MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 812 December, 1984

ON THE COMPLEXITY OF ID/LP PARSING
G. Edward Barton, Jr.

ABSTRACT:

Recent linguistic theories cast surface complexity as the result of interacting subsys-
tems of constraints. For instance, the ID/LP grammar formalism separates constraints on
immediate dominance from those on linear order. Shicber (1983) has shown how to carry
out direct parsing of ID/LP grammars. His algorithm uses ID and LP constraints directly
in language processing, without expanding them into a context-free “object grammar.”
This report examines the computational difficulty of ID/LP parsing. Shicber’s purported
O(|G|* - n®) runtime bound underestimates the difficulty of ID/LP parsing; the worst-case
runtime of his algorithm is exponential in grammar size. A reduction of the vertex-cover
problem proves that ID/LP parsing is NP-complete. The growth of internal data struc-
tures is the source of difficulty in Shieber’s algorithm. The computational and linguistic
implications of these results arc discussed. Despite the potential for combinatorial explo-
sion, Shieber’s algorithin remains better than the alternative of parsing an expanded object
grammar.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the Laboratory’s artificial intelligence research has been
provided in part by the Advanced Rescarch Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-80-C-0505. Support for the author’s graduate studies
has been provided by the Fannie and John Hertz Foundation. Useful guidance and commentary
during the writing of this paper have been provided by Bob Berwick, Michael Sipser, and Joyce
Friedman.

’ ©Massachusetts Inustitute of Technology, 1084

1. Introduction

Under most recent linguistic theories, linguistic constraints fall into several subsystems
each having its own character. Chomsky (1981:5), for instance, identifies the subtheories
of bounding, government, §-marking, binding, Case, and control, while Shieber (1983:2ff)
describes a version of Gazdar and Pullum’s GPSG formalism that involves immediate-
dominance rules, linear-order constraints, and metarules. When several independent con-
straints are involved, a rule system that explicitly multiplics out their effects is large,
cumbersome, and uninformative.! For example, as Shieber (:4) points out, the cxpanded
context-free “object grammar” derived by multiplying out the constraints in a typical GPSG
system would contain trillions of rules.

Given the disadvantages of multiplying out the cffects of separate systems of con-
straints, Shieber’s (1983) work leads in a welcome direction. Shieber considers how one
might do parsing with ID/LP grammars, which involve two orthogonal kinds of rules. ID
rules constrain tmmediate dominance irrespective of constituent order (“a sentence can be
composed of V with NP and SBAR complements”), while LP rules constrain lnear prece-
dence among the daughters of any node (“if V and SBAR are sisters, then V must precede
SBAR”). Shicber shows how Earley’s (1970) algorithm for parsing context-free grammars
(CFGs) can be adapted to use the constraints of ID/LP grammars directly, without the
combinatorially explosive step of converting the ID/LP grammar into standard context-
free form. Instead of multiplying out all of the possible surface interactions among the
ID and LP rules, Shieber’s algorithm applies them one step at a time as necded. Surely
this should work better in a parsing application than applying Earley’s algorithm to an
expanded grammar with trillions of rules, since the worst-case time complexity of Earley’s
algorithm is proportional to the square of the grammar size!

Shieber’s general approach is on the right track. On pain of having a large and cum-
bersome rule system, the parser designer should first look to linguistics to find the correct
set of constraints on syntactic structure, then discover how to apply some form of those
constraints in parsing without multiplying out all possible surface manifestations of their
effects.

Nonetheless, nagging doubts about computational complexity remain. Although
Shicber (1983:15) claims that his algorithm is identical to Earley’s in time complexity,
it seems almost too much to hope for that the size of an ID/LP grammar should enter into
the time complexity of ID/LP parsing in exactly the same way that the size of a CF'G enters
into the time complexity of CFG parsing. An ID/LP grammar G can enjoy a huge size ad-
vantage over a context-free grammar G’ for the same language; for example, if G contains
only the rule § —p abcde, the corresponding G’ contains 5! = 120 rules. In effect, the
claim that Shieber’s algorithm has the same time complexity as Barley’s algorithm means
that this tremendously increased brevity of expression comes free (up to a constant). The
paucity of supporting argument in Shieber’s article does little to allay these doubts:

We will not present a rigorous demonstration of time complexity, but it
should be clear from the close relation between the presented algorithm
and Earley’s that the complexity is that of Earley’s algorithm. In the

ISee Barton (1084) for discussion.

worst case, where the LP rules always specify a unique ordering for- the
right-hand size of every ID rule, the presented algorithm reduces to Ear-
ley’s algorithm. Since, given the grammar, checking the LP rules takes
constant time, the time complexity of the presented algorithm is identi-
cal to Barley’s ... That is, it is O(|G|* n®), where |G| is the size of the
grammar (number of ID rules) and n is the length of the input. (:14f)

Many questions remain; for example, why should a situation of maximal constraint represent
the worst case, as Shieber claims??

The following sections will investigate the complexity of ID/LP parsing in more detail.
In brief, the outcome is that Shieber’s direct-parsing algorithm usually does have a time
advantage over the use of Barley’s algorithm on the expanded CFG, but that it blows up in
the worst case. The claim of O(|G I2 n3) time complexity is mistaken; in fact, the worst-case -
time complexity of ID/LP parsing cannot be bounded by any polynomial in the size of the
grammar and input, unless P = N P. ID/LP parsing is NP-complete.

As it turns out, the complexity of ID/LP parsing has its source in the immediate-
domination rules rather than the linear precedence constraints. Consequently, the prece-
dence constraints will be neglected. Attention will be focused on unordered context-free
grammars (UCFGs), which are exactly like standard context-free grammars except that
when a rule is used in a derivation, the symbols on its right-hand side are considered to
be unordered and hence may be written in any order. UCFGs represent the special case of
ID/LP grammars in which there are no LP constraints. Shieber’s ID/LP algorithm can be
used to parse UCFGs simply by ignoring all references to LP constraints. «

2. Generalizing Earley’s algorithm

Shieber generalizes Earley’s algorithm by modifying the progress datum that tracks
progress through a rule. The Earley algorithm uses the position of a dot to track lin-
ear advancement through an ordered sequence of constituents. The major predicates and
operations on such dotted rules are these:

¢ A dotted rule is initialized with the dot at the left edge, as in X — .ABC.

e A dotted rule is advanced across a terminal or nonterminal that was predicted and
hias been located in the input by simply moving the dot to the right. For example,
X — A.BC is advanced across a B by moving the dot to obtain X — AB.C.

o A dotted rule is complete iff the dot is at the right cdge. For example, X — ABC.
is complete.

