T+1) <WATER-COLUMN CONNECTED-TO WATER> TRUE
(T+1) <WATER IN BASIN> TRUE . , -

(T+3) <WATER CONNECTED-TO SAFETY> TRUE

THE QUANTITY-EFFECTS ARE
(T+1) <HEIGIHT RATE> POSITIVE

(T+3) <HEIGHT RATE> ZERO
(T+3) <HEIGHT AMOUNT> SAFETY




92

This causal rule describes the equilibrium state that occurs when the faucet is
on and the water has reached the level of the safety drain. Notice that there are
two dependences of opposite sign. Also notice that there are no effects which are
continuous changes. The equilibrium state is stable.

CAUSAL-RULE-3

THE OBJECTS ARE
THE SAFETY
THE WATER
THE WATER-COLUMN

THE QUANTITIES ARE
THE FLOW OF THE SAFETY
THE HEIGHT OF THE WATER
THE WIDTH OF THE WATER-COLUMN

THE DEPENDENCES ARE
<FLOW INFLUENCE lEIGHT> NEGATIVE
<WIDTH INFLUENCE HEIGHT> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <SAFETY CONNECTED-TO WATER> TRUE
(T) <SAFETY PART-OF BASIN> TRUE . :
(T) <WATER CONNECTED-TO WATER~COLUMN> TRUE
(T) <WATER CONNECTED-TO DRAIN> TRUE -
(T) <WATER CONNECTED-TO SAFETY> TRUE
(T) <WATER IN BASIN> TRUE
(T) <WATER-COLUMN CONNECTED-TO ‘TAP> TRUE
(T) <WATER-COLUMN CONNECTED-TO BASIN> TRUE
{T) <WATER-COLUMN CONNECTED-TO WATER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
(T) <WIDTH AMOUNT> POSITIVE
(T) <WIDTH RATE> ZERO

| THE PHYSICAL-EFFECTS ARE
'THE QUANTITY-EFFECTS ARE-

(T) <HEIGHT AMOUNT> SAFETY
(T) <HEIGHT RATE> ZERO
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This ca.usal rule describes how turning the faucet off makes the water column
disappear. The same dcpendence appears here as in the rule which describes how

turning the faucet on makes the water appear.

CAUSAL-RULE-4

THE OBJECTS ARE
THE FAUCET
THE WATER-COLUMN

THE QUANTITIES ARE
THE POSITION OF THE FAUCET
THE WIDTH OF THE WATER-COLUMN

THE DEPENDENCES ARE
<POSITION FUNCTION WIDTH> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <FAUCET PART-OF SINK> TRUE
(T) ‘< WATER-COLUMN CONNECTED-TO TAP> TRUE
(T) < WATER-COLUMN CONNECTED-TO BASIN> TRUE
(T) < WATER-COLUMN CONNECTED-TO WATER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <POSITION AMOUNT> CLOSED
(T) <POSITION RATE> ZERO
(T) <WIDTH AMOUNT> POSITIVE
(T) <WIDTH RATE> ZERO

‘THE PHYSICAI;—EFFECTS ARE -

(T+1) <WATER-COLUMN CONNECTED-TO WATER> FALSE
(T+1) <WATER-CQLUMN CONNECTED-TO BASIN> FALSE
(T+1) <WATER-COLUMN CONNECTED-TO TAP> FALSE -

THE QUANTITY-EFFECTS ARE
(T+1) <WIDTH AMOUNT> ZERO
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This causal rule describes how water flows out of the safety drain until it reaches
a stable height just below the safety drain. Notice that one of the preconditions
in this rule is that the safety drain not contain a stopper. This precondition was
not part of the original rule. It is the result of comparing the normal drain to the

safety drain in an analogy.

