s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 816 | . December, 1934

PP
" A Lisp Pretty Printing System

by

Richard C. Waters

ABSTRACT

The PP system provides an efficient implementation of the Common Lisp pretty printing
function PPRINT. In addition, PP goes beyond ordinary pretty printers by providing
mechanisms which allow the user to control the exact form of pretty printed output. This is
done by extending Lisp in two ways. First, several new FORMAT directives are provided which
support dynamic decisions about the placement of newlines based on the line width available
for output. Second, the concept of print-self methods is extended so that it can be applied to
lists as well as to objects which can receive messages. Together, these extensions support pretty
printing of both programs and data structures.

The PP system also modifies the way that the Lisp printer handles the abbreviation of
output. The traditional mechanisms for abbreviating lists based on nesting depth and length
are extended so that they automatically apply to every kind of structure without the user having
1o take any explicit action when writing print-self methods. A new abbreviation mechanism is
introduced which can be used to limit the total number of lines printed.

Keywords: Pretty Printing, Formatted OQutput, Abbreviated Output, Lisp

(c) Massachusetts Institute of Technology, 1984

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Tnstitute of
Technology. Support for the laboratory’s artificial intelligence research has been provided in part by the
Advanced Rescarch Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-80-C-0505, and in part by Naticga! Science Foundation grants MCS-7912179 and MCS-8117633.

The views and conclusions contained in this document are those of the author, and should not be interpreted
as representing the policies, neither expressed nor implied, of the Department of Defense, nor of the National
Science Foundation.

PP: A Lisp Pretty Printing System 1

I - Introduction

The main purpose of this paper is to serve as a manual for the Lisp Machine implementation of the PP
system (which can be used by loading the file "PP" from the LMLIB directory). PP has been written to run
under releases 4 and S of the Symbolics Lisp Machine system [4] and the documentation in this paper is
directed toward these releases. PP will be converted to run in other releases of the Lisp Machine system as
they appear. This conversion will lead to some minor changes (as indicated below) in the user interface due to
the introduction of Common Lisp compatibility into Lisp Machine LlSp In particular, several output control
variables have different names in Common Lisp.

The relevance of the PP system is not restricted solely to Lisp Machine Lisp. The system has been
designed to be upward compatible with Common Lisp and could be implemented with little modification in
most Lisp dialects. Going beyond this, many of the ideas discussed in this paper have a much wider area of
applicability. For example, the mechanisms for allowing the user to exercise control over the dynamic
arrangement of output could be incorporated into almost any programming language (e.g., into the formatted
output statements of Fortran or PLI).

The PP system provides three sets of features. First, as described in Section II, PP supports several of the
Common Lisp output functions and output control variables. In particular, it provides an efficient
implementation of the pretty printing function PPRINT. Second, PP goes beyond typical pretty printing
syétems by providing a flexible interface which gives the user detailed control over how program structures
and data structures are to be pretty printed. This is done by extending the standard Lisp concepts of FORMAT
control strings (see Section III), and print-self methods (see Section IV). Third, as described in Section V, the
way the abbreviation of output is handled by Lisp is modified and extended.

The PP system is based on the earlier GPRINT system [5,6]. The main difference between the two systems
is that PP has a greatly improved user interface. Pcople who have used GPRINT will recognize that most of the
features of PP descend from features of GPRINT, however this paper assumes no knowledge of GPRINT.

The pretty printing algorithm used by PP is essentially the same as the one used by GPRINT, though it has
been streamlined and made considerably more efficient. This paper does not go into a detailed discussion of
the algorithm since it is fully discussed elsewhere (sce [2,5]). However, it should be noted that a key aspect of
the algorithm is that it is an inherently fast linear algorithm which uses very little storage. As a result, pretty
printing is not significantly slower than ordinary printing.

2 PP: A Lisp Pretty Printing System

11 - Basic Output Functions and Control Variables -

The PP system supports several of the Common Lisp output functions and control variables which are not
supported by release S of Lisp Machine Lisp. These functions and variables are discussed in detail in the
Common Lisp documentation [3] and summarized below.

Pretty Printing

The variable »PRINT-PRETTY* (which has a default value of NIL) controls pretty printing. When this
variable is non-NIL it causes all of the standard output functions (PRIN1, PRINC, etc.) to perform pretty
printing. The function PPRINT binds »PRINT-PRETTY= to T while printing its argument and therefore forces
pretty printing. '

PPRINT object &optional stream
This is the same as the function PRINT except that it binds «PRINT-PRETTY= to T, does not print a trailing
space, and returns no values.

Abbreviation

The PP system supports length and depth abbreviation under control of the variables PRINLENGTH and
PRINLEVEL. (When Common Lisp compatibility is introduced these variables will be called
PRINT-LENGTH# and «PRINT-LEVEL). This abbreviation is supported both when pretty printing and when
not pretty printing. As discussed in Section V, the way in which this abbreviation is handled is modified in
order to make it more convenient to use. In addition, a new kind of abbreviation is supported which can be
used to limit the total number of lines printed. As discussed in Section V, this abbreviation is controlled by
the variable PP: »PRINT-LINES»,

The Printing of Escape Characters

The variable *PRINT-ESCAPE* (which has a default value of T) controls the printing of escape characters,
The function PRINC binds «PRINT-ESCAPEx to NIL. Other output functions (e.g., PRINT and PPRINT) bind
PRINT-ESCAPE (O T.

A Neutral Output Function

The most basic Common Lisp output function is the function WRITE. Unlike the other output functions,
WRITE is neutral in that it does not force the specification of values for any of the output control variables.
The function WRITE does, however take keyword arguments which, if supplied, specify values for output
-control variables, The implementation of WRITE provided by PP supports a new keyword :LINES which
corresponds to the variable PP »PRINT-LINESs,

WRITE object &key :stream :escape :base :pretty :level :length :lines :array
iradix :circle icase :gensym
This function is like PRIN1 except that it does not force *PRINT-ESCAPEx to be T. The :STREAM keyword
argument (which defaults to STANDARD-OQUTPUT) specifies the output stream. The other keyword
arguments allow the specification of values for the control variables *PRINT-ESCAPEs, BASE,
PRINT-PRETTY, PRINLEVEL, PRINLENGTH, PP:«PRINT-LINES», SI:*PRINARRAY*, »PRINT-RADIX*,
*PRINT-CIRCLEx, *PRINT-CASE*, and »PRINT-GENSYM= respectively. (The last four of these variables
are not supported by release 5 of the Lisp Machine System.) '

PP: A Lisp Pretty Printing System 3

A Neutral Format Directive

PP provides a new FORMAT directive ~W which corresponds to calling the function WRITE without any
keyword arguments -- i.e., in contrast to ~A and ~$ it is ncutral in that it obeys the value of *PRINT-ESCAPE#*
raiher than specifying .its value. The directive ~W takes the same parameters as ~A and ~S -- ie.,
~mincol, colinc, minpad, padchad. As with ~A and ~$ the atsign flag causes spacing to be inserted on the left
rather than on the right.

The colon flag has a different meaning from the one used for ~A and ~S. If the colon flag is used with ~W
then several of the output control variables are given values which are useful when pretty printing is desired.
Using the colon flag binds *PRINT-PRETTY» and «PRINT-ESCAPEx to T forcing pretty printing and the
printing of escape characters and binds PRINLEVEL, PRINLENGTH, and PP: *PRINT-LINES~ to NIL turning off
abbreviation. The use of ~W with and without the colon flag is illustrated in the following example.

(LET ((«PRINT-PRETTY» NIL)
(*PRINT-ESCAPE* NIL)
(PRINLENGTH 2)
(X '(QUOTE (nau "p "C"))))
(FORMAT T "~W ~:W" X X))
The output produced by the example is shown below. Since *PRINT-PRETTY» and «PRINT-ESCAPE« are
bound to NIL, and PRINLENGTH is bound to 2, the first use of ~W produces output which is not pretty printed
and which is printed without escape characters, and which is abbreviated as shown. The use of ~:W forces

pretty printing and the printing of escape characters, and suppresses the abbreviation.
(QUOTE (a b '.')) v(nau "h" Ncn)

If the LET bound »PRINT-PRETTY» and «PRINT-ESCAPE+ to T, and PRINLENGTH to NIL, then both
outputs would be the same.

A More Efficient Implementation of Format

As will become clear in the next section, the user interface to the pretty printing facilities provided by the
PP system centers around the function FORMAT, This leads to a very convenient interface which builds on top
of the standard FORMAT directives. Unfortunately, the function FORMAT is rather inefficient due to the fact
that the control string is executed interpretively. In order to combat this problem, a macro is provided which
creates efficient compiled code corresponding to a FORMAT control string.

PP:FAST-FORMAT destination control-string &rest args
This macro is the same as the function FORMAT except that destination is required to either be a literal NIL
or a literal T or a stream -- it cannot be a string. PP:FAST-FORMAT is advantageous to use because, if the
control-string is a sufficiently simple constant, the output will be performed significantly faster than it
would be by FORMAT,

At the current time, PP:FAST-FORMAT is only capable of compiling relatively simple FORMAT control
strings such as the ones used as examples in this paper. However, there is no reason why it could not be
extended so that it could compile almost all possible FORMAT control strings.

In order to support rapid pretty printing of programs, PP internally uses the function PP: FAST-FORMAT
instead of FORMAT wherever possible. This approximately tripies the speed of the system.

4 PP: A Lisp Pretty Printing System

Interactive Output Control Variables

In keeping with traditional Lisp practice, the style of output (e.g., whether escape characters should be
printed and whether abbreviation should be used) is controlled by dynamic variables. One effect of this
design decision is that if these variables are given particular top level values, these values become the default
values for all output. Unfortunately, this is not always desirable. For example, one might well want to use
abbreviation when printing the interactive output from the READ-EVAL-PRINT loop and yet not want to use
abbreviation for lower level output inside programs (e.g., when writing to files, or strings). In this situation,
one is forced to turn abbreviation on globally and then explicitly turn it off for each lower level call on an

'output function,

' The PP system combats this problem by providing a mechanism for specifying a set of values for the
output control variables which apply only to interactive output and not to other output. This mechanism is
based on the special Lisp Machine variable PRIN1 (inherited from MacLisp) which specifies a printing
function which the Lisp system will use for much of its interactive output to the user. For example, the Lisp
READ-EVAL-PRINT loop uses the value of PRIN1 to display results to the user. (It should be noted that, as of
release 5 of the Lisp Machine system, setting the value of the variable PRIN1 unfortunately does not succeed
in controlling all of the interactive output to the user. For example, the debugger does not use the value of
PRIN1 when displaying the contents of program variables in a stack frame.)

