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Abstract. This paper describes a method by which range data from a sonar or
other type of rangefinder can be used to determine the 2-dimensional position and
orientation of a mobile robot inside a room. The plan of the room is modeled as a
list of segments indicating the positions of walls. The method works by extracting
straight segments from the range data and examining all hypotheses about pairings
between the segments and walls in the model of the room. Inconsistent pairings
are discarded efficiently by using local constraints based on distances between walls,
angles between wall-. and ranges between walls along their normal vectors. These
constraints are used to obtain a small set of possible positions, which is further pruned
using a test for physical consistency. The approach is extremely tolerant of noise and
clutter. Transient objects such as furniture and people need not be included in the
room model, and very noisy, low-resolution sensors can be used. The algorithm’s
performance is demonstrated using a Polaroid Ultrasonic Rangefinder, which is a
h_)w-resolutbn, high-noise sensor.
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1 Problém Deﬁnition

The specific problem considered in this paper is that of enabling a mobile robot
to determine its position and orientation (its configuration) inside a building in a way
independent of assumptions about its previous movements. This ability will be called
absolute localization, or simply localization. localization is the direct measurement of
vehicle position. I is to be contrasted with dead-reckoning, or trajectory integration,
which is the process of measuring a vehicle’s velocity relative to nearby stationary ob-
jects (the ground, for example), and deducing the vehicle’s position from its velocity
history.

Since the errors encountered in dead-reckoning are cumulative, a robot that nav-
igates by dead-reckoning alone will eventually lose track of its position. Ultimately,
this can be prevented only by periodically re-establishing the absolute position of
the robot. Therefore a means of localization is necessary for safe, reliable robot nav-
igation. Mobile robots that will someday be operating in factories, offices, homes,
hospitals, etc., will need a reliable means of localization.

Some solutions to this problem have been proposed that require modxﬁcatmns
to the environment, such as triangulation from infra-red beacons [Giralt, Sobek,
& Chatila 79]. Tt would be desirable to solve the problem without modifying the
environment. Furthermore, most of the mobile robot navigation schemes developed
so far, such as in {M(Sra.vec 811, are essentially dead-reckoning methods, which lack
any provision for periodically localizing the robot. Such schemes could benefit from
the addition of a means of localization.

In the localization approach described in this paper, the robot’s environment is a
room or area inside a building. The environment could include the whole building.
The robot’s user must provide a model of the room consisting of a list of segments in-
dicating the locations of walls. Such a rmodel is easily constructed from an architect’s
drawing or with a tape measure.

The rargefinding device used in this paper is a Polaroid Ultrasonic Rangefinder,
but any rangefinder may be used (see, for example, [Jarvis 83] and [Thompson 79]).
We will henceforth call ultrasonic rangefinding sonar for short.

The closed contour obtained by a 360-degree sweep with a sonar beacon will be
called a sonar contour. The lines drawn from the robot position to the individual
data points in the sonar contour represent individual range readings, and are called
sONar rays.

Frgure 1 shows a typical room outline, a typical sonar contour obtained from
inside the room. and the corresponding localization as determined by the algorithm.

2 Approach

~ Some recent papers (|Grimson & Lozano-Pérez 83| and |Gaston & Lozano-Pérez
84]), have introduced a new approach to object recognition and localization based on
exploiting simple geometric constraints between sensed data and a model. Sections




Drumbheller: Robot Localization Using Sonar

Sonar-deternined configuration: x = -43.1 ft vy = 8.3 ft ~32 deg.

Actusl configuration was: x = -43.2 ft y = 8.3 ft =36 deég.

Figure 1: A typical room, a sonar contour obtained from inside the room, and the
localization produced by the algorithm. Note the printed numerical results

2.4, 2.5, and 2.7 are based largely on the object recognition method described in
(Grimson & Lozano-Pérez 83, 84| and [Gaston & Lozano-Pérez 84]. The main differ-
ence between these sections and these papers is the use of sonar segments. which are
straight segments extracted from a sonar contour by a simple line-fitting algorithm,
instead of position ‘normal-vector pairs, as the primary inputs to the algorithm.
This paper introduces a new idea, called the sonar barrier test, in section 2.6. The
sonar barrier test checks for physical consistency by determining whether the shape
of a sonar.contour for a proposed Jocalization is consistent with the simple fact that
sonar beams do not penetrate solid objects. 1f an inconsistency is found, the proposed
localization is discarded. The sonar barrier test makes possible overall algorithm
performance that is superior to what was obtainable using only the methods described

in |Grimson & Lozano-Pérez 83, 84| and |Gaston & Lozano-Pérez 841.
i 3 i

[Miller 84} also describes an approach to robot localization using sonar, following
the methods of |Grimson & Lozano-Pérez 83, 84} and |[Gaston & Lozano-Pérez 84].
The method described in [Miller 84] uses single sonar rays instead of larger data
features as the primary inputs to the algorithm, and it uses a different set of local
geomelric constraints. Nothing analogous to the sonar barrier test is presented, and
only one experimental result is shown. ‘

Our approach is to consider the localization process to be a 2-dimensional match-

ing (including rotation) between the sonar contour and the room outline. We wish
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Figure 2: Some straight segmerits ertracted from a typical sonar contour.

to determine the geometrical relationship between the robot and the room. The con-
figuration of the robot relative to the sonar contour is always known, so if we can
determine a possible configuration for the sonar contour relative to the room outline,
then we will have found a possible configuration for the robot inside the room.

