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1. Introduction

This paper describes an implemented program that detects, localizes, and symbolically
describes certain types of significant surface changes in densc depth maps. Specifically,
we find

e steps, where the surface height function is discontinuous;
o roofs, where the surface is continuous but the surface normal is discontinuous;

o smooth joins, where the surface normal is continuous but a principal curvature is
discontinuous and changes sign; and

o shoulders, which consist of two roofs and correspond to a step viewed obliquely.

Figures 4, 7, 9, and 10 show the idealized instances of these surface changes that are
the basis of the mathematical models used by the program. Section 6 illustrates the
performance of the program on range maps of objects of varying complexity.

The work reported here continues our investigation of surface descriptions based on
the concepts of differential geometry [Brady, Ponce, Yuille, and Asada, 1985]. Section
2 summarizes our ideas and shows the kind of geometric (“CAD”) description we are
aiming at. An important component of our work is the identification and isolation of a
set of critical surface curves, including significant surface changes.

To this end, we report progress on the development of a representation of significant
surface changes. We call the representation the Surface Primal Sketch by analogy with:

s Marr’s [1976] Primal Sketch representation of significant intensity changes;

o Asada and Brady’s [1984] Curvature Primal Sketch representation of significant cur-
vature changes along planar contours; and

o Haralick, Watson, and Lafley’s [1083] Topographic Primal Skelch representation of
iimage structure.

In cach case, there arc three distinct problems: (i) to detect significant changes; (ii) to
localize those changes as accurately as possible; and (iil) to symbolically describe those
changes. We follow the approach of Asada and Brady [1984], as sketched in Section 3. A
key component of that approach is scale space filtering, pionecrcd by Witkin {1983]. Yuille
and Poggio [1983a, 1983b| have proved that, in principle, scale space filtering enables a
discontinuity to be accurately localized. Canny [1983] uses the smallest scale at which a
given intensity change can be detected to most accurately localize it.

Brady, Ponce, Yuille, and Asada [1985] report initial experiments that adapt Asada
and Brady’s [1984] algorithm to find surface changes. In Section 3, we describe a number
of problems, both mathematical and implementational, with that approach. Secction 4
describes a robust algorithm that solves the problems enumerated in Section 3 to find
roofs, steps, smooth joins, and shoulders. Roofs are found from extrema of curvature
(positive maxima and negative minima), whereas steps, shoulders, and smooth joins are
found from parabolic points: zecro crossings of the Gaussian curvature. We use scale-
space behavior to discriminate steps, shoulders, anl smooth joins. Section 6 shows the
algorithm at work.
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2. Background

In this section, we recall some of the main features of our work on representing visible

surfaces. We work with dense depth maps that are the output of “shape-from” processes

such as sterco or, more usually, direct ranging systems. Therc are three principal problems
to be addressed:

1. Finding surface intersections. These enable the description of the depth map to be
partitioned into a set of smooth surface patch descriptions. This is the problem
addressed in the present paper. Surface intersections do not, in general, partition the
depth map. Consider, for example, a bulbous end of an American telephone handset
(Figure 1). The surface intersection marked on the figure peters out by the time the
cylindrical portion is reached. Each surface intersection has an associated description
that includes its type (step, roof, smooth join, ctc.). In general, the type of surface
intersection may wvary along its length [Hulfman 1971, Turner 1974]. If a surface
intersection has a special property, such as being planar, that property is included in
the description.

2. Generating descriptions for the smooth surface patches that result from the partition-
ing in (1). This is the problem addressed by Brady, Ponce, Yuille, and Asada [1985],
who introduce a representation called Intrinsic Patches. This is discussed further
below. ,

3. Matching surface descriptions to a database of object models that integrate multi-
ple viewpoints of a surface. We have not yet addressed this problem. Grimson and
Lozano-Pérez [1984], Faugeras, Hebert, Pauchon, and Ponce [1984], and TFaugeras
and Hebert [1983, 1985] have made a solid start on the problem, though they restrict
attention to the case of polyhedral approximations to surfaces. However, Faugeras
and Hebert [1985] illustrate the advantages of representations based on sculptured
surfaces. Brou [1984], Little [1985], and Ikeuchi and Iorn [1984] have developed the
Extended Gaussian Tmage (XGI) representation for recognition and attitude determi-
nation. The IKGI is an information-preserving representation only for complete maps
of convex objects, a rare situation in practice. Not much has been done to extend the
representation to handle non-convex objects.

The Intrinsic Patch represcutation that we are developing is based on concepts of
differential geometry, principally because it provides a hierarchy of increasingly stringent
surface descriptions. A surface may simply be (doubly) curved, but, in some cases, it may
be ruled, even developable, even conical. Our aim is to find the most appropriate and
most stringent descriptors for portions of a surface. If, for example, there is a connected
region of umbilic points, indicating that part of the surface is spherical, then it is made
explicit, as is the center of the corresponding sphere (Figure 2). If there is a portion of
the surface that is determined to be part of a surface of revolution, it is described as
such, and the axis is determined (sce Figures 2 and 16).

Similarly, if there is a line of curvature or an asymptote that is planar or whose
associated curvature (principal curvature or geodesic curvature respectively) is constant,
then it is made explicit. For example, the asymptote (which in this particular case is also
a parabolic line) that marks the smooth join of the bulb and the stem of the lightbulb
in Figure 2, as well as the surface intersections marked on the oil bottle in Figure 16,
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Figure 1. A telephone handset illustrates that surface intersections on curved surfaces do not, in general
1) b o bl
partition the suiface into a patchwork of smooth compenents.

are noted in the representation. The program described in Section 3 cannot compute
the asymptote on the lightbulb; but that described in Section 4 can. We may associate
a description with a curve that is a surface intersection; but only if it has an important
property such as being planar. For example, a slice of a cylinder tiken oblique to the
axis of the cylinder produces a planar curve of intersection. Machining operations such as
filleting tend to produce planar curves. Similarly, the intersection of a finger of a dextrous
robot hand [Salisbury and Craig 1982, Jacobsen et. al. 1984, 1985] and an object surface
is planar. On the other hand, the interscction of two cylinders is not a planar curve.