A function PP: INTERACTIVE-WRITE is provided which is intended to be used as the value of the variable
PRIN1. A sccond function PP:SET-INTERACTIVE-CONTROL-VARIABLES is provided which controls the
printing initiated by PP: INTERACTIVE-WRITE.

PP:INTERACTIVE-WRITE object &optional stream
This function is similar to the standard Common Lisp function WRITE except that it is sensitive to the
control values specified by PP:SET-INTERACTIVE-CONTROL-VARIABLES rather than to the standard
output control variables.

PP:SET-INTERACTIVE-CONTROL-VARIABLES &key :escape :base :pretty :level :length :1ines
v ;array :radix :circle :case :gensym
This function specifies the output control variable values to be used by the function
PP:INTERACTIVE-WRITE, The keyword arguments correspond to the control variables
PRINT-ESCAPE, BASE, «PRINT-PRETTYs, PRINLEVEL, PRINLENGTH, SI:~«PRINARRAYx,
PRINT-RADIX, *PRINT-CIRCLE*, *PRINT-CASE*, and *PRINT-GENSYMx respectively. (The last four
of these variables are not supported by release 5 of the Lisp Machine System.)

The recommended way to utilize this mechanism is to use the function PP: INTERACTIVE-WRITE as the
value of the variable PRIN1 and set up interactive control variable values as shown below. Experience has
shown the values illustrated (which are the default) to be particularly useful,

(SETQ PRIN1 #'PP:INTERACTIVE-WRITE)
(PP:SET-INTERACTIVE-CONTROL-VARIABLES ':ESCAPE T
":PRETTY T
":LEVEL NIL
':LENGTH NIL

:LINES 4)

PP: A Lisp Pretty Printing System 5

[T - Controlling the Arrangement of Output

By extending the concept of a FORMAT control string, the PP system makes it possible to give explicit
directions for how something is to be pretty printed. The discussion below assumes that the reader has a basic
understanding of the function FORMAT. The Lisp Machinc documentation [4] describes FORMAT in detail.

Two basic concepts underlie the way PP supports the dynamic arrangement of output -- logical blocks and
conditional newlines. The output as a whole is divided up hierarchically into logical blocks and sub-blocks.
Each logical block is divided up into sections by positions where conditional ncwlines are specified. When
printing the output, each logical block is printed on a single line if possible. If a logical block is too long to be
printed on a single line and »PRINT-PRETTYs is T then newline characters are inserted at appropriate
conditional newline positions in the block in order to print the block on several lines. The pretty printing
algorithm uses internal buffering of the output so that it can determine which way to print a logical block
before actually outputting any of the characters in the block.

As an example of how logical blocks and logical block sections can be used to control the arrangement of
output, consider the following. Suppose that a user wants to print out the line of output shown below.

Roads ELM MAIN Towns BOSTON LOWELL

Suppose further that if there is not enough room to print the output on a single line then the user would like
to have the output printed on two lines as follows.

Roads ELM MAIN

Towns BOSTON LOWELL

The user could achieve this goal by grouping the output as a whole into- a logical block, and using a

conditional newline to divide the block into two sections "Roads ELM MAIN ", and
"Towns BOSTON LOWELL". The sections would be printed together on one line if there was room, and on
separate lines if there was not. The way in which a user can specify logical blocks and conditional newlines is
described in the next two subsections,

6 A PP: A Lisp Pretty Printing System

Specifying Logical Blocks

The FORMAT directive ~!. . .~. is used to specify a logical block. In addition to specifying a logical block,
the directive ~!...~. descends into the corresponding FORMAT argument (which must be a list) in the same
way as the standard directive ~1{. . .~} (iterate [once] over list). If the corresponding format argument is not
a list, then it is printed using ~W and the ~!...~. directive is skipped. The directive ~" (terminate iteration)
can be used to exit froma ~!...~. just as it can be used to exit from a~1{...~}. The ~!...~. directives in
the example below decompose the list argument and specify three logical blocks -- the output as a whole, the
road names, and the town names.

(FORMAT T "~1R0ads ~I~S ~S~. ToWRS ~1~S ~Sw.~."
"((ELM MAIN) (BOSTON LOWELL)))

Each logical block is printed in one of two ways: single-line mode or multi-line mode. The decision of
which mode to use is made based on the value of *PRINT-PRETTY~, on how many characters are in the block,
and on how much line width is available for printing the block. ‘

The column position where a logical block must start (and therefore the line width available for printing it)
is determined by the preceding output. If «PRINT-PRETTY« is T and the line width available is less than the
size of the logical block then the block is printed in multi-line mode. Otherwise, single-line mode is used.

In single-line mode, all of the characters in a logical block are printed as a unit on the end of the current
" line. The call on FORMAT above will produce the output shown below when the logical blocks are printed in
single-line mode.

Roads ELM MAIN Towns BOSTON LOWELL

If a logical block is printed in multi-line mode, then newlines are inserted in the block at positions
specified by the user. (In the contrived example above, no such potential newline positions are specified. As
a result, printing the blocks in multi-line mode would not cause any change in the output.)

The colon flag can be used with ~1. . .~. with the same meaning as with ~W -- i.e,, *PRINT-PRETTY* and
*PRINT-ESCAPE+ are bound to T and PRINLEVEL, PRINLENGTH, and PP:«PRINT-LINES» are bound to NIL Vv
during the processing of the logical block.

If the atsign flag is used with ~!...~. then the dircctive operates on all of the rest of the arguments in
much the same way as the standard directive ~1@{. ..~} (iterate [once] over arguments.) However, unlike
~16{...~}, ~8!...~. always uses up all of the remaining arguments. The following example is identical to
the one above except that it uses ~81 .. .~..

(FORMAT T "~@!Roads ~!~S ~S~, TOWns ~!~S ~S~,~,"
"(ELM MAIN) '(BOSTON LOWELL))

PP: A Lisp Pretty Printing System 7

Multi-Line Mode Conditional Newlines

The places in a logical block where newlines can be inserted when the block is printed in multi-line mode
are called conditional newline positions. The most basic kind of conditional newline is called a multi-line
mode conditional newline. When a logical block is printed in multi-line mode, a newline is inserted at every
multi-line mode conditional newline which is immediately contained in the block. In order to specify a
multi-line mode conditional newline, you use the FORMAT directive ~_ as shown in the example below. This
example is the same as the one in the last subsection except that each Qf the three logical blocks is divided into
two sections by a ~_ directive. If a ~_ directive is encountered outside of a logical block, it is ignored.

(FORMAT T "~:@1R0ads ~I~$ ~_~S~, ~_TOWNS ~1nS ~_nSu,w,"
"(ELM MAIN) '(BOSTON LOWELL))

If the line width available is at least 34, the top level logical block, and hence the whole output, will be
printed in single-line mode as shown in the last subsection. If the line width available is only 30, the top level
logical block will be printed in multi-line mode. As shown below, this causes the insertion of a newline at the
multi-line mode conditional newline which is immediately contained in this block.

Roads ELM MAIN

Towns BOSTON LOWELL]
If the line width available is only 15, the second logical sub-block will also be printed in multi-line mode as
shown below. An important aspect of multi-line mode printing is that whenever a newline is inserted, the
next line is indented so that it begins in the same column as the first character in the block.

Roads ELM MAIN

Towns BOSTON
LOWELL

If the line width is less than 15, all three logical blocks will be printed in multi-line mode.

Roads ELM
MAIN

Towns BOSTON
LOWELL

Further reductions in the line width available would not alter the form of the output because the user has not
specified any more places where newlines can be inserted.

8 | PP: A Lisp Pretty Printing System

Prefixes and Suffixes

The portion of a FORMAT control string enclosed in ~!. . .~. can be divided up into three segments by ~;
as follows ~1prefix~; body~;suffix~.. 1f the enclosed portion is only divided into two segments then the
suffix defaults to the null string. If the portion consists of only a single segment (as in the examples above)
then both the prefix and the suffix default to the null string. The prefix and suffix must both be constant
strings i.¢., they cannot contain FORMAT directives. The body can be any arbitrary FORMAT control string,

When a ~! prefix~; body~; suffix~. directive is processed, the prefix is printed out as the initial characters
in the logical block, and the suffix is printed out as the final characters in the logical block. This behavior is

‘the same as if the characters in the prefix and suffix were simply used as the initial and final characters

(respectively) of the body except for two things. First, whenever a newline is inserted in a logical block, the
next line is indented so that it begins in the same column as the first character in the body of the block -- i.e.,
it is indented past the prefix. Second, the suffix is always printed out even if the processing of the body is cut
short e.g., by ~" or by length abbreviation (see Section V)). The use of a prefix and suffix are illustrated in
the example below,
(DEFUN PRINT-ADDRESS (ADDRESS)
(FORMAT T "~:1#<~;Address = ~_~S~A ~_~S~;>~." ADDRESS))

The function PRINT-ADDRESS prints a list representing a street address. If the expression
(PRINT-ADDRESS '(256 MAPLE))) is evaluated with a line length of 10 the following output is produced.
Note that the house number and street name are indented so that they line up after the prefix "#<".

#<{Address -
256
MAPLE> : .

If the expression (PR INT-ADDRESS ' (MAPLE))) is evaluated with a line length of 10 the following output
is produced. Note that, the suffix ">" is printed, even though the absence of a house number causes the ~A
directive to terminate processing of the body before the end of the body is reached.

#<Address -
MAPLE>

PP: A Lisp Pretty Printing System 9

Special Features of Prefixes and Suffixes

The ~1...~. directive can be given a parameter which controls the default values of the prefix and suffix.
If the parameter is 0 (the default value) then the prefix and suffix both default to the null string as shown in
the examples above. If the parameter is 1 then the prefix defaults to "(" and the suffix defaults to ")". The
use of this parameter is illustrated in the example below.

(FORMAT T "~1:1~S ~_~S~." (ELM MAIN))
Assuming a line width of 8 the above call on FORMAT produces the following output.

(ELM
MAIN)
If the atsign flag is used with the ~; directive that marks the end of the prefix ina ~1...~. directive then
the prefix is printed before every line in the logical block, instead of just before the first line. This feature is
illustrated in the example below.

(FERROR "~:@!;~@;Bound variable ~S is not a symbol in ~_~S.~."
2 '(LET ((2 X-VALUE)) (+ X-VALUE X-VALUE)))

The call on FERROR produces the following output assuming a line length of 45,

>>Error: ;Bound variable 2 is not a symbol 1in
(LET ((2 X-VALUE))
i (+ X-VALUE X-VALUE)).

