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Abstract: We develop a systematic approach to the discovery of parallel iterative
schemes for solving the shape-from-shading problem on a grid. A standard procedure
for finding such schemes is outlined, and subsequently used to derive several new ones.

The shape-from-shading problem is known to be mathematically equivalent to a non-
linear first-order partial differential equation in surface elevation. To avoid the problems
inherent in methods used to solve such equations, we follow previous work in reformulating
the problem as one of finding a surface orientation ficld that minimizes the integral of the
brightness error. The calculus of variations is then employed to derive the appropriate
Euler equations on which iterative schemes can be based.

The problem of minimizing the integral of the brightness ervor term is ill posed, since
it has an infinite number of solutions in terms of surface orientativn ficlds. A previous
method used a regularization technique to overcome this difficulty. An extra terin was
added to the integral to obtain an approximation to a soluiion that was as smooth as
possible.

We point out here that surface orientation has to obey an integrability constraint if it is
to correspond to an underlying smooth surface. Regularization methods do not guarantee
that the surface orientation recovered satisfies this constraint. Consequently, we attempt
to develop a method that enforces integrability, but fail to fiud a convergent iterative
scheme based on the resulting Fuler equations. We show, however, that such a scheme
caun be derived if, instcad of strictly cnforcing the constraint, a penalty term derived
from the constraint is adopted. This new scheme, while it can be cxpressed simply and
elegantly using the surface gradient, unfortunately cannot deal with constraints imposed
by occluding boundaries. These constraints are crucial if ambiguities in the solution of
the shape-from-shading problem are to he avoided.

Different schemes result if one uses different parameters to describe surface erienta-
tion. We derive two new schemes, using unit surface normals, that facilitate the incorpo-
ration of the occluding boundary information. These schenes, while more complex, have
several advanlages over previous ones.
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1. Introduction

We begin by reviewing the shape-from-shading problem, its formulation as a minimization
problem, and the use of the calculus of variations in deriving the partial differential
equations governing the solution of the minimization problem.

1.1. Preview

The first study of the shape-from-shading problem was undertaken by Horn (1970 &
1975). There, the partial differential equation in surface clevation fundamental to the
problem was converted to an equivalent set of five ordinary differential equations called
the characteristic strip equations. Algorithms based directly on numerical solution of the
discrete approximations of these equations arc inherently sequential in nature and have
difficulty with unavoidable noise in the image data.

Later, a method lending itself to parallel solution on a grid was developed by Strat
(1979) using minimization in the discrete domain. Strat used the gradient to express
surface orientation and so was unable to deal with occluding boundaries, which are known
to provide crucial constraint needed to avoid ambiguity in the solution, as shown by Bruss
(1983). For this reason, another approach, based on the stereographic projection of the
Gaussian sphere, was explored by Ikeuchi and Horn (1981). The calculus of variations
was used there for the first time in the analysis of the shape-from-shading problem. Their
nethod depended on the use of a regularization term in the functional to be minimized.

In this paper, we carefully examine the role of the variational calculus in the derivation
of iterative schemes for shape from shading. Previous methods are discussed in detail,
and rationalized in terms of the new point of view, where appropriate. The application
of regularization techniques to well-posed problems is called into question.

We note in particular that the surface gradient should satisfy an integrability con-
straint. Guided by this observation, we attempt to impose integrability in a strict sense.
We are, however, unable to derive a convergent iterative scheme based on the appropriate
Fuler equation. We learn that such a scheme may be found if we instead incorporate a
penalty term based on the integrability constraint. This we demonstrate first using the
gradient to specify surface orientation, as has been customary. The resulting iterative
scheme is shown to be related to that developed by Strat.

As already stated, use of the surface gradient precludes incorporation of the occluding
boundary information. We overcome this difficulty by taking the novel approach of
adopting surface-normal vectors directly. This lcads to iterative schemes that are more
complex, but manageable. We finally develop two such schemes that:

e ensure the result is (at least approximately) integrable,
o avoid the smoothing introduced by a regularizing term, and
e permit use of the known normals on the occluding boundary.

None of the previous methods combined all of these features.
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1.2. The shape-from-shading problem

Monochrome images of smoothly curved surfaces with homogeneous reflecting properties
commonly exhibit a variation in image irradiance, or shading. This is due to the inter-
action of four principal factors: the illumination, the shape of the surface, the reflecting
characteristics of the material, and the image projection. The shape-from-shading prob-
lem may be regarded as that of extracting the shape information encoded in the irradiance
data. It therefore entails inversion of the image-forming process.

Because a number of factors are confounded in irradiance values, the shape depicted in
an image cannot be determined unless additional information is provided. Of considerable
utility in this regard has been the reflectance map (Horn, 1977), which specifies the
radiance of a surface patch as a function of its orientation. The reflectance map can
be computed from the bidirectional reflectance-distribution function and the light-source
arrangement (Horn & Sjoberg, 1979). Usually it is more practical to determine the
reflectance map experimentally, by means of a calibration object of known shape, for
example. In any case, the reflectance map encodes, inextricably, information about the
reflecting properties of the surface and the distribution and intensity of the light sources.

In adopting the reflectance map, we implicitly make the assumption that, for the given
scene conditions, the radiance emanating from a small surface patch is dependent only
on the orientation of the patch, and not its position in space. This requires that the light
sources and the viewer be distant. We also assume that the image is formed by ortho-
graphic image projection, and that the surface has homogeneous reflecting properties?.

Formally, given an image, ¥, and a reflectance map, R, the shape-from-shading prob-
lem may be regarded as that of recovering a smooth surface, z, satisfying the image
irradiance equation

E(z,y) =R (z,—,(z, y), zy(z, y))

over some domain ) of the image. Any given conditions on z on the boundary Q) of the
region (1 should also be satisfied. Here z; and z, denote the first partial derivatives of z
with respect to z and y respectively. Since these derivatives will be used frequently to
- specify surface orientation, it is convenient to introduce the short-hand notation

Oz “_Bz

—_— (d — T e
P= %z an 9 dy

The gradient of the surface z at the point (z,y) is just (p(m,y),q(m,y)). The gradient
points in the direction of steepest ascent and has magnitude equal to the slope in that
direction. It is further useful to note that a normal of the once-differentiable surface, z,

at (x,y,z(m,y))T can be written
T
n= (—p(m,y), —‘Q(ZC, y)s 1) .

This follows from the fact that (1,0, p(z, y))T and (O, 1,q(:1:,y))T are tangent vectors and
that the normal must be parallel to their cross-product. For many purposes one can use

1 These restrictive assumptions were not exploited in the original work on shape from shading. The
problem formulation, however, is much casier to comnprehend if the reflectance map is introduced, and
that can be done only if these additional constraints are imposed.
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either the surface gradient or the normal to specify surface orientation. Each has its own
advantages, as we shall see.

It is customary to cloose the direction of projection to be parallel to the z-axis. On
the occluding boundary, the direction of projection is tangent to the surface. That is, the
normal is orthogonal to a unit vector Z, parallel to the z-axis. Thus we note that at least
one of p and ¢ become unbounded on the occluding boundary.

1.3. Employing the variational calculus

Suppose we seek, over somme domain, a smooth surface satisfying various constraints. It
is useful to obtain from the given constraints a non-negative expression that measures
the departure of a particular surface from a satisfactory solution. We may then search
for a surface that mininizes the expression. As the value of the expression depends on
the choice of surface, or function, it is termed a functional.

The search for a function that minimizes an integral expression is the major concern
of the calculus of variations (Courant & Hilbert, 1953). Here, we find the valuable result
that the extrema of functionals must satisfy an associated Euler equation. This equation
can usually be determined in a straightforward way from the functional. We can, as a
result, transform our surface-recovery problem from one of minimizing a functional, to one
of solving one or more partial differential equations. Some of the relevant mathematical
details are presented in the Appendix of this paper.

In secking a surface that best matches the aforementioned constraints, we require a
global minimum of the corresponding functional. However, Fuler equations only specify
conditions on extremal values. We shall make the strong assumption in this paper that a
solution to the Fuler equation constitutes a global minimum ol the functional, satisfying
the constraints optimally. We shall as a result be deluded if we encounter a surface
that gives rise to either a local minimum, a local maximum, or an inflexion point in the
functional, for it too will satisfy the Fuler equation®. The assumption here is difficult to
avoid, given that we shall be dealing with functionals involving a retlectance map whose
analytic form may not be known in advance.