CAUSAL-RULE-5

THE OBJECTS ARE
THE SAFETY
THE WATER

THE QUANTITIES ARE
THE FLOW OF THE SAFETY
THE HEIGHT OF THE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HEIGHT> NEGATIVE

THE PIYSICAL-PRECONDITIONS ARE
(T) <SAFETY CONNECTED-TO WATER> TRUE
(T) <SAFETY PART-OF BASIN> TRUE
(T) <SAFETY CONTAIN STOPPER> FALSE .
(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE ‘
(T) <WATER CONNECTED-TO SAFETY> TRUE
(T) <WATER IN BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO
(T) <HEIGHT AMOUNT> SAFETY

VTHE PHYSICAL-EFFECTS ARE _
(T+1) <SAFETY CONNECTED-TO WATER> FALSE
(T+1) <WATER CONNECTED-TO SAFETY> FALSE

THE QUANTITY-EFFECTS ARE
(T) <HEIGHT RATE> NEGATIVE

(T+1) <HEIGHT AMOUNT> BELOW-SAFETY
(T+1) <HEIGHT RATE> ZERO .
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This causal rule describes how water flows out of the normal drain. A precondition

which stated that there must be soap in the water was dropped.

CAUSAL-RULE-8

THE OBJECTS ARE
THE DRAIN
THE WATER

THE QUANTITIES ARE
THE FLOW OF THE DRAIN
THE HEIGHT OF THE WATER

THE DEPENDENCES ARE
<FLOW INFLUENCE HEIGHT> NEGATIVE

THE PHYSICAL-PRECOND]TIONS ARE
(T) <DRAIN CONNECTED-TO WATER> TRUE
(T) <DRAIN CONTAIN STOPPER> FALSE
(T) <DRAIN PART-OF BASIN> TRUE
(T) <WATER CONNECTED-TO WATER-COLUMN> FALSE
(T) <WATER CONNECTED-TO DRAIN> TRUE
"(T) <WATER CONNECTED-TO SAFETY> FALSE
(T) <WATER IN BASIN> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <HEIGHT AMOUNT> BELOW-SAFETY
(T) <FLOW AMOUNT> POSITIVE
(T) <FLOW RATE> ZERO

THE PHYSICAL-EFFECTS ARE
(T+2) <DRAIN.CONNECTED-TO WATER> FALSE
(T+2) < WATER CONNECTED-TO DRAIN> FALSE
(T+2) <WATER IN BASIN> FALSE :

THE QUANTITY-EFFECTS ARE
(T) <HEIGHT RATE> NEGATIVE

(T+2) <HEIGHT AMOUNT> ZERO
(T+2) <HEIGHT RATE> ZERO
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This appendix contains the sequence of events which makes up the learning

session in the toaster domain.

 Already, the le'uer, the plug, the dial, and the slot are part of the toaster.

The coils are part of the slot.

The coils’ temperature s cold.
The lever’s position is up. .
The dial’s setting s D.

The plug is in the outlet.

The bread is 1n the slot.

The bread’s shade ts white.
The faucet’s position is closed.
The light-switch’s setting is on.
The window’s height is up.

Initially, the lever’s position is down.
The faucet’s position is open.

"The bread is not vistble.

Nezxt, the coils’ temperature is increasing.

Later, the lever’s position is up.
The coils’ temperature is hot..
The cotls’ temperature is steady.
The bread is visible. .

The bread’s shade ts dark.

Nezt, the coils’ temperature 1is décrea.sing.
‘The window’s height 1s down. :

Later, the coils’ temperature s cold.

Finally, nothing is changing.




Later, the bread is not in the slot.
Nezt, the plug is not in the outlet.
Nezt, the new bread is in the slot.
The bread’s shade 1s white.

- Nexzt, the lever’s position ts down.
The bread s not visible.
Nezt, nothing ts changing.

Nezt, the dial’s setting 1s M.
The plug ts in the outlet.

Nezxt, the coils’ temperature ts tncreasing.

- Later, the lever’s position is up.
The coils’ temperature is hot.
The coils’ temperature is steady.
The bread is vistble. '
The bread’s shade ts medium.

- Next, the coils’ temperature is decreasing.

Later, the coils are cold.

Finally, nothing is changing. "
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APPENDIX IV
THE CAUSAL MODEL OF THE TOASTER

This appendix contains the three causal rules which make up the causal model

of the toaster. Generalizations were made at various times and are noted in the
appropriate places.