Whenever per-line prefixes are printed, the prefixes on the second and subsequent lines are indented so
that all the prefixes line up. The call on FERROR also illustrates that the FORMAT directives provided by PP can
be used in a FORMAT control string which is not directly used as an argument to the FORMAT function.

Nested logical blocks can each specify a per-line prefix as in the example below. All appropriate per-line
prefixes are printed on cach line at the appropriate indentation points.

(FORMAT T "~:@!;;: ~@;The error message will have the followi ng form~_~

>>Error: ~B!;~@8;Bound variable ~S is not a symbol in ~_~S.~.~."
2 '(LET ((2 X-VALUE)) (+ X-VALUE X-VALUE)))

The call on FORMAT produces the following output assuming a line length of 0.

i+i The error message will have the following form
i34 >>Error: ;Bound variable 2 is not a symbol in
i (LET ((2 X-VALUE))

o i (+ X-VALUE X-VALUE)),

10 PP: A Lisp Pretty Printing System

If-Needed Conditional Newlines

PP supports a second kind of conditional newline (called an if-needed conditional newline) which allows
more flexible control over where newlines are placed when a logical block is printed in multi-line mode. A
newline is inserted at an if-needed conditional newline only if the following section of output is too long to fit
on the end of the current line. Note that the following section of output is all of the output up to the next place
immediately contained in the block where a newline can occur, or the end of the block, whichever comes first.
The pretty printing algorithm uses internal buffering of the output in order to determine whether or not to
insert a newline at an if-needed conditional newline position before actually outputting any of the characters
in the following section of output. In order to specify an if-needed conditional newline, you use the FORMAT
directive ~:_ as shown in the example below. If a ~:_ directive is encountered outside of a logical block, it is
ignored.

(FORMAT T "Roads ~:!~@{~S~A ~:_~}~." '(ELM MAIN MAPLE CENTER RIVER HIGH))

The FORMAT control string uses the standard directives ~@{...~} (iterate over arguments) and ~A
(terminate iteration) in order to decompose the list argument. Each element of the list is printed with ~S. A
space and an if-needed conditional newline is placed after each element except the last.

If the line width available is at least 38, the call on FORMAT above will print on one line. If the line width is
only 25, multi-line mode will be used as shown below. Only one newline is inserted because the if-needed
conditional newlines in the block are processed one at a time and only when looking at the if-needed
conditional newline after the third road name is it determined that the following section of the block
(i.e., "CENTER ") cannot fit on the end of the line.

Roads ELM MAIN MAPLE
CENTER RIVER HIGH .

If the line width is only 20, newlines will be inserted at the if-needed conditional newlines after the second
and fourth road names.

Roads ELM MAIN
MAPLE CENTER
RIVER HIGH

If the line width is less than 15, newlines will be inserted at all of the if-needed conditional newlines.

Roads ELM
MAIN
MAPLE
CENTER
RIVER
HIGH

PP: A Lisp Pretty Printing System 11

_ Filling

If-needed conditional newlines can be used when outputting text in order to make the text aesthetically fill
the space available. For example, consider the call on FERROR used as an example above. The FORMAT
control string specifies only one place where a newline can be inserted in the error message. As a result, a
minimum line width of 45 is required to print it. The example below shows how the FORMAT control string
can be modified so that the error message will print aesthetically on shorter line lengths.

(FERROR "~:@!:~Q;Bound ~:_variable ~: ~S ~i_AS ~i_NnOt ~i_a ~i_~
symbol ~:_in ~:_~S.~.
"(LET ((2 X-VALUE)) (+ X-VALUE X-VALUE)))

An if-needed conditional newline is placed between each pair of words in the error message. This causes
the pretty printer to dynamically decide where to place newlines in order to cause the error message to fill the
line width available. If the modified call on FERROR is evaluated with a line length of 30 then the following
output is produced.

>>Error: ;Bound variable 2 is
inot a symbol in
+(LET ((2 X-VALUE))
i (+ X-VALUE '
; X-VALUE)).

FORMAT control strings like the one above are very useful but they are difficult to read and write due to the
presence of so many ~:_ directives. A special form of the ~!...~. directive is provided which makes it
easier to specify such FORMAT control strings. If the atsign flag is used with the directive (i.e., ~@; or ~@.) that
marks the end of the body in a ~1...~. directive then the body is modified by automatically inserting ~:_
directives after each chunk of which space (except for white space after a ~<newline> directive). The
example below shows the use of this feature. It is exactly equivalent to the example above.

(FERROR "~:@1;~Q@;Bound variable ~S is not a ~

symbol in ~S.~@."
2 '"(LET ((2 X-VALUE)) (+ X-VALUE X-VALUE)))

12 PP: A Lisp Pretty Printing System

Indentation

As mentioned above, the second and subsequent output lines corresponding to a logical block are
indented so that they line up vertically under the column position of the first character in the block after the
prefix. The FORMAT directive ~I makes it possible to specify a different indentation. The directive ~nl
specifies that the indentation should be set to the column position of the first character after the prefix plus a.
The directive ~n: I specifies that the indentation should be set to the column position in the output of the
~n: 1 directive itself, plus n. If omitted, the parameter n defaults to zero. The parameter can be negative, but
the indentation cannot be set at less than the position of the first character after the prefix. If a ~I directive is
encountered outside of a logical block, it is ignored. As an example of using ~I, consider the following.

(FORMAT T "~1:1~S ~:I~S ~:_~S8 ~1I~_~S~." '(DEFUN PRODUCT (X Y) (» X Y)))

If the line width available is 25, multi-line mode will be used and a newline will be inserted at the
multi-line mode conditional newline as shown below. The directive ~11 specifies that the statement in the
body of the DEFUN should be printed at a relative indentation of 1 in the logical block. Note that an open
parenthesis is used as a prefix in the logical block, and therefore the total indentation is 2.

(DEFUN PRODUCT (X Y)
(» X Y))

If the line width is less than 21, a newline will also be inserted at the if-needed conditional newline before
the argument list as shown below. The directive ~: I before the function name causes the argument list to be
lined up under the name. Notice that the column position corresponding to the ~: I directive is determined
dynamically as the output is produced. ‘ '

(DEFUN PRODUCT
(x v)
(*» X Y))

Changes in relative indentation caused by a ~I directive do not take effect until after the next newline is
printed. As a result, it is important that the ~11 directive in the call on FORMAT above precede the ~_ directive
after the argument list. In addition, a ~I directive only affects the indentation in the immediately containing
logical block.

PP: A Lisp Pretty Printing System 13

Miser Mode

A fundamental problem with pretty printing arises when printing very large structures. As the pretty
printer is forced to print more and more deeply nested logical blocks in multi-line mode, the indentation gets
greater and greater. This causes the line width available for printing to get smaller and smaller until it is no
longer possible to print substructures in the space allowed. ,

An approach to dealing with this problem which has been used at least since the original Goldstein pretty
printer [1] is to introduce a special compact kind of multi-line mode (called miser mode) and to use this mode
once the line width begins to get small. The key idea behind miser mode is that by trading off readability for
compactness it reduces the width necessary for printing a logical block, and even more importantly, it reduces
the indentation required for printing the output lines in the block. '

In the PP system, the use of miser mode is controlled by the variable PP: *PRINT-MISER-WIDTH*. Miser
mode is used instead of ordinary multi-line mode whenever the line width available is less than the value of
PP:*PRINT-MISER-WIDTH=. Single-line mode is always used when a logical block can fit in the line width
available. If PP: «PRINT-MISER-WIDTH« is given the value NIL then miser mode will never be used.

Miser mode has two major effects on the way a logical block is printed. First, newlines are inserted at
every if-needed conditional newline as well as at every multi-line mode conditional newline. Second, all ~I
directives are ignored, thereby forcing the lines corresponding to the logical block to line up under the first
character in the block after the prefix. Consider again the example (reproduced below) used in the last
subsection.

(FORMAT T "~1:1~S ~:I~S ~:_~S ~1I~_~S~." '(DEFUN PRODUCT (X Y) (* X Y)))

If the line width available were 25 and less than PP: xPRINT-MISER-WIDTH», the output would be printed as
shown below. (For simplicity, the examples in this paper always assume that miser mode printing is not
triggered, unless it is explicitly stated otherwise.)
(DEFUN PRODUCT
(X Y)
(» X Y))

The variable PP: «PRINT-MISER-WIDTH= has a default value of 40. A constant value irrespective of line
length is used because the point at which miser mode should be triggered does not depend on the line length,
but rather on how long the logical block scctions between conditional newline positions are in the output
being printed. When pretty printing programs the distance between conditional newlines depends on the
lengths of the symbols in the program. Experience suggests that PP: «PRINT-MISER-WIDTH»* should be set at
from two to four times the length of the typical symbol being printed.

Even in miser mode, the pretty printing algorithm used by PP is not guaranteed to succeed in keeping its
output within the line width available. The pretty printing algorithm never inserts newlines other than at
conditional newline positions. As a result, a given output requires a certain minimum amount of line width in
order to print it (e.g., a width of 14 in the example above). If the amount of line width available is less than
this amount, the pretty printing algorithm simply prints characters beyond the end of the line.

The GPRINT system supported an additional mechanism for dealing with the problem of running out of
line width when pretty printing deeply nested structures. When indentation reduced the line width to a small
percentage of its initial value, major program structures (such as PROGs and LETs) were shifted to the left by
reducing the indentation. This violated standard Lisp pretty printing style, but significantly increased the line
width available for printing. Expericnce showed that though this was very uscful in some situations, it was, in
general, more confusing than helpful. As a result, this feature was not included in the PP system.

14 PP: A Lisp Pretty Printing System

Miser Mode Conditional Newlines

In order to give the user greater control over how a logical block will be printed in miser mode, PP
provides a third kind of conditional newline called a miser mode conditional newline. A newline is inserted at
a miser mode conditional newline if and only if the immediately containing logical block is being printed in
miser mode. A miser mode conditional newline can be specified by using the FORMAT directive ~8_. If a ~@_
directive is encountered outside of a logical block, it is ignored. The example below is the same as the one in
the last subsection except that a miser mode newline directive has been placed before the function name.

(FORMAT T "~1:1~S ~:I~@_~S ~:_~S ~2I~_~S~." '(DEFUN PRODUCT (X Y) (* X Y)))

In this case, if the line width available were 25 and less than PP:«PRINT-MISER-WIDTH=, the output
would be printed as shown below, further reducing the line width needed.