¢ A dotted rule predicts a terminal or nonterminal iff the dot is immediately before
the terminal or nonterminal. For example, X — A.BC predicts B.

UCFG rules differ from CFG rules only in that the right-hand sides represent unordered
multisets (that is, sets with repeated clements allowed). It is thus appropriate to use suc-
cessive accumulation of set elements in place of linear advancement through a sequence. In

28ee section B; it is in fact the best case.

essence, Shieber’s algorithm replaées the standard operations on dotted rules with corre-
sponding operations on what will be called dotted UCFG rules:?

s A dotted UCFG rule is initialized with the empty multiset before the dot and the
entire multiset of right-hand elements after the dot, as in X — {}.{4, B,C}.

o A dotted UCFG rule is advanced across a terminal or nonterminal that was pre-'_
dicted and has been located in the input by simply moving one element from the
multiset after the dot to the multiset before the dot. For example, X — {A}.{B,C}
is advanced across a B by moving the B to obtain X — {4, B}.{C}. Similarly,
X — {A4}.{B,C,C} may be advanced across a C to obtain X — {4,C}.{B,C}.

o A dotted UCTG rule is complete iff the multiset after the dot is empty. For example,
X — {4,B,C}.{} is complete.

¢ A dotted UCFQG rule predicts a terminal or nonterminal iff the terminal or nonter-
minal is a member of the multiset after the dot. For example, X — {A}.{B,C}
predicts B and C. ' - '

Given these replacements for operations on dotted rules, Shieber’s algorithm operates in
the same way as Darley’s algorithm. As usual, each state in the parser’s state sets consists”
of a dotted rule tracking progress through a constituent plus the interword position defining
the constituent’s left edge (Barley, 1970:95, omitting lookahead). The left-edge position is
also referred to as the return pointer because of its role in the complete operation of the
parser.

3. The advantages of Shieber’s algorithm

The first question to ask is whether Shieber’s algorithm saves anything. Is it faster to
use Shieber’s algorithm on a UCFG than to use Barley’s algorithm on the corresponding
expanded CFG? Consider the UCFG G that has only the single rule § — abede. The
corresponding CFG G| has 120 rules spelling out all the permutations of abede: S — abede,
S — abced, and so forth. If the string abcde is parsed using Shieber’s algorithm directly on
G, the state sets of the parser remain small:4

So: [S— {}{ayb,c,d,e},0]
Si: [S - {a}.{b,c,d,€},0]
Syt [S— {a,b}.{c,d,e€},0]
Sy : [S — {a,b,c}.{d,e},0]
Syt [S— {a,b,c,d}.{e},0]
S5 [S = {a,b,e,d,e}.{},0]

In countrast, consider what happens if the same string is parsed using Barley’s algorithm on
the expanded CFG with its 120 rules. As Figure 1 illustrates, the state sets of the Farley

3Shieber’s representation differs in some ways from the representation used here, which was developed
independently by the author. The differences are generally inessential, but see note 5.

4The states related to the auxiliary start symbol and endmarker that are added by some versions of the
Earley parser have been omitted for simplicity.

(a)

[S - {a}‘{ba ¢, d, e}, 0]

[S — a.edcb, 0]
[S — a.decb, 0]
(S — a.ecdb, 0]
[S — a.cedb, 0]
[S — a.dceb, 0]
[S — a.cdeb, 0]
(S — a.edbe, 0]
[S — a.debe, 0]
[S — a.ebde, 0]
[S — a.bedc, 0]
(S — a.dbec, 0]
[S — a.bdec, 0]

[S — a.ecbd, 0]
[S — a.cebd, 0]
[S — a.ebed, 0]
[S — a.becd, 0]
[S — a.ched, 0]
[S — a.bced, 0]
[S — a.dcbe,0)
[S — a.cdbe, 0]
[S — a.dbee, 0]
[S — a.bdce, 0]
[S — a.cbde, 0]
[S — a.bede, 0]

Figure 1: The use of the Shicber parser on a UCFG can enjoy a large advantage over the
use of the Earley parser on the corresponding expanded CFG. After having processed the
terminal @ while parsing the string abede as discussed in the text, the Shieber parser uses
the single state shown in (a) to keep track of the same information for which the Earley
parser uses the 24 states in (b).

parser are much larger. In state set Sy, the Earley parser uses 4! = 24 states to spell out
all the possible orders in which the remaining symbols {b,¢,d,e} could appear. Shieber’s
modified parser does not spell them out, but uses the single state [— {a}.{b,¢,d,€},0] to
summarize them all. Shieber’s algorithm should thus be faster, since both parsers work by
successively processing all of the states in the state sets.

Similar examples show that the Shieber parser can enjoy an arbitrarily large advantage
over the use of the Earley parser on the expanded CFG. Instead of multiplying out all surface
appearances ahead of time to produce an expanded CFG, Shieber’s algorithm works out
the possibilities one step at a time, as needed. This can be an advantage because not all of
the possibilities may arise with a particular input.

4. Combinatorial explosion with Shieber’s algorithm

The answer to the first question is yes, then: it can be more efficient to nse Shieber’s
parser than to use the Earley parser on an expanded “object grammar.” The second question
to ask is whether Shieber’s parser always enjoys a large advantage. Does the algorithm blow
up in difficult cascs?

In the presence of lexical ambiguity, Shieber’s algorithm can suffer from combinatorial

4

explosion. Consider the following UCF G, G2, in which z is five-ways ambiguous:

S — ABCDE
A—alz
B-b|z
C—oclz
D—d|z
E—elz
What happens if Shieber’s algorithm is used to parse the string zzzza according to this
grammar? After the first three occurrences of z have been processed, the state set of
Shieber’s parser will reflect the possibility that any three of the phrases A, B, C, D, and E
might have been encountered in the input and any two of them might remain to be parsed.
There will be (2) = 10 states reflecting progress through the rule expanding S, in addition to
5 states reflecting phrase completion and 10 states reflecting phrase prediction (not shown):
Ss: [- {4, B,C1{D,E}0] [S = {4,B,D}{C,E},0)
(S — {4,C,D}.{B,E},0] [S— {B,C,D}{A, E},0]
(S — {A,B,E}.{C,D},0] [S— {A,C,E}.{B,D},0]
[S— {B,C,E}.{A,D},0] [S— {A,D,E}.{B,C},0]
[§ — {B,D,E}.{4,C},0] [S — {C,D,E}.{4,B},(]
In cases like this, Shieber’s algorithm enumerates all of the combinations of k elements taken
1 at a time, where k is the rule length and 7 is the number of elements already processed.
Thus it can be combinatorially explosive.