This causal rule describes hoW the temperature of the coils increases when the
lever is pushed down and decreases when the lever pops up. JACK learned that
the plug has to be in the outlet also. -

CAUSAL-RULE-1

THE OBJECTS ARE
THE LEVER
THE COILS
THE PLUG |

THE QUANTITIES ARE :
THE POSITION OF THE LEVER
THE TEMPERATURE OF THE COILS
THE CURRENT OF THE PLUG

THE DEPENDENCES ARE i :
<POSITION INFLUENCE TEMPERATURE> NEGATIVE
<CURRENT INFLUENCE TEMPERATURE> POSITIVE

‘THE PHYSICAL-PRECONDITIONS ARE
(T) <LEVER PART-OF TOASTER> TRUE
(T) <COILS PART-OF SLOT> TRUE )
(T) <PLUG PART-OF TOASTER> TRUE
(T) <PLUG IN OUTLET> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <POSITION AMOUNT> (DOWN,UP)
{T) <POSITION RATE> ZERO
(T) <TEMPERATURE AMOUNT> (COLD,HOT)
(T) <TEMPERATURE RATE> ZERO :
(T) <CURRENT AMOUNT> POSITIVE
(T) <CURRENT RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE - o
(T+1) <TEMPERATURE RATE> (POSITIVE,NEGATIVE)

(T+3) <TEMPERATURE AMOUNT> (lI0T,COLD)
(T+3) <TEMPERATURE RATE> ZERO
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This causal rule describes how the heating coils turn bread into toast. JACK
learned that the thermostat dial controls the darkness of the toast, when the initial
model could not explain why one piece of toast came out darker than another.

CAUSAL-RULE-2

TIE OBJECTS ARE
THE COILS
THE BREAD
THE DIAL

THE QUANTITIES ARE
"THE TEMPERATURE OF THE COILS
THE SHADE OF THE BREAD
TIE SETTING OF THE DIAL

~THE DEPDNDENCES ARE
<TEMPERATURE FUNCTION SHADE> POSITIVE
<SETTING FUNCTION SHADE> POSITIVE

THE PHYSICAL-PRECONDITIONS ARE
(T) <COILS PART-OF SLOT> TRUE
(T) <BREAD PART-OF SLOT> TRUE
(T) <DIAL PART-OF TOASTER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <TEMPERATURE RATE> POSITIVE
(T) <SETTING AMOUNT> (L,M,D)
_(T) <SETTING RATE> ZERO

‘THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE
(T) <SHADE RATE> POSITIVE

- (T+2) <TEMPERATURE AMOUNT> HOT

{T+2) <TEMPERATURE RATE> ZERO

(T+2) <SHADE AMOUNT> (LIGHT,MEDIUM DARK)
(T+2) <SHADE RATE> ZERO




100

This causal rule describes how the lever pops up when the coils reach their
maximum temperature. This is the closest JACK comes to modelling the thermostat

mechanism.

CAUSAL-RULE-3

THE OBJECTS ARE
THE COILS
THE LEVER
THE QUANTITIES ARE :
THE TEMPERATURE OF THE COILS
THE POSITION OF TIIE LEVER

THE DEPENDENCES ARE
<TEMPERATURE FUNCTION POSITION> POSITIVE .

THE PHYSICAL-PRECONDITIONS ARE
(T) <COILS PART-OF SLOT> TRUE
(T) <LEVER PART-OF TOASTER> TRUE

THE QUANTITY-PRECONDITIONS ARE
(T) <TEMPERATURE AMOUNT> HOT
(T) <TEMPERATURE RATE> ZERO

THE PHYSICAL-EFFECTS ARE

THE QUANTITY-EFFECTS ARE
(T) <POSITION AMOUNT> UP
(T) <POSITION RATE> ZERO
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APPENDIX V
THE MATCIIERS

This appendix describes the matchers used in generalizing and forming analogies.

The Relaﬁibnal Network Matcher

The relational network matcher is given two concepts to compare. These concepﬁs
correspond to two entities in the relational network, and the matcher compares the.
concepts by explo;'ing the subnetworks which the two entities are embedded in.

Relations define the template which must be common to both concepts, hence
they provide the major source of constraint for the matcher. The intent of matching
is to find what relational structures are shared by the two concepts. Shared relations ‘
in turn indicate which objects correspond to each other across the two éoncepts.
Relations are matched first and objects are matched only by virtue of participating
in the same relations. i '

The primitive structure in the relational network is the relation:
< SUBJECT RELATION OBJECT >

There are two dimensions of complexity in the relational network. Each suniecT
and OBJECT can participate in an arbitrary number of relations and relations can
be nested, i.e., any SUBJECT or OBJECT can itself be a full <suBJECT RELATION
OBJECT> structure. The matching is done in a bottom-up fashion, starting at two

~ locations in the relational network and proceeding outwards. Primitive relations

are encountered in pairs along the way and they must match in the following way:
e the arcs (RELATIONS) must match exactly and
e the nodes (atomic suBiecTs and oBJECTS) must either match exactly or be shown
to be in the same ,class. (their A-KiND-OF hit‘erarchiesAjoin. _ . _
- Matching continues through the network, exploring the subnetworks surrounding
the original two locations, until no further matches can be made, or the network is

exhausted.