(DEFUN
PRODUCT
(X Y)

(» X Y))

Pretty Printing as Selection

Stepping back a moment, it is useful to reflect on how the FORMAT directives above interact in order to
support pretty printing. The ~!...~. directives in a FORMAT control string divide the output up into a
hierarchy of logical blocks. The ~_ and ~I directives simultaneously specify three ways (single-line mode,
multi-line mode, and miser mode) in which each logical block can be printed. The job of the pretty printer
boils down to selecting (based on the values of *PRINT-PRETTY* and PP:*PRINT-MISER-WIDTH», on the
length of the block, and on the line width available for printing) which of the three modes each logical block
will be printed in. : '
 The FORMAT directives have been designed so that it is relatively easy to specify three different ways to
print a logical block in a single FORMAT control string. None of the special FORMAT directives generate any
output other than prefixes, suffixes, newlines, and indentation. The characters to be output in each logical
block section are determined solely by the rest of the FORMAT control string and are exactly the same in each
of the three modes. The ~_ and ~I directives specify how the logical block sections are to be arranged in
multi-line mode and miser mode. A certain amount of care has to be taken to make sure that output is
aesthetic in both of these modes.

There are many other kinds of pretty printing directives which could have been supported -- for example,
sections of text which are output only in multi-line mode. The PP system supports only the limited set of
directives above because, experience has shown them to be a good compromise between the requirements of
expressive power, casy understandability, and efficiency.

PP: A Lisp Pretty Printing System 15

Interaction With the Standard Format Directives

All of the standard FORMAT directives can be used in conjunction with the new directives described above.
It should be noted that the standard FORMAT directives ~A and ~S are sensitive to the variable
*PRINT-PRETTY« and will therefore do pretty printing when used inside ~: 1., . ~,.

A few of the standard FORMAT directives have dynamic formatting capabilities. For example, the directive
~&...~13...~> conditionally inserts a newline with a prefix, and the directive ~+. . .~ uses indentation
when printing. These directives are largely rendered obsolete by the new directives introduced above.

-Three of the standard FORMAT directives have been modified so that they will fit in better with pretty
printing. These are discussed in the following two subsections.

Tabbing Within a Logical Block

If encountered in a logical block, the standard FORMAT directive ~T is altered in its behavior. In this
situation, ~T acts the same as normal except that it spaces relative to the beginning of the immediately
containing logical block section, rather than with respect to the beginning of the line as a whole. In addition,
while the atsign flag is supported, the colon flag for ~T is not supported in a logical block.

As an example of using ~T in a logical block, consider the following call on FORMAT. Each street name is
followed by a space and a ~8T which ensures that the total width taken up will be 8. If-needed conditional
newlines are used to put as many strects as possible on cach line,

(FORMAT T "Roads ~:1~@{~S~A ~8T~:_~}~." '(ELM MAIN MAPLE CENTER))
If the line width is 25, this will print in two columns as shown below.,

Roads ELM MAIN .
MAPLE CENTER

The change in meaning of ~T in a logical block has two advantages. First, because it operates within a
logical block section, it is independent of whatever indentation is in effect. In the example above, a column
spacing of 8 is used, but the entire table is shifted over 6 columns due to the indentation of the logical block as
a whole. Second, at the time of this writing, an unfortunate aspect of the standard ~T directive is that it only
does tabbing when the output stream supports the messages : READ-CURSORPOS and :SET-CURSORPOS and
yet many streams do not support these messages. The changed meaning of ~T gets around this problem
because it can be handled internally by the pretty printing algorithm without using these messages.

16 PP: A Lisp Pretty Printing System

Unconditional Newlines in a Logical Block:

If encountered in a logical block when *PRINT-PRETTYs is T, the standard FORMAT directive ~%
(unconditional newline) has its meaning altered slightly. In addition to unconditionally inserting newlines in
the normal way, indentation is used (and any per-line prefixes are inserted) just as with the ~_ directive.

The pretty printing algorithm is also somewhat modified in order to take account of ~%. The inclusion of a
~% directive in a logical block prevents the block from being printed on a single line. In order to deal with this
aesthetically when pretty printing, a logical block is automatically printed in multi-line mode whenever it

contains a ~% directive.

As an example of the above, consider the following call on FORMAT.
(FORMAT T "Roads ~:!;~@;ELM ~%MAIN ~_MAPLE~.,")
The output below will be produced no matter how much line width is available for printing.
Roads ;ELM
{MAIN
+MAPLE

Note that ~% forces the insertion of a newline cven when not pretty printing. In this case a ~% directive
will not cause a logical block to be printed in multi-line mode. However, indentation and any per-line prefix
will still be printed after the newline caused by the ~%. As a result, the following output would have been
produced if the colon flag had not been used with the ~1 . . . ~. directive above.

Roads ;ELM
+MAIN MAPLE

If encountered in a logical block when *PRINT-PRETTY» is T, the standard FORMAT directive ~& (fresh .

_line) has its meaning altered in the same way as ~%. If it causes the insertion of a newline, then indentation is

used and the containing logical blocks are printed in multi-line mode. In addition, the computation of when
to insert a newline at a ~& directive is altered so that it operates with respect to the immediately containing
logical block. A newline is inserted only if some characters other than indentation and the prefix have been
output in the block since the last newline. This is illustrated by the following example which produces the

same output as the last example.

(FORMAT T "Roads ~:];~Q;~&ELM ~&MAIN ~_MAPLE~.")

PP: A Lisp Pretty Printing System 17

Checking for Malformed Argument Lists

A problem with FORMAT arises when a~{. ..~} directive is used to iterate over a list argument which has a
non-NIL atomic CDR. This is illustrated in the example below which generates an error trying to take the CAR
of 2, ,

(FORMAT T "(~{~S~A ~8~})" '(1 . 2))

The problem is that, using the standard FORMAT directives, there is no way to detect when a non-NIL
atomic CDR is encountered. The ~* directive tests only whether the argument list has been reduced to NIL. In
order to deal with this problem, ~* has its meaning altered slightly when it is encountered in a logical block.
In addition to testing whether the argument list is exhausted, it checks to see if the argument list has been
reduced to a non-NIL atom. If checking reveals that the argument list has become a non-NIL atom then
" . "is printed followed by the atomic value and the processing of the body of the immediately enclosing
logical block is terminated. Any suffix which has been specified for the logical block is printed. The effects of
this check are illustrated in the example below.

(FORMAT T "~11~8~A &S~ (1, 2))
The call on FORMAT produces the following output.
(1. 2)

Note that the check for a non-NIL atomic argument list is performed even though pretty printing is not
triggered in this example.

The check for a non-NIL atomic argument list is particularly useful during debugging because it makes it
possible for a FORMAT control string to execute without error and produce informative output even when its
arguments are malformed.

18 PP: A Lisp Pretty Printing System

User-Defined Format Directives

The directives ~A, ~S, and ~W all call the standard output functions in order to print the corresponding
FORMAT argument. The standard output functions decide how to print an object based on the characteristics
of the object. Occasionally it is important to be able to bypass this decision and specify a non-standard way to
print something. PP provides a mechanism for allowing the user to define new FORMAT directives which
specify a special function to be used for printing the corresponding FORMAT argument.

PP:DEFINE-FORMAT-DIRECTIVE name (arg stream colon atsign &rest parameters) &body forms
This macro defines a FORMAT directive which prints a FORMAT argument. The directive can be used by
putting ~\package:name\ in a FORMAT control string. (When Common Lisp compatibility is introduced,
such directives will be used by putting ~/package:name/ in the FORMAT control string.) If the package
prefix is omitted it defaults to the package FORMAT rather than to the current package.

When used, a user-defined FORMAT directive is called with tlie arguments shown. The first argument
arg is the argument to FORMAT which is to be printed by the directive. The second argument stream is the
stream to print arg on. The next two arguments colon and atsign are non-NIL if and only if the colon

~and/or atsign flags (respectively) were used with the directive. The remaining arguments are the
parameters specified for the directive in the FORMAT control string (if any). The forms are evaluated to
print arg on stream. |

The definition of a FORMAT directive is illustrated below. The directive takes a symbol as its argument and
prints it out followed by its value. o

(PP:DEFINE-FORMAT-DIRECTIVE SHOW-VALUE (SYMBOL STREAM &REST IGNORE)
(FORMAT STREAM "~S = ~S" SYMBOL (SYMEVAL SYMBOL)))

(LET ((*ROADS* '(ELM MAIN))) -
(FORMAT T "~\USER:SHOW-VALUE\" '*ROADS*))

The call on FORMAT which uses the user defined FORMAT directive SHOW-VALUE produces the following
output.

ROADS = (ELM MAIN)

The approach presented above for supporting the user specification of a printing function to use should be
contrasted with the standard FORMAT directive ~Q. This directive takes an argument which is a function to use
to print a second argument. The problem with this approach is that it requires the function to be embedded
in the argument list. If the FORMAT directive ~{. ..~} is being used then this requires that the function be
embedded inside of a list which is one of the arguments. This is an inconvenient requirement,

The macro PP:DEFINE-FORMAT-DIRECTIVE is built on top of the standard macro FORMAT :DEFFORMAT
and shares many of the latter macro’s idiosyncrasies -- e.g., the fact that when a user defined FORMAT directive
is used the package prefix defaults to the FORMAT package. The macro PP:DEFINE-FORMAT-DIRECTIVE has
two advantages over the macro FORMAT:DEFFORMAT, First, though it is less powerful, it is simpler to use.
Second, the function implementing the FORMAT directive defined takes all of its inputs as functional
arguments, rather than as free variable inputs.

PP: A Lisp Pretty Printing System 19

Special Format Directives For Lists

PP supplies three special FORMAT directives for printing Lisp lists. The first of these is called ~\FILL\ and
prints out the elements of a list with as many elements as possible on each line. The definition of this
directive is shown below. In analogy with ~!...~., ~\FILL\ takes a numerical parameter (which defaults
to 0) that specifies whether parenthesis should be printed around the list elements,

(PP:DEFINE-FORMAT-DIRECTIVE FORMAT:FILL (LIST STREAM IGNORE IGNORE
&OPTIONAL (PARENS? 0))
(PP:FAST-FORMAT STREAM "~VI~@{~W~A ~:_~}~." PARENS? LIST))

The standard FORMAT directives ~@{. ..~} (iterate over arguments), and ~ (terminate iteration) are used
in order to iterate over the list argument. A ~W is used to print each element of the list. A space, and an
if-needed conditional newline are printed after each element except for the last one. The use of ~\FILL\ is
illustrated below,

(FORMAT T "~:@!~1\FILL\~." '(ONE TWO THREE FOUR FIVE SIX . SEVEN))
With a line length of 20 the call on FORMAT above produces the following output,

(ONE TWO THREE FOUR
FIVE SIX . SEVEN)

Four things should be noticed about the style in which the directive ~\FILL\ is written. First, it does not
force pretty printing to occur. It simply specifies how pretty printing should be carried out when
*PRINT-PRETTYx is T. Second, ~W is used to print out the elements of the list so that the printing of escape
characters will neither be forced nor prevented. Third, the function PP: FAST-FORMAT is uscd on the theory
that efficiency is important since ~\FILL\ is called many times in a wide variety of contexts. Fourth, due to
the fact that ~A checks for the presence of a non-NIL atomic CDR, ~\FILL\ produces reasonable output even
when it is given a malformed list as its argument.