Figure 2b illustrates the representation we ave aiming at. The stem of the lightbulb is
determined to be cylindrical, because it is ruled and because it is a surface of revolution.
We can compute the axis of the stem. The bulb is determined to be a portion of a
sphere, because it is a connected region of umbilic poiuts. The center of the sphere can
be computed. Similarly, the center of the spherical portion that forms the threaded end
can be determined. The stem is smoothly joined to the bulb. Moreover, the oxis of
the cylindrical stem passes through the centers of the spheres defined by the bulb and
threaded end. This distinguishes the diamcters of cach sphere that are collincar with
the stem axis, showing that the lightbull is a surface of revelution. All of Figure 2b can
be computed by the algorithms described in this paper and in Brady, Ponce, Yuille, and
Asada [1985], except for the rightmost column, which relates to the inferences that derive
from attaching the spherical portions to the cylindrical stem. Currently, we are working
on the inference engine (see also Kapur, Mundy, Musscr, and Narendran [1985)).

3. Surface intersections froin lines of curvature

Asada and Brady [1984] introduce a representation, called the Curvature Primal Sketch,
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Figure 2. The representation of a lightbulb., a. The dotted region consists of umbilic points, indicating
that the bulb is spherical. The parallel lines are the meridians of the eylindrical stem. The parallels; which
arc also rulings, are not shown. b. The representation that we are working towards for the lighthulb, All
save the righmost cohnnn can be automatically coraputed by existing programs.

of the significant changes of curvature along a planar curve. We review that work here
because our extension to surfaces follows an analogous development. Asada and Brady
deseribe an algorithm that not only detects and localizes significant changes, but describes
those changes symbolically. The simplest descriptor is corner, where two arcs meet con-
tinnously but where the tangent is discontinuous. Other descriptors are composed of two
or more instances of the corner model. The curve that is input to the algorithm is repre-
sented by its tangent 0(s), where s is the intrinsic arclength coordinate. The algerithm
is based on a mathematical analysis of a set of models that are idealized instances of the
descriptors. For example, the corner model is formed by the intersection of two circles.
Note that this is intended as a local approximation to a corner to facilitate analysis. [t
does not prejudice the subsequent approximation of the contour to be piecewise circular.
Rather it suggests a set of knot points for any appropriate spline approximation.

Asada and Brady derive a number of salient features of the curvature of the models
as they vary with the scale of the smoothing (Gaussian) filter. For example, a corner
renerates a curvature maximum, equivalently a positive maxinum flanking a negative
minimum in the first derivative of curvature. The height and separation of these peaks
varies in a characteric fashion over scale. The salient features are the basis of the tree
matching algorithm that locates a curvature change and assigns it a descriptor. Note
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that the distance between peaks varies approximately linearly (in arclength) with scale.

In the next section we develop an analogous mathematical framework for significant
surface changes. Our surface analysis is local and based upon smoothing (locally) cylin-
drical functions with a Gaussian distribution. This is because of the following Theorem,
proved in Brady, Ponce, Yuille, and Asada [1985].
The Line of Curvature Theorem: The convolution of a cylindrical surface with a Gaus-
sian distribution is cylindrical. In more detail, let f(z,y,2) be a surface that is the cross
product of a planar curve and a straight line. The lines of curvature of the convolution of
[ with a Gaussian distribution are in the plane of the curve and parallel to the generating
line. '
In vector notation, a cylindrical surface has the form r(z,v) = zi + yj + f(z)k, and
consists of parallel instances of a curve f(z) in the z - z plane. Our models for roof, step,
smooth join, and shoulder correspond to different choices for the function z = f(z).

The curvature of the smoothed curve is given by the non-linear expression

= gmoot h ( 1 )

(1422 )7

mooth

Ksmooth(m) =
Since Asada and Brady [1984] could work with tangent directions 0(s) along a planar
curve, the curvature was the lincar expression df(s)/ds, so that the curvature of a
smoothed contour is simply equal to the smoothed curvature of the original contour.
This is not the case for surfaces represented as height functions z(z,y). For example,
the (constant) curvature of the parallels of a surface of revolution are modified (see Fig-
ure 15a). The non-linearity of curvature complicates considerably the analysis of surface
change models presented in Section 4 relative to those used by Asada and Brady [1984].
Non-lincarity affects smoothing too, as we discuss in Section 5.

Brady, Ponce, Yuille, and Asada [1985] used the Line of Curvature Theorem directly
in a lwo-step process to detect, localize, and symbolically describe surface intersections,
as follows:

1. Compute the lines of curvature on the surface;
2. Compute significant changes of curvature along the lines of curvature found in the

first step. ' .
The lines of curvature are computed using a best-first region growing algorithm [Brady,
Ponce, Yuille, and Asada 1985]. A good continuation [uncticn is defined between neigh-
boring points of the surface. The function involves the Cartesian distance belween the
points and the inner product of the tangent vectors corresponding to the curvature prin-
cipal directions at the two points. The region growing algorithm joins the point pair
whose good continuation function is globally maximum, and incorporates the new link
into the developing sct of lines of curvature. Brady, Ponce, Yuille, and Asada [1985] show
several illustrations of the algorithm’s performance. [n the sccond step of finding surface
intersections, Asada and Brady’s algorithm for computing the Curvature Primal Sketch,
described in the previous section, is applied to the lines of curvature in turn.