The following is the procedure for doing matching on the relational network:

)
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Relational Network Matcher:
Given two locations in the relational network,

If they are relations, call the arc (relation) matcher.
" If they are objects, call the node (object) matcher.
If they are not of the same type, fail.

Node Matcher:
~ Given two nodes in the relational network,

If the nodes are the same node, succegd. -

If the nodes are in the same class (their A-kiND-oF hierarchies
~ join), succeed.
" If no match, fail.

Otherwise, call the relation pairer on the two nodes..

Arc Matcher: ,
Given two arcs in the relational network,

If the arcs are not the same arc, fail and stop here.

Call the_netwofk matcher on the entities at the soﬁrce '
ends of the arcs — the suBJECTS.

If the suniecTs do not match, fail and stop here.

‘, Call the network matcher on the entities at the targef
ends of the arcs — the OBJECTS. ’ -
If the onsects do not match, fail and stop here. |
Otherwise, call the value matcher on the two arcs.

Call the relation pa.irer on the two arcs.
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Relation Pairer:
Given two entities susJeEcT: and supsecT2 in the relational

network (corresponding to nodes or arcs),
For ecach arc RELATION! adjoining SUBJECTI,
Identify obiecTi at the opposite end of RELATIONI.
Collect all arcs RELATIONS2 adjoining SUBJECT?.
Collect all osiecTsz at the o’pposite' ends of the
RELATIONS2.
If OBJECT! is in OBJECTS?2, succeed.
Otherwise for each oBJECT2 in oBJECTS? until success,
Call the network matcher on omiecti and
OBJECT?2.
If no match, put RELATION! on the unmatched relations
list and put oBiEcT1 on either the unmatched objects
or unmatched relations list depending on 'whethcr,

 OBJECT1 is a node or an arc.

The final step in matching.rel_a.tiorls is ccmpéring values. Since relations have o
histories which describe how their values change, the times at which the comparison

Ls to be made must be specxﬁed as well.

The followmg procedure compares values:"

Value Matcher: .
Given two matched relations RELN1 a.nd RELN2, and two times

T1 and T2, o
If the value of RELN: at T1 is the same as the value of RELN2
at T2, put the relations and values on the matched relations
list, and the corresponding objects on the matched objects .
list, succeed. o
Otherwise, put the relations and values on the unmatched
relations list, and the corresponding objects on the

unmatched objects list, fail.
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The output of the relational network matcher is a set of lists showing what

relations matched, what objects matched, and just as importantly, what rclations

and objects did not match. The unmatched relations and objects are mapped over

in analogies and reveal differences which can form the basis of new hypotheses

when generalizing.

The Causal Rule Matcher

When the causal rule matcher is used to support rehypothesizing because the .

causal model failed, the question of what to éompare is easy to answer. The causal
~ rule which failed is compared to itself at different times.
When the causal rule matcher is used in an analogy, the results of selection —
~matched dependences from difference causal rules — are used to answer the question
of what to compare. The results of selection tell where to “anchor” the comparison
of causal rules. A , _ '
The causal rule matcher uses the results of the relational network matcher. The

following is the procedure for comparing causal rules:

Causal Rule Matcher: E
Given two matched dependences from two causal rules,

‘Compare,- using the ‘relational network mat’che\r‘, cor-
responding independent quantities, one from each depen-
‘dence, at the tlmes the causes occurred in the respective
‘causal rules. R

Compare, using the relational network matcher, cor- -
responding dependent quantities, one from each depen-
dence, at the times the effects. occurred in the respectlve
causal rules. o

Isolate preconditions and effects from the list of matched

and unmatched relations.

Since quantities and linked to physical objects by the QUANTITY-OF relation, the

‘ preconditions and 'eﬂects, which are relations on these physical objects, also will be

compared.