It is important to note that even in this case, Shieber’s algorithm wins owt over parsing
the expanded CFG with Earley’s algorithm. After the same input symbols have been
processed, the state set of the Earley parser will reflect the same possibilities as the state
set of the Shieber parser: any three of the required phrases might have been located, while
any two of them might remain to be parsed. However, the Earley parser has a less concise
representation to work with. In place of the state involving'S — {4, B,C}.{D,E}, for
instance, there will be 3!- 2! = 12 states involving § - ABC.DE, § — BCA.ED, and so
forth.? Instead of a total of 25 states, the Earley state set will contain 135 = 1210 + 15
states.

In the above case, although the parser could not be sure of the categorial identities of
the phrases parsed, at least there was no uncertainty about the number of phrases and their
extent. We can make matters even worse for the parser by introducing uncertainty in those
areas as well. Let G3 be the result of replacing every z in G, with the empty string e:

S — ABCDE
A—ale
B—ble
C—cle
D—dle -
E—ele

5In contrast to the representation illustrated here, Shieber’s representation actually suffers to some extent
from the same problem. Shieber (1083:10) uses an ordered sequence instead of a multiset before the dot;
consequently, in place of the state involving S -+ {4, B, C}.{D, £}, Shieber would have the 3! = 6 states
involving § — a.{D, E}, where a ranges over the six permutations of ABC.

5

Then an A, for instance, can be cither an a or nothing. Before any input has been read,
the first state set Sy in Shieber’s parser must reflect the possibility that the correct parse
may include any of the 2° = 32 possible subsets of A, B, C, D, and E as empty initial
constituents. For example, Sy must include [S — {4, B,C, D, E}.{},0] because the input
might turn out to be the null string. Similarly, it must include [S — {4,C, E}.{B, D},0]
because the input might turn out to be bd or db. Counting all possible subsets in addition to
other states having to do with predictions, completions, and the parser’s start symbol, there
are 44 states in Sp. (There are 338 states in the corresponding state when the expanded
CFG G} is used.)

5. The source of the difficulty

Why is Shieber’s algorithm potentially exponential in grammar size despite its “close -
relation” to Barley’s algorithm, which has time complexity polynomial in grammar size?
The answer lies in the size of the state space that each parser uses. Relative to grammar size,
Shieber’s algorithm involves a much larger bound than Earley’s algorithm on the number
of states in a statc set. Since the main task of the Earley parser is to perform scan, predict,
and complete operations on the states in each state set (Earley, 1970:97), an explosion in
the size of the state sets will be fatal to any small runtime bound.

Given a CFG G, how many possible dotted rules are there? Resulting from each rule
X — A;... Ay, there are k + 1 possible dotted rules. Then the number of possible dotted
rules is bounded by |G,], if this notation is taken to mean the number of symbols that it
takes to write G, down. An Earley state is a pair [r,¢], where r is a dotted rule and ¢ is
an interword position ranging from 0 to the length n of the input string. Because of these
limits, no state set in the Earley parser can contain more than O(|G,|-n) (distinct) states.

The limited size of a state set allows an O(|G,|? - n3) bound to be placed on the
‘runtime of the Earley parser. Informally, the argument (due to Earley) runs as follows.
The scan operation on a state can be done in constant time; the scan operations in a
state set thus contribute no more than O(|G,| - n) computational steps. All of the predict
operations in a state set taken together can add no more states than the number of rules
in the grammar, bounded by |G,|, since a nonterminal needs to be expanded only once in
a state set regardless of how many times it is predicted; hence the predict operations need
not take more than O(|G.|-n + |G,|) = O(|G4] - n) steps. Finally, there arc the complete
operations to be considered. A given completion can do no worse than advancing every
state in the state set indicated by the return pointer. Therefore, & completions require at
most k? steps; the complete operations in a state set can take no more than O([G,,[2 . n2)
steps. Overall, then, it takes no more than 0([6'012 +n?) steps to process one state set and
no more than O(|G,|* - n®) steps for the Earley parser to process them all,

In Shicber’s parser, though, the state sets can grow much larger relative to grammar
size. Given a UCFG G}, how many possible dotted UCTFG rules are there? Resulting from
arule X — Ay... Ay, there are not k+ 1 possible dotted rules tracking linear advancement,
but 2* possible dotted UCFG rules tracking accumulation of sct elements. In the worst
case, the grammar contains only one rule and & is on the order of |G;|; hence the number

6

€1 €4

Figure 2: This graph illustrates a trivial instance of the vertex cover problem. The set
{c,d} is a vertex cover of size 2.

of possible dotted UCFG rules for the whole grammar is not bounded by |G|, but by 2/Gs,
(Recall the exponential blowup demonstrated for grammar G in section 4.)

Informally speaking, the reason why Shieber’s parser sometimes suffers from combi-
natorial explosion is that there are exponentially more possible ways to progress through
an unordered rule expansion than an ordered one. When disambiguating information is
scarce, the parser must keep track of all of them. In the more general task of parsing
ID/LP grammars, the most tractable case occurs when constraint from the LP relation is
strong enough to force a unique ordering for every rule expansion. Under such conditions,
Shicber’s parser reduces to Earley’s. However, the case of strong constraint represents the
best case computationally, rather than the worst case as Shieber (1983:14) claims.

6. ID/LP parsing is inherently difficult

The worst-case time complexity of Shieber’s algorithm is exponential in grammar size
rather than quadratic as Shieber (1983:15) believed. Did Shieber simply choose a poor
algorithm, or is ID/LP parsing inherently difficult in the general case? In fact, the simpler
problem of recognizing sentences according to a UCFG is NP-complete.® Consequently, un-
less P = NP, no algorithm for ID/LP parsing can have a runtime bound that is polynomial
in the size of the grammar and input.

The proof of NP-completeness involves reducing the wvertez cover problem (Garey
and Johnson, 1979:46) to the UCFG recognition problem. Through careful construction
of the grammar and input string, it is possible to “trick” the parser into solving a known
hard problem. The vertex cover problem involves finding a small set of vertices in a graph
with the property that every edge of the graph has at least one endpoint in the set. Figure 2
shows a trivial example.

To construct a grammar that encodes the question of whether the graph in Figure 2
has a vertex cover of size 2, first take the vertex names a, b, ¢, and d as the alphabet. Take

SRecognition is simpler than parsing because a recognizer is not required to recover the structure of an input
string, but only to decide whether the string is in the language generated by the grammar: that is, whether
or not there erists a parse.