The goal of the localization process, therefore, is to find possible matches of the
sonar contour to the room outline. We proceed in four steps:

1. Extract straight line segments from the sonar data: Straight segments
extracted from a sonar trace are called sonar segments. An example of some
sonar segments extracted from a sonar contour is shown in Figure 2. The
matching process is initially driven entirely from the sonar segments, which are
usually the sonar images of walls.

2. Generate feasible interpretations: A set of feasible interpretations of the
sonar segments is constructed. An interpretation is a set of ordered pairs of
sonar segments and walls, where [(seg; wall,,) (seg; wall,))...], means “it
is feasible that seg; could be the sonar image of wall,,, seg; could be the
sonar image of wall,,, etc..” Interpretations that are inconsistent with local
constraints (derived from the model) on the sonar segments are discarded.

3. Global Model Test: The feasible interpretations are tested for consistency

- with the equations of the walls in the model. An interpretation is admissible
if it is possible to find a rotation and translation of the sonar contour that
would superpose each sonar segment over the wall with which it is paired, while
keeping the sensor inside the room and the sonar segment endpoints within the
limits of the wall endpoints.
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4. Sonar Barrier Test: An interpretation may represent a geometrically feasible
configuration for the sonar segments alone, but an impossible configuration for
the entire sonar contour. In particular, each interpretation that survives the
global model test must also pass the sonar barrier test, namely: an admissible
robot configuration must not imply that any sonar ray penetrates a known solid
object.

The second step is the key to the process. The number of possible interpreta-
tions, given s sonar segments from the sonar contour and n walls in the model, is n*.
Since the global mode] test and the sonar barrier test are computationally expensive
processes, it would be impractical to perform each of them on all possible interpreta-
tions. [Grimson 84| shows that the number of feasible interpretations can be reduced
to manageable numbers through the use of local geometric constraints.

2.1 The Rangefinder and Rangefinding Error

The Polaroid Ultrasonic Rangefinder was chosen for this research because of its
simplicity, availability, and low cost. It consists of an ultrasonic transmitter, a mi-
crophone, and a timing mechanism. The transmitter and microphone functions are
performed by a single physical transducer. Range information is obtained by broad-
casting a pulse of ultrasound and measuring the elapsed time until an echo is received.
The Polaroid Ultrasonic Rangefinder is described in detail in [Polaroid]. Other suit-
able rangefinding devices are described in [Massa] and [Jarvis 83].

There are several sources of error that can corrupt sonar range data. These are
discussed in the following paragraphs.

2.1.1 Errors Due to the Shape of the Sonar Beam

The beam pattern of the Polaroid device is similar to the complicated multi-lobed
pattern produced by any circular-disk acoustic emitter. For simplicity, however, we
model the beam as cone-shaped. (Sec Figure 3.) '

When the Polaroid device is aimed perpendicular to a flat surface it reports the
true range to the surface to within about one-half of an inch. However, the range error
can be much larger when the beam strikes a surface with a large angle of incidence.
The reason is that the edge of the wavefront is reflected back to the sensor instead of
the centerline (see Figure 4). This effect, called radial error, often results in errors
greater than one foot.

Because of the large beam width (the beam has a half-angle § of about 15 degrees),
the rangefinder tends to produce a blurred image of its surroundings. This effect,
called angular error, is similar to convolving a range contour obtained by a perfect
rangefinder with a pulse whose width is proportional to the range being measured.

For simplicity, we will henceforth lump radial and angular errors together, mod-
elling their combination as unpredictable but bounded by a constant F; thus we
assume that the location of the endpoint of any particular sonar ray may be in error

4
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Figure 3: Cone-shaped approzimation of actual multi-lobed beam pattern.
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Figure 4: Ranging error can be caused by edge-of-beam reflection.

by as much as E. The actual value of E, which is determined empirically, will be
discussed in the Results section.

2.1.2 False Reflections

Based upon the preceding discussions. one might think it possible to extract,
with reasonable accuracy, the room outline fron: the sonar contour by means of
a deconvolution process. However, the nature of ultrasound reflections makes this
virtually impossible.