Let us suppose that we obtain from an Euler equation a surface that generates a
global minimum of the appropriate functional. It may be that the constraints on which
the functional was originally based are satisfied exactly by this function. However, this
need not be so. Problems can readily be formulated for which there are no perfect
solutions. But here we find a very important property of this approach: the surface that
best matches the constraints will gencrate a global minimum of the functional. This
is important to vision problems as they typically involve images that are noisy. Exact
solutions may not exist in this situation. For example, in the presence of noise, there may
not be a smooth surface that satisfies the image irradiance cquation E(z,y) = R(p,q)
exactly. There will, however, be a surface that minimizes the integral of the square of
the difference between E(z,y) and R(p, q)*.

2 Because of the use of expressions that are unbounded above, we shall not encounter solutions generating
global maxima.

3 The integral of the square of the difference may have a lower bound that is not attained by any surface.
In that case, a surface may be found for which the integral is arbitrarily close to that lower bound.
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It is important to observe that there are typically an infinite number of surfaces
satisfying the Euler equation. Without further constraint, we do not have a well-posed
problem. In some cases the original problem includes boundary conditions that, taken
together with the resulting partial differential equations, lead to a unique solution. In
the case where the unknown function is unconstrained on the boundary, the calculus of
variations itself provides so-called natural boundary conditions (see Appendix).

Care must be taken when formulating the functional to ensure that it provides suf-
ficient constraint, for otherwise there may be an infinite number of solutions even with
boundary conditions. Such a difficulty may be remedied by the addition of a suitable
regularization term (Poggio & Torre, 1984). This is discussed in more detail in the Ap-
pendix.

1.4. A procedure for deriving iterative schemes

We now consider a way of deriving iterative schemes for recovering surface shape. In the
event that we seek a surface, z, best satisfying various requirements over (1, we do the
following:

(1) Select a functional, F', non-negative over (2, such that

I(z) = //n F(z,y,2,...)dzdy

constitutes a measure of the departure of z from an ideal solution.

(2) Absorb into F any constraint that z should satisfy over 2, using Lagrangian
multipliers if appropriate. '

(3) If the problem is not well posed as it stands, add a suitable regularization term.

(4) Find the Euler equation that must be satisfied by the surface z minimizing the
functional I.

(5) Determine what boundary conditions are needed to ensure a unique solution. If
there are no constraints on the function around the boundary 9(1, determine the
appropriate natural boundary conditions.

(6) Develop a discrete approximation of the associated Euler equation, usingi finite-
difference methods.

(7) Design an iterative scheme that converges to the solution of the discrete approxi-
mation of the Euler equation.

The approach, of course, follows the same pattern if the surface is parameterized in
a different way*. Also, similar results can be obtained by applying the finite-element
method directly to the functional I.

As we shall see later, the most difficult step here is typically the discovery of an
iterative scheme that enables one to recover a solution of the discrete approximation of

* The surface may, for example, be parametrized using the gradient (p, ¢) instead of the surface clevation
z, for example.
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the Euler equation. Such a scheme should be efficient, convergent, and preferably lend
itself to parallel implementation.

Note that it is better to work with a functional that evaluates to zero for perfect
solutions. In this way, one is relieved of the onus of showing that there are no unwanted
surfaces that cause the functional to have a smaller value than that generated by a
satisfactory solution. An additional advantage of functionals evaluating to zero is that
one may use them to check how close an iterative scheme is to a solution. This is difficult
with other functionals, as the minimum value is usually unknown.

2. Previous work

Only one shape-from-shading scheme (Tkeuchi & Horn, 1981), prior to this work, has been
devised by explicit recourse to the calculus of variations. Two other schemes, however,
(Strat 1979, Smith 1982) can be rationalized by application of the calculus of variations.
We now examine these three schemes in historical sequence.

2.1. Strat’s method

Strat (1979) arrived at his method by application of the standard calculus to the discrete
domain. We present his analysis here as we wish to show later how it can be related to
a new scheme we develop using the calculus of variations. Rationalizing Strat’s scheme
directly in terms of the variational calculus is complicated by the fact that it is based on
an integral (rather than a differential) integrability term.

First, let the brighiness error at a point (z,y) be

E(z,y) ~ R(p(=,y),4(z,9)).

This is the difference between the observed irradiance E(z,y) and that predicted from the
estimated gradient (p(z,y),q(<,y)). In the discrete case, we might consider minimizing
the total brightness crror®

30 (8 )

=1 j=1

by suitable choice of the gradient at each picture cell in the image®. In this vein, then,
by setting the derivative of the expression with respect to p; and gy equal to zero, we
obtain, for 1 <k <nand 1 <[ < m, the two sets of equations

(Exi — Rpw, au)) Ry (pat, aw) = 0,
(Ekl - R(pu, (Ilcl))Rq (Pu, qm) =0,

o

For simplicity, we assume a rectangular image region here. There is no loss of generality, however, since
3 g s )

the sums can be taken over whatever region is desired.

6 By minimizing an expression containing the sum of the square of the brightness crror, we are giving up

strict enforcenment of the image irradiance equation. This sceis reasonable, given that neither I nor R

are known with precision.
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where R, and R, are the partial derivatives of R with respect to p and q respectively.
These conditions can be trivially satisfied if we choose p;; and g¢;; so that

R(pij, a:;) = Eij.

Since this equation represents but onc constraint on the two unknowns p;; and g;;, we
expect that, in general, an infinite number of gradient values will satisfy it, for a particular
2 and j. Many solutions can then be constructed by combining arbitrary choices from
these sets of possibilities at each picture cell.

The problem is clearly not well posed as stated. We can, however, make use of the fact
that the gradients at neighboring points are related. Consider an infinitesimal segment,
8C, of a curve on the surface. The change in z along the segment is given by

bz =pbz+ qby,

where 6z and 6y are the changes in z and y along the segment. The total change in z
along a curve then is just the integral of (pdz + ¢dy). In the case of a closed curve, C,
this integral should be zero. Thus, if (p(x,y),q(z,y)) is the gradient of a surface z(z,y)
then

fC(P(z, y)dz + q(z,y) dy) =0,

for all closed curves, C, in the region (27.

Let € denote the spacing between picture cells. Cousider an elementary square path,
with the picture cell (7, 7) in the lower left hand corner. If we let ¢ correspond to z and 7
correspond to y, then the integral counter-clockwise around this path can be estimated
by ’

€
¢j =3 [Pi,j TPl F Gty T Gl g+l — Pitlg+l = Pig+l Qi+l qz',j] .

This expression can be obtained by approximating the slope alonz each of the four sides
by the average of the slopes at the beginning and end of cach side. The result is exactly
equal to zero when z is quadratic, as can be seen using Taylor series expansion®. The
difference between this expression and the cxact loop integral is (perhaps surprisingly)
of order €,

On a discrete grid, we wish to minimize two errors: the brightness error, summed over
all grid points, and the error in the loop integrals, summed over all clementary square
paths constructed by connecting the centers of neighboring picture cells®.

The total contribution of the first error term clearly depends on the number of nodes
in the grid, that is, it depends inversely on €? for a fixed image size. We show later
that the second term, on the other hand, varies directly as €2. To make the relative
contribution of the two terms independent of the grid spacing, we multiply the first term

" Tor a discussion of this issue, within the context of the shape-from-shading problem, sce Brooks (1979).

8 To be exact, it equals zero when z can be written as a polynomial containing only terms of the form
zlyd, for i < 2 and § < 2, for ¢ = j, for ¢ = 0 with § arbitrary, and for j = 0 with ¢ arbitrary.

9 Strat actually counted cach loop integral four times.
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by €2 and divide the second term by 2. The quantity to be minimized then becomes!®

n m ) A n-1m-1

2

> (B~ Rlpy,a))” + & 2 i
=1 j:l 1=1 ]':1

Here X is a factor that weights the relative contributions of the brightness error and
the errors in the elementary loop integrals. It can be made small when the irradiance
measurements are accurate, and the reflectance map is known with precision!!.