START — H,H,H;H,UUDDDD
H - alc
Hy — bl|e
Hy — c|d
H4 — bld
U — aaaa |bbbb | ccec | dddd
D — al|b|cl|d

Figure 3: For k. = 2, the construction described in the text transforms the vertex-cover
problem of Figure 2 into this UCFG. A parse exists for the string aaaabbbbccccdddd iff the
graph in the previous figure has a vertex cover of size < 2.

START as the start symbol. Take H; through Hj as special symbols, one per edge; also
take U and D as special dummy symbols.

Next, write the rules corresponding to the edges of the graph. Edge e; runs from a
to ¢, so include the rules Hy — a and H; — ¢. Encode the other edges similarly. Rules
expanding the dummy symbols are also needed. Dummy symbol D will be used to soak up
excess input symbols, so D — a through D — d should be rules. Dummy symbol U will
also be used to soak up excess input symbols, but U will be allowed to match only when
there are four occurrences in a row of the same symbol (one occurrence for each edge). Take
U — aaaa, U — bbbb, and U — cccc, and U — dddd as the rules expanding U.

Now, what does it -take for the graph to have a vertex cover of size k = 2?7 One way
to get a vertex cover is to go through the list of edges and underline one endpoint of each
edge. If the vertex cover is to be of size 2, the underlining must be done in such a way that
only two distinct vertices are ever touched in the process. Alternatively, since there are 4
vertices in all, the vertex cover will be of size 2 if there are 4 — 2 = 2 vertices left untouched
in the underlining process. This method of finding a vertex cover can be translated into a
UCFG rule as follows:

START — HiH,H; H,UUDDDD

That is, each H-symbol is supposed to match the name of one of the endpoints of the
corresponding edge, in accordance with the rules expanding the H-symbols. Each U/-symbol
is supposed to correspond to a vertex that was left untouched by the H-matching, and the
D-symbols are just there for bookkeeping. Figure 3 lists the complete grammar that encodes
the vertex-cover problem of Figure 2.

To make all of this work properly, take
o = aaaabbbbccecdddd

as the input string to be parsed. (In general, for every vertex name z, include in o a
contiguous run of occurrences of z, one occurrence for each edge in the graph.) The grammar

8

encodes the underlining procedure by requiring each H-symbol to match one of its endpoints
in 0. Since the right-hand side of the START rule is unordered, the grammar allows an
H-symbol to match anywhere in the input, hence to match any vertex name (subject to
interference from other rules that have already matched). Furthermore, since there is one
occurrence of each vertex name for every edge, all of the edges could conceivably be matched
up with the same vertex; that is, it’s impossible to run out of vertex-name occurrences.
Consequently, the grammar will allow either endpoint of an edge to be “underlined.” The
parser will have to figure out which endpoints to choose — in other words, which vertex cover
to select. However, the grammar also requires two occurrences of U to match somewhere.
U can only match four contiguous identical input symbols that have not been matched in
any other way, and thus if the parser chooses a vertex cover that is too large, the U-symbols
will not match and the parse will fail. The proper number of D-symbols is given by the
length of the input string, minus the number of edges in the graph (to account for the
H;-matches), minus k times the number of cdges (to account for the U-matches): in this
case, 16 — 4 — (2-4) = 4, as illustrated in the START rule.

The net result of this construction is that in order to decide whether o is in the language
generated by the UCFG, the parser must in effect search for a vertex cover of size 2 or less.”
If a parse exists, an appropriate vertex cover can be read off from beneath the H-symbols in
the parse tree; conversely, if an appropriate vertex cover exists, it indicates how to construct
a parse. Figure 4 shows the parse tree that encodes a solution to the vertex-cover problem
of Figure 2.

The construction shows that vertex-cover problem is reducible to UCFG recognition.
Furthermore, the construction of the grammar and input string can be carried out in poly-
nomial time. Consequently, UCFG recognition and the more general task of ID/LP parsing
must be computationally difficult. For a more careful and detailed treatment of the reduc-
tion and its correctness, see the appendix.

7. Computational implications

The reduction of Vertex Cover shows that the ID/LP parsing problem is NP-complete.
Unless P = N P, the time complexity of ID/LP parsing cannot be bounded by any polyno-
mial in the size of the grammar and input.® An immediate conclusion is that complexity
analysis must be done carefully: despite its similarity to Earley’s algorithm, Shieber’s algo-
rithm does not have complexity O(|G |2 -n3). For some choices of grammar and input, its
internal structures undergo exponential growth. Other consequences also follow.

7.1. Parsing the object grammar

Even in the face of its combinatorially explosive worst-case behavior, Shieber’s algo-

7If the vertex cover is smaller than expected, the D-symbols will soak up the extra contiguous runs that
could have been matched by more U-symbols.

8Even assuming P # NP, it does not follow that the time complexity must be ezponential, though it seems
likely to be. There are functions such as n'°8™ that fall between polynomials and exponentials. See
Hopcroft and Ullman (1079:341).

START

H H, H, D H, D D D

AN

a a a a b b b b ¢ ¢ ¢ d d d d

Figure 4: The grammar of Figure 3, which encodes the vertex-cover protlem of Figure 2,
generates the string ¢ = aaaabbbbececdddd according to this parse tree. The vertex cover
{c,d} can be read off from the parse trce as the set of elements dominated by H-symbols.

rithm should not be immediately cast aside. Despite the fact that it sometimes blows up,
it still has an advantage over the alternative of parsing the expanded “object grammar.”
One interpretation of the NP-completeness result is that the general casc of ID/LP parsing
is inherently difficult; hence it should not be surprising that Shieber’s algorithin for solving
that problem can somectimes suffer from combinatorial explosion. More significant is the fact
that parsing with the expanded CFG blows up in cases that should not be difficult. There
is nothing inherently difficult about parsing the language that consists of all permutations
of the string abede, but while parsing that language the Earley parser can use 24 states or
more to encode what the Shieber parser encodes in only one (§3). To put the point another
way, the significant fact is not that the Shieber parser can blow up; it is that the use of an
expanded CFG blows up unnecessarily.

7.2. Is precompilation possible?

The present reduction of Vertex Cover to ID/LP Parsing involves constructing a gram-
mar and input string that both depend on the problem to be solved. Consequently, the
reduction does not rule out the possibility that through clever programming one might
concentrate most of the computational difficulty of ID/LP parsing into a separate precom-
pilation stage, dependent on the grammar but independent of the input. According to this
optimistic scenario, the entire procedure of preprocessing the grammar and parsing the in-
put string would be as difficult as any NP-complete problem, but after precompilation, the
time required for parsing a particular input would be bounded by a polynomial in grammar

10

v

size and sentence length.