- The pulse emitted from the Polaroid device has a {frequency of about 55 kHz and
a wavelength of about a quarter of an inch. Therefore, unless the sensed surface has
irregularities whose size is of the same order, the sonar beam will not be scattered.
It may bounce off into oblivion after striking the surface at a large angle of incidence,
instead of reflecting a strong echo back to the sonar receiver. This effect, called false
reflections, occurs whenever the incidence angle of the beam, called 9, is greater than

5
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Figure 5: The Cone of Reflection, with half-angle ~.

a critical angle called ~y, which defines the cone of reflection (CR) for the surface (see
Figure 5). A sonar beam striking a wall from inside the CR will reflect back to the
sensor with sufficient strength to produce an accurate range reading. A beam striking
the wall from outside the CR will be reflected away from the sensor, producing an
unrealistically long sonar ray. The sonar beam thereby apparently penetrates the
wall. An example of this effect may be seen as the sharp “horn” jutting out of the
sonar contour in Figure 1.

Every surface material has its own CR half-angle, which may range from seven
or eight degrees (for glass) to nearly ninety degrees for rough surfaces.

2.2 Clutter

Another source of error that the localization method must overcome is cluiter.
Clutter is any object that 1s not included in the room model. Clutter often distorts
sonar contours so much that they bear almost no overall resemblance 1o the room
outline. We will show that the approach described here is very effective at ignoring
clutter.

2.3 Extracting Straight Line Segments

A sonar contour consists of 100 range readings, taken from a single position in
the room, at 3.6-degree angular intervals. The sensor was mounted at an altitude
of 5.5 feet on a stepper-motor driven “head,” which could position the sensor under
computer control. .

The straight-line finder used for extracting straight segments from a contour is
the “iterative endpoint fit,” described in [Ballard & Brown 82]. This algorithm
extracts the contiguous non-overlapping subcontours from a sonar contour that best
approximate straight segments. (A contiguous subcontour is a group of sonar ray

L6
j
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L(S, W) (S, W3)(SaWa)]

Figure 6: An ezample of an interpretation tree for a 4-wall room model and a $-seg-
ment sonar contour.

endpoints that occur consecutively in the sonar contour.) The algorithm has two
operating parameters, N and 6; it finds the set of longest non-overlapping contiguous
subcontours containing at least N points, and having no point farther than é from
the line passing through the endpoints of the subcontour.

2.4 Generating Feasible Interpretations

After obtaining a sonar contour and extracting the sonar segments, we have up
to s sonar segments S;, and we seek a geometrically consistent pairing of these sonar
segments with some number k of the n walls that comprise the model of the building.
For now we will assume that all the sonar segments arc sonar images of walls. (This
is not necessarily the case, since a piece of furniture or other clutter, or even sensor
noise, may give rise to a sonar segment that cannot be interpreted as the sonar
image of any wall. We will address this issue later in this paper.) The range of
possible interpretations can now be cast in the form of an interpretation tree (1T}, an
example of which is shown in Figure 6. The root node of the IT has n descendants,
each representing an interpretation in which S; is the sonar image of a different wall
in the room model. There are a total of s levels in the tree. A node at level ¢ indicates
one set of possible pairings of sonar segments S; through S; with the walls of the
room.

2.5 Pruning the IT Using Local Constraints

~ Only a small number of the interpretations in the 1T are geometrically consistent
with the sonar contour. We can exploit the following local constraints to prune the
) inconsistent interpretations:

1. Distance Constraint—The range of possible distances between points on
a pair of sonar segments, taking sensor error into account, must overlap the

7
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Figure 7: The range of distances between wall pairs and sonar segment'pairs.

range of distances between the pair of walls that they are assigned to in an
interpretation.

Consider the pair of walls W,, and W,, and.the pair of sonar segments S; and
S; in Figure 7. The range of distances between W, and W, is [A, B], and
the range of distances between S; and S; is [C, D], where 4, B, C, and D are
defined by Figure 7 for this situation. (A4, B, C, and D can be calculated easily
for any pairs of sonar segments and walls.) However, the range |C, D] does not
take sensor error into account. Using our simple bounding-constant model of

rangefinder error, the range of possible distances between S, and S; becomes
((C +2E), (D + 2E)|.

Therefore, if an interpretation assigns S; to W, and S; to W,,, then it must be
true that (D - 2E) < B and (C +2E) > A for the interpretation to be feasible.

2. Angle Constraint—The range of possible angles between a pair of sonar seg-
ments. taking sensor error into account, must include the known angle between
the pair of walls that they are assigned to in an interpretation.

Figure 8 shows that since any sonar measurement can be in error by as much
as E, then any sonar segment S, may be regarded as (possibly) the image of
some straight object having a minimum length d, and occupying any position
inside the dashed line surrounding S;. The orientation of S, can be seen to
be in error by as much as ¢;. Thus the range of possible angles between two
sonar segments S; and S; is [(6 — (¢, + &;)). (0 + (¢ + ¢;))]. If the known angle
between W, and W, is cn,, then an interpretation assigning S; to W, and S,
to W, is feasible only if (6 — (¢ + ¢;)) < apn < (0 + (60 + ¢5)).