The two step process has been tested on the ohjects shown in Brady, Ponce, Yuille,
and Asada [1985]: a lightbulb, a styrofoam cup, and a telephone receiver, It is robust
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and gives good results, suggesting that the method has competence. Nevertheless, there
are several problems with the method:

e The method is inefficient. Typical running times on a lisp machine for a smoothed
depth map that is 128 points squarc arc of the order of one hour. Much of the time
is spent on further smoothing each of the (typically hundreds of) lines of curvature
at multiple scales, as required by the Curvature Primal Sketch algorithm.

e Multiple multiple smoothing is mathematically confused. The raw surface
data is smoothed at multiple scales o;, giving a set of surfaces z;. The Curvature
Primal Sketch algorithm further smooths the lines of curvature of z; at multiple
scales o, yielding a set of smoothed lines of curvature ry;(s;;). There is no obvious
relation between the scales o; and 0.

o Discretization makes implementation difficult. The lines of curvature of an
analytic surface form a dense orthogonal web. The (smoothed) depth maps we work
with are discrete approximations to analytic surfaces. In practice, the lines of cur-
vature found by the two step process are sometimes broken. The lines of curvature
near the perceptual join of the stem and bulb of the lightbulb shown in Figure 2 il-
lustrates this problem. This is due in part to quantisation effects, but is also because
the principal directions change rapidly near surface discontinuities. This is why the
smooth join between the bulb and the stem of the lightbulb is not found by the two

step process.

e The Line of Curvature Theorem only applies locally. In practice, few surfaces
arc cylindrical in the sensc of the Line of Curvature Theorem. The Theorem is only
approximately true in general, and then only locally. The application of the Curvature
Primal Sketch algorithm in the second step does not respect this.

o Lines of curvature on smoothed surfaces are not planar curves. The models
that are embodied in the Curvature Primal Sketch algorithm are not a complete set
for surface intersections.

The success of the two step process suggests that the method is on the right track.
The problems just enumerated suggest that reducing the problem to apply an existing
algorithm developed for planar curves, though expedient, is wrong. Together, these ob-
servations suggest that a real two-dimensional extension of the Curvature Primal Sketch
should be developed. The next section reports our progress toward such an extension.

4. Toward a surface primal sketch

4.1. A three-step process

In this section we develop a method for finding certain types of changes in the height of
a surface that overcomes the difliculties of the two-step process described in the previous
section. The types of changes we have analyzed and implemented ave as follows: steps,
where the surface height function is discentinuous; roofs, where the surface is continu-
ous but the surface normal is discontinuous; smooth joins, where the surface normal is
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continuous but a principal curvature is discontinuous and changes sign; and shoulders,
which consist of two roofs and correspond to a step viewed obliquely. It turns out that
roofs consist of extrema of the deminant curvature: that is, maxima of the positive max-
imum curvature or minima of the necgative minimum curvature. On the other hand,
steps, smooth joins, and shoulders consist of parabolic points, that is zero crossings of the
Gaussian curvature. They are distinguished by their scale space behavior.

We have implemented the following three-step process (Figure 3) that is illustrated in
the examples presented in Section 6:

Depth
Map
smoothing
¥ e
7 N Theml Thenz7 ” Extrema of curvarure, M
» s g g pee prus
1 K B Ky KKK 1| Parabolic poirs a
£ smoothing I3
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VA > kKK rE R > )
3 P Rl b ] Parabolic points
.L smoothing w s
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z S >
4 VISR A S Rl Parabolic points ?
h
Step ] Step 2 Step 3
v
Surface
Inrersections

Figure 3. Schematic of the three-step process desciibed ‘in fhis paper and in Brady, Ponce, Yuille, and
Asada [1985]. The analysis of the set of models and the matching algorithm are the topic of the present
paper. Results of running the process are shown in Section 6.

1 Smooth the surface with Gaussian distributions at a set of scales o, yielding surfaces
z;. Compute the principal directions and curvatures everywhere;
2 In cach smoothed surface z;, mark the zero-crossings of the Gaussian curvature and
the (directional) extrema of the domninant curvatures;
3 Match the descriptions of the surfaces z; to find pomts that lie on roof, step, smeoth
join, and shoulder surlace discontinuities.
Note that Brady, Ponce, Yuille, and Asada [1985] investigated parabolic lines and lines of
curvature as global descrivtors of surfaces. They suggest that such a line needs additional
global properties, such as planarity, to be perceptually important. In this paper, we are
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interested in parabolic points and curvature extrema as local cues for significant surface
intersections.

We discuss smoothing in more detail in the next Section. The computation of prin-
cipal curvatures is described in Brady, Ponce, Yuille, and Asada [1985]. The next four
subsections analyze steps, roofs, smooth joins, and shoulders. Subsequent subsections
discuss the matching algorithm and further work that is needed to elaborate the model
set. _

Is it necessary to use multiple scales to find surface intersections? Arguments sup-
porting multiple scales for edge finding in images have been advanced elsewhere [see Marr
and Hildreth 1980, Canny 1983, Witkin 1983]. However, it might be supposed that it
would be sufficient to smnooth depth maps with a single coarse filter. Figures 12b and
15a show that this is not so. Even after thresholding, there is still a large curvature
extremumnt in the neck of the bottle running parallel to the axis. This extremum is an
artefact of non-linear smoothing, and it cannot be climinated at a single scale. Instead,
we reject it because it does not change over scale in the characteristic manner of a roof.

4.2. Step discontinuities

A step occurs when the surface itself is discontinuous. The model we use consists of
two slanted half planes whose normals lie in the z — z plane. They are separated by a
height h at the origin (Figure 4). Using the line of curvature theorem, we study the one
dimensional formulation of this model. '

Figure 4. The step model, consisting of two slanted planes separated by a height A at the origin. The roof
model corresponds to the case b = 0 and ky # ks.