Regarding the case immediately at hand, Shieber’s modified Earley algorithm has no
precompilation step.® The complexity result implied by the reduction thus applies with
full force; any possible precompilation phase has yet to be proposed. Moreover, it is by no
means clear that a clever precompilation step is even possible; it depends on exactly how
|G| and n enter into the complexity function for ID/LP parsing. If n enters as a factor
multiplying an exponential, precompilation cannot help enough to ensure that the parsing
phase will run in polynomial time.

For example, suppose some parsing problem is known to require 2/G!. n® steps for
solution.10. If one is willing to spend, say, 10 - 2/C! steps in the precompilation phase, is it
possible to reduce parsing-phase complexity to something like |G]8 -n3? The answer is no.
Since by hypothesis it takes at least 2!Cl. n3 steps to solve the problem, there must be at
least 2/G1.n3 —10-2!Cl steps left to perform after the precompilation phase. The parameter
n is necessarily absent from the precompilation complexity, hence the term 2161 . n® will
eventually dominate. '

In a related vein, suppose the precompilation step is conversion from ID/LP to CFG
form and the runtime step is the use of the Earley parser on the expanded CF'G. Although
the precompilation step does a potentially exponential amount of work in producing G’
from G, another exponential factor still shows up at runtime because |G'| in the complexity
bound |G’ |2 n® is exponentially larger than the original |G]|.

7.83. Polynomial-time parsing of a fixed grammar

As noted above, both grammar and input in the current vertex-cover reduction de-
pend on the vertex-cover problem to be solved. The NP-completeness result would be
strengthened if there were a reduction that used the same fixed grammar for all vertex-
cover problems, for it would then be possible to prove that a precompilation phase would
be of little avail. However, unless » = N P, it is impossible to design such a reduction. Since
grammar size is not considered to be a parameter of a fixed-grammar parsing problem, the
use of the Earley parser on the object grammar constitutes a polynomial-time algorithm for
solving the fixed-grammar ID/LP parsing problem.

Although ID/LP parsing for a fixed grammar can thus be done in cubic time, that fact
has little practical significance. The object grammar G’ corresponding to a practical ID/LP
grammar would be huge, and if |G’]2 -n3 complexity is too slow, then it remains too slow
when |G'|? is regarded as a constant.

7.4. The power of the UCFG formalism

The Vertex Cover reduction also helps pin down the computational power of the UCFG
formalism. As G; and G in section 3 illustrated, a UCTG (or an ID/LP grammar) can enjoy

9Shieber (1983:15 n. 6) mentions a possible precompilation step, but it is concerned with the LP relation
rather than the ID rules.

107t i3 not known whether the worst-case complexity of ID/LP parsing is exponential, since more generally
it is not known for sure that P £ NP.

11

considerable brevity of expression compared to the equivalent CFG. The NP-completeness
result illuminates this property in two ways. First, the result shows that this brevity of
expression is sufficient to allow an instance of any problem in N 7 to be stated in a UCFG
that is only polynomially larger than the original problem instance. In contrast, if an
attempt is made to replicate the current reduction with a CFG rather than UCFG, the
necessity of spelling out all the orders in which the H-, U-, and D-symbols might appear
makes the CFG more than polynomially larger than the problem instance. Consequently,
the reduction fails to establish NP-completeness, which indeed does not hold. Second,
the result shows that the increased expressive power does not come free; while the CFG
recognition problem can be solved in cubic time or less,!! unless P = N P the gencral UCFG
recognition problem cannot be solved in polynomial time.

The details of the reduction also help pin down how pewerful a single UCFG rule can
be. If the UCFG formalism is extended to permit ordinary CFG rules in addition to rules
with unordered expansions, the grammar that expresses a vertex-cover problem needs only
one UCFG rule, although that rule may need to be arbitrarily long.

7.5. The role of conétraint

Finally, the discussion of section § illustrates the way in which the weakening of con-
straints can often make a problem computationally more difficult. It might erroneously be
thought that weak constraints represent the best case in computational terms, for “weak”
constraints sound easy to verify. However, oftentimes the weakening of constraint multiplies
the number of possibilities that must be considered in the course of solving a*problem. In
the case at hand, the removal of constraints on the order in which constituents can appear
causes the dependence of parsing complexity on grammar size to grow from |G [2 to 2/G1,

8. Linguistic implications

Significantly, the key ingredients that can cause difficulties for the ID/LP parsing al-
gorithm are not exotically foreign to linguistic theory. Most current formalisms (e.g. GB-
theory and GPSG) permit the existence of constituents that are empty on the surface; hence
in principle they permit the kind of pathological case illustrated by G5 in scction 4, subject
to amelioration by additional constraints. Similarly, a key ingredient of the vertex-cover
reduction is lexical ambiguity — acknowledged by every current theory.

Nonetheless, the implications of the NP-completeness result for grammatical theory
are fewer than they might seem. The reduction contributes to the necessary goal of under-
standing the computational power of various mechanisms and formal devices, but it does
not (for instance) rule out the use of formalisms that decouple constraints on order from
constraints on lincar precedence.

Under the assumption that natural languages are efliciently parsable, computational
difficulties in parsing a formalism do indicate that the formalism itself does not tell the

Ugince O(|G| n?) < O(([Gl + n)"’), the complexity of Earley’s algorithm is no worse than cubic in the

combined length of grammar and input.

12

whole story. That is, they point out that the range of possible languages has been incor-
rectly characterized: the additional constraints that guarantee efficient parsability remain
unstated. Since the general case of parsing ID/LP grammars is computationally difficult, if
the linguistically relevant ID/LP grammars are to be efficiently parsable, there must be ad-
ditional factors that guarantee, say, a certain amount of constraint from the LP relation.!?
(Constraints beyond the bare ID/LP formalism are required on linguistic grounds as well.)
Note that the subset principle of language acquisition (¢f. Berwick and Weinberg, 1984:233)
would lead the language learner to initially hypothesize strong order constraints, to be weak-
ened only in response to positive evidence.

However, there are other potential ways to guarantee efficient parsability. It might turn
out that the principles and parameters of the best grammatical theory permit languages that
are not efficiently parsable in the worst case — just as grammatical theory permits sentences
that are decply center-embedded (Miller and Chomsky, 1963).1% In such a situation, difficult
languages or sentences would not be expected to turn up in general use, precisely because
they would be difficult to process.'* The factors that guarantee efficient parsability would
not be part of grammatical theory because they would result from extragrammatical factors,
1.e. the resource limitations of the language-processing mechanisms. This “easy way out”
is not automatically available, depending as it does on a detailed account of processing
mechanisms. For example, in the Earley parser, the difficulty of parsing a construction
can vary widely with the amount of lookahead used (if any). Like any other theory, an
explanation based on resource limitations must make the right predictions about which
constructions will be difficult to parse.