In practice, the above geometrical construction for computing the angular error
of a sonar segment is unrealistic for sonar segments whose length is of the
same order as E. Therefore, it is useful to place an upper bound E; on the
angular error for a sonar segment. The actual value of E;, which appears in
the Results section, is determined empirically by estimating its value in several

8
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Figure 8: Calculating the angular error ¢; for a sonar segment S;: S; 1s possibly the
image of a straight object of minimum length d;, occupying any position inside the
dashed line. Therefore, the orientation of S; may be in error by as much as ¢;, as
shown.

sonar contours.

Note that any wall or sonar segment P, has an inward-pointing normal vector,
Np, whose positive direction is toward the inside of the room or toward the
sensor. It is thus natural to define the angle between two walls or sonar segments
as the inner product of their normal vectors. However, this definition provides
less geometric constraint than is really available. Consider Figure 9. The inner
product of the normal vectors of sonar segments S, and S, is the same as that
for walls W, and W,. It is clear from the figure, however, that it would not make
sense to assign S, to W, and Sy to W,. For this reason, we define the directed
angle between two walls or sonar segments P; and P; to be the pair of numbers
(A,,.B,,). where A;; is the component of P;’s inward-pointing normal vector
np in the direction of ﬁpj, and B;; is the component of nip in the direction to
the right of fip,. Defined in this way, the directed angle between S; and 5, is
not equal to that between W, and W.

3. Normal-Direction Constraint-- This constraint. is most easily explained us-
ing an illustration (see Figure 10). Sonar segments S, and S), survive the
distance- and angle-constraints for the interpretations [(S, W,)(S, W,)| and
Sy W,)(S, W.)]. It is clear, however, that only the latter interpretation is
geometrically consistent. This is because the range of distances between a pair
of sonar segments S, and S; in the direction of each sonar segment’s inward-
pointing normal vector must be consistent with the similar range for any pair of
walls W, and W,,. In Figure 10 we can see that the range of distances from S,
to S, along ng, is consistent with the range of distances from W, to W, along
Ny, but it is not consistent with the similar range from W, to W..

This “normal direction range” is computed straightforwardly for pairs of walls.
The position error £ and the angular error £, must both be included when
computing this range for a pair of sonar segments. This may be quickly approx-
imated by considering the maxima and minima of the normal ranges occurring

0
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Figure 9: A situation illustrating the usefulness of the directed angle concept.

in a few extreme cases of possible sonar segment orientations and positions
relative to walls.

The local constraints described above are described in greater detail in [Gaston
& Lozano-Pérez 83], |Grimson & Lozano-Pérez 83|, |Grimson 84|, and [Drumheller
84].

Using these constraints, the IT is expanded in the following way: At the first level
in the IT, Sy is allowed to be paired with each wall that is longer than it, since none of
the above Jocal constraints (which are all pairwise) applies to solitary sonar segments.
Below the [(S; W,)] node at the second level, S, is paired with each wall W; that is
consistent, based on the local constraints, with the pairings |(S; W;)(S; W;)]. Below
the node [(S; W;)(S: Wy)| at the third level, S; is paired with each wall W, that is
consistent with the pairings [(S; W,)(S; W))| and [(S, W})(S; W,)]. Note that for a
segment-wall pairing to be consistent, it must be consistent with every pairing that
leads to it on a path through the IT. Thus, for a three-segment interpretation the
local constraints must be applied to three segment-wall pairings, and in general (};)
pairings for k sonar segments,

The above constraints will usually prune all but a handful of the non-feasible
interpretations from the I'l. The pruning often occurs very early in the generation
process, eliminating large subtrees from consideration. 1t is important to note that
the constraints will not generallv reject all impossible interpretations. Suppose, for
example, that the interpretation |5, W, )(S; W,)| easily passes the distance con-
straint, even though S, and S, must eventually be situated within two relatively
small intervals on W, and W,. This restriction on the positions of S; and S; is
ignored at further generation steps, since further sonar segments will be required to
be distance-consistent with the full lengths of W,, and W,, instead of the small in-
tervals implied by the previous pairings. In order to guarantee that all the available
geometric constraints on the sonar segments are used, we use the global model test,

10 -
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Figure 10: The geomelry of the normal direction constraint.

which is described later.

Of course, the above constraints are not the only ones that may be used in this
kind of application. They were chosen because they are very simple to implement,
and because similar ones have been shown to be very effective despite their relative
weakness; refer to [Grimson 84] and [Grimson & Lozano-Pérez 83] for results that
demonstrate this point.