Let the curve 2 = f(z) be defined by
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(2)

krz+ct+h, x>0

_ { kiz +c, x < 0;

where h and ¢ are constants. In this expression, h is the height of the step. We now
derive the result of smoothing this function with a Gaussian distribution at a given scale
o. To obtain a symmetric form for this smoothed version, we introduce the two following
parameters:

k= (ky + k) /2
§ = ko — ki

If we denote the smoothed curve (G, * z) by 2, we then obtain

ho [ 12
Ry = C + __-:/ eXp(~‘2‘o"_§)dt

ovV2r) - ‘
T t2
+ kz + _—/ exp(——=)dt 3
= [ ol ®)
152 .
7 P ap)
The first and second derivatives of z, are given by
, 5 [° ¢
2z =k -+ /ex o lt+— ,_e‘n 4)
=k =0 [ i o= 2 )
= (- M- ) ©)
[ 0_‘\/5‘7}' 0,2 2 2

In particular, the curvature x, given by Equation (1), has a zero crossing at the point
Ty = 025/h. This is at the origin if and only if ky = ko, otherwise, the distance from z,
to the origin is proportional to ¢, This is illustrated in Figure 5 for the step between the
cylindrical body and the cylindrical base of the oil bottle shown in Figure 16. From Figure
5, we calculate §/h to be 0.105. The actual height of the step is about 1.5 millimeters.
By the way, the position of the zero crossing shown in Figure Smoves by about 3 pixels
over one octave. '
Using the fact that the second derivative of 2, is zero at z,, it is easy to show that

K‘u' ' LM 26
_;7;7"(%) = ;((,",-7(-"’0) = (6)

So the ratio of the second and first derivatives of the curvature at the zero crossing is
constant over the scales. Calculating 6/h this way gives 0.11, which is close to the value
given by the slope in Figure 5. This suggests that one ought not be overly coy about
computing first and second derivatives of curvature of appropriately smoothed versions
of a surface, even though they correspond to third and fourth derivatives.
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Tigure 5. Variation over scale of the position of the zcro crossing of the curvature of the smoothed step
between the cylindrical body and the cylindrical base of the oil bottle shown in Figure 16. The abscissa
is o?, the ordinate the position of the zero crossing. The height of the step is about 1.5 millimeters. The

slope is § /h = 0.105.

4.3. roof discontinuities

A roof occurs when the surface is continuous, but the surface normal is discontinuous.
Specializing Equations (2) to (5) to the case A = 0, we obtain

L2
1 be 2.7
K = w—
o227 213/2
. 1 + (k + ;‘\76——2—;-_[01 CXI)(“ rzi:—;)dt)
| r (7)
1 be 27

oV 2 273/2

5 zlo u?
1+ (lc + 75 0/ exp(~~2—)du)

From Equation (7), we deduce that for aroof, we have &(«, po) = k(z/p, o). In particular,
this implies that the extremum value of « is proportional to 1/, and that its distance from
the origin is proportional to o. This is illustrated in Figure 6 for the roof discontinuity
between the cylindrical neck and tlie conical shoulder of the oil bottle shown in [igure
16. Tigure 6a shows the variation in the position of the negative minimum of curvature
as a function of scale. Figure 6b shows that curvaturc is directly proportional to 1/o.
It is also easy to show that the second derivative of the curvature, «", is proportional
to 1/¢°. However, we do not use this property in the ciirrent implementation of the
program, relying instead on the the variation of the extremum height over scale.

We look for points that are local maxima (respectively minima) of the maximum (re-
spectively minimum) curvature in the corresponding direction. The curvature directions
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Figure 6. Scale space behavior of the roof discontinuity between the cylindrical neck and the conical
shoulder of the oil bottle shown in Figure 18, a. The position of the negative mininun of curvature varies
linearly as a function of scale as predicted by the analysis. b.The curvature is directly proportional to 1/o,
as predicted. i

can be estimated accurately. We use non-maximum suppression [Canny 1983] to reject
local extrema. The location of the peak, its height, its type (maximum or minimum),
and its orientation, are the features we use for the subsequent matching over scales.

4.4. Smooth join discontinuities

In certain circumstances, one can perceive surface changes where both the surface and
its normal are continuous, but where the curvature is discontinuous. We call such a
surface change a smooth join discontinuity. If the curvature changes sign at a smooth
join, the surface has a parabolic point. As we shall see, such changes can be found from
zero crossings of a principal curvature. It is well-known (sce Asada and Brady [1984] for
discussion and references) that smooth joins where the curvature do not change sign are
perceptible only when the (discontinuous) jump in curvature is “sufficiently large”. In
such a case, there is not a zero crossing of curvature; rather there is a level crossing, and
the curvature typically inflects. We do not yet have a complete analysis of that case.
Our model of a smooth join consists of two parabolas that meet smoothly at the origin
(the curve is differentiable). Figure 7 shows the two distinct cases of the medel. (Though
the two cases appear to be perceptually distinct and lead to different matching criteria,
they are governed by the same Equation (8), so it is convenient to analyze them together
at first.) '
Consider the curve z(z) defined by

I (8)

, { Lo bz +a, x <0
z=1941
§ -g—ct,:c2 4-byx -+ ay, x>0
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Figure 7. The model for a smooth join consists of two parabolas mecting smoothly at the origin. a. The
curvature changes sign generating a parabolic point ou the surface. b. The curvature does not change sign.
Such smooth joins are typically perceivable only when there is a large, dizcontinuous jmup in curvature.

The continuity and differentiability of the curve at z = 0 imply that b = b, = b, say, and
a; == a, = a, say. As in the case of the step, we introduce the parameters

c=(cq+ec)/2
§=cr-c

We can express the surface, smocthed at the scale o, as

1 | ) /x . $2 LA
= — - = exXp [¢
AN Y= N A

bao z?