In the same way, the language-acquisition procedure could potentially be the source of
some constraints relevant to efficient parsability. Perhaps not all of the languages permitted
by the principlés and parameters of syntactic theory are accessible in the sense that they
can potentially be constructed by the language-acquisition component. It is to be expected
that language-acquisition mechanisms will be subject to various kinds of limitations just
-as all other mental mechanisms are. Again, however, concrete conclusions must await a
detailed proposal. :

121n the GB-framework of Chomsky (1981), for instance, the syntactic expression of unordered 0-grids at the
X level is constrained by the principles of Case theory. Endocentricity is another significant constraint. See
also Berwick’s (1082) discussion of constraints that could be placed on another grammatical formalism —
lexical-functional grammar — to avoid a simnilar intractability result.

131ndeed, one may not conclude a priori that the languages permitted by linguistic theory are parsable at all
(Chomsky, 1980).

1471t is often anecdotally remarked that languages that allow relatively free word order tend to make heavy
use of inflections. A rich inflectional system can supply parsing constraints that make up for the lack
of ordering constraints; thus the situation we do not find is the computationally difficult case of weak
constraint.

13

9. Appendix

This appendix contains the details of a careful reduction of the vertex-cover problem to
the UCFG recognition problem. This version of the reduction establishes that the difficulty
of UCFG recognition is not due either to the possibility of empty constituents (e-rules) or
to the possibility of repeated symbols in rules (7.e. to the use of multisets rather than sets).
Consequently, it is somewhat different from and more complex than the one sketched in the
text.

9.1, Defining unordered context-free grammars

Definition: An unordered CFG (UCFG) is a quadruple (N, X, R, S), where:
(a) N is a finite set of nonterminals. '
(b) ¥ disjoint from N is a finite, nonempty set of terminal symbols.

(c) R is a nonempty set of rules (A, a), where A € N and @ € (N U Z)*. The rule
(4, @) may be written as A — a.

(d) S € N is the start symbol.

Convention: The grammar G and its components N, X, R, S need not be explicitly men-
tioned when clear from context.

Convention: Unless otherwise noted,

(a) A A’ A;,. .. denote elements of N; .
(b) a,a',a;,... denote elements of I;

(c) XY, X'\ Y' X;,Y,,... denote elements of N U Z;

(d) o,u,u,u;, ... denote elements of *;

(e) a,B,7,p, ¥ denote elements of (N U L)*.

Definition: G = (N,Z, R, S) is c-free iff for every (A,a) € R, |a| # 0.

Definition: G = (N, X, R, S) is branching iff for some (4,a) € R, |a| > 1.

Definition: G = (N,%, R, S) is duplicate-free iff for every (4,a) € R, a =Y;...Y, and
foralli,je(l,n],Y;=Y;iff i = 3.

Definition: G = (N, LI, R, S) is stmple iff it is e-free, duplicate-free, and branching.

Note. The notion of a simple UCFG is introduced in order to help pin down the source of
any computational difficulties associated with UCFGs. For example, since simple UCTFGs
are restricted to be duplicate-free, a difficulty that arises with simple UCFGs cannot result
from the possibility that a symbol may occur more than once on the right-hand side of a
rule.

Definition: @Ay > pap (by r) just in case (for some) r = (A",Y;...Y,) € R and
for some permutation p of [I,n], A = A’ and a = Yoa)y.--Yym). If ¢ € I*, also write
pAY :G>1m pazh.

Definition: L(G) = {c € £*: § =* o}.

14

€3
€1 1 T
€5
v)
€2
V = {v,w,z,y,2}
E = {81532’63,34365768,37}
with the e; as indicated
k = 3

Figure 5: The triple (V, E, k) is an instance of VERTEX COVER. The set V' = {v,z,2} is

a vertex cover of size k = 3.

Definition: An n-step derivation of v from @ is a sequence (g, ..., ®n) such that g = ¢,
©n =1, and for all 1 € [0,n — 1], p; => p;41. I it is also true for all i that p; =>1, Vi1,
say that the derivation is lefimost. :

9.2. Defining the computational problems

Definition: A possible instance of the problem VERTEX COVER is a triple (V, E, k),
where (V,) is a finite graph with at least one edge and at least two vertices, k € N, and
k < |V|.*® VERTEX COVER itself consists of all possible instances (V, E, k) such that for
some V' CV, |[V'| < k and for all edges ¢ € I, at least one endpoint of ¢ is in V', (Figure 5
gives an example of a VERTEX COVER instance.)

Fact: VERTEX COVER is NP-complete. (Garey and Johnson, 1979:46)

Definition: A possible instance of the problem SIMPLE UCFG RECOGNITION is a pair
(G,0), where @ is a simple UCFG and ¢ € %*. SIMPLE UCFG RECOGNITION itself
consists of all possible instances (G, o) such that o € L(G).

Notation: Take ||| to be any reasonable mcasure of the encoded input length for a com-
putational problem; continue to use || for set cardinality and string length. Tt is reasonable
to require that if S is a set, k € N, and |S| > k, then ||S]| > ||k]); that is, the encoding of

15This formulation differs trivially from the one cited by Garey and Johnson.

15

numbers is better than unary. It is also reasonable to require that ||(...,z,...})|| > ||z||.

9.3. The UCFG recognition problem is in NP

Lemma 9.1: Let (¢, .. ,x) be a shortest leftmost derivation of vy from g in a branch-
ing e-free UCFG. If k > |N| + 1 then |p| > |pol-

Proof. There exists some sequence of rules (Ag,ap),...,{Akr—1,k—1) such that for all
i€ [0,k — 1], p; =1m wit1 by (Ai,a;). Since G is e-free, iy1| > |pi] always.

Case 1. For some 1, || > 1. Then |p;11] > |p;]. Hence |pk| > |pq.

Case 2. For every i, |o;| = 1. Then there exist u, 7 such that for every 1 € [0,k — 2], there
is A € N such that @, = uAly. Suppose the Al are all distinct. Then |N| > k - 1,
hence |N| 4+ 1 > k, hence |[N|+ 1 > |N| + 1, which is impossible. Hence for some 4,5 €
[0,k 2], ¢ < j, A} = A}. Hence ;1 = pj41, since [1,1] has only one permutation. Then
(05 P05 41y -,k I8 a leftmost derivation of ¢y from g and has length less than
k, which is also impossible. - :

Then |pk| > |pol. (]

Corollary 9.2: If G is a branching e-free UCFG and ¢ € L(G) then o has a leftmost
derivation of length at most |o|- m, where m = [N| + 2.

