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2 of 2. Any given boundary conditions on 2(z,y) should also be satisfied.
es the form of a first-order partial differential equation (Horn, 1970 &
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that an imgge dppicts a smooth surface of homogeneous reflectance. Several algorithms
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onal reflectance-distribution function and the light source arrangement, as
prn & Sjoberg (1979).

ering a new scene, the information required to determine the reflectance
t available. Yet without this information, the shape-from-shading prob-
mulated, much less solved. The dilemma may be resolved if a calibration
shape appears in the scene, since the reflectance map can be computed
lere we wish to consider the situation where we are not that fortunate.

cou
lly n
ve fo
own

g to evaluate how some basic assumptions can resolve this impasse.
as looked at the problem of recovering shape from shading under the
the image depicts a Lambertian surface illuminated by a point source
5 unknown. Under the additional assumption that the surface is locally
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normals are shown to be recoverable by a local operation. This method
endfon the iterative propagation of information across the image.

sonfe serious drawbacks to the local approach, however. One problem is that
mption is very restrictive. In fact, spheres are the only surfaces whose

ilical. So this method naturally computes incorrect normals for other

ay be acceptable. Further, the constraining effect of known occluding
¥s cannot be incorporated into the local method. This is unfortunate
mals provide powerful boundary conditions on the shape-from-shading

problem, as
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rescht an alternative approach that does not suffer from these disadvantages.
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htive scheme for shape and source direction

to rpcover the shape of a smooth surface depicted in an image, E, that is
a rfgion {1 in the zy-plane. Let the shape of the surface be characterized
tion,fn, that associates a unit normal with each point in 2. The problem
to [fhd n(z,y) over (1. Assume for now that the object has a Lambertian
tha} it is illuminated by a single point source. If the vector s points to the
n(.c‘,jf) is the unit normal of a surface patch, then the apparent brightness of

i by the reflectance map

giv
R (n(z,y)) =n(z,y)-s.

by the way, force s to be a unit vector; this allows for the possibility that the
Lthe spurce may be unknown. This way we can also deal with unknown sensor
nd uhknown surface albedo, provided it is uniform.

lemfthen becomes one of finding a smooth shape, n, and source direction, s,

e imhge irradiance equation

E(z,y) =n(z,y)-s  VY(z,y) € Q.

ce, bkightness cannot be determined with perfect accuracy, and so it appears
o trdnsform this into a minimization problem (lkeuchi & Horn, 1981; Horn
985)] There is another reason to consider this as a minimization problem:
try Jto solve the image irradiance equation as it stands, we obtain a set of
quafions equivalent to the characteristic strip equations. Here, however, we
tive pcheme lending itself to a parallel implementation on a grid, as originally
r Hofn (1970). Further, a shape-from-shading problem that has noisy image
eIl ngt have a theoretical solution. A minimization approach will, however,
rcovdry of a shape that fits the given data best, in a sense determined by the
oself.

a smpoth shape, n, and a source direction, s, that minimize

/ /n(E(:c, y) — n(z,y) -s)° de dy.

exisfs, and there are no errors in brightness measurements, then the image
quatfon will have been satisfied (although there is no guarantee that the
will He integrable; sce Horn & Brooks, 1985).

adopf a regularizing component (Poggio & Torre, 1984) by incorporating the

/ /} (n2(z,y) + ni(z,y)) dzdy,

to select a particularly smooth solution from a possibly infinite set of
that a subscript here denotes partial differentiation, and that squaring

ent to taking the dot-product with itself. Finally, we wish to insist that
length. This is accomplished with the constraint

V(z,y) € Q.