+ (b + W eXP(—:z“*g)) T (9)
1
= - )t

+(a+2ca +2\/27T/ 22(1)

The first and second derivatives of z, are now given by:

ova2nJo
bo z2
b+ —— exp .
+( +\/~LXI( 20 ;) | (10)

"
=c¢4 —= — 5 )dt 11
KA oy Z/r/() el 2o 2) =
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In particular, we deduce from Equation (11) that the curvature has a zero crossing if and
only if

z/o 2
——]—:/ / exp(-—g—)du S (12)
V2r Jo 2 6
This equation has a solution if and only if the absolute value of ¢/§ is less than 1/2,
which simply corresponds to ¢; and ¢, having opposite signs. It follows that smooth joins
of the sort shown in Figure 7a generate a zero crossing in curvature, hence a parabolic
point on the surface. Those shown in Figure 7b do not.

For example, the parabolic lines found on the lightbulb shown in Figure 8 are smooth
goins. The two-step process utilising the Curvature Primal Sketch algorithm, discussed
in the previous section, failed to find the smooth joins (see Brady, Ponce, Yuille, and
Asada [1985, Figure 1]).

Figure 8. Parabolic lines found by the program described in this Section for the lightbulb shown in Figure
2. The smooth join between the stem and bulb were not found by the program described in Section 4.

Equation (12) implies that thie distance from the zero crossing location z, to the
origin is proportional to ¢. Using this property and the fact that z” is zero at T,, it is
then ecasy to use the Implicit Function Theoremn to show that

K:H z"" '7
—(20) = ;z,‘f(%) == (13)

for some constant . It follows that the ratio of the second and first derivatives of the
curvature in z, is inversely proportional to o. This scale space behavior allows us to
discriminate zero crossings due to steps from those due to smooth joins.
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4.5. Shoulder discontinuities

A step discontinuity confounds information both about the geometry of the surface and
the viewpoint. Shifting the viewpoint to the half space defined by the outward normal
of the “riser” of the step typically changes the depth discontinuity to a pair of roofs of
opposite sign whose separation again confounds geomectry and viewpoint. We introduce
the shoulder discontinuity to cater for this situation (Figure 9).
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Figure 9. The shoulder discontinuity consists of two roofs of opposite sign. The shonlder appears as a ste
o l p
when viewed from the half-space defined by the inward normnal of the “riser”.

We may expect the scale space behavior of the shoulder to closcly resemble that of
the step when the projected separation 2a of the roofs is small compared to the filter size
o, perhaps becoming more like a pair of roofs as the viewpoint shifts. This is what we
find.

We model the shoulder by the function

ki + (k1 —m)a, x < —a;
z = { maz, x € [—a,+a; (14)
kaz + (m — ka)a, x> +a
If we denote ky—m by 6; and ky—m by 6, then 6; # 0, and 62/8; is positive (otherwise the
curve is always convex, or always concave). It is easy to show that the second derivative
of the sheulder, smoothed at scale o is

82 (z — a)z) 61 (z+a)?\"
M= 2 e (- . S I G 15
z, e exp ( 573 oy exp 5o (15)

Since 63/61 is assumed positive, we deduce (rom Equation (15) that the curvature has a
zero crossing. The location of the zero crossing is given by:
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0‘2 (51 »
T, = —log | : (16)

Using the Implicit Function Theorem as in the case of the roof, it is then straightforward
to show that:

K" z(':" 1 b1 :
?(IEO) = ;-(,IT'*((E(,») = —"(;lOg (g) 3 . (17)

so the ratio of the first and second derivatives at the zero crossing is constant over scales.

4.6. Thin bar and other compound discontinuities

The models considered so far involve #solated surface changes. Even though a shoulder
may appear as a pair of roofs if it is viewed close to the normal to the riser and if the
riser subtends a sullicient visual angle, its more typical behavior is like that of a step. As
two (or more) surface changes arc brought more closely together, so that the filter width
o approaches half the separation of the changes, the filter responses due to the individual
changes interfere with each other. Since certain kinds of compound surface discontinuity
are important for recognition and use of objects, they must be modeled and matched by
the program.

This observation raises two questions: (i) which compound surface changes should be
modeled and matched; and (i1) how shall instances be found by the program? Ultimately,
the answer to (i) is application-dependent, though the thin bar, consisting of a step up
closely follewed by a step down, presses for inclusion (Figure 10). Thin bars occur as
ribs on many surfaces, for example along the sides of the neck of a connecting rod. Also,
it seems [Marr 1976, Richter and Ullman 1982] that the mamumalian visual system is
sensitive to thin intensity stripes. In the case of curvature changes along a planar curve,
Asada and Brady [1984] introduce the crank that is analogous to a thin bar since it consists
of a corner followed closely by one of opposite sign. Other compound surface changes
that might be important are a rounded corner and a moulding, that is like a thin bar but
with one of its risers smooth and concave. We have not studied such configurations.

Restricting attention to thin bars raises question (ii): how shall instances be recog-
nised? First, let us conjecture what the curvature response to a thin bar might look like.
We may base our conjecture on Asada and Brady’s [1984] analysis of a crank, though we
need to be cautious becausc their operators were linear. Figure 11 shows the response
that might be expected, indeed the response that is provably generated in one special
case (see below). Unfortunately, the response becomes substantially more complex in the
" general case. o

Note that the thin bar in Figure 11 generates as many as five curvature peaks at fine
scales, reducing to three at coarser scales. Note also that there appears te be a curvature
peak at the origin. Asada and Brady [1984] extracted peaks at all scales and developed
a matcher that linked peaks across scales. The crank model explicitly checked for three
peaks splitting to five in the way shown in Figure 11. Matching such compound (planar
curve curvature) changes was the source of the complexity of Asada and Brady’s program.
In view of the non-linearity of surface curvature, and the two-dimensionality of surfaces,
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Figure 10. Model of a thin bar compound surface discontinuity. It consists of a plateau or height h, width
2a, and slope k3, resting on flat ground of slope k.