Proof. Let (po,..., k) be a shortest leftmost derivation of ¢ from S. Suppose k > |o| - m.

Consider the sub-derivations o

(‘PO&- . -s‘Pm)
(‘Pma s ,‘P2m)

(‘P(!a|—1)~m) [EEP) 30|o|~m)
(‘plal-mi ceey (Pk)-

Each one except the last has m steps and m > |N| + 1. Then by lemma,

[€1om| > [@(1o1-1)-m] > == > lom| > |po| = 1.

Then |o| > 1+ |0}, which is impossible. Hence k < |o]-m. []
Lemma 9.3: T = SIMPLE UCFG RECOGNITION is in the computational class N P.

Proof. Let G = (N,%,R,S) be a simple UCFG and ¢ € E*. Consider the following
nondeterministic algorithm with input (G, 0):

Step 1. Write down wq = S.
Step 2. Perform the following steps for ¢ from 0 to |o| - m — 1, where m = |N| + 2.
(a) Express p; as u;A;7y; by finding the leftmost nonterminal, or loop if impossible.

(b) Guess arule {(A;,Y;1...Y;r,) € R and a permutation p; of [1,k;], or loop if there is
no such rule.

16

(c) Write down @i 1 = ui¥i 5,01 - - Yi i (ko) Vi
(d) If pi+1 = o then halt.
Step 9. Loop.

1t should be apparent that the algorithm runs in time at worst polynomial in ||{G, o)||; note
that the length of w; increases by at most a constant amount on each iteration.

Assume (G, o) € II. Then o has a leftmost derivation of length at most |o| - m by Corol-
lary 9.2; hence the nondeterministic algorithm will be able to guess it and will halt. Con-
versely, suppose the algorithm halts on input (G,s). On the iteration when the algorithm
halts, the sequence (g, ...,9+1) will constitute a leftmost derivation of o from §; hence
o € L(G) and (G,0) € 1I.

Then there is a nondeterministic algorithm that runs in polynomial time and accepts exactly

IT. Hence T € NP. []

9.4, The UCFG recognition problem is NP-complete

Lemma 9.4: Let (V,E,k) = (V, {e;}, k) be a possible instance of VERTEX COVER. Then
it is possible to construct, in time polynomial in ||V |, | E||, and k, a simple UCFG G(V, E, k)
and a string o(V, E, k) such that

(G(V, E, k),o(V, E, k)) € SIMPLE UCFG RECOGNITION
if (V,E,k) € VERTEX COVER. .

Proof. Construct G(V, E, k) as follows. Let the sct N of nonterminals consist of the following
symbols not in V: '

START,U, D,

H; for i € [1,|E|],

U; fori € [1,|V| - k],

D; for i € [1,|E|- (k- 1)].

| V]| will be at worst polynomial in || E||, ||V ||, and k for a reasonable length measure. Define
the terminal vocabulary ¥ to consist of subscripted symbols as follows:

S ={aaeV,ie[L,|E])

Designate START as the start symbol. Include the following as members of the rule set R:
(a) Include the rule

START s H1 .. .H|E[U1 ~--U§V[—kD1 . D[E[(k—l)

(b) For each ¢; € E, include the rules
{H; — a;: a an endpoint of ;}.

17

START — HIIIQHaH4H5H6H7U1UQDIDQD3D4D5D5D7D8D9D10DuD12D13D14

ws | z3 -

H - v|w Hy — vy Hy —

Hy — wy|z - Hs — z5]|ys Hy — yo|z
H1 — I , 27

U1 - U Uz - U) Us - U
U4 nd U

U — vivav3v4vs0807 l W W W3 W4 W5WeWy l T1T2T3T4T5TgTy

| Y1Y2UsYaysyeyr | 212223242526 27

D1 - D Dy, — D D3 - D
D4 - D D5 — D De - D
Dy —- D Dg — D Dy - D
DlU hd D Du - D D12 — D
D13 — D D14 g D

vr | vz |vs | vg | vs |vg | vr [wy|we|wy|wy|ws|we|wr

-"31|932|$3IZ4|$5lxelmlmlyzlyslmlyslyel?h
21|20 |23 |24 | 25 | 26 | 21

9.,
——1

Figure 6: The construction of Lemma 9.4 produces this grammar when applied to the
VERTEX COVER problem of Figure 5. The H-symbols ensure that the solution that is
found must hit each of the edges, while the U-symbols ensure that enough elements of vV
remain untouched to satisfy the requirement [V’| < k. The D-symbols are dummies that
absorb excess input symbols. A shorter grammar than this will suffice if the grammar is
not required to be duplicate-free.

(¢) Foreachie [1,|V] - k], include the rule U; — U. Also include the rules
{U—ay...qp:acV} ,
(d) For each i € [1,|E|- (k —~ 1)], include the rule D; — D. Also include the rules
{D—a:aeZ}

Take G(V, E,k) to be (N,Z, R, START). (Figure 6 shows the result of applying this con
struction to the VERTEX COVER instance of Figure 5.) '

18

Let h : [1,|[V]] — V be some standard enumeration of the elements of V. Construct
o(V,E,k) as h(1);...h(1)g) ... A({V])1 ... h([V])|E}; thus o(V, E, k) will have length |E|-
V. . A
It is easy to see that [{G(V,E,k),o(V, E,k))| will be at worst polynomial in || E|, |V,
and k for reasonable ||-||. It will also be possible to construct the grammar and string in
polynomial time. Finally, note that given the definition of a possible instance of VERTEX
COVER, the grammar will be branching, e-free, and duplicate-free, hence simple.

Now suppose (V, E, k) € VERTEX COVER. Then there exist V' CV and f : E — V' such
that |V'| < k and for every e € E, f(e) is an endpoint of e. E is nonempty by hypothesis
and V' must hit every edge, hence |V’| cannot be zero. Construct a parse tree for o(V, E, k)
according to G(V, E, k) as follows.