For the composite error term to be a minimum, the derivatives of the error sum with
respect to py and gy must be zero. Now, py; and g occur in the expressions for €kl
€k—11, €k—1-1 and e ;1. So performing the indicated differentiations and equating the
results to zero, one obtains, for 1 <k <nand 1 <! < m,

A
(B — R(par, aa)) Ry (pro qut) — Y ey +er—17 — ex_14-1 — ery-1] =0,

A
(B ~ R(pry arr)) Ry (o, qut) — P lek—14 + er—11-1 — exg—1 — exy] =0,

where R, and R, are the partial derivatives of R(p,q) with respect to p and q, as before!2,
We can change dummy variables again and gather terms in a particular way to obtain

¢’ (Eij - R(pij, qij))Rz’(Pij’ @i5) + A[vy; — §ij] = 0,
‘52 (Eij - R(pij’ qij))Rq (pija q‘ij) + /\[Ez] - pNij] = Oa

where .
iy =g (pz'+-1,j'-i—1 T Pi-1j5+1 +pi-1,j—-l - pi+l,j—1) 3

~ ] . L
@y = 3 (‘IiJrl,j-H —qi-14+1 T-15-1" ‘Iz+1,‘7—1) )

are discrete cstimates of the second partial cross derivatives Pzy and gz, (times 62), while

Uy = H(Pi-u,ﬁ-l — 2pi415 + Div1j-1)
+2(pige1 — 2pig + Pijo1)
+ (Pic1g41 = 20i-15 + Pic14-1)],
hi; = H(qz'ﬂ,jﬂ =2 541 + Gi-1541)
+2(Giv1y — 265 + qic1y)
T {Gir1g-1 = 2Gi -1 + Gi-1,5-1)],

are discrete estimates of the second partial derivatives Pyy and gy, respectively (times €2).
(Note again that the subscript ¢ in the discrete version corresponds to z in the continuous
case, while the subscript j corresponds to y.) Strat wrote his result in terms of various

0 For simplicity, we assume a rectangular image region here. There is no loss of generality, however, since
the sums can be taken over whatever region is desired.

H Note, however, that iterative schemes derived directly from the above will become unstable if A is made
small enough.

128ome of the terms are omitted when a point on the boundary is being considered.
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intermediate expressions, so the equivalence to discrete estimates of partial derivatives
was not apparent.

At this point we can isolale the terms in p;; from one equation, and the term in g;;
from the other, if we let

6".]. = ﬁij - p'l.'j and hij = ‘qij — qij,
where Dij and g;; are given by

I Pistge1 = 20415 + Pis1g-1) + 2(Piga1 + pigo1) + Pic141 = 2Pi-15 + Pic15-1)] »
@1 = 20541+ Gierge1) + 2(@ipry + Gio1) + (G1-1 — 20i-1 + Gie15-1)] »
respectively. In this way, we obtain
~ €2
Piy = ﬁij — gy -+ "/\_(Ez] - R(pija ‘Iij)) Rp(P-ij;‘]ij)a
L€
%ij = @iy — Pij + 'B\‘(Eij = R(pij, 4i7)) Ry(pij a:5)-
An iterative scheme can now be developed in which the terms p;; and ¢;, on the left-hand
7 J

side of the equations are considered to be new values that are to be computed by inserting
the current values into the right-hand sides. Then we obtain:

2
k+1 _ =k~ € ko k ko k
P =B @yt B\ (Ez'j — R(pjj, qij')) Ry(pij, ai5)

2
k+l __ -k _ ~k € ko k ko k
qif =g Pyt By (Eij - R(pz’j’ qij)) Rq(Pij"Iij)~
This scheme appears to work rcasonably well, having good stability and convergence

properties.

It is clear that one has to do something special about the boundary, since the above
result applies only for 1 <k <n and 1 <! < m. On the boundary, different expressions
apply, which can be obtained by carefully determining which of the terms are missing
from the result of the initial differentiation. Put another way, the expressions for p;;, g;;,
U5, and F,ij require the old values of p;; and ¢;; at picture cells bordering on the region
in which one is applying the iterative scheme. That is, before the scheme can be applied,
p and g must be known on a border that is one picture cell wide.

Note that one cannot incorporate occluding boundary information in this scheme
because, on the occluding boundary, at least one of p and ¢ becomes unbounded. Strat, in
fact, was forced in his examples to specify the gradient along some closed curve other than
the occluding boundary. This kind of information is not usually available in applications
of machine vision.

2.2. The method of Ikeuchi-Horn

Tkeuchi and Horn (1981) were the first to apply the calculus of variations to the shape-
from-shading problem. They effectively solved a functional minimization problem in
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recovering object surface orientation. It is known that the occluding boundary provides
important constraints on the solution of the shape-from-shading problem (Bruss, 1983).
The difficulty with using the gradient to specify surface orientation is that, as already
mentioned, at least one of p and g is unbounded on the occluding boundary.

This problem can be overcome by specifying surface orientation in another way. Con-
sider the mapping from pq space to fg space specified by the equations

2p 2q

e and g= .
14+ V1+p? + ¢ L+V1+p2+¢?
It is easy to verify that f2 - g < 4 for all visible parts of a surface. The orientation
of a point on the occluding boundary corresponds to a point on a circle of radius two
in fg space. Thus occluding boundaries present no difficulties now. The correspondence
between pq space and the Gaussian sphere of possible orientations can be rationalized .
in terms of the gnomonic projection from the center of the sphere onto a tangent plane.
Likewise, the correspondence between fg space and the Gaussian sphere can be thought
of in terms of the stereographic projection from a point on the sphere onto a plane tangent
to the sphere at the opposite point (see Tkeuchi and Horn, 1981).

We now seek appropriate f and g values at each point in the image. This we may

regard as a search for two functions, f and g, defined over (2, that correspond to a smooth
surface satisfying the image irradiance equation

E(z,y) = R(f(z,9),9(=,9))-

(Note that the reflectance map here has been parameterized on f and g.)

We now develop an appropriate functional. Noting that f and ¢ should ideally cor-
respond to a surface that would produce the image if illuminated the same way as the
actual surface, we adopt the integral of the brightness error

/ /n (Pzv) = R(7(20), (. z/))>2 dz dy.

We could, at this point, try to add a term that depends on the loop integrals, as Strat
did. A problem with the use of stereographic coordinates is that the expression for the
loop integrals becomes complicated. We have

f::

P=-——""5"3
4 — f2 — g2
so that py — ¢z = 0 yields

fy(A+ 12— ¢%) —gs(4 = f* +¢°) +2(gy — fo)fg
(4~ 2 —g%)?

This expression, even when multiplied by (4 — N g2)2, is quite complex and leads to
even more complicated Euler equations.

Yet without additional constraint the problem is not well posed. As we saw carlier,
the minimization of the total brightness error alone does not constitute a well-posed
problem. In the above case we can choose, at each point (z,y), any f and g for which

=0.
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R(f,q) = E(z,y). In general, there is a one-dimensional family of possibilities—contours
of constant R in fg space.

We would expect, however, that neighboring points have similar orientations, so that
a typical “solution” of this form would not be reasonable. Tkeuchi and Horn decided to
add the measure of “lack of smoothness” given by

//ﬂ (f2+ f2+ g2 +g2) dzdy.

A solution that produces a small value will be one that keeps the fluctuations in f and g
small. Adding this term to the brightness error, we obtain the functional

(o) - R(f(5:9),0(59)) +A (72 + fi+9.+9;) dudy
1)

that is to be minimized by choosing f and g. Here, again, A is a scalar that assigns a
relative weighting to the terms.

The additional expression can be thought of as a regularization term!®. Such a term
can be added to a functional in order to obtain a solution in the case that a minimization
problem does not have a unique solution.

The Euler equations for this minimization problem can be simplified to read

(E - R)R; + AVAf =0,
(E - R)R, + V3 =0
where Ry and Ry are the partial derivatives of R(/f,g) with respect to f and g and

92 g2
V2 — _g_. + 2_.
0z? 9y’
is the Laplacian operator.

These Fuler equations do not have a unique solution without additional constraint.
The constraints available to us here are the values of f and g on the occluding boundary.
Finding the solution of the Euler equations with this particular set of boundary conditions
usually constitutes a well-posed problein—although this depends on the exact nature of
the reflectance map, R, and the image, E.

At this point we introduce a discrete approximation of the Laplacian. The Laplacmn
of a function at a given point is approximately equal to a constant times the difference
between a local average of the function and its value at the point. The factor of propor-
tionality depends on the way in which the local average is computed. So, for example, if
we use the simple finite-difference approximation

{V2 }2] [(fz,]+1 + fl+1,] + fz,] 1+ fz J;]) 4fi,j] )

then 4
{vzf}ij ~ ;—Q'(fij - fij),

13 Ikeuchi and Horn, however, did not think of the extra term as a regularization term.
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where the local average, f,;, is given by

Fig =3 [figer + firrg + fig—1+ fimrj] -

The same can be done for g, of course!*. Using these finite-difference approximations in
the Euler equations derived above, we obtain

€2

f fz] ( (fzjagzg))Rf(fz]:gz])

62

9i5 = Giy + Z/\’(Eij — R(fij, 9i7)) Ry(fiz> 9i7)-

where we have isolated the terms in f;; and g;;. An iterative scheme can now be developed
in which these particular terms are considered to be new values to be computed by
inserting the current values into the remainder of the expression. In this fashion, we
finally arrive at the scheme

€2

fk+1 fz] ( (f]>gz])) (fﬁgz])

2
k€
glkJ+1 - gff + 4,\( - (fJ’gZJ)) (f]’sz)

Here, as before, ¢ denotes the spacing between picture cells, while f and § are the local
averages of [ and g.