— A
e

Figure 11. Expected curvature response of a thin bar to Gaussian flters. At fine scales, the thin bar signals
two separate steps; at coarser scales it resembles a difference-of-Gaussians. The step responses hegin to
interfere when o equals half the separation of the risers.

we are reluctant to implement an analogous peak matching program. In practice, the
peaks from a thin bar may cover as many as fiftcen pixels, suggesting error-prone and
inefficient search. In this paper, we have sought local statements that apply to a single
zero crossing or curvature extremum and studied its scale space behavior in isolation. As
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we shall see, however, the analysis is quite diflicult for a thin bar, even in simple cases.

We analyze a model of a thin bar consisting of a plateau of height h, width 2a, and
slope ko, resting on flat ground of slope k; (Figure 10). We model the ihin bar by the
function

kz, x < :

= { h+ kyz, x € [—a,+a; (18)
kiz, X > +a.

We denote ky —- ky by 6. The first and second derivatives of the smoothed thin bar are

given by:

) z-t+a t2
S L
§ ' : U\/—;T z—a p( 202)

E ) S0 ) o

27 202

P - 127r (5 B (h—ac;)z(gcur a)) xo (_(93;;)3)
)%\

’ a‘ = (5 (bt ba)(e — a)) - (_gxr;};__) (20)

27 o’
These expressions simplify considerably in the case that the plateau surface is parallel to
the ground, that is § = 0. In particular, in that case 2" = 0. However, the curvature
attains an extremum at the origin, equivalently &' = 0, only when ky = 0. This is the
case depicted in IMigure 11, but it is too restrictive siuce it is too sensitive to changes in
viewpoint. Further work is needed here. By the way, the special case k; = kg = 0 is that
typically studied in psychophysical studies of intensity thin bars (eg Richter and Ullman
[1982]). Tt would be interesting to know what is the response to thin bars of intensity

superimposed on a linear intensity ramp.

4.7. The matching algorithm

We now use the models introduced in the previous sections to detect and localize
surface intersections. We track the extrema of curvature and parabolic points found
at each scale from coarse-to-fine. The tracking is directed by the particular features
associated with each model. In essence, the features constitute a local signature of the
model. This should be contrasted with the complex search for peak configurations used
by Asada and Brady [1984].

We first smooth the original depth map with a Gaussian dlsulbutwn at a variety of
scales o (see Figure 3). We then compute, for each smoothed version of the surface, the
principal curvatures and their directions (using the method described in Brady, Ponce,
Yuille, and Asada [1985]). We also compute the first and sccond derivatives of the
principal curvatures in their associated directions. Parabolic points (zero crossings of the
Gaussian curvature) are then marked, as are the (directional) maxima of the maximum
curvature and minima of the minimum curvature (Figure 12a). The marked points are
thresholded, according to their type:
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e curvature extrema whose values are less than a preset threshold are removed;

o zero crossings whose slopes are less than a (different) threshold are removed.

Figure 12b shows the result of thresholding the feature point sets in 12a. The thresholds
vary according to scale. For example, the extremum threshold varies proportionally to
1/0, as suggested by our analysis of the roof model (sec Section 4.3). To date, we have not
derived an analogous formula for the scale space variation of the zero crossing threshold.

Figure 12. a. The extrema and zero crossings of curvature for the cil botile at four scales that increase
from left to right. The total variation in scale is one octave. b. The feature points in (a) that are above
threshold. Note the curvature extrema paraliel to the axis of the bottle that are artifacts of the non-linear
smoothing. Note also the numerous parabolic points at the finest scale that are not thresholded. These
non significant points are eliminated by the matching algorithm (Figures 13 and 186).

This is not a major problem, however, as the thresholding step is only used for selecting
a set of candidates for the subsequent matching process, rather than finding the surface
intersections themselves. For example, the curvature extrema parallel to the axis of the
oil bottle, that are due to the non-linear smoothing (Figure 15), cannot be eliminated by
thresholding, but are rejected by the matching algorithim (Figure 16) since they do not
conform to a model.

The matching algorithin is a two-dimensional extension of that proposed by Asada
and Brady [1984]. We track the thresholded extrema and zero crossings across scales,
from coarse to fine. We obtain a forest of points, equivalent to a “fingerprint” [Yuille
and Poggio 1983]. Paths in the forest correspond to a feature point (zero crossing or
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extremum) as it is tracked across scales. Points al the finest scale that have no ancestor
at the coarsest scale on their path are eliminated. This constitutes the detection of surface
changes. To localize surlace changes, we note that in each case analyzed in Sections 4.2
through 4.6 the distance of the feature point from the origin increases with o. For this
reason, the position of the surface change is determined fromn the finest scale.

Finally, cach path (the scale-space tracking of a featurc point) is assigned a local
stgnature: roof, step, smooth join, or shoulder, depending on the behavior of its curvature
and its first and second derivatives of its curvature across the scales. That is, the path
is analyzed according to the the models developed in Sections 4.2 through 4.6. The
parameterized local signature provides a symbolic description of the surface change on
which the feature point lies.

Figure 13 shows the matching algorithm at work on several image slices of the oil
bottle shown in Figure 12. The final result is shown in Figure 16. The three parts of
Figure 13show, for consecutive pairs of scales, points that have been matched in the
same set of eighteen image slices of the oil bottle. The upper group of cighteen graphs
corresponds to the coarsest scale (called “80” because it corresponds to eighty iterations
of the smoothing computational molecules [Brady, Ponce, Yuille, and Asada, 1985]) being
matched to the next-to-coarsest scale “60”. The middle group corresponds to matching
between scales 60 and 40; the bottom group to scales 40 and 20 (which is the finest scale).
In a given position in the blocks of eighteen graphs, say the fourth from the left in the
middle row, an image slice is tracked across the three pairs of scales. Let us consider one
of the pairs of scales, say 60 and 40 shown in the middle block. Feature points that are
matched are linked by a vertical line.

Matching is not straightforward:

o Surface changes lie on space curves.