Step 1. Number the elements of V — V' as {z;:4 € [1,|V = V'|]}. For each z; where
i < |[V| -k, construct a node dominating the substring (z;)1...(z:)z| of ¢(V,E,k) and
label it U. Then construct a node dominating only the U-node and label it U;. Note that
the available symbols U; are numbered from 1 to [V| - k, so it is impossible to run out of
U-symbols. Also, |V/| < k and V' C V, hence [V — V'| < |[V| -k, so all of the U-symbols
will be used. Finally, note that U —ay...ap is arule for any a € § and that U; — U is
a rule for any U;. o

Step 2. For each e; € E, construct a node dominating the (unique) occurrence of f(e;); in
o(V,E, k) and label it H;. Step 2 cannot conflict with step 1 because f(e;) € V', hence
f(e:) ¢ V — V'. Different parts of step 2 cannot conflict with cach other because each one

affects a symbol with a different subscript. Also note that f(e;) is an endpoint of e; and

that H; — a; is a rule for any e; € F and a an endpoint of e;. :

Step §. Number all occurrences of terminals in o(V, E, k) that were not attached in step 1
or step 2. For the ¢th such occurrence, construct a node dominating the occurrence and
label it D. Then construct another node dominating the D-node and label it D;. Note
that the stock of D-symbols runs from 1 to (k — 1) - |E|. Exactly (|V|— k) - |E| symbols
of a(V, E, k) were accounted for in step 1. Also, exactly |E| symbols were accounted for in
step 2. The length of o(V, E, k) is |V| - |E|, hence exactly

V] |B| - V- 1B| + k- |B| - |B|
(k—1)-|2]

symbols remain at the beginning of step 3. D — a is a rule for any a € ¥; D; —» D is a
rule for any D;.

Step 4. Finally, construct a node labeled START that dominates all of the H;, U;, and D;
nodes constructed in steps 1, 2, and 3. The rule

il

V-1l = (V- &) -|E]) - |E]|

Il

START — Ifl . .HQE]Ul . 'U]V]——k-Dl "‘D|E|'("“1)

is in the grammar. Note also that nodes labeled Hj,..., Hg| were constructed in step 2,
nodes labeled Uy, .. ., Upy|_x were constructed in step 1, and nodes labeled Dy, ..., Dp|.(k-1)

-were constructed in step 3. Hence the application of the rule is in accord with the grammar.

19

START

H\H;D,D3D3D4 D5 Uy D¢D7H3 DgHs Do Dy U, D Dy3Dy3Hy D HsH.
i i . ‘ .
DDDDD U DD | D D D U D D D D

bof '

U1 U2 Ug U4 U5 Vg U7 W1W2W3WaWsWeWy Ty Ty T3 T4 Ts5 Tg T7 Y1Y2YsYaYsYolr 21 23 23 24 25 Z¢ 27

Figure 7: This parse tree shows how the grammar shown in Figure 6 can generate the string
o(V, E, k) constructed in Lemma 9.4 for the VERTEX COVER problem of Figure 5. The
corresponding VERTEX COVER solution V' = {v, 7,2} and its intersection with the edges
can be rcad off by noticing which terminals the H-symbols dominate.

20

Then o(V, E, k) € L(G). (Figure 7 illustrates the application of this parse-tree construction
procedure to the grammar and input string derived from the VERTEX COVER example
in Figure 5.)

Conversely, suppose o(V, E,k) € L(G). Then the derivation of o(V, E,k) from START
must begin with the application of the rule

START d H1 . H[E‘Ul . 'U]V|—kD1 . "DIEHk—l)

and each H; must later be expanded as some subscripted terminal g(H;). Define f(e;) to
be g(H;) without the subscript; then by construction of the grammar, f(e;) is an endpoint
of e; for all e; € E. Define V' = {f(e;): e; € E}; then it is apparent that V' C V and that
V' contains at least one endpoint of e; for all e; € L. Also, each U; for 1 € [1,|V| - k]
must be expanded as U, then as some substring (a;); ... (a;:)jg| of o(V, E,k).'% Since the
substrings dominated by the H; and U; must all be disjoint, and since there are only |E|
subscripted occurrences of any single symbol from V in o(V, E, k), there must be |V| - k
distinct elements of V' that are not dominated in any of their subscripted versions by any
H;. Then |V -V'| > |V]| - k. Since in addition V C V', [V'| < k. Then (V,Ek) €
VERTEX COVER. [] :

Theorem 1: SIMPLE UCFG RECOGNITION is NP-complete.

Proof. SIMPLE UCIFG RECOGNITION is in the class NP by Lemma 9.3, hence a poly-
nomial-time reduction of VERTEX COVER to SIMPLE UCFG RECOGNITION is suffi-
cient. Let (V, E, k) be a possible instance of VERTEX COVER. Let G be G(V, E,k) and o
be o(V, E, k) as constructed in Lemma 9.4. Note that G is simple.

The construction of G and o can, by lemma, be carried out at time at worst polyno-
mial in |E||, ||[V||, and k. Also by lemma, (G,0) € SIMPLE UCFG RECOGNITION
iff (V, E, k) € VERTEX COVER. k is not polynomial in ||k]| under a reasonable encoding
‘scheme. However, |E| > k, hence || E|| > ||k||; also ||(V, E, k)| = || E||, hence |[{V, E, k)| > k,
all by properties assumed to hold of ||-||. Then G and o can in fact be constructed in time
at worst polynomial in ||(V, E, k)||. ‘

Hence the VERTEX COVER problem is polynomial-time reduced to SIMPLE UCFG
RECOGNITION. []

18The grammar would allow the substring (a;); .. (ai)g| to appear in any permutation, but in ¢(V, E, k)
it appears only in the indicated order,

21

ey

10. References

Barton, E. (1984). “Toward a Principle-Based Parser,” A.l. Memo No. 788, M.I.T. Artificial
Intelligence Laboratory, Cambridge, Mass.

Berwick, R. (1982). “Computational Complexity and Lexical-Functional Grammar,” Amer-
tcan Journal of Computational Linguistics 8.3-4:97-109.

Berwick, R., and A. Weinberg (1984). The Grammatical Basis of Linguistic Performance.
Cambridge, Mass.: M.I.T. Press.)

Chomsky, N. (1980). Rules and Representations. New York: Columbia University Press.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht, Holland: Foris
Publications.

Earley, J. (1970). “An Efficient Context-Free Parsing Algorithm,” Comm. ACM 13.2:94-
102.

Garey, M., and D. Johnson (1979). Computers and Intractability. San Francisco: W. H. Free-
man and Co.

Hopcroft, J., and J. Ullman (1979). Introduction to Automata Theory, Languages, and
Computation. Reading, Massachusetts: Addison-Wesley.

Miller, G., and N. Chomsky (1963). “Finitary Models of Language Users,” in R. D. Luce, R.
R. Bush, and E. Galanter, eds., Handbook of Mathematical Psychology, vol. I1, 419-492,
New York: John Wiley and Sons, Inc.

Shieber, S. (1983). “Direct Parsing of ID/LP Grammars.” Technical Report 201R, SRI
International, Menlo Park, California. Also appears in Linguistics and Philosophy T:2.

22