 This scheme appears to work reasonably well, having good stability and convergence
properties. We shall see later, however, that the solutions for surface orientation may not
correspond to an underlying smooth surface and that solutions may be distorted by the
presence of the regularizing term. The degree of distortion depends on the parameter A.

2.3. Smith’s approach

Smith’s method (Smith 1982) was derived by application of the standard calculus to the
discrete domain. We now rationalize his method using the variational calculus. Surface
orientation can be parameterized in Im space, where

p _ q
— e and m= -
1+p% +¢° Vitpi+g®
This corresponds to an orthographic projection of the Gaussian sphere onto a plane

tangent to the spherc at one of the poles. We next adopt a regularizing term and minimize
the functional

//n (E(z,y) — R(I(z,y), m(=, y)))2 + A ((V2)? + (V2m)?) dz dy.

=~

L4 Slightly better results can be obtained using the nine-point approximation of the Laplacian rather than
ghtly jY T
the five-point approximation shown here.
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From the associated Fuler equations, we obtain
(E - R)R; - AVl =0,
(E~ R)R,, — \V*m =0,

where V* is the biharmonic operator?s.

We need, once again, to impose boundary conditions to avoid ambiguity in the so-
lution. For the biharmonic equation we need to specify [ and m on the boundary, as
well as the normal derivatives of [ and m. The normal derivative is the derivative in the
direction of the outward normal to the boundary curve 9). Note that while the values of
[ and m on the occluding boundary are known, it may not be obvious what the normal
derivatives of [ and m ought to be. Since they are not specified they must obey the
appropriate natural boundary condition.

We can now use the simple finite-difference approximation

20
(Vi) ~ = Ly —

lif] ’

where

Ly = 516[8(li+1,j i+l +lig)
= 2(lip g1 Flicrgmr Flimr g+ lipr 1)
— (Lo + bicog + ligia + lij—2)].

The same can be done for m, of conrse'S. Isolating the terms in I;; and m;;, we obtain

4
l;~ = lLJ + — 50N (E R(lij,m,;]-))Rl(l,-.,-,m,-j),
4 .
. €
Mgy = My + '2’63: (Eij - R(lij, mij))Rm(lij’mij)’
which leads to the iterative scheme
=T e By — R(%, mE) Ry(1%:, m
+20)‘( (1,]’ )) (1_7’ )?
4
k+1 _ —k € k ok
mi;’ =M+ s 500 (E R(lw,m ))R (l”, z]).

The biharmonic equation and its variants are known to require careful treatment. In
the iterative scheme as written above, for example, the new values are based directly
on old values. This is called the Jacobi method, and is appropriate for parallel imple-
mentation. But this method is unstable for computational molecules that are discrete
approximations of the biharmonic operator. A stable iteration can be achieved if one uses
instead the Gauss-Seidel method, in which the computation of a new value at one picture

5 The bilarmonic operator can be defined in terms of the Laplacian operator by V*#(f) = V2 (Vz( f ))
10 Slightly better results can be obtained using the twentyfive-point approximation of the biliarmonic
operator instead of the thirteen-point approximation shown here.
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cell uses the new values of those picture cells already visited in a raster scan of the image.
This method, however, does not lend itself to parallel implementation. An alternative
stabilizing technique depends on the use of simoothing between steps of a Jacobi iteration.

The more complex boundary conditions mentioned above are reflected in the fact
that the computational molecule used as the discrete approximation of the biharmonic
operator requires values for [ and m in a band two picture cells wide bordering on the
region in which the iterative schenie is applied. It is not enough to know the values of |
and m on the occluding boundary!”.

Smith reported difficulties with the above scheme and incorrectly concluded that
smoothness constraints fail to propagate boundary conditions by more than a few pixels
in the image. In fact, by a suitable application of the aforementioned stabilization tech-
niques, the scheme can be made to work. Note that fewer problems are encountered if
(12 + l; +m?2 +m§) is used in the above functional as the regularization term. This is, in
part, because the Euler cquations then contain the Laplacian operator, for which simple
iterative schemes exist that are well behaved; but mainly because the treatment of the
boundary is simpler.

2.4. Depth from gradient

A use of the variational calculus in a subsiduary problem arises in the problem of recov-
ering depth from the surface gradient. Let us suppose that we have determined surface
orientation over the region (2. The relative depth of surface points may be determined
from the gradient (p,q) by means of the equality

bz =pébx -+ qby,

that relates infinitesimal changes in z, y and z. Integrating along a curve C from (z,, yo)
to (z,y), we obtain
2(z,y) = 2(%o,Yo) + /C(p dz + g dy).

This simple method of integration performs badly when the data are noisy. A depth value
obtained at some point will, in these circumstances, depend on the integration path that

was taken to get there.
It is better to find a best-fit surface z to the given components of the gradient; p and
q. This we can accomplish by minimizing the functional

//n(zz — )2+ (2, — q)? dz dy,
whose Euler equation reduces to
Vii=p. + qy.

Once again, note that this equation does not uniquely specify a solution without further
constraint. In fact, we can add any harmonic function’® to a solution to obtain a different

1 For further details, sce for example the discussion of molecular inhibition by Terzopoulos (1983).
18 A harmonic function satisfies Laplaces equation, V22 = 0.
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solution also satisfying the given Iuler equation. In the case here there are no a priors
boundary conditions given to us. That is, the function sought is not restrained on the
boundary. The calculus of variations provides us in this situation with natural boundary
conditions that must be satisfied by the solution. For this particular problem, the natural
boundary conditions turn out to be (sece Appendix)

(z,2) -n = (p,q) - m,

_ _ig{ dz
- ds’ ds

is a normal vector to the boundary curve 91 and s is arc-length along the boundary. So
the component of (z;, zy) normal to the chosen boundary curve must match the normal
component of (p,q)*.

With these boundary conditions, the solution is still not quite unique, since an ar-
bitrary constant can be added to z without changing the functional. This reflects the
fact that one cannot recover absolute depth from the gradient (and thus from shading
information). To get a particular answer, one can fix one of the depth values, or fix their
average. '

Using the discrete approximation to the Laplacian employed carlier, we obtain the
iterative scheme

where

k+1 _ ok €y -
zij = Zij —' Z(hz‘j + U'I.]))

W}lere
— 1
Zij — 1 (Zi_*‘]’]' ‘*‘ Zi‘_.] ,j "i‘ zi,]'-f-,l + Zi,]'._‘] ),

is a local average of z, while
I N o= L ..
hij = i(pz+l,g - Pz—-l,j)a and Uiy = §(‘]z,1+1 - Qz,]——l)a

arc estimates of the partial derivatives p, and gy respectively. This is as derived by Horn
and reported by Ikeuchi (1983). (Note again that the subscript 7 in the discrete version
corresponds to z in the continuous case, while the subscript 7 corresponds to y.)

In addition to finding the discrete approximation of the Euler equation, we also must
find the discrete approximation of the boundary condition. This can be done easily,
provided that the boundary curve is polygonal, with horizontal and vertical segments
only. This restriction does not provide a problem in our simple situation. Now 2z; = p
on vertical segments of the boundary, while z, = q on the horizontal segments. These
conditions may be translated into

1
5 (#ir1g = Zi-15) = Pijs
1
é’g(zig'+l - zi,j~1) = qiy,

19 Note that here z, and z, are the derivatives of the purported solution z(z,y), while p and ¢ are the given
surface orientation data— only with perfect data would these be the same.
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respectively. These relationships can be used to modify the computation of the average,
Z;j, for points on the edge of the region in which depth is to be reconstructed. Alterna-
tively, these equations can be used to provide phantom depth values on a border of one
picture cell width around that region. In this case the computation of the average can
proceed in the same fashion for all points.