Consider, for example, a roof discontinuity whose local signature is a curvature extremum.
In the Curvature Primal Sketch, curvature extrema are izolated points along a one-
dimensional curve, and .this makes the construction of the trees of corresponding feature
points relatively simple (see the figures in [Asada and Brady 1984]). In three dimensions,
however, surface changes constitute continuous space curves. The association of an an-
cestor (respectively descendant) with a given feature point is often ambiguous, and this
complicates the construction of the forest. This, in turn, makes difficult an a posterior:
interpretation of this forest.

Our solution is to compute a compatibility between cach matched pair of marked
points. The compatibility function itvolves the Cartesian distance between the points
and the angle between their associated principal directions, but also takes into account
the roof model by comparing the ratio of the poiuts curvatures to the inverse of the ratio
of the associated scales. At each scale, and for cach thresholded extremum, we look for
an ancestor inside a square window of the previous scale image. If an ancestor with a
sufficiently high score is found, then the point is kept as a potential ancestor for the
next scale. Otherwise it is removed. This way, the forest is never explicitly built, and
the interpretation is done during the tracking itself, as the only extrema tracked are
those which correspond to potential roofs. In particular, this is how the artefacts due to
non-linear smoothing are removed.
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Figure 13. Matching feature points across scales. See text for detasls.

e Parabolic points are generated by sevoral models.

Curvature extrema are only generated by roofs in our model sct. However, parabolic
points (zero crossings) may correspond te diflerent types of discontinuities. Worse, a point
may simultancously be a zero crossing of the Gaussian curvature, and an extremum of
a principal curvature! Again, our solution is to defins compatibility functions for steps,
shoulders, and smooth joins, that take into account their mathematical models. The
compatibility functions are based on the behavior of the ratio of the second and first

derivalives of curvature. At each scale, a point may be a candidate for several different

©
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types of intersections, and be associated to an ancestor of each of these types. The use of
multiple scales is usually sufficient to disambiguate between the different cases. If several
interpretations remain after the finest level has been taken into account, the one with the
best cumulated compatibility score is chosen.

Note that, although we have analyzed the behavior of the position of the characteristic
point of each of our models, and have found it simple and reliable, we do not use it in the
compatibility functions. The reason is that, for each intersection found, the real origin
on the surface is unknown. This implies that at least three matched points are necessary
to estimate the parameters of the motion of the extremum or zero crossing across the
scales, and makes the measure of this movement unsuitable for a scale-to-scale tracking.
However, the estimation of the movement parameters could be used for an a posterior:
verification of the surface intersections found.

5. Smoothing a surface with a Gaussian distribution

Brady, Ponce, Yuille, and Asada [1985] discuss techniques for smoothing a depth map
with a Gaussian distribution. The main difficulty stems from bounding contours, where
the surface normal turns smoothly away from the viewer, and where there is typically a
substantial depth change between points on the surface of the object and the background.
In general, the bounding contour is easy to find, even with a simple edge operator or by
thresholding depth values. The problem is how to take the boundary into account when
smeothing the surface.

Brady, Ponce, Yuille, and Asada [1985] observed that if the smoothing filter is applied
everywhere, the surface “niclts” into the background and changes substantially. Figure
14 is reproduced from Brady, Ponce, Yuille, and Asada [1985, Figure 13c] and shows this.
They suggested instead using repcated averaging [Burt 1981, 1983] as well as adapting
Terzopoulos’ [1983] technique of computational molccules to prevent leakage across depth
boundaries. This smooths the surface without substantially altering it (see Figure 14c).

Here we point out a slight difficulty in smoothing surfaces using the technique illus-
trated in Figure 14c, and suggest a refinement. Although the smoothed surface appears
to be close to the original, small orientation-dependent errors are introduced. These
errors are magnified in computing the curvature (Figure 15a), to produce “false” cur-
vature extrema near the boundary (compare the overshoot phenomenon in Terzopoulos’
[1983] work on detecting surface discontinnities). The overshoots do not exemplify Gibbs’
ringing as we originally thought. Instcad, the phenomenon is caused by two effects:

. © The coordinate frame is not intrinsic. The smoothing filter is applied in the
z — y plane, and since this is not intrinsic to the surface, the result is orientation-
dependent. For example, the difference between a cylinder and its smoothed version
monotonically increases to the boundary from a value of zere where the normal faces

the viewer.
o Points near the boundary don’t get smoothed as much. Such points are

relatively unsmoothed as several of their computational molecules are continually
inhibited. The result is that the difference between the smoothed and original surfaces
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Figure 14. a. Raw data from a cross section of an oil hottle after scanning using the INRIA system.
b. Smoothing across surface boundaries with a Gaussian mask that is applied everywhere. ¢. Gaussian
smoothing using repeated averaging and computational moleculos.

(Reproduiced from Brady, Ponce, Yuille,
and Asada [1985, Figure 12])

o ete o o o o o o
s e e e e v e

Figure 15. a. The curvature computed from the smoothed surface shown in Figure 14c. Small ovientation-
dependent errors in smoothing are magnified. The first fignre is the neck, the secoud part of the body. D,
The curvature on the slices shown in a. computed

asing the intrinsic cocrdinate method deseribed in the
text :

decreases at a certain distance from the boundary. This creates an inflection point,
which in turn creates an extremum of carvalure,
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It is possible to substantially reduce the effect of this problem by smoothing in intrinsic
coordinates. At cach point of the surface, the normal is estimated. Instead of smoothing
z, the surface poiut is moved along its normal a distance that depends upon the projected
distances of the points neighbors from the tangent plane. In the case that the normal
faces the viewer, this is equivalent to the previous technique. However, the result is
no longer orientation-dependent. Figure 15b illustrates the computation of curvature
after smoothing the oil bottle by this method. The drawback with the technique is the
computation it requires one to compute the tangent plane at every point.

The technique described in Brady, Ponce, Yuille, and Asada [1985] has been used in
all the examples presented here, as it represents a good tradeoff between computational
efliciency and faithful rendering of the smoothed surface.