2.5.1 The Global Model Test

In the global model test we seek, for each surviving interpretation, a translation
and rotation of the sonar contour that will superpose each sonar segment onto the
wall with which it is paired. In this paper we use a simple averaging scheme as
follows:

To find the orientation of the sonar contour, we assume that each segment lies
flat against its assigned wall. Thus, each segment-wall pairing implies a particular
orientation for the sonar contour with respect to the room. The average of these
orientations is taken to be the actual value of the orientation of the sonar contour.

To determine the proper translation, we take each pair of pairings in the in-
terpretation and determine the translation that causes the midpoints of the sonar
segments to intersect their assigned walls, given the sonar contour orientation de-
termined above. (A compact algorithm for computing this translation appears in
|Grimson & Lozano-Pérez 83].) The average of these translations is taken as the
actual value of the translation of the sonar contour. Note that a pair of pairings in
which both sonar segments or both walls are parallel to each other does not help to
locate the robot uniquely. Therefore, the translation contribution from such pairs is

11
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ignored.

Once we have determined the configuration implied by a particular interpretation,
we check 1o be sure the endpoints of each sonar segment lie within E of the wall with
which it is paired. We must also check to be sure that each sonar segment lies within
E of the finite bounds of these walls. (Since the walls are described as segments,
not infinite lines, it is possible that some sonar segments may be transformed to lie
beyond the endpoints of the walls, which would disqualify an interpretation.)

2.5.2 The Inside Test

The global model test includes a simple check to make sure that the interpretation
under consideration localizes the robot to lie inside the room. This procedure uses
the well known fact that a point lies inside a closed contour if and only if ray drawn
from the point to infinity intersects the contour an odd number of times.

2.6 The Sonar Barrier Test

There is one final test that each interpretation surviving the global model test
must pass: An admissible interpretation must not imply that the sonar beam pene-
trates any walls from inside their cone of reflection.

Figure 11 illustrates this point. After we have performed the global model test
we are left with a set, which may be empty, of possible sonar contour (and thus
robot) configurations. For example, in Figure 11, each proposed localization may
have survived all of the local constraints and even the global model test.

However. only the Jower left configuration in Figure 11 is physically possible, since
it is the only one that does not imply that the sonar beam penetrates a solid wall
from inside the cone of reflection for that wall. Note that admissible interpretations
often imply that the beamn penetrates a wall from outside the CR for that wall. This
situation is perfectly acceptable. since it does not violate any physical laws.

Therefore, whenever we find an interpretation that passes the global mode] test,
we perform the sonar barrier test as follows: '

e Attempt to find a sonar ray that

— intersects any wall,
— lies within the cone of reflection for the wall,

— has its endpoint outside the wall by more than a small amount;

o If any such ray exists, then discard the interpretation and the localization, since
they imply a physically impossible situation.

Note that the amount by which a sonar ray must lie outside the wall is not.
necessarily E. We can afford to use a smaller error bound, called E, (for “normal

12
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Figure 11: These are two feasible localizations based on the intlerpretations
(S Wi)(Sy W3)] (lower left) and [(Sy W7)(Sy Wa)] (upper right). Given the cone
of reflection as shown, the upper right localization would fail the sonar barrier test
because the heavy black segments apparently penetrate wall Wy from inside the cone
of reflection.

error”), since we are checking the error of sonar rays that we know to be almost
normal to a wall (recall section 2.1.1).

The program would be highly inefficient if it carried out the search for “penetrat-
ing rays” in exactly the manner just described. Instead, the program first finds all
walls containing at least one point such that a ray drawn from the robot location to
the point lies within the CR for the wall. Then it checks only the sonar rays that fall
inside the CRs of those walls. In Figure 12, for example, only the walls marked in
heavy black would be chosen for the test, and only the heavy black sonar rays would
be inspected for penetration of them.

The sonar barrier test can be very effective at pruning incorrect localizations that
survive the local constraints and the global model test. It is common to have more
than ten localizations that satisfy all of the local constraints and the global model test,
with only one of them passing the sonar barrier test. This can happen, for example,
when the robot is located near an isolated corner in the building. In this case the
sonar segments often form a small L-shaped pattern. This arrangement of sonar
segments does not help to select a particular corner in the building, since all corners
are locally identical. The sonar barrier test uses the global information contained in
the rest of the sonar contour to determine which corner the robot occupies.

13
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Figure 12: Given the sonar contour and cone of reflection as shown, the sonar rays
and walls drawn in heavy black would be used in the sonar barrier test.

2.7 Ignoring Clutter and Other Bad Data

Sonar contours often contain a sonar segment that is not the sonar image of
any wall included in the room model. Such a sonar segment could be produced
by sonar noise or clutter, as described in section 2.2. It is impossible to find an
interpretation that assigns such a sonar segment to a wall in a geometrically consistent
way. Unfortunately, it is also impossible, using the process described so far, to
distinguish between a violation of the local constraints due to an unfeasible wall
assignment and a violation due to the presence of a clutter segment.