{

Note
uivs
b un

nz(a:,y) =1
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inimized with respect to n and s. Here, A is a scalar that weights the

relative importapce of the regularization term, while u(z,y) is a Lagrangian multiplier
function us¢d tofimpose the constraint that n(z,y) be a unit vector (see Horn & Brooks,

1985).
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the solutions of
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s td

is a problem in the calculus of variations. First, assume that s is known
be minimized by a suitable choice of n. Extrema of functionals are

fhe associated Fuler equations (sce Courant and Hilbert, 1953). The
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0
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Hence we mipy trpnslate the Euler equation into the discrete form

Rearranging

this

- 4\
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in order to isolate n;; on one side yields the iterative scheme
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he more accurate 9-point approximation for the Laplacian, in which
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ce & many array accesses are needed (and the constant multiplier €?/4)

). The simple 5-point approximation was adequate for our purposes.

have yet to solve for y, the Lagrangian multiplier. This can be avoided,
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r
dire<lt;i0n of the vector being computed.

norpalized, we can simply do this explicitly, as in

esird

ving that the division of the right hand side by (l + u(cz/fi)\)) does not
Since u is intended to ensure that

2
n _ € 5
mi.c].i 1 - nfj -+ ;1,,.\_(1411] - nfj . S)S
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nz'f = mif /‘mi; '

the problem of minimizing I with respect to s, given that n is known.

oblepr in conventional calculus. Computing the partial derivative of I with

have

oI
5;:—//02(E—n-s)nd:cdy:0,

—// En dxder//(n-s)n dzdy = 0.
0 ' Ja
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n s T

(n-s)n = (nTs)n = n(n’s) = (nn7)s,

ion we have

//En dzdy = [// nn? d:cdy] s,
0 0

, arjd also the integral of (nn‘T), are 3 x 3 matrices. From this we finally

1 equation
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8 = [// nn? dz dy} // En dzdy.
9] i}

he inverse of a matrix. A discrete version of this formula, in which the
heed by sums, is casily obtained. An iterative scheme in both n and s
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erage, and adjusting this cither toward or away [rom the source. The
fgn of the adjustment is determined by the brightness error of the current
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the estimale of source direction is extremely accurate. Furthermore,

urbz
of s

tce-d

alue

VeV el

A na
e sh

d so

mairgvery good in the face of significant noise. For example, a synthetic image
ed offa sphere illuminated by a point source in the direction (-1, 3, S)T. The
juanfized to 255 irradiance levels, and the correct surface normal was given
the

250 image points. Gaussian noise was added to the image giving an
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Here, both source direction and surface normals are
e viewing direction. This is easily verified by observing that

e portrayed a hemisphere viewed from directly overhead. After 100
= 0.005, the average angular difference between estimated and correct
than 3° The maximum such deviation was less than 2.5 times the
he estimate of the light source direction, at this time, had errors in

iterations. These, too, improved slowly with further processing.
as sometimes slow in converging. After rapid initial improvements, the
ould decrease appreciably. However, one might expect the scheme to be

ly, in the examples considered, a reasonable estimate for the source
ined after only a few iterations. Subsequent processing just improved

emes for other reflectance maps

wo more new iterative schemes: the first extends the shape-and-source
uations in which a simple model of the sky is also included; the second
eloped above to find shape from shading, given a general reflectance

oes ndt recover source direction.
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\tnlfor 1 radiance (Brooks, 1978; Horn & Sjoberg, 1979). A point source may

the map to give
Ry(n) =a(n-s)+5%(1 +n-2)

old the relative intensity of the sun and the sky. We can now gencrate a
and-source recovery, under the assumption that the image was formed
e with the reflectance map R,,.

to nfinimize
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E—a(n-s)—l-g—‘i(1+n.2)) +A(n2 4 n2) + p(z,y)(n® - 1)| dzdy,

to Both n and s. Fixing s for the time being, we are required to minimize

Ynctipnal with respect to n alone. The Euler equation for this problem is
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ectdnce map, R, has been substituted back into the equation to improve

pssufne n to be fixed and minimize the functional with respect to s. This we
, byjdifferentiating with respect to s and equating the result to zero. Thus
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y is dssumed to be known. Interestingly, the computation of s proceeds as