6. Examples

In this section, we present a number of examples of the surface discontinuities found on
simple objects by our algorithm. In all the examples, we use four different scales corre-
sponding to 20, 40, 60, and 30 iterations of the smoothing filter described in Brady, Ponce,
Yuille, and Asada [1985]. Viewing the resulting centrally-limiting Gaussian distributions
as approximately bandpass filters, they span one octave.

I'igure 16 shows the final output of the algorithm for the oil bottle. The points
detected during the matching step are linked together using a connected components ex-
ploration algorithm. The smalilest components (less than 3 or 4 pixels) are then removed.
Conversely, points may have been missed duving the previous phases, creating gaps in
the lines that are found. These gaps are filled by adding points that have characteris-
tics compatible with the detected points. The bottle is finally segmented into six parts,
separated by three step edges and two roofs. ‘

Brady, Ponce, Yuille, and Asada [1985, Figures 18 and 19] showed that the coffee cup
shown in Figure 17 is best represented as the join of a cylindrical body and a tube surface
that corresponds to the handle. Tere we show that the handle can be scparated from the
body using the algorithms described in this paper. Note that the surface intersections
are of type roof.

The third example shows the surface intersections found on a telephone handset, Fig-
ure 18. All the major intersections have been found. The representation is not symmetric
becausc the handset was not quite perpendicular to the scanner, causing part of the sur-
face to be occluded. Note that the surface interscctions are more reliably detected at the
coarsest scale, but are more accurately localized at the finest scale.

The surface intersections found on a few simple tools, namely a hammer, a drill, and
the head of a screwdriver are showed in Figure 19.

Figure 20 shows the surface intersections found on an automobile part that has fea-
turcd in several papers by the group at INRIA. On this complicated object, global lines
of curvature have no signification, so the Curvature Primal Sketch would not perform
well. Notice in particular the circular step edge found on the left “head” of the part:
it corresponds to a shallow depression whose depth is about one millimeter. This is
approximately at the resolution limit of the laser scanner, and underlines the practical
significance of the algorithms described here.
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PRRABOLIC LINES

HIGIAA OF THE MIHINUN CURVAIFE

PRXINA OF THE RAXINUM CURVAIURE

Figure 16. The oil bottle is segmented into six parts. Three step and two roof intersections are found by
the algorithm described in this paper. The algorithms described in Brady. Ponce. Yuille, and Asada [1985,
sce Figure 18] determine the lines of curvature of the parts of the oil bottle, fit circles to the parallels, and
fit axes to the centers of those circles.

[

MININA OF THE NININUM CURVATURE l{‘

Figure 17. The joius of the handle to the body of the coffee mug are computcd by the algorithms described
in this paper. They are determined to be of type roof.

Figure 21 shows the surface intersections found on the head of a connecting rod. The
current state of our algorithm cannot deal with the thin bars located on the sides of the
neck of the connecting rod, but performs well for the other intersections.

The last example is the mask of a human face (Figure 22). The program finds face
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Figure 18. a. The surface intersections found on a telephone handset at the coarsest and finest scales that
are approximately an octave apart. The iutersections are more reliably detected at the coarsest scale; they
are more accurately localized at the finest scale. h. The results of matching the changes across scales.

PARINA OF CURVATURE

Figure 19. The intersections found by the nrogram on simple tools. a. a bammer. b. a drill c. a screwdriver
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features as the nose, the eyes, and the mouth. This shows its ability to deal with arbitrary
curved surfaces, usually not lound in man-made objects.

Although our primary concern in this paper has been with the intrinsic geometry
of a surface as found by a three-dimensional vision system, onc might suppose that
the methods described in this paper could be applicd straighforwardly to extract and
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Figure 20. Surface intersections found on an automobile part (sce, for example, Faugeras [1982, 1984]).
The circular step edge found ou the left “head” of the part corresponds to a shallow depression whose
depth is about one millimeter. This is approximately at the resolution limit of the lascr scanner.
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Figure 21. Surface interscctions found oun a comnnecting rod. Only the head of the part is shown. The
inclusicn of the thin bar models in the algorith would allow a fine description of the neck of this object.

interpret significant intensity changes in images, considered as surfaces. 1o interpret
intensity changes, it is necessary to take irradiance effects into account, since intensity
changes do not always correspond to surface changes. Rather, they may signily reflectance
or illumination changes. Extraction and interpretation was in fact the intent of Marr’s
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Figure 22. Surface intersections found on a mask. The mouth, the nose and the cyes are found as corners

by the program.

[1976] original work on the Primal Sketch, though considerably more attention was paid
to extraction than interpretation. More recently, Haralick, Watson, and Laffey [1983]
have advecated a representation of image surface geometry that involves concave and
convex hills, planar regions, and saddles. These geometrical aspects of the image surface
are not luterpreted in terms of the intrinsic geometry of the surface, or of illumination or
reflectance changes.

Some preliminary ‘work exists on interpretation of intensity changes. An early edge
finder developed by Binford and Horn [Binford 1981] included filters for step, roof, and
“edge effect” changes. I[Torn’s [1977] study of intensity changes included a suggestion
that occluding boundaries and reflectance changes correspond to step intensity changes,
while concave surface intersections gencrate roof intensity changes (because of mutual
illumination). Finally, Yuille [1983] suggests that certain points along lines of curvature
of a surface can be extracted directly from an image. There is much scope for additional
work along these lines.

Figure 23 shows an initial experiment we have carried out on applying the methods
1eveloped in this paper to image surfaces. The join of the wing to the fusclage of the
airplane is determined to be roof changes, consistent with Horn’s suggestion.
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Figure 23. Application of the methods of the paper to an intensity surface. The interest is in the type of
the internal intensity changes. The join between the wings and fuselage is a roof, suggesting a concave
surface intersection.
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