The second special FORMAT directive for lists is called ~\LINEAR\ and prints a list with one element on
cach line when the list cannot be printed on a single line. The third is called ~\TABULAR\ and prints a list in a
tabular form. Both of these directives take a parameter which, if specified as 1, causes parentheses to be
printed around the list elements. The directive ~\TABULAR\ takes a second a parameter (default 16) which
specifies the column spacing to use. These two directives are demonstrated in the call on FORMAT below.

(LET ((X '(ELM MAIN MAPLE CENTER)))
(FORMAT T "~:@!~1\LINEAR\~%~,6\TABULAR\~." X X))

If the line length is 30 then this will produce the following output.

(ELM MAIN MAPLE CENTER)
ELM MAIN MAPLE CENTER

If the line width is 15 then this will produce the following output.

(ELM

MAIN

MAPLE
CENTER)

ELM MAIN
MAPLE CENTER

20 PP: A Lisp Pretty Printing System

Controlling the Margins

In order to work properly, the pretty printing algorithm used by PP needs to know the line length available
for output. In general, this is determined by querying the output stream when the outermost logical block is
entered. However, if the output stream does not support the :SIZE-IN-CHARACTERS message then a line
width of 95 is assumed. :

The variable PP: »PRINT-RIGHT-MARGIN* (which has a default value of NIL) can be used to control the
right margin position. If this variable is non-NIL then it will override the stream and be used as the line
width, |
" The user can exercise control over the left margin by simply creating a logical block which begins at the
desired indentation. The pretty printing algorithm will then continue this indentation,

In order to know how much indentation to use inside of a logical block, the pretty printing algorithm
needs to know the column position where the logical block begins. For all but the outermost logical block,
the column position of the start of a block is determined internally by the pretty printing algorithm relative to
the starting position of the outermost block. In order to determine the starting position of the outermost
logical block, the pretty printing algorithm sends the output stream a :READ-CURSORPOS message. If the
output stream does not support this message, then the pretty printing algorithm assumes that the outermost
logical block begins in column zero.

As an example of the above points, consider the following function which pretty prints an object between
two specified margins.

(DEFUN PPRINT-BETWEEN-MARGINS (OBJECT STREAM LEFT RIGHT)

(LET ((PP:*PRINT-RIGHT-MARGIN* RIGHT))
(FORMAT STREAM "~%~@!~VT~@!~:W~,~." LEFT OBJECT)))

~ The function sets the right margin by binding the variable PP: »PRINT-RIGHT-MARGIN*. It then sets the
left margin by going to a new line (~%), tabbing over to the column specified by LEFT (~VT), and starting a
logical block. The object to be printed is then pretty printed inside the block. An outermost logical block is
started in column zero in order to insure that the pretty printing algorithm will determine the correct starting
column and that the ~VT will work even if STREAM does not support the : READ-CURSORPOS message.

PP: A Lisp Pretty Printing System 21

IV - Print-Self Functions

A key feature of the standard output functions is the idea of print-self methods specifying how to print
flavor instances and named data structures implemented as arrays. The discussion below assumes a basic
understanding of print-self methods. The Lisp Machine documentation [4] describes them in detail. (Though
Common Lisp does not have print-self methods for flavors, it does support the concept of print-self methods
(called : PRINT-FUNCTIONs) for structures.) '

Dispatching to print-self methods is supported during pretty printing in exactly the same way as it is
supported during ordinary printing. Consider the following print-self method which prints out the instance
variables of a flavor called FAMILY,

(DEFFLAVOR FAMILY (MOTHER CHILDREN) ()
(:INITABLE-INSTANCE-VARIABLES MOTHER CHILDREN))

(DEFMETHOD (FAMILY :PRINT-SELF) (STREAM &REST IGNORE)
(PP:FAST-FORMAT STREAM "~@!#<~;FAMILY - ~:IMOTHER ~W ~_CHILDREN ~1\FILL\~;>~,"
MOTHER CHILDREN))

(SETQ F (MAKE-INSTANCE 'FAMILY
' :MOTHER "Lucy"
' +CHILDREN ‘("Mark" "Barbara" "Danny" "Sally")))
Evaluating (PPRINT F) when the line width is 45 produces the following output. In the course of pretty
printing, the print-self method is called to print the instance.
#<FAMILY - MOTHER "Lucy"
CHILDREN ("Mark" "Barbara"
"Danny" "Sally")>
Evaluating (PRINT F) with *PRINT-PRETTY* bound to NIL would produce the output below no matter
how little line width were available for printing because nothing in the the print-self method above, or in the
directive ~\FILL\ forces pretty printing to occur. An important aspect of the PP system is that it allows you
to write print-self methods which specify how something should be pretty printed without forcing pretty
printing to occur.

#CFAMILY - MOTHER "Lucy" CHILDREN ("Mark" "Barbara" "Danny" "Sally")>

Evaluating (PRINC F) would produce the following output, since nothing in the print-self method, or in
the directive ~\FILL\ forces the printing of escape characters.

#<CFAMILY - MOTHER Lucy CHILDREN (Mark Barbara Danny Sally)>

22 PP: A Lisp Pretty Printing System

List Print-Self Functions

Print-self methods cannot be defined for lists. This is unfortunate since lists are used to represent both
programs and a wide variety of data structures. PP supports a concept (similar to print-self methods) for lists
which makes it possible to specify how to pretty print particular program constructs, and particular kinds of -
list data structures. PP looks at the CAR of every list to be pretty printed and determines whether a special list
print-self function has been defined for lists which begin with this CAR. It is important to note that
dispatching to list print-self functions is only performed during pretty printing. When «PRINT-PRETTY# is
'NIL all lists are printed in the standard way. ‘

PP:DEFINE-LIST-PRINT-FUNCTION symbol (list stream) &body forms .
This macro defines a list print-self function for lists whose CAR is symbol. List print-self functions are
called with the arguments shown. The forms are evaluated to print /ist on stream.

When a list print-self function is defined for a symbol it replaces any list print-self function which was
previously defined for that symbol. In order to remove a previously defined list print-self function without
defining a new one, you can use the function (PP :UNDEFINE-LIST-PRINT-FUNCTION symbol).

As an example of using PP:DEFINE-LIST-PRINT-FUNCTION consider the following definition of how to
print CONDs. The FORMAT string prints the first element of the list followed by a space. It then sets the
indentation at the character position corresponding to this point and specifies a miser mode conditional
newline. It then uses ~@{. . .~} to iterate over the list of COND clauses using the directive ~\LINEAR\ to print
each clause.

(PP:DEFINE-LIST-PRINT-FUNCTION COND (LIST STREAM)
(PP:FAST-FORMAT STREAM "~1!~W~A ~:I~@_~@{~1\LINEAR\~A ~ ~}~." LIST))
~ The above list print-self function causes CONDs to be printed in the standard style. If a COND cannot be
printed on a single line then each clause is printed on a separate line. If a clause cannot be printed on a single
line, then each element of the clause is printed on a separate line. This is illustrated in the output below.

(CoND ((TEST X) (DO-THIS X))
(CoND
(SETQ X (CAR X))
X))

A basic concept behind list print-self functions is that the type of a list can be determined by looking at its
CAR. This is true much of the time when looking at program constructs and named data structures
implemented as lists. However, it is not true all the time. This can cause the pretty printer to make mistakes.
For example, if a list begins with the symbol COND then it will in general always be printed with the list
print-self function above even if it is not actually a COND form (e.g., even if it is just an arbitrary piece of data
such a list of function names).

An important aspect of the user-defined FORMAT directives is that they can be used to prevent the

-erroneous application of list print-self functions. When a user-defined FORMAT directive is used to print a list,
then the standard output functions are not called and thercfore, dispatching to list print-self functions does
not occur. The print-self function for COND above uses the dircctive ~\LINEAR\ to print cach COND clause. As
a result, even though the first element of the second clause is the symbol COND the second clause is printed in
linear style, and not in COND style. In general, user-defined FORMAT directives should be used instead of ~A,
~S, or ~W whenever the way an object is to be printed is controlled by the context of its use rather than by its

intrinsic properties.

PP: A Lisp Pretty Printing System 23

Predefmed List Print-Self Functions

In order to support traditional Lisp pretty printing style, the PP system provides predefined list print-self
functions for all of the standard Lisp program constructs. One example of these is the print-self function for
COND shown in the last subsection. Another example is the list print-self function for QUOTE shown below.
The user can change the way any given kind of list is printed by defining a new list print-self function for it.

(PP:DEFINE-LIST-PRINT-FUNCTION QUOTE (LIST STREAM)
(COND ((AND (LISTP (CDR LIST)) (NULL (CDDR LIST)))
(PP:FAST-FORMAT STREAM "'~W" (CADR LIST)))
(T (PP:FAST-FORMAT STREAM "~1\FILL\" LIST))))

The output below illustrates the way quoted objects are printed.
*(COND ((NULL X) 'NULL))

There are several interesting things to note about the way the print-self function for QUOTE is written.
First, all of the predefined list print-self functions use PP: FAST-FORMAT in the interest of efficiency. Second,
the print-self function checks to see that the LIST is well formed in order to guarantee that it will be printed
in such a way that it can be read back in. Third, the list print-sclf function uses the full power of the pretty
printer to print the quoted list itself so that the output will be aesthetic when the quoted list is a program
construct as in the example,

During pretty printing, if a list has no list print-self function specified for it then the list is printed in one of
three ways. If the CAR of the list is the name of a defined function (i.e., is FBOUNDP), then the list is printed as
a function call. In order to do this the variable ZWEI:«LISP-INDENT-OFFSET-ALIST« is consulted to
determine what indentation pattern to use. As a result of this, the pretty printer automatically knows how to
indent correctly everything that Zwei knows how to indent correctly. This includes understanding macros
that are defined using the keyword &B0DY. If a list is a literal LAMBDA combination (i.e., if the CAR of the list is
a list whose CAR is the symbol LAMBDA) then the list is printed using ~\LINEAR\. In all other cases, the list is
printed using ~\FILL\. :

When PRINT-PRETTY# is NIL, then every list is printed in the traditional way with each sublist grouped
together as a logical block.