3. Smoothness and integrability

Methods that attempt to recover shape information encoded in an image usually confine
their attention to smooth, or prece-wise smooth, solutions. Smoothness, however, is a
loose term that may be interpreted in many ways. To be specific, we here define a graph,
z(z,y), to be smooth over a region (2 in the zy-plane if py = g,, that is, if

%z 3%z

dzdy  Jyox

V(z,y) € Q.

This is a property of C? surfaces?0. Because they must be twice-differentiable under this
definition, surfaces that have edges (like polyhedra) are excluded, and it may be argued
that this accords with our intuitions on smoothness®!.

Let us now look more closely at the “lack-of-smoothness” term used in the Ikeuchi-
Horn method. Suppose that we present a shape-from-shading problem to the program by
providing it with an image, a reflectance map, and the occluding boundary. The image
just happens to be that of a Lambertian sphere illuminated by an overhead point source
at the viewer. This is a well-posed problem with two sclutions, a concave bowl and a
convex ball. It turns out that the algorithin will converge to a somewhat flattened sphere,
given a planar initial estimate. Interestingly, it converges to almost the same solution
when given the correct shape initially. That is, the algorithm moves away from the right
~answer. It is interesting to consider why this should be so.

Recall the functional that is used to derive the lkcuchi-Horn method. We are required
to minimize

J[ (B - R 0mn) 724+ +63) dad

It is clear that minimizing the integral of (E - R(f ,g)) is desirable; we wish to make
the brightness error as small as possible. However, it is not obvious just what is achieved
by minimizing the remainder of the overall integral. Certainly, it is not smoothness as

20For a discussion of this issue, within the context of the shape-from-shading problem, see Woodham
(1981).

21 Actually, one may claim that our intuition of smoothness accords better with a less restrictive definition.
Consider, for example, adjoining a planar surface and a portion of a cylinder along a generator of the
cylinder. This can be done in such a way that there is no discontinuity in surface orientation, and the
surface may be considered to be “smooth” {Tkeuchi & Horn, 1981). The second derivatives, however, are
discontinuous at the join. This suggest that we ought to identify our intuition of smoothness not with
C?, but PC?, the sct of surfaces that have picce-wise continunous second derivatives. In fact, some may
even argue that surfaces in O, that is, those with continuous first derivatives, are “smooth.” We ignore
this subtle point in what follows, and restrict attention to surfaces in C2.
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defined above. In fact, if f and ¢ are solutions to the Fuler equations for this problem,
it will in general be the case that there exists no physical surface corresponding exactly
to the surface orientation specified by f and g (Brooks, 1982). :

The expression (ff + f3 +g2+ g;“’) is instead best regarded as a regularizing term
that is primarily intended as a means of finding a particularly smooth shape that is close
to a solution of the original problem (Poggio & Torre, 1984). Different surfaces will give
rise to different values for

[ s 2 af) dod

Those that fluctuate in depth the least will likely give rise to small values. When a
shape-from-shading problem is highly ambiguous, in that there is an infinite number of
possible solutions, a regularizing term is precisely what is needed to get close to one of
them. If, however, the problem is unambiguous, regularization will usually result in loss
of accuracy, as the correct solution is unlikely to minimize the integral of the regularizing
term.

The distortion due to regularization depends on the parameter A. A large value of ),
appropriate when the image data is very noisy, leads to large errors, since the emphasis
will be on producing as smooth a surface as possible, while permitting considerable error
in brightness. Conversely, a small value for A causes brightness errors to be weighted
more. In this case, a more undulating surface is acceptable since the contribution of the
regularizing term to the overall functional is relatively small??.

4. Imposing integrability as a constraint

In any case, it is desirable to have a shape-from-shading methoed that neither moves away
frem correct solutions, nor converges to surfaces that are not solutions. To derive such
a method, we need to impose the smoothness condition defined earlier, instead of using
regularization. We first consider forcing the solution to satisfy the condition exactly.

Let us suppose that a shape-from-shading method recovers smooth functions p(z,y)
and ¢(z,y) defined over the image, thereby specifying the gradient. In general, there will
be no smooth surface that corresponds to this gradient. This is because the functions
p and q must be related in a special way if they are to correspond to a smooth surface
(Brooks, 1982). Noting once again that

dz dz
plat)=5o(m)  wd gley)= 5 (n)

it follows that, for our earlier definition of smoothness to be satisfied, we must have

dp dq

5;/‘(55’ y) = Eg(z,y)’

O Zzy = Zyz. This is known as the constraint of integrability. If the gradient does not
possess this property, there exists no C? surface that could give rise to it. Thus we shall
now attempt to ensure that solutions are integrable.

22 The iterative scheme becomes unstable, however, when the value of X is reduced too much.
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4.1. Direct recovery of relative depth

With the exception of the method of characteristic strips (Horn, 1975), all shape-from-
shading programs have recovered surface orientation in a separate step, prior to recovering
relative depth. We saw earlier an iterative scheme that determines depth values from the
surface gradient. Of interest here is the direct recovery of depth information, achieved
without the explicit manipulation of surface orientation.

Following the guidelines listed earlier, our initial task is to formulate an appropriate
functional. The brightness error is readily expressed as

//Q(E(may) - R(Zz(z,y),zy(x,y)))zdxdy.

Now we are to ensure the satisfaction of the constraint z;; = z,,. We might therefore

consider adding the functional
// (2py — zw)2 dz dy.
0

It is easy to veryfy that such a term makes no contribution to the subsequent Euler
equation. This is because the integrand is a divergence ezpression (Courant & Hilbert,
1953)?*. In our terms, by definition, we seek a smooth surface satisfying the partial
differential equation. The integrability constraint is redundant. Put yet another way,
we cannot avoid imposing the integrability constraint if we'look for a scheme that gives
us z{z,y) directly. This was not the case when we used p and g as parameters. The
functions p and g had to be related in a special way to satisfy integrability.

After simplification and reordering of terms, the FEuler equation for the brightness-
error functional alone is

(220 + 2R, Ryzey + Rl2yy) — (E. Ry + EyRy)
= (I — R)(Ryp2sz + 2Rpg2ey + Ryg2yy)s

where we have used the condition zy; = z;,. Note that p and q replace 2z, and 2y as
subscripts of R to improve readability. A solution to this equation will give the functional
an extremal value. By converting the Luler equation to discrete form, employing discrete
approximations of the derivatives of z, and isolating terms in z;;, we obtain the complex
scheme

"’fjH (Rp2 + RZ ~ (E = R)(Ryp + Rqr}))
+k . ~ —
= hij (Rﬁ - (&~ R)RW) + "Z (Rqu - (B - R)qu) + vfj (Rg — (B - R)RW)
) ,
- %(E“’RP + EyRy).

where

A |

Zig = Z(zi+1,j+1 T Z15-1" Zi-15+1 — Zi+1,j-1)y

23 A divergence expression in the functional does, however, affect the natural boundary conditions.
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is a discrete estimate of the cross derivative of z (times €2), and
ho.o—Lr, . o Foo—= Ly . ..
hij = §(zz+l,] + zz—l,y); and Uiy §(zz,J+1 + Zz,]—-l))

are horizontal and vertical averages of z respectively. This scheme, unfortunately, is not
convergent. Other schemes tried also failed. We found little in the literature about how
one might discover successful iterative schemes for complicated non-linear equations such
as the one above. Certainly, as far as the variational approach is concerned, the above
Euler equation must be regarded as fundamental to the problem: the original functional
is not easily formulated in a more basic way.

4.2. An alternative approach

Not surprisingly, if we parameterize the surface on p and ¢, and impose the integrability
condition py = g, we obtain an Euler equation identical to the one obtained above. The
functional to be minimized is in this case

//n (E(z,y) - R(P(w,y)>Q(m,y)))2 + u(z,y) (py — ¢z) dz dy,

where p is a Lagrangian multiplier used to enforce the constraint p, = g,. The associated
Euler equations lead to

(E-R)R,+3uy=0, and (E—-R)R;— ju;=0.

In order to eliminate u, we take the (total) derivative of the first equation with respect
to z and the (total) derivative of the sccond with respect to y. Adding the results we
obtain

(R;%Px + RyRy(py + ¢:z) + Rg‘Jy) — (E:Ry + EyRy)
= (E - R)(Rpppw_ + Ryy(py + gz) + Ryyqy)-

Taken together with the constraint py = g, this is the same result as thal obtained in
the previous section.

5. An integrability penalty term

It appears to be difficult to extract convergent iterative schemes from Euler equations ob-
tained through the imposition of integrability. Consequently, we now assess the usefulness
of the penalty term, (p, ~ g;)?, appearing in the functional

// (2,9) = R(p,0))" + A(py — 4:)" dz y.