It may still be possible to find an interpretation of all the sonar segments, includ-
ing the clutter segments, that is consistent with the local pruning constraints. In fact,
it is even possible, by a fortuitous alignment of the data, for interpretations involving
clutter segments to pass the global model test. However, such “freak” interpretations
are almost always eliminated by the sonar barrier test. _ ‘

We can assume, then, during this discussion, that any clutter segment will cause
all interpretations to be inconsistent (except in rare cases). This poses a serious
problem for our approach, as it is described so far, since all interpretations would be
eliminated if just one of the sonar segments was clutter. ;

A straightforward way of handling this problem would be to apply the matching
process to all subsets of the set of sonar segments, which would guarantee that
a clutier-free set of sonar segments would be considered (if one existed). But, of
course, this approach wastes much work determining the feasibility of the same partial
interpretations. There is a way, however, to consider all subsets of the data without
wasting the work of testing partial interpretations. This method was introduced in
|Lozano-Pérez & Grimson 84], and is described as follows:

Consider the addition of one more branch to each node of the IT (see Figure 13).

14
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Figure 13: The IT with the null wall branch added

This branch represents the possibility that the sonar segment for that level of the IT
is the image of a piece of clutter, i.e., that it should not be assigned to any wall. We
will call this branch the null wall, or Wx*. The remainder of the process operates as
before except that, when applying the local constraints, the null wall acts as a “wild
card,” i.e., it survives all of the local constraints, so that assigning a sonar segment
to Wi never causes the failure of an interpretation. Thus, at every node that we
visit in the 1T, we assign the sonar segment under consideration to the null wall, to
represent the possibility that the sonar segment is clutter.

1t is easy to see that if an interpretation is admissible, the process described above
will generate all subsets of this interpretation as leaves of the tree. This is true of par-
tial interpretations as well as full interpretations. Every combination of assignments
of the null wall 1o the sonar segments will still produce a valid interpretation, which
guarantees that if any subsel of the data points is valid, then a valid interpretation
will be obtained as a leaf.

However, the null wall feature by itself greatly decreases the efficiency of the
algorithm, since it causes the generation of all subsets of valid interpretations. We
would rather generate only the interpretations that are consistent with as many as
possible of the sonar segments. The following method guarantees that we find only
the most complete interpretations, where “most complete” means “containing the
fewest null-wall pairings.” ’

The IT is explored in a depth-first fashion, with the null wall considered last when
expanding a node. In addition, the global model test is applied to any interpretation
that is a leaf of the IT. Now, suppose we use a global variable, called BEST, to record
the number of non-null pairings that occur in the most complete interpretation found
so far. As we expand the IT, we should assign a sonar segment S; to the null wall only
if m+ (s —¢) < BEST, where m is the number of non-null pairings in the current
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node, s is the total number of sonar segments, and 1 is the depth of the current
node in the IT. Otherwise, the number of non-null pairings in interpretations at all
the leaves below this node will be less than that of the most complete interpretation
already found. If we initialize BEST to some non-zero value (usually two, since a
unigue localization requires at least two sonar segments), then only interpretations
with this number of non-null pairings or greater will be found. Each time a more
complete interpretation is found, the value of BEST is incremented, thus ensuring
that we find the most complete interpretation for the data. Note that if BIST ever
reaches s, then no null-wall assignments will have been made.

2.7.1 An Added Heuristic

In the rare event that all of the above procedures fail to produce a unique in-
terpretation, then the interpretation that maximizes the sum of the lengths of sonar
 segments in non-null pairings is chosen as the final answer. This action expresses
our preference for interpretations based on long sonar segments, which are less likely
to be clutter segments. Note that the occurrence of multiple interpretations is still
possible.

3 Resu»lts

The algorithm described in this paper has been run on real sonar data. The
following section describes some of the results from these experiments.

3.1 The Experimental Setting

Sonar data was obtained from three different rooms in the Artificial Intelligence
Laboratory at MIT. The room outlines are shown in Figures 14, 15, and 16. Next
to each room outline is a photograph taken from inside the room. The photographs
are intended o give the reader a rough idea of how cluttiered and “real” these rooms
are. , '

Figures 17 through 24 show some typical results from each of the three rooms.
The robot’s actual position was measured by hand with a tape measure and a pro-
tractor; il is accurate to within an inch or two and about five degrees. The surviving
interpretations and their corresponding configurations are printed directly below each
drawing. The actual configuration is also printed. In each drawing, the robot’s actual
configuration is represented by the outline of a triangle with a small circle inside it.
The robot’s sonar-determined configuration is represented by a solid white triangle
with a cross in the center. Thus, the accuracy of a localization can be judged ei-
ther by reading the printed numerical results or by observing the alignment of the
triangles, the cross, and the circle.