N

24 , PP: A Lisp Pretty Printing System

Generalized Print-Self Functions

PP supports a gencralized kind of print-self function which makes it possible to specify how to pretty print
objects other than flavor instances and lists with CARs which are symbols.

PP:DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) predicate &body forms
This macro defines a generalized print-self function named name. Generalized print-self functions are
called with the arguments shown. The predicate is used to determine whether the generalized print-self
function is applicable to a given object. When the function is applicable, the forms are evaluated to print .
object on stream.

Unlike list print-self functions, defining a generalized print-self function does not cause the pretty printer
to use it. It must be explicitly enabled before it will be used.

PP:GENERALIZED-PRINT-FUNCTION-ENABLED-P name
Determines whether the named generalized print-self function is enabled. SETF can be used to enable or
disable a given generalized print-self function.

PPﬁWITH-GENERALIZED-PRINT-FUNCTION name &body forms
This macro evaluates the forms with the specified generalized print-self function enabled.

Whenever any object is to be pretty printed, every enabled generalized print-self function is tested to see if
it is applicable. If one is applicable then it is used to pretty print the object. (Note that when a user-defined
FORMAT directive is used to print an object, then the standard output functions are not called and therefore,
dispatching to generalized print-self functions does not occur.) If more than one generalized print-self
function is applicable, then the most recently enabled function will be used. It is important to note that
dispatching to gencralized print-self functions is only performed during pretty printing.

The example generalized print-self function below causes NIL to print outas "()".

{PP:DEFINE-GENERALIZED-PRINT-FUNCTION NIL-AS-EMPTY-LIST (OBJ STREAM)
(NULL OBJ)
(PRINC ()" STREAM))

The use of this generalized print-self function is illustrated below.

(PPRINT NIL)
(PP:WITH-GENERALIZED-PRINT-FUNCTION NIL-AS-EMPTY-LIST
(PRINT NIL)
(PPRINT NIL))
(SETF (PP:GENERALIZED-PRINT-FUNCTION-ENABLED-P 'NIL-AS-EMPTY-LIST) T)
(PPRINT NIL)

The above forms produce the following output. The first call on PPRINT does not trigger the generalized
print-self function because it is not enabled. The call on PRINT does not trigger it because pretty printing is
not enabled. The sccond call on PPRINT triggers the generalized print-self function because the function is
locally enabled. The third call on PPRINT triggers the generalized print-self function because the function has
been globally enabled.

NIL
NIL
0
O

PP: A Lisp Pretty Printing System 25

Tailoring the Pretty Printer

An important aspect of generalized print-self functions is that they serve as a general mechanism for
tailoring the pretty printer. For example, the pretty printer prints lists with non-atomic CARs using the
directive ~\FILL\. Suppose that a user wanted to have lists with non-atomic CARs printed using ~\LINEAR\
instead. This change could be made by enabling the following generalized print-self method.

(PP:DEFINE-GENERALIZED-PRINT-FUNCTION LINEAR-LISTS (0BJ STREAM)
(AND (LISTP 0BJ) (NOT (ATOM (CAR 0BJ))))
(PP:FAST-FORMAT STREAM "~1\LINEAR\" 0BJ))

As a more interesting example, suppose that the user wanted lists with non-atomic CARs to be printed
using ~\FILL\ in general, but wanted ~\LINEAR\ to be used when a list with a non-atomic CAR occurred
inside a quoted structure. This change could be made be using the following list print-self function for
QUOTE. The list print-self function makes the change by selectively enabling the generalized print-s=If
function LINEAR-LISTS only when printing a quoted structure,

(PP:DEFINE-LIST-PRINT-FUNCTION QUOTE (LIST STREAM)
(COND ((AND (LISTP (CDR LIST)) (NULL (CDDR LIST)))
(PP:WITH-GENERALIZED-PRINT-FUNCTION LINEAR-LISTS
(PP:FAST-FORMAT STREAM "'~W" (CADR LIST))))
(T (PP:FAST-FORMAT STREAM "~1\FILL\" LIST))))

Generalized print-self functions can be very useful. However, since every enabled generalized print-self
function must be tested against every object to be pretty printed, the generalized print-self mechanism is
rather inefficient. It is suggested that generalized print-self functions. only be locally enabled (using
PP:WITH-GENERALIZED-PRINT-FUNCTION) where specifically neceded. In general, globally activating a
generalized print-self function is only reasonable during debugging. -

26 PP: A Lisp Pretty Printing System

V - Abbreviation

This section describes the way the PP system handles the abbreviation of output. Abbreviation of output

based on the length and depth of nested structures is supported both during ordinary printing and during .

pretty printing. The way they are supported is changed so that they are automatically applied to every kind of
structure without the program writer having to take any explicit action when writing a print-self method. In
addition, a new kind of abbreviation is introduced which can be used to limit the total number of lines
printed.

Length Abbreviation

Length abbreviation is controlled by the variable PRINLENGTH. (When Common Lisp compatibility is
introduced this variable will be called *PRINT-LENGTH=.) The standard output functions for both the Lisp
Machine and Common Lisp provide no automatic support for length abbreviation except that the internal
function for printing lists performs abbreviation when it is appropriate. If a user wants to support length
abbreviation in a print-self method, then he has to consult the value of PRINLENGTH and print an abbreviation
marker when appropriate. However, due to the difficulty of actually doing this, print-self methods seldom
support length abbreviation. Therefore, as a practical matter, length abbreviation is only supported for lists.

The PP system handles length abbreviation in a different way. Length abbreviation is handled
automatically based on the number of sections that are printed inside of a logical block. As a result, the writer
of a print-self method need not take any action at all, other than specifying logical blocks, in order to support
length abbreviation.

Each time a ~_, ~%, or ~& directive ending a logical block section is encountered the PP system checks how
many sections have been printed inside of the current logical block. If PRINLENGTH sections have been
printed, then "..." is printed and the processing of the body of the immediately enclosing logical block is

‘terminated. Any suffix which has been specificd for the logical block is printed. As an example of how length

abbreviation works, consider the print-self method (reproduced below) for the flavor called FAMILY,

(PP:DEFINE-FORMAT-DIRECTIVE FORMAT:FILL (LIST STREAM IGNORE IGNORE
. &OPTIONAL (PARENS? 0))
(PP:FAST-FORMAT STREAM "~VI~@{~W~A ~:_~}~." PARENS? LIST))

(DEFMETHOD (FAMILY :PRINT-SELF) (STREAM &REST IGNORE)
(PP:FAST-FORMAT STREAM "~@1#<~;FAMILY - ~:IMOTHER ~W ~_CHILDREN ~I\FILL\~;>~."
MOTHER CHILDREN))
Executing (PRINT F) with PRINLENGTH sct to 1 produces the following.
#<FAMILY - MOTHER "Lucy" ...>
Executing (PRINT F) with PRINLENGTH sct to 2 produces the following.
#<FAMILY - MOTHER "Lucy" CHILDREN ("Mark" "Barbara" ...)>

Length abbreviation is automatically supported everywhere logical blocks are used. This is the case even
when »PRINT-PRETTY« is NIL. Length abbreviation can be prevented by binding PRINLENGTH to NIL (e.g.,
by using the colon flag with ~W).

PP: A Lisp Pretty Printing System 27

Depth Abbreviation

Depth abbreviation is controlled by the variable PRINLEVEL. (When Common Lisp compatibility is
introduced this variable will be called «PRINT-LEVEL%.) The standard output functions for both the Lisp
Machine and Common Lisp handle depth abbréviation by passing around a parameter which specifies the
printing depth at cach level in the structure being printed. In order to fit in with this scheme, print-self
methods are passed a printing depth argument and are expected to handle it appropriately -- e.g., to print out
a depth abbreviation marker when necessary, and to pass along an incremented depth counter when printing
the subparts of a structure. However, due to the difficulty of actually doing this, print-self methods typically
ignore their printing depth argument. Therefore, as a practical matter, depth abbreviation is only supported
by the standard printer for nested lists.

The PP system handles depth abbreviation in a different way. Rather than passing around a depth
counter, depth abbreviation is handled based on the dynamic nesting of logical blocks in the output. As a
result, the writer of a print-self method need not take any action at all, other than spemfymg loglcal blocks in
order to support depth abbreviation.

If a logical block is started at a dynamic nesting depth of PRINLEVEL in logical blocks, then =« is printed in
 the output, and execution goes to after the end of the logical block -- skipping the computation of what to
print in the block. (When Common Lisp compatibility is introduced # will be printed in the output.) Note
that the dynamic nesting depth of a logical block is not the static nesting depth of the corresponding
~!...~, directive in its FORMAT control string, but the total depth in the output. As an example of how depth
abbreviation works, consider again the print-self method (reproduced below) for the flavor called FAMILY.

(PP:DEFINE-FORMAT-DIRECTIVE FORMAT:FILL (LIST STREAM IGNORE IGNORE

, &OPTIONAL (PARENS? 0))
(PP:FAST-FORMAT STREAM "~VI~@{~W~A ~:_~}~." PARENS? LIST))

(DEFMETHOD (FAMILY ﬁPRINT;SELF) (STREAM &REST IGNORE)
(PP:FAST-FORMAT STREAM "~@l#<~;FAMILY - ~:IMOTHER ~W ~_CHILDREN ~1\FILL\~;>~."
MOTHER CHILDREN))
Executing (PRINT F) with PRINLEVEL set to 1 produces the following. The list of children is abbreviated
to =« because, when ~\FILL\ is called to print the list it attempts to start a logical block at a dynamic nesting
depth of 1. The string "Lucy" is not abbreviated because no logical block is created when it is printed.

#<FAMILY - MOTHER "Lucy" CHILDREN #»>

Suppose that the list of children were changed to (("Mark") "Barbara"). Exccuting (PRINT F) with
PRINLEVEL set to 2 would produce the following.

#<{FAMILY - MOTHER "Lucy" CHILDREN (** "Barbara")>

Depth abbreviation is automatically supported everywhere logical blocks are used. This is the case even
when *PRINT-PRETTYs is NIL. Depth abbreviation can be prevented by binding PRINLEVEL to NIL (e.g., by
using the colon flag with ~W).

For completeness, the PP output functions pass an appropriate depth counter value to print-self methods,
however there is no reason for a print-self method to do anything with it. In the interest of simplicity, no
depth counter argument is passed to list print-self functions, generalized print-self functions, or user-defined
FORMAT dircctives.