This has the desirable property that if smooth functions p(z,y) and ¢(z,y) are found that
cause this integral to evaluate to zero, we will, by definition, have solved our problem,
for the surface will generate the image, and will be smooth everywhere?4.

24 Note, however, that we now admit the possibility that p, and ¢, may be only approximately equal over
the region 1.
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The Euler equations for this problem yield
(E - R)Rp + /\(pyy - ‘Izy) =0,
(E - R)Rq + /\(Q:cz - Pyz) =0.

Upon isolation of the center term in the discrete approximation of the highest-order, even
partial derivatives, we arrive at the iterative scheme

€2
k ~k kk k k
P = pz] éq‘l] + 57 2\ (Eij - R(pij’qij))R‘I(pij’ qij)
2

_ ~] €
k+1 k 1k+

k k k&
%; = =y; — 3Py é—/\—(EiJ' - R(pij’qij))RP(pij’qij)’

where
Py = l(Pi,jJrl +Pij-1) and q;; = %(‘Ii+1,]' + Gi-1,5)

are the vertical average of p and the horizontal avemge of g, respectively, while p;; and
@;j are estimates of the cross derivatives (times € %) obtained using the approximations
Bij = $(Pistj+1 + Pic1j-1 = Pic1,j+1 — Pit15-1),
Gij = HGit141 + TGm1-1 = G141 — Gt 15-1)5
respectively.

This iterative scheme appears to work well. Only very small departures from the
correct initial solutions have been observed, these being due to the fact that the finite-
difference expressions are approximations to derivatives. The scheme does not converge
to a {lattened surface as is the case with the Ikeuchi-ITorn method. Rather, we obtain
asymptotic convergence to the correct solution. Note once again, however, that this
method requires that the gradient (p,q) be supplied on some closed curve other than the
occluding boundary.

This iterative scheme produced very accurate results in tests conducted on synthetic
images, although, like most shape-from-shading methods, it typicaily takes many iter-
ations to converge. The observed slow convergence could be alleviated by the recently
popularized multi-grid technique of processing images and gradient fields at vanous res-
olutions (Terzopoulos 1984). »'

It appears that the use of a penalty term based on a constraint leads to iterative
schemes that adjust the present estimates in the direction that reduces the penalty term.
This is in distinction to the behaviour of the schemes that result from attempts to strictly
enforce the constraint itself. The use of the penalty term gives a scheme some direction-
ality or “push” towards the desired solution. This may be why we were unsuccessful
in discovering convergent iterative schemes based on the Euler equation derived in the
previous section.

5.1. Relationship to Strat’s scheme

It is interesting to observe how similar the iterative method we derived here is to that
obtained by Strat. We can see in retrospect why this should be so, by applying Gauss’s
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integral formula to Strat’s elementary loop integrals. We have .

}{)R( (z,y) dz + q(z,y) dy) *// (‘————) dz dy,

for a simply connected region R, where the boundary dR is traversed in a counter-
clockwise direction.
Now, if ¢ is constant in the region R, then

(//Rcd:vdy)ZZ//R dz dy //Rczdmdy:A(R)//czdwdy,

where A(R) is the area of the region R. For a smooth surface, py and ¢, are continuous,
so that, for a small enough region R, we can consider them to be nearly constant. That

is,

(%}R(p(x,y)dz—%q( Y dy) (// v = dzdy) ~ A(R // 2 dzdy,

So
e?j ~ €’ // (py ~ ¢z)% dz dy,
6R

where 6 R is a square region with sides of length e. Consequently, we can consider the
sum of the error terms squared,

~11m1
2

( ) L Z pz,J +pz+1,J T Qit1y T i1 41— Pitl gl ~Dig+1 T Y g4+1 Qz,J] s
1=1 7=1

or, written more suggestively,

an-1lm

(>z

1=1 j=

J.--

2
pz,j+1 - pi,j) + (pi+1g'+1 - pi~{~1,j) - (Qi-f—l,j - Q'i,j) - (Qi+1,j+1 - (Ii,]'w‘-l)] )

to be a discrete approximation of

/ / 2 dz dy.
9]

Our final result in the previous section looks a little different from that of Strat, in part
because we end up with simpler estimates for the second partial derivatives Pyy and qg;.

5.2. Constraints and penalty terms

We have two equalities: the image irradiance equation, E = R, and the integrability
condition, py = ¢,. If we enforce both strictly, we obtain Horn’s original characteristic
strip equations. We have seen that a convergent iterative scheme can be obtained if we
instead build a functional based on the penalty terms, (L - I{) and (py — qz)%. We also
described our lack of success in deriving schemes for minimizing the mtegral of (E—R)?
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while enforcing the constraint p, = g;. We have not yet explored the fourth alternative
of minimizing the integral of (p, — qz)? while enforcing the constraint E = R. That is,
minimizing '

//(; (py(z,y) — ‘I:c(z’?/))z + u(z,y) (E(z,y) - R(p(z, y),q(:v,y))) dz dy.

The resulting Euler equations are

(Pyy = quy) + w(E — R)R, = 0,
(Q:m: - pyz) + .U'(E - R)Rq =V,

which, upon elimination of u lead to

(Pyy = Qey) Rp = (quz — Pyz) Ry

This equation is to be solved subject to the constraint £ = R, of course. We were unable
to convince ourselves of the utility of pursuit of this particular approach, since we know
that brightness measurements will be corrupted by noise in practice.

6. Incorporating occluding boundary information

One problem not easily coped with is that of dealing with the occluding boundary. Recall
that the Ikeuchi-Horn method placed considerable emphasis on the ability to be able
to handle the occluding boundary. So, although we have taken a step forward in the
above by incorporating integrability, we have also taken a step backwards in that we
are no longer able to use the occluding boundary. Note, however, that the integrability
constraint can be expressed using parameterizations that permit incorporation of the
occluding boundary information.

Suppose that instead of seeking surface orientation parameterized on p(z,y) and
q(z,y}, we attempt to recover directly a field of unit normal vectors n(z,y). We need to
express the integrability constraint in terms of the unit normal and its derivatives. Let
X, ¥ and Z denote unit vectors in the z, y and z directions, respectively. We have that

. n-X n-y
p=—-—5 and g=-—7,
n-z n-z

so 1t follows that
Ry 2) = (n-8)(ny oK) _n-((n, B)R- (0, %)5) _ n-(ny

py - A 2 - -
n- i) ( (n-

R X Z))
2o

[ SIS

(
using the identity (¢ -a)b — (a-b)c = a x (b x c). Noting that & X 2 = —§ we obtain?*

py = ~[nny §]/(n- 2)2-

Similarly,
g: = +[nn, %]/(n - 2)2

5 Here [abc] denotes the vector triple product a - (b x ¢).
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We conclude that the constraint (py — ¢;) = 0 can be written in the form
(0, 2]+ nmy 9]) =0
———— (lnn, X -+ [nn =0.
(n-2)? ! vy

As it stands, this form of the constraint will lead to numerical problems in the im-
plementation of an iterative scheme, since (n - ) becomes very small near the occluding
boundary. It makes sense then to use instead a constraint obtained by multiplying the
one above by (n - %)?, giving

I'=[nn, %]+ [nn,§].

One could, of course, tackle this problem using other parametrizations for surface
orientation, such as f and g. We saw earlier that the integrability constraint expressed in
terms of f and g is quite complex, and the derivation of the corresponding Euler equations
somewhat tedious. We felt that the compactness of vector notation provided sufficient
incentive to tackle the problem the way we did. There is an advantage to using f and
g, however: one can avoid the redundancy inherent in the use of a vector to represent

surface orientation, a quantity that has only two degrees of freedom. It is this redundancy
that leads us to consideration of the pseudo-inverse of a matrix later on.

6.1. Using a penalty term based on I’

We are to minimize a functional of the form
2
j/f (E(:c,y) ~ R{n(z, y})> TV s u(z,y) (n® = 1) dz dy.
1] :
Here we use the Lagrangian multip]ier, u, to enforce the constraint n? = 1. The corre-
sponding Euler equation can be simplified to read
—(E = R)Rq + 22T, 4 ym + AL (n x %) + I'(n x §)) =0,

where
1 A A
I =n;xX+n, x§

is the derivative of I' with respect to n, while
I = [nng, X + [nyny §] + [nny, ],
I; = [nnyy ] + [ny ng X] + [nngy K],

are the derivatives of I’ with respect to z and y respectively. We can find the Lagrangian
multiplier u by taking the dot product of the Euler equation with n, to give

p=(E—R)Ry-n—2)I",

where we use the fact that I -n = I'. We can now eliminate u by substituting back into
the Euler equation. The result is

—(E = R)Ry +2MI'j + A(Ii(n x 8) + I} (n x §)) =0,
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where ,
Ry =Ry~ (Ry-n)n=nx (Ry x n)

is the component of Rn perpendicular to n and
j'=1) — I'n.