The program parameters were the same for all of these results. They are not
optimal, since they were chosen based upon only a small amount of experimentation
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and the author’s estimates of sonar range data errors. In terms of variables mentioned
previously in the text, the program parameters were:

e E = 1.3 ft. (maximum error for a sonar ray endpoint),

L]

E; = 10 degrees (maximum angular error for a sonar segment),
e N =7 (minimum number of points in a sonar segment),
e 6 =0.5ft. (maximum perpendicular deviation for points in a sonar segment),

e ~ = 7 degrees (CR half-angle),

E, = 0.7 ft. (maximum error for a sonar ray known to be nearly perpendicular
to a wall)

Note that satisfactory results were obtained by assuming that all walls have a
CR half angle v equal to that of the most reflective surface that could possibly be
encountered, namely, a smooth glass window (for which v < 10 degrees).

The program has been run on 24 sonar contours so far. Seventeen of the sonar
contours yielded a localization that was correct to within one foot in any direction and
about five degrees in orientation. Two localizations were dead wrong, i.e., they were
in error by more than one foot. The five sonar contours that yielded no localization
failed for one of of the following reasons:

e the sonar contour contained only one sonar segment, or none at all,
e the sonar segments were either parallel or paired with parallel walls, a situation
which can not produce a unique localization.

We have seen, both intuitively and from experience with the algorithm, that 1t s
unlikely that a localization based on a correct interpretation will be tn error by a large
amount. This means that dead-wrong localizations are usually based upon incor-
rect interpretations. Since incorrect interpretations usually result only from “freak”
alignments of the data, incorrect localizations also tend to be completely anomalous,
having very large errors. This behavior could be desirable in the localization module
of a real robot navigation system, since proposed configurations that are extremely
different from recently determined configurations could be dismissed as obviously
wrong. Large localization errors could be used as an indication that the robot should
move slightly and try the algorithm again, or use another sensing approach.

The program was developed in Lisp on a Symbolics 3600 Lisp Machine. It usually
takes about 5 seconds (after data acquisition) to localize the robot, but it has taken
as long as 15 seconds for sonar contours containing a large amount of clutter.
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4 Conclusions

Mobile robot localization can be performed quickly and reliably with a low-
resolution, noisy rangefinder. The first step in the process is to reduce the size
of the set of possible robot configurations by considering the possible pairings of
wall-like data features with walls in the room model, pruning inconsistent pairings
using local geometric constraints. The key to rejecting incorrect configurations that
often persist in the resulting set of possible configurations is to exploit global geo-
metric constraints, derived from simple physical laws, on the shape of a real sonar
range contour.

The sonar data shown in this paper is so noisy and of such low resolution that it
nearly constitutes a “worst case scenario” for range data. The author believes that
the program’s performance would be greatly enhanced by the use of a high-resolution
Jaser rangefinder, such as the one described in |Jarvis 83].

5 Acknbwledgments

The author wishes to thank Tomads Lozano-Pérez for his insightful guidance during
the author’s preliminary work on this subject as an undergraduate at MIT. Also,
thanks to both Tomds Lozano-Pérez, Peter Gaston, and Eric Grimson for dev elopmg
the basic ideas upon which much of this paper is based.

References

Ballard, Dana H., and Brown, Christopher M. Computer Vision, Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

Drumbheller, Michael. “Robot Localization Using Range Data: Achieving Accu-
racy Despite Noise and Clutter.,” S.B. Thesis, Massachusetts Institute of Technology,
Department of Mechanical Engineering, Cambridge, MA, May 1984.

Gaston, Peter C., and Lozano-Pérez, Tomds. “Tactile Recognition and Localiza-
tion Using Object Models: The Case of Polyhedra on a Plane,” IEFE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-6, 3. May 1984, p.257-266.

Gua] Georges, and Sobek, Ralph, and Chatila, Raja. “A Multi-Level Planning
and Navigation System for a Mobile Robot: A First Approach to Hilare,” Proceedings

of the 6th International Joint Confererence on Artificial Intelligence, Tokyo, August
1979. '

Grimson, W. Eric L. “The Combinatorics of Local Constraints in Model-Based
Recognition and Localization From Sparse Data,” MIT A.l. Lab, A.I. Memo 763 ,

18




Drumbheller: Robot Localization Using Sonar

Cambridge, MA, April 1984.

Grimson, W. Eric L., and Lozano-Pérez, Tomds. “Model-Based Recognition and
Localization From Sparse Range or Tactile Data,” MIT A.I. Lab, A.l. Memo 738,
Cambridge, MA, August 1983.

Jarvis, R. A. “A Perspective on Range Finding Techniques for Computer Vision,”
IEEE Transactions on Paitern Analysis and Machine Intelligence, PAMI-5, 2, March
1983, p.122-139.