28 PP: A Lisp Pretty Printing System

Abbreviation Based on the Number of Lines Printed

In addition to the traditional abbreviation mechanisms, PP provides a new abbreviation mechanism which
can be used to limit the number of lines printed. When non-NIL, the variable PP: «PRINT-LINES* controls
the number of lines which can be printed by an outerrmost logical block. If an attempt is made to print more
than PP: «PRINT-LINES« lines in an outermost logical block, then " ---"is printed at the end of the last line
and the outermost logical block is immediately exited. In order to insure that printing can never go beyond
the end of the last line, any pending suffixes are not printed.

As an example of abbreviation based on the number of lines printed, consider the following.

(LET ((PP:*PRINT-LINESs 3))
(PPRINT '(SETQ A 1B 2 C 3 D 4)))

This call on PPRINT produces the output below.

(SETQ A 1
B 2
C3---
Abbreviation based on the number of lines ‘printed is automatically supported everywhere logical blocks
are used. This is the case even when »PRINT-PRETTY= is NIL. (However, it should be noted that ordinary
printing usually creates only a single line of output -- which may be very long.) This abbreviation can be

' prevented by binding »PRINT-LINES~ to NIL, which is its default value (e.g., by using the colon flag with ~W).

Extensive experience with the earlier GPRINT system has shown that abbreviation based on the number of
lines printed can be much more useful than the traditional depth and length abbreviation mechanisms. This
is particularly true when the user wants to limit output to a small space. In order to do this with depth and
length abbreviation, the length, and more significantly the depth, have to be limited to very small values such
as 3 or 4. This has the unfortunate effect of often producing output which consists almost totally of "»»"'s and
", .."s grouped in parentheses. In contrast, limiting the total number of lines printed to 3 or 2 or even 1
produces a more legible output. Simply put, sceing the first few lines of output is usually more informative
then seeing only the top level skeletal structure of the output,

~ Reprinting an Abbreviated Object

When an object is abbreviated due to *PRINT-LINES» while being printed by PP: INTERACTIVE-WRITE,
the object is saved. A function is provided which can be used to reprint a saved object (or any other object)
without any abbreviation. When a saved object is reprinted, an attempt is made to overwrite the old partial
output with the full output in order to save screen space. Objects are saved on a per process basis so that an
object abbreviated in one process will not get reprinted in another process.

PP:PP &optional object stream
This is the same as PPRINT except that it prints object without any abbreviation. The object defaults to
the object last saved because it was abbreviated by PP: INTERACTIVE-WRITE due to *PRINT-LINESs,

Typing the Lisp Machine interrupt sequence <FUNCTION> <RESUME> evaluates the expression (PP:PP) in

~ the current process.

PP: A Lisp Pretty Printing System 29

VI - Conclusion

Reduced to its essence, PP embodies a few key ideas. These ideas transcend the system itself and could be
used in almost any output system. In general, these ideas are relatively independent and a given output
system could pick and choose among them. However careful design is needed in order for all the xdeas to fit
together into a coherent whole.

The concept of logical blocks and conditional newlines provides a stralghtforward way for the writer ofan
output expression to deal reasonably aesthetically with two important kinds of variability. Variability in line
length available for output, and variability in the sizes of the items being printed. The way PP adds logical
blocks and conditional newlines into the standard Lisp FORMAT construct demonstrates that logical blocks and
conditional newlines are orthogonal to most other output concepts and can be relatively easily integrated with
them. The same would be true in virtually any programming environment.

PP extends the idea of having each object know how to print itself to lists. This provides a basis which
makes it easy to implement traditional pretty printing of Lisp programs. It also makes it easy for a given user
to control the way his programs pretty print. This idea could be used straightforwardly in any programming
environment where a data structure representing program parse trees has been defined.

The closely related idea of generalized print-self functions provides a means for specifying how to print
arbitrary objects. It also serves as a basis for tailoring the pretty printer in arbitrary ways.

‘An important philosophy underlying PP is that facilities should be provided so that a single output
expression (e.g., FORMAT control string) can specify how to print something in each of the standard printing
styles (i.e., with or without escape characters and with or without pretty printing) without having to force
which style will be used. This gives the end user maximal flexibility in requesting different ways to print
something. This philosophy is most evident in the fact that the FORMAT dircctive ~W does not force the
printing of escape characters, and the directives ~1. .. ~. and ~_ do not force pretty printing.

Depth and length abbreviation is applied to all output in a uniform way. This is done by giving depth and
length abbreviation a simple definition in terms of logical blocks and logical block sections. This allows PP to
support abbreviation for all output without the user having to write any explicit code to support it.

A new kind of abbreviation is introduced which can be used to limit the total number of lines printed.
Experience has shown that in many situations this new abbreviation is more useful than depth and length
abbreviation. This utility is enhanced by the availability of a mechanism for easily reprinting in full an object
which was abbreviated based on the number of lines printed.

The idea of having separate interactive output control variables is introduced so that a user can specify
what style should be used for interactive output without changing the default style which will be used for
other output. This is particularly useful in conjunction with abbreviation which is typically only desirable
during interactive output.

An important fact is the realization that pretty printing does not have to be slow. Because it is based on a
fast linear algorithm, the pretty printer provided by PP is not significantly slower than the ordinary Lisp
printer. Given that pretty printed output is a great deal more legible than ordinary output, there is little
reason not to make pretty printing be the default (at least for interaction with the user).

Similarly, FORMAT does not have to be slower than any other output function -- it can in general be
efficiently compiled. Most languages other than Lisp have always compiled their FORMAT-like statements.

30 PP: A Lisp Pretty Printing System

Acknowledgements

A number of people have made important contributions to the development of the PP system. I would
like to particularly thank K. Pitman and C.Rich as well as P. Anagnostopoulos, D.Chapman, and
B. Morrison for making suggestions which significantly improved the system and this paper. I would also like
to acknowledge the invaluable contribution of the many pcople involved in designing Lisp Machine Lisp in
general and FORMAT in particular. There are few programming environments where it would be possible to
write a system like PP as a simple user program integrated with the built in output facilities.

References

[1] Goldstein, L., "Pretty Printing, Converting List to Linear Structure”, MIT/AIM-279, February 1973.

[2] Oppen, D., "Prettyprinting”, ACM TOPLAS V2 #4, October 1980, pp. 465-483.

[3] Steele, G.L.Jr., "Common Lisp: the Language", Digital Press, Maynard MA, 1984.

[4] Symbolics, Lisp Machine documentation (release 5), Symbolics inc. Cambridge MA, 1984,

[5] Waters, R.C., "GPRINT: A LISP Pretty Printer Providing Extensive User Format-Control Mechanisms",
MIT/AIM-611a, September 1982.

[6] Waters, R.C., "User Format Control in a Lisp Prettyprinter”, ACM TOPLAS VS5 #4 pp. 513-531,
October 1983. o

PP: A Lisp Pretty Printing System 31

Appendix - Second Order Details

~ This section describes a number of details which are important in order to gain a full understanding of the
pretty printing facilities provided by the PP system, but which are not important for the casual user..

The Pretty Printing Algorithm

Section I1I outlined the basic pretty printing algorithm used by PP. This subsection presents a number of
special situations and boundary conditions which are not covered by the basic algorithm and describes how
the algorithm has been extended to deal with them.

An area of complexity stems from the interaction of logical blocks and if-needed conditional newlines.
Consider the call on FORMAT below '

(FORMAT T "~1:1~111 ~:i_2 ~:_3~, ~:i_A ~:_B~.")

Using the pretty printing algorithm as defined above, this would create the following output given a line
width of 8. Thelist (1 2 3) has to be printed in multi-line mode since it is too long to fit on one line. The
clement A is printed at the end of the second output line since there is room for it there,

((1 2
3) A
B)

The fact that A appears at the end of the second output line is judged by many people to violate a basic
aesthetic criterion of Lisp pretty printing. In order to deal with this problem, the basic pretty printing
algorithm has been altered so that a newline will be inserted at an if-needed conditional newline position
whenever the logical block section preceding it is not printed on a single line. Applying this extended
definition, the output is as follows. '

((12
3)
"A B)
Another area of complexity stems from the fact that a logical block is often followed by some additional
characters which must be printed on the same line as the logical block. These characters can be literal
characters such as the "." in the call on FORMAT below, or produced by FORMAT directives.

(FORMAT T "~:!Roads ~!ELM ~_MAIN~,.~,")

"on

If the innermost logical block is printed on one line, then the "." will also have to be printed on that line,
If there is only barely enough room for the logical block itself, then the ™. " will go over the end of the line. In
order to deal with this problem, the decision of whether to use single-line mode or multi-line mode when
printing a logical block (other than an outermost logical block) is not based solely on the length of the logical
block itself, but rather on the length of the block plus the length of any characters which must be printed on
the same line after it. For example, the call on FORMAT above produces multi-line mode output even when the
line width available is equal to 14 -- i.c., just long enough for the block itself. When considering outermost
logical blocks, characters that follow are not taken into account because the special printing supported by PP
is no longer in effect after the end of an outermost logical block., -

An analogous problem arises with regard to if-needed newlines. The last section of a logical block can be
followed by characters which must be printed after it on the same line -- i.e., characters which follow the block
as a whole. In order to allow for this, the decision of whether or not to insert a newline is based on the length
of the logical block section itself plus the length of any characters which must be printed after it on the same

32 PP: A Lisp Pretty Printing System

line unless they follow the outermost logical block. :

A final area of complexity stems from the fact that there are many ways to force a newline in a FORMAT
control string besides using the directives ~_, ~% and ~& -- e.g., putting a literal newline character in the
control string or printing a string which contains a newline character. It is not completely obvious what to do
in this situation. There are two very suggestive cases which unfortunately contradict each other. First,
suppose that a program which contains a string constant which contains a newline character is printed out and
then read back in again. In order to insure that the result of the read will be EQUAL to the original program it
is important that indentation not be inserted after the newline character in the string. On the other hand,
‘suppose that the same program is being printed into a file by a FORMAT that specifies a prefix of "; ;;" with
the intention that the program will appear in the output as a comment, In order to insure that this comment
will not interfere with subsequent reading from the file it is important that the prefix be printed after the
newline in the string,

In order to try and satisfy the intent of both of the above cases, the following heuristic is applied.
Indentation is used only if a newline is created with ~_, ~%, or ~& However, per-line prefixes (and any
indentation preceding them) are always printed whenever a newline is created in the output no matter how
the newline is specified. This heuristic is illustrated in the example below.