Note that j'-n = 0, since I -n = I'. In fact, each term in the above equation is orthogonal
to n. This vector equation thus provides only two constraints on n. The necessary third
constraint is given by n? = 1.

Now let

Je=(ng Xny+nxny)-§ and Jy = (ny X nz +n X ngy) - %
Then
I =[nngR+J, and I, =[nng9| +Jy,

and the Euler equation can be rewritten in the form
—(E - R)RE +20I'j + Al = A [(n x %)(n x %)Tng, + (n x §)(n x y)Tnyy] ,

where
l=J;(nxR)+ Jy(n x§).

So we can write
A(Myng, +Myny,) = M+ 2M0'j' - (E - R)R},

where
M, =(nx&)(nx%x)” and M,=(nx§)(nx$)T

are the so-called dyadic products of the vectors (n x %) and (nx §) with themselves?. We
now have a non-linear second order partial differential equation for the normal n(z,y).
We can use the following finite-dilference approximations for the derivatives that

appear:
A 1 1

no % o (Mipig —nicgg)  and ny & o= (nigp - ni ),

Ngy ~ 12 (ni+1,j+1 LR R R I ni+1,j——1) s
as well as

1
Moz N 75 (niy1y =205+ n15) and ny, =~ 2 (i1~ 204 + nij-1),

or
2 - 2
Ng, ~ ) (h,’j — nij) and ny, ~ ) (‘—'ij — n,;j) s
where _
hij = '12" (ni+1,j + ni—l,j) and V‘ij = % (ni,j-l-l + ni,j-l)

26 These dyadic products are matrices of rank one.




24 The variational approach to shape from shading

are horizontal and vertical averages of n respectively.

We now develop an iterative scheme based on the isolation of the center term in the
discrete approximations of the highest-order, even partial derivatives.” For convenience,
let m,;, say, be the new value of the normal to be calculated in the iterative step. Then

2 - 2
Ne % (h;; —m;;) and  ny = = (vij —my).

If we let M = M, + M, then the new value is obtained using the equation

2
2

and the constraint m? = 1. Here we omit subscripts in order to simplify the notation.
Let r denote the right hand side of the equation above. All terms in r can be easily
computed using the old estimate of the normal, n, in the expressions for M, M, h, v,
1,j', I', R and R}. The remaining problem is the solution of the equation for the new
estimate of the normal, m.

_ 2
Mm = (M,h + M,¥) - 52-1 —&r'j' + = (E - R)RZ,

6.2. Solving the equations Mm=rand m-m=1

The equation M m = r is underdetermined, since M here only has rank two. The matrix
is singular and so does not have an inverse in the usual sense. There are an infinite
number of solutions that can be written in terms of the pseudo-inverse, M*. They are

m=M"r+ (I-M*"M)x,

for arbitrary x (Albert, 1982), where I is the 3 X 3 identity matrix. Of these solutions,
we seek the one with unit norm, m? = 1.
he pseudo-inverse of a matrix M can be defined as the limit

i -1
M* = Jim (M™M - 6%T) M7
Alternatively, it can be defined using the conditions of Penrose (Albert, 1982), which
state that the matrix M* is the pseudo-inverse of the matrix M if, and only if,

e MM and MTM are symmetric, and

e MTMM™ =M, as well as,

e MMtM =M,
The pseudo-inverse may also be found using spectral decomposition. The eigenvectors of
the pseudo-inverse are the same as those of the original matrix, while the corresponding

non-zero eigenvalues are the inverses of the non-zero eigenvalucs of the original matrix.
Now, in our case,

so one can show that
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It is also possible to verify that
M*M =1 -nn7,

from which it follows that
I-M*'M = nnT7,

and so
m = M*r + vn,

for some v chosen to make m? = 1. In our case r L n, so we can further simplify matters
b

by noting that
1

Mfr=r+ ——=[rnz](nx 7).
gl ()
Let this be called p. Since p L n, we have that m? = p? + v2. This completes the
calculation of the new estimate of the normal, m. The only potential problem occurs
when ,M+r| > 1, as may happen when the current estimate of the solution is far from
the correct one. In this case it is advisable to limit the adjustment of the local normal

away from its previous value, n?".

6.3. Using a penalty term based on [

Implementations of the above iterative scheme work well except for minor problems near
the occluding boundary. What happens is that the components of n, and n, become
unbounded on the occluding boundary, so that the individual terms in

I'=[nn X+ [nn,§]

tend to become very large?®. It may be better to use the slightly more complicated
expression A
I=(n-2)I'= (n-3) (0, %] + Inn, 91)

This can be viewed as the difference of two quantities that remain bounded, provided
that the curvature of the surface is bounded.
We now are to minimize a functional of the form

2 0 9
// (E'(x,y) - R(n(m,y))) + AI” + p(z,y) (n® — 1) dz dy.
Q
The corresponding Euler equation can be simplified to read

—(E = R)Rp + M(I'2+2(n - 2)I,) + pn + 2Tk
+A(n-2)*(I(n x X) + L(n x §)) =0,

27 Also, note that there are theoretically two solutions for v, one positive and one negative. The positive
value leads to a new estimate close to the previous one, while the negative value gives rise to one almost
opposite to the old one. It is clear that one should use the positive root.

28 The problem is different, of course, from the one we encountered carlier when using the gradient to
parameterize surface orientation. The components of the gradient, p and ¢ become infinite on the
boundary, while n remains finite.
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where :
k = (n;-2)(nx &)+ (n, - 2)(n x §),

and I,, I} and I}, are as defined before.
We can find the Lagrangian multiplier u by taking the dot product of the Euler
equation with n. Thus we have

t=(E— R)Ry-n — 3\
Now we eliminate u by substituting back into the Euler equation. The result is
—(E = R)Ry + Mj +2)Mk + A(n - 2)*(I(n x &) + I, (n x §)) =0,

where
j=T%+2(n-2)1, — 3In,

and R} is the component of R, perpendicular to n as before. Now I} 'n = I',;s0o j-n = 0.
In fact, each term in the above equation is orthogonal to n. This vector equation thus
provides only two constraints on n. The necessary third constraint is again given by
n? =1,

Now let J; and Jy, be defined as before. Then the Euler equation can be rewritten in
the form .

—(E = R)RY + AIj + 2X\ Ik + A(n - 2)21

2

=M1 2)° [(n x R)(n x )"0z + (0 x §)(n x 7)Tnyy |,
where 1 = J;(n x %) 4+ Jy(n x §). So we obtain
An - 2)? (Myng, + Myny,) = AMn - 2)*L+ 2AIk + [} - (E — R)R},

where M, and M, are defined as before. We now have a nor-linear second order partial
differential equation for the normal n(z,y).

Note that both sides of this equation are orthogonal to n, sincel-n =0, k-n = 0,
j-n=0,and R} -n = 0. So the equation provides two constraints only, with the third
coming from n? = 1.

If we use the same discrete approximations as before, and isolate the central value
in the finite-difference approximations of the highest order even partial derivatives, we
obtain

M = (MR M,7) - Sl S Pk— =S P50 & (E- R)RY
= (MR M) = ™ i B
We once again obtain an underdetermined equation, of the form M m = r, together with
a constraint m? = 1. We can solve for the new estimate of the surface normal using the
pseudo-inverse of the matrix M, as before.

It is curious that several of the terms involve division by (n-Z), a term that becomes
large near the occluding boundary. We mulitiplied the penalty term by this expression
in the first place in order to avoid problems near the occluding boundary. Apparently,
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however, the terms so affected are all small near the occluding boundary anyway. In
fact, we determined experimentally that several of the terms on the right hand side are
very small compared to the others, particularly as one approaches the correct solution.
We found that one can leave them out without noticably affecting convergence, or the
surface arrived at ultimately. Preliminary testing of the scheme on synthetic images
yielded promising results. Comprchensive assessment of the performance of the two
schemes has, however, been left for future work.