Lewis, R. A., and Johnston, A. R. “A Scanning Laser Rangefinder for a Robotic
Vehicle,” Proceedings of IJCAI-5, 1977.

Lozano-Pérez, Tomds, and Grimson, W. Eric L. “Recognition and Localization of
Overlapping Parts From Sparse Data,” Proceedings of the 2nd International Sympo-
stum on Robotics Research, Kyoto, Japan, August 1984. (To be published by MIT
Press, Cambridge, MA.)

Massa Products Corporation, anonymous author. “Model E-220 Ultrasonic Rang-
ing Module,” technical brochure, Hingham, MA 02043.

Miller, David. “Two Dimensional Mobile Robot Positioning Using Onboard
Sonar,” Proceedings of the 9th William T. Pecora Memorial Remote Sensing Sympo-
sium, IEFE, USGS, NASA, ASP, Sioux Falls, SD, October 1984, p.362-369.

Moravec, Hans P. Robot Rover Visual Navigation, UMI Research Press, Ann
Arbor, Michigan. 1981.

Polaroid Corporation, anonymous author. “Ultrasonic Ranging System”, techni-
cal brochure, Ultrasonic Ranging Marketing division, Cambridge, MA 02139.

Thompson. A. M. “The Navigation Systemn of the JPL Robot,” Proceedings of
LICAI-6, p.335-337, Tokyo, 1979.




Drumbheller: Robot Localization Using Sonar

52.11t

il o

25.2 ft

11.6 ft

Figure 16: Qutline and photograph of the smallest room tested (SMALL-RM).
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[(51 u1)(52 W4)(S3 UB)T; » = -28.9 ft. vy = 23.9 fr. 168 dea.
. fctual configuration was: x = -29.3 Fr. vy = 24,6 ft. 178 dea.
Figure 17: Typical solution for BIG-RM. Note that the lower portion of the sonar
contour contains large errors due to edge-of-beam reflection. (Recall Figure 4.)

u B

{

| 1
L(81 WS) (82 W2) (83 WP) (54 WS)(ES W) l; x = -8.8 ft. vy = 42.2 fr. 89 des.

"

Actual configuration was: X 3.5 fr. y = 42.1 fv. 98 deg.

Figure 18: In this example, the indentalion in the sonar trace was produced when the
beam just barely caught the top of the head of a small person standing nearby. The
program successfully ignored the clutter. Note that the lack of global similarity between
the sonar contour and the room outline does not affect the localization process.
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[(S1 WR)(S2 W1)(S3 W1m)]; = = -9.1 ft. y = 9.8 ft. 32 deg.

x = -9.8 ft. y = 9.8 ft. 38 deg.

fictual configuration was:

Figure 19: In this localization, the segments Sy and S, serve to select any corner

configuration. The lower right configuration is selected because -it causes Sy to fit
7

squarely against the small pillar.

[(51 18I {52 W1)(53 W#)(S4 WIB)(SS Wx)]; x = -3.2 ft. = 9.8 ft. 33 deg.

Actual configuration was: x = -9.8 ft. y = 9.8 ft. 3@ deg.

Figure 20: This sonar contour is similar to the contour in Figure 19, except for some
deliberately introduced clutter ( Ss and Ss). The cluiter segments were successfully

1gnored.
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[(S1 W1)(82 Mx)(S3 WR)]; » = 5.8 ft. vy = 8.1 ft. @ dea.

Actual configuration was: x = 5.8 ft. y = 8.1 ft. 0@ deg.

Figure 21: A typical result from inside MED-RM. Notice the prominent horns caused
by false reflections.

[iS1 Wx) (52 WAY{53 WE)(S4 Wx)(SS Wx)(S6 WS){(S7 Wx)(S8 Wx)]; = =18.3 ft. y = 9.4 ft. =96 deg.

Actual configuration was: x = 18.83 ft. vy = 8.5 ft., =98 dea.
Figure 22: In this case Sy should have been assigned to the lower wall. However,

the resulting interpretation would have been less complete, since almost every other
segment would have been assigned to the null wall.
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2

T [(81 W1)Y(82 Wx) (S5 WAY(S4 W2)(S5 W4)(S6 Wx)(S7 Nx)]; x = -7.4 ft. y = 6.8 ft. 89 dea.

Actual configuration was: x = -7,2 ft. y = 6.2.ft. 98 deg.

Figure 23: A typical result from inside SMALL-RM.

R i v i ‘ﬁ‘\x\\
. 81

5

C0(S1 W2) (52 W3)(S3 W1)(54 U4) (S5 We)(S6 Wx)(S7 WA)]; x = =7.4 ft. y = 6.8 ft. 91 deg.

Rctual configuration was: x = -7.2 ft. y = 6.2 ft. 90 deg.

Figure 24: The same sonar coniour as in Figure 23, with a tall person standing
nearby in an attempt to inhibit localization. The clutter was successfully ignored.