Wt the contribution of the sky is subtracted from E. This does not render

ifl, however, as the calculation of shape does not follow suit.

f shape for the general reflectance map

iferative scheme for shape and source direction is composed of two parts.

t of the scheme may stand alone in the event that shape is required from
is required from shape. Indeed, if used in this way, the shape-recovery
e generalized to incorporate any reflectance map, R(n). In minimizing

2
(z,9) - R(n(z,y))) +A(ng 4
ler equation

(E - R)Ry + AV?n — un = 0,

nz) + u(z,y)(n? - 1)] dz dy,

rive the scheme

2
méH = af, ¢ ; (Eij — R(ni;)) Ru(ny;)
k+1 k+1/|mk+l .

e most appealing of the current shape-from-shading schemes that deal
ectance map. It is simply derived, and is expressed elegantly in terins
ather than a two-parameter system such as the stereographic fg space
rn.

ve use of the unit normal constraint

ving the shape-and-source finder, we avoided solving for the Lagrangian
. Instead, we normalized the estimate for n after each iteration. We
me in which the multiplier is dealt with explicitly.

ninimize the functional

(z,9) = R(n(z, y)))2 + (02 + ng) + p(z,9)(n®  1)| dedy,
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(E -~ R)Ry + AV?n — un = 0.
ot groduct of this with n we find that

p = (E ~ R)(Ry -n) + A(V?n - n),

ng for p in the Euler equation, we get

(E - R)[Rq — (Rq -n)n] + A[V?’n — (V2n -n)n] = 0.

(x-n)n = (n"x)n = n(nTx) = (nn7)x,

and letting M be the 3 x 3 matrix

M =1I-nn7,

n reduces to
M [(E — R)Rn + AV?n] = 0.

uaton in components orthogonal to n, since

T

n={(I-nn")n=n- (un’)n=n—-n@m’n) =n-n(n-n)=0.

n this provides only two constraints on the solution vector n. The remaining

n’ | 1. Note that, because M is singular, we cannot simply eliminate M
atioph above by multiplying through by its inverse.
tandard finite difference approximation such as
| 4
2 -
Vn =~ e—z(n —n),
h logh] average of n given earlier, we can write the Euler equation in the
N

4

M [(E ~ R)Rn+ (i~ n)

|-o

¢ bdng, we omit subscripts.) We can then develop an iterative scheme in
w Vplue, m, say, is used for the center term in the above approximation,

while all other tgrms are computed using the old value of n. This way we obtain
2
Mm=M i+ -—(E—-R)Ry|.
4
Now let m # p § vn, where p | n. Then m? = p? + v? and Mm = Mp = p, since
Mn = 0, and sofwe get
2
€

p:M[ﬁ+——(E~R)Rn}.

4
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The compopentfr n, parallel to the old normal vector n, is computed using

v=1+1-p2

Note that therefare theoretically two solutions for v, one positive and one negative. The
positive valiie lehds to a new estimate close to the previous one, while the negative value
gives rise tg onefplmost opposite to the old one. It is clear that one should use the positive

root. |
Thus w¢ fin:

ly have the scheme

2
k k k7Y [=k | € k k
Py = (I-njnj) (“u‘ + o (Big — R(ngj)) B (nij))

n:‘CJ‘Jrl = p:'c;rl + nfj 1- (pffﬂ)g‘
This may bg co

As we approfch a solution with this scheme, p will be small, since i & n and F =~ R.
However, inf thefearly stages of iteration, it may be necessary to place an artificial limit
on the amopint ¢f adjustment made away from the old normal. That is, one may have to
limit the n* ignithide of p so that problems do not arise in computing v using the equation
above.

(The abjove fnethod for solving the underdetermined equation Mm = 0, under the
constraint 1, can be arrived at most easily using the pseudoinverse of the matrix
M. We sz; ded his approach in the exposition here since the solution can also be found
directly).

1
6. Summ% ry
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