7. Summary

The shape-from-shading problem was regarded here as one of finding a surface that
minimizes an integral expression involving the brightness error. The expression we used
has the form of a functional measuring the departure of a hypothesized surface from
a solution surface. Iterative schemes for solving the shape-from-shading problem were
based on the appropriate Euler equation.

We reviewed the use of a regularization term in an existing iterative scheme. Regu-
larization techniques allow one to obtain results when faced with ill-posed problems. We
argued, however, that the addition of a regularization term is not appropriate when one
is dealing with a well-posed problem. The additional term tends to flatten and distort
the solution.

We next discussed the fact that surface orientation must satisfy an integrability con-
straint if it is to correspond to an underlying smooth surface. The mecthod using the
regularization term does not guarantee this. We attempted to use the integrability con-
straint instead of a regularization term, but failed to find convergent iterative schemes
{or solving the resulting Euler equations.

A convergent iterative scheme was obtained, however, when, instead of enforcing
integrability, we introduced a penalty term derived from the integrability constraint. It
scems that the penalty term provides the iteravive process with a “sense of direction” that
helps it head towards the solution. This approach allows one to recover surface gradients
that are approximately integrable. The scheme so derived was shown to be similar to
that obtained in the discrete domain by Strat. A drawback of his scheme is its inability
to incorporate occluding boundary information.

We overcame this difficulty by employing a different parametrization for surface ori-
entation. The integrability penalty term can be expressed in terms of the unit surface
normal and its derivatives. Subsequent application of the variational calculus proved to
be somewhat involved, but two usable iterative schemes were finally obtained. Initial
tests indicate that they perform well. Our new schemes are the first to make use of the
integrability constraint while allowing incorporation of the occluding boundary normals.
Future work will assess the relative performance of the new schemes in detail.
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Appendix

A. Minimizing Functionals

Let F(z,y,2,2;,2,) measure the distance of a surface, z, from a satisfactory solution at
a point (z,y). For now, assume that F' is dependent not only on z, but also on the first
partial derivatives z, and zy. Given that we scek a surface defined over some region {2 in
the plane, and that F' is everywhere non-negative, we may regard

Ii(z) = // F(z,y,z, 25, 2y) dz dy
0

as an overall measure of error whose value is to be minimized. This is not a conventional
miuimization problem since we search over a space of functions and not a region of
coordinate space. The value of I} depends on the choice of the function z, and for this
reason [ is termed a functional. Minimizing I, is a problem in the calculus of variations.

A fundamental result of the calculus of variations is that the extrema of functionals
must satisfy an associated Euler equation over the domain of interest. For the above form
of the functional, the equation is

0 a .
F, Bsz‘ ayﬁ”" =0.

This is a necessary condition for the existence of an extremum, z (p. 185, Courant &
Hilbert, 1953). It is not a sufficient condition. Note that local minima, global minima,
local maxima, global maxima, and inflexion points are all examples of extrema.

It will prove uscful to note two other Euler equations corresponding to other forms
for F. In the event that F is dependent also on the second partial derivatives as in

I(z) = //n F(z,y,2, 20, 2y, Zgz, Zay, 2yy) dz dy,

the Euler equation expands to

d a 8? 9? 3?
—F, ——F, + —F. —F, +-—F, =0.
Az = Oy + 9zt = + dzdy F Ay? v
Sometimes we seek a surface that is parameterized not in terms of relative depth, but
in terms of surface normals. Two parameters are needed in this case. If the functions P

F, -
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and q are used to describe surface orientation and if the associated functional incorporates
their first partial derivatives in z and y, the expression to be minimized then takes the
form '

I3(p,q) = //n F(2,9,p, ¢, Pzy Py Ge» Qy) dT dy,

which has two corresponding Euler equations given by

a 0
_%Fr _%F _
FI’ azFl’z ay Py 0’
0 )
Fy = 5.t = 5, F0 =0

In general, these constitute a pair of coupled partial differential equations in p and q. A
pair of functions satislying these equations will generate an extremum of I3. As before,
the extremum may be a minimum, maximum or inflexion point.

Note that if the functional involves higher derivatives of p and g, the Euler equations
generalize in a straightforward way. Courant and Hilbert (1953) provide an excellent
chapter on the variational calculus.

B. Boundary Conditions

In general, a problem involving partial differential equations is ill posed in the absence
of suitable boundary conditions because the solution is not unique without additional
constraint. The type of boundary condition that ensures a given problem is well posed
depends on the particular type of partial differential equation. There may be more than
one way of adding boundary conditions to a partial differential cquation in order to force
a unique solution.

In our case, boundary conditions may be given as part of the basic minimization
problem. That is, the solution sought must minimize the functional subject to additional
constraints, such as prescribed values on the boundary of the region of integration. In
the case that the function 1s not coustrained on the boundary, however, the calculus of
variations provides so called natural boundary conditions that the solution must satisfy.
For example, for the functional I; given above, a suitable boundary condition is the value
of z along the boundary 9 of the region (2. The natural boundary condition in this case
is just '

(Fz,)qu) ‘n =0,

where the normal to the boundary, n, is given by

_ ~§g dz
n= ds’ds )’

and s is arc-length measured along the boundary 9. So the component of the vector
(F%,, F.,) normal to the boundary should be everywhere zero.

In the case of the functional I3 given above, the values of p and g along the boundary
will usually be suitable. The natural boundary conditions in this case happen to be

(Fy,,F,) n=0 and  (F,,F,) n=0.
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C. Regularizing Terms

At times, the problem of minimizing a functional is not well posed as there is an infinite
number of solutions, even with constraints on the boundary. One can then find a surface
that is close to a solution, while minimizing some measure of departure from smoothness,
by regularization (see Poggio & Torre, 1984). The regularization method of interest to us
here involves the addition of a regularizing term to the functional. If we deal with the
problem of recovering a surface z(z, y) from shading, we may wish to include a regularizing
term such as the square Laplacian appearing in

/ /ﬂ (v22)° dz dy,

//{;(zgz + 2z,‘2‘y + zzy) dz dy.

Each of these has the desirable property of rotational invariance (Brady and Horn, 1983).
The lower order rotationally-symmetric regularizing term

/ /ﬂ (22 + 22) de dy,

leads to excessive flattening of solutions. The latter form may well be appropriate when
applied to surface orientation parameters, such as p and q, or f and ¢, but this is not the
case with a depth parameter, sach as 2.

or the quadratic variation in

D. Enforcing Constraints

Sometimes we seek a minimum of a functional subject to seme independent constraint.
Suppose, for example, that we are required to minimize the previously defined I;(z),
subject to the constraint that

9(z,y,2,2:,2y) = 0.

In this case we may use the Lagrangian multiplier method in which we minimize not Iy
but the augmented functional

I(z) = / /n (@9, 2, 22, 2) + 1(29) (2, U, 2, 20, 2,) do dy.

We now seek solutions to the associated Euler equation. Note that the Lagrangian mul-
tiplier p is a function of z and y and must be treated as such when deriving the Euler
equation.

If we differentiate the functional with respect to u{z,y), for a particular z and y, and
set the result equal to zero, we get back the original constraint equation. This equation
" is required to help solve for u, something we typically have to do in order to eliminate it
from the Euler equation. At times, this may take some skill. More importantly, however,
the cquations that result often do not suggest convergent iterative schemes. In any case,
a solution of the resulting Euler equation will have the property that g(z,v, 2, 2;, 2y) = 0,
with Iy having an extremal value on the manifold g(z,y, 2, 2;, 2,) = 0.
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E. Penalty terms based on constraints

In view of the difficulties experienced when attempting to impose constraints exactly, we
often consider an alternative method. In this approach, a penalty term derived from the
contraint is employed. Thus we might rely on the Fuler equation corresponding to the
functional

Is(z) = // F(z,y,2,25,2y) + A [g(z,y,z,zz,zy)]zdmdy.
Q

Here, ) is a scalar that aligns the arbitrary scales of F' and ¢. Alternatively, it may be
regarded as a weighting of the relative importance of the components of the functional.
It is, of course, not necessary to square g if it is already guaranteed to be non-negative
over {1 for all functions z.

Solutions to the LFuler equation for I5 now specify surfaces that generate an ex-
tremal value of Iy. However, these surfaces will not, in general, satisfy the constraint
9(2,9,2,2:,2y) = 0 exactly. Rather, it will be the case that the value of g is small,
along with the values of the other expressions being minimized. This is usually an ac-
ceptable compromise. More often than not, this approach proves more tractable than the
Lagrangian method as there is no multiplier to be eliminated.