(LET ((X '"((STRING-LENGTH "string on

two lines"))))
(FORMAT T "~iloW~, ~%~:lgii~@i;~W~, ~%For example: ~:1;~@;~W~." X X X))

This expression produces the following output.

(STRING-LENGTH "string on

two lines")

113 (STRING-LENGTH "string on

iiitwo lines")

For example: ;(STRING-LENGTH "string on
itwo lines")

A small point centers around the fact that conditional newline spccifications are typically preceded by
some amount of blank space (see the examples above). This is done so that the sections of a logical block will
be visually separated when the block is printed in single-line mode. Without anything more being said, this
would lead to the printing of unnecessary blank spaces at the end of most lines in multi-line mode. In the
interest of efficiency, the pretty printing algorithm suppresses the printing of blanks at the end of a line if (and

only if) the newline ending the linc is caused by a variant of the directive ~_,

Some Implementation Notes and Their Implications

The pretty printing algorithm is implemented in two parts. The first part is a modified version of the
standard Lisp Machine function SI:PRINT-0BJECT which supports dispatching to print-self functions. The
second part is a special kind of stream which is wrapped around the actual output stream. This intermediate

-stream buffers up the output and makes the dynamic pretty printing decisions. In order to install the pretty
printing facilities in the PP system as a basic part of the standard Lisp Machine system, all that would be
needed would be to replace SI: PRINT-0BJECT with its modified version and give every stream the capability
to perform dynamic pretty printing decisions.

When pretty printing is initiated, an intermediate pretty printing stream is wrapped around the original
output stream and then used as the destination of output. A beneficial cffect of this approach is that it allows
the user to use any kind of function to send output to the intermediate stream (e.g., in a print-self function).
All such output is captured and processcd.' Output is only sent to the original stream after dynamic pretty

PP: A Lisp Pretty Printing System 33

printing decisions have been made.

The intermediate stream has to buffer up output in order to make dynamic pretty printing decisions. The
fundamental source of the efficiency of the pretty printing algorithm is that things are carefully designed so
that the intermediate stream never has to buffer up more than one line width worth of output. The algorithm
sends output to the underlying stream a line width worth at a time. The buffer is not guaranteed to be
completely empty until the outermost logical block ends. Thus there is typically a delay between the time
characters are sent to the intermediate stream and the time they appear on the underlying stream. This can be
confusing if a process which is performing pretty printing is interrupted (c.g., during debugging).

Dynamic pretty printing decisions require a number of different calculations involving character positions
and lengths of sections of text. All of these calculations are made while the output is buffered up in the
intermediate stream. As a fundamental simplification, it is assumed that every character will use exactly one
character position when actually output to the underlying stream. Only newlines are treated specially. This
assumption can lead to problems in some situations, For example, it is inadvisable to use literal tab characters
when pretty printing. It should be noted that (except for ~T) the standard FORMAT directives all make the
same simplifying assumption.

Intermediate streams work by intercepting all of the basic output messages (i.e., :TY0, :STRING-OUT,
:LINE-OQUT, and : FRESH-LINE) being sent by output functions. In addition, they accept some special new
messages which support logical blocks and conditional newlines.

In order to support all of the other messages (e.g., :READ-CURSORPOS) which may be supported by the
underlying stream, an intermediate strcam forwards any requests involving them directly to the underlying
stream. One problem with this is that since some of these messages might perform output, the intermediate
stream must empty out its buffer before forwarding a request. In order to do this, the intermediate stream
must make decisions about any conditional newlines. When it does this, it pessimistically inserts newlines
everywhere they cannot be immediately ruled out. As a result, the act of sending an intermediate stream a
message (such as : READ-CURSORPOS) which it must send to the underlying stream can force the insertion of
newlines which would not otherwise be inserted. .

The user should avoid sending complex messages to an intermediate stream (e.g., in a print-self function).
For example, an important reason why the behavior of the FORMAT directive ~T was altered in a logical block
was so that it would no longer send :READ-CURSORPOS and : SET-CURSORPOS messages to the output stream.

Several aspects of the PP system (e.g., the abbreviation mechanisms) depend on knowing which logical
block in the output is outermost. In order to determine this the following assumptions are made. Suppose
that printing is in progress to stream A. If during this printing, printing is initiated on another stream (B),
then it is assumed that the first block to occur during output to B is outermost. Further, suppose that during
the output to B, output is again initiated to stream A. It is assumed that this is separate output to A, and that
the first logical block to occur during this output to A will again be an outermost block.

- The above assumptions are not nccessarily valid. The user could be intending the output to streams A and
B to operate as coroutines. In order for such coroutining output to work correctly in conjunction with the PP
system, the two printing coroutines have to be in separate processes. It should be noted that the standard
output functions implicitly make the same assumptions due to the way special variables arc used to control
many aspects of the prmtmg process. However, the standard output functions do not rely on the assumptions
so heavily.

34 PP: A Lisp Pretty Printing System

Summary of Functions

PPRINT object &optional stream
This is the same as the function PRINT except that it binds *PRINT-PRETTY# to T, does not print a trailing
space, and returns no values.

WRITE object &key :stream :escape :base :pretty :level :length :1ines :array
sradix :circle :case :gensym
This outputs object while allowing (but not requiring) the specification of output control values.

PP:INTERACTIVE-WRITE object &optional stream

This function prints object on stream under the control of the values set by
PP:SET-INTERACTIVE-CONTROL-VARIABLES.

PP:SET~INTERACTIVE-CONTROL-VARIABLES &key :escape :base :pretty :1evel :length :1ines
:array :radix :circle :case :gensym
This function specifies the output control values to be used by PP: INTERACTIVE-WRITE,

PP:PP &optional object stream
This prints object (which defaults to the last object abbreviated due to PP:*PRINT-LINES# by
PP:INTERACTIVE-WRITE) without abbreviation.

<FUNCTION> <RESUME>
Typing <FUNCTION> <RESUMED evaluates (PP:PP).

PP:FAST-FORMAT destination control-string &rest args
This macro is the same as the function FORMAT except that it is much more efficient and destination is
required to either be a literal NIL or a literal T or a stream.

PP:DEFINE-LIST-PRINT-FUNCTION symbo! (list stream) &body forms
This macro defines a list print-self function for lists whose CAR is symbol.

PP:UNDEFINE-LIST-PRINT-FUNCTION symbol
This function causes there to be no list print-self function associated with symbol.

PP:DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) predicate &body forms
This macro defines a generalized print-self function named name. The predicate is used to determine
whether the generalized print-self function is applicable to a given object.

PP:GENERALIZED-PRIN?-FUNCTION-ENABLED-P name
Determines whether the named generalized print-self function is enabled. SETF can be used to enable or
disable a given generalized print-self function.

PP:WITH-GENERALIZED-PRINT-FUNCTION name &body forms

This macro evaluates the forms with the specified generalized print-self function enabled.

PP:DEFINE-FORMAT-DIRECTIVE name (arg stream colon atsign &rest parameters) &body forms
This macro defines a FORMAT directive which prints a FORMAT argument. The directive can be used by
putting ~\package:name\ in a FORMAT control string.

PP: A Lisp Pretty Printing System 35

Summary of Variables

$PRINT-PRETTY* (default NIL)
When non-NIL this standard Common Lisp variable enables pretty printing.

*PRINT-ESCAPE® (defaultT)
When non-NIL this standard Common Lisp variable forces the printing of escape characters.

PRINLEVEL (default NIL)
When non-NIL, this standard Lisp variable limits the maximum nesting of logical blocks. (When

Common Lisp compatibility is introduced this variable will be renamed »PRINT-LEVEL#%.)

PRINLENGTH (default NIL)
When non-NIL, this standard Lisp variable limits the maximum number of sections printed in a logical
block. (When Common Lisp compatibility is introduced this variable will be renanied

*PRINT-LENGTH~,)

PP:*PRINT-LINES* (default NIL)
When non-NIL, this variable limits the number of lines printed by an outermost logical block.

PP:*PRINT-RIGHT-MARGIN®* (default NIL)
When non-NIL, this specifies the line width to use for pretty printing.

PP:*PRINT-MISER-WIDTH®* (default 40)
This specifies when logical blocks should be printed in miser mode.

36 PP: A Lisp Pretty Printing System

Summary of Directives

The directive ~W (write object) uses the function WRITE to output the corresponding FORMAT argument
without forcing the setting of any output control variables. The directive ~W takes the same parameters as ~A
--i.e., ~mincol, colinc, minpad, padcha. '

~W Prints an argument following all output control variables.
~:W Forces pretty printing and suppresses abbreviation.
~@W Forces any padding to be inserted on the left.

There are three special directives for printing lists. Each of them prints parentheses around the output if
and only if they are given an initial parameter of 1.

~\FILL\ Prints as many elements as possible on each line,
~\LINEAR\ Prints the elements all on one line or one to a line.
~,C\TABULAR\ Prints the elements in a table with column spaciug c.

The directive ~1 prefix~; body~; suffix~. (logical block) iterates over a list argument using body to print the
elements of the list in a logical block. The prefix and suffix are printed before and after the body respectively.

~1...~, Creates alogical block and descends into a list argument.
~@1...~. Operates on all the remaining arguments. ’
~:1...~, Forces pretty printing and suppresses abbreviation,
~11body~. Prefix and suffix default to " (" and ")" respectively.
~1prefix~@;~. Prefix printed on cach line.
~1body~8. Body printed to fill the line width.

The indentation in a logical block is initially set to the column position of the first character after the
prefix. The directive ~I (set indentation) is used to control the indentation within a logical block. If omitted,
the parameter defaults to zero. When a logical block is printed in miser mode, all instances of ~I are ignored.

~nl Indentation set to the position of the first character after the prefix plus #.
~n:1I Indentation sect to the position of the directive plus #.

The directive ~_ (conditional newline) specifies a place where a newline can be inserted in a logical block.
If a logical block is being printed in miser mode than a newline is inserted at every ~_ directive in it. Qutside
of a logical block, ~_ has no effect.
~_ Newline if the enclosing block is printed in multi-line mode.

~:_ Newline if the following block section will not fit on the end of the line.
~@_ Newline only if the enclosing block is printed in miser mode.

When pretty printing inside of a logical block, the directives ~% and ~& cause indentation (and the
insertion of any per-line prefixes) in the same way as ~_.

Inside of a logical block, the standard FORMAT directive ~T is changed so that it tabs relative to the
beginning of the containing logical block section instead of relative to the start of the line.

Inside of a logical block, the standard FORMAT directive ~* is changed so that it checks for the argument
list being reduced to a non-NIL atom.

