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Abstract. A representation of visual motion convenient for recognition
should make prominent the qualitative differences among simple motions.
We argue that the first stage in such a motion representation is to make
explicit boundaries that we define as starts, stops, and force discontinu-
ities. When one of these boundaries occurs in a motion, human observers
have the subjective impression that some fleeting, signilicant event has oc-
curred. We go farther and hypothesize that one of these subjective motion
boundaries is scen if and only if one of our defined boundaries occurs. We
enumerate all possible motion boundaries and provide evidence that they
are psychologically real.
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1 Introduction

The human visual system is adept at recognizing different kinds of motion.
We easily identify moving things as walking, waltzing, bouncing, or slith-
ering, to name just a few types of motion. How do we do it? The visual
system must somehow represent motions and match these representations
to descriptions in memory. In this paper, we establish criteria for a motion
representation and begin its construction.

We consider only motion of points or blobs, that is, motion without
shape information. There are three reasons for this approach (see Rubin,
1985). First, it makes sense to start with the simplest case. As shapes
are allowed to increase in complexity, the number of degrees of freedom
of motion skyrockets. Whereas a blob in space can be specified by three
coordinates, the articulated characters in Lucasfilm’s computer-generated
cartoon, The Adventures of André & Wally B., require over five hundred
parameters of motion. Second, even for an elaborate shape, it seems useful
to understand as much as possible about its movement as a whole. The
motion of the center of mass, say, will often be informative, independent
of the wrigglings of movable parts. The third reason is that the motion
of parts will eventually be related to some object-centered frame (Wallach,
1959; Marr & Vaina, 1980). Representing the motion of this frame is an
important first step.

2 Representing Motion

What aspects of motion must a visual system represent if its goal is to
recognize simple types of motion? A point moving in threce dimensions
is completely described by its position over time, p(t). This representa-
tion has threc shortcomings. First, all that it makes explicit is position,
and where a motion occurs has nothing to do with what kind of motion it
is. Second, p(t) is unstable in the sense of Marr & Nishihara (1978): all
detectable variations in motion are represented independent of their impor-
tance to motion recognition. By contrast, a stable representation will have
some explicit component that remains invariant over unimportant changes.
Finally p(t) depends on the choice of units for measuring space and time.



The representation we develop below overcomes these three objections.

We seck a motion representation that captures the blatant qualitative
differences among such motions as bouncing, planetary orbits, and bat
flight, yet is insensitive to minutia such as the particular value of the viscous
drag cocfficient of air. In pursuit of such a representation, we must examine
in some detail what is meant by a kind of motion.

Consider the bouncing motion of a tossed ball. What defines bouncing
is not a particular trajectory, but rather the sequence of free-fall, impact,
free-fall, impact, and so on (see Forbus, 1981). Intuitively, the trajectory
is divided into natural parts or eras. Each period of free-fall is an era, as
indicated in Figure la. Separating two consecutive eras is a brief application
of force—a bounce—which seems to be a natural motion boundary. Some
motions, like planetary orbits, lack such boundaries.

As the foundation of our motion representation, we will define motion
boundaries in the following section. (Motion eras will be described in Rubin
(1985); boundaries and eras together will constitute a complete motion
representation.) We will then show that motion boundaries can in principle
be detected in images from almost any! viewpoint.

3 Elementary Motion Boundaries

Viewers of a bouncing ball perceive flecting, significant events—subjective
boundaries—at the bounces (I'igure 1a). Why aren’t these boundaries per-
ceived at the apices, as in Figure 1b? Why are subjective boundaries seen
at all? An explanation lies in our motivations for the motion boundary
definitions below.

3.1 Starts and Stops

Starts and stops are obvious candidates for motion boundaries, and we de-
fine them as such. They are illustrated in Figure 2. If they were not made
explicit in the representation of motion, we would be unable to demarcate

T«Almost always” or “almost any” means with probability one if the item in question is
chosen randomly.



Figure 1: A bouncing ball. Circles on the trajectory show the ball’s position
at fixed time intervals. a) Parts of the trajectory as predicted by the theory
here, and as seen by most obsecrvers. b) A possible division of the bouncing
ball trajectory into parts.

a period of activity from a period of rest. Starts and stops must be de-
fined with respect to a reference frame since their definition will require a
well-defined zero of velocity. There are several choices for reference frames:
the viewer, the ground, or moving objccts in the scene. Given but a sin-
gle moving object, the only choice is the viewer’s frame. However, for the
case of articulated shapes, the motion of parts will often be most conve-
niently referred to the motion of the whole, perhaps hierarchically (Marr
& Nishihara, 1978; Marr & Vaina, 1980).

3.2 Dynamic Boundaries

We define a second type of motion boundary that is independent of starts
and stops: discontinuities of force. A motion boundary based on force,
unlike starts and stops, will be independent of (inertial) reference frame.
We choose force discontinuities to supplement starts and stops as motion
boundaries because discontinuities are robust force events; they can be de-
tected even in non-inertial frames® We will henceforth call starts and stops

2Force discontinuities can be detected in any smoothly accelerated frame. A non-example
is a reference frame tied to a Brownian particle (Lavenda, 1985). We take “reference
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Figure 2: Two elementary reference frame boundaries shown in one di-
mension, and their conjunction. a) Start. b) Stop. c) Pause (see section
6.1).

“reference frame boundaries” and force discontinuities “dynamic bound-
aries.”

There are two advantages to adding force discontinuities as motion
boundaries. First, the choice captures the intuition that dynamic processes
are continuous, and that an abrupt change in force is likely to indicate that
one process has been succeeded by another. Second, given a rigid body,
if one point undergocs a dynamic boundary, then almost all points on the
body must simultancously undergo dynamic boundaries (sce Appendix I).
This means that a visual system can monitor an indiscriminately chosen
point on a rigid body and still detect dynamic boundaries.

Steps and Impulses

We claim that there are two fundamental motion boundaries that are in-
dependent of the reference frame®. These are step discontinuities and im-
pulses of force. Detecting discontinuities involves issues of scale which are
discussed in Appendix II.

For a function f that is continuous at ¢y (Thomas, 1972), we have

7o) = Jim f(t) = Jim 1) (1)

t—rtg—

frame” to mean an inertial frame, or any frame smoothly accelerated with respect to an
inertial frame.

Tx . . LY. . . . . . .

*While the arguments iu this section are given for single-valued functions of time, they
generalize straightforwardly to vector-valued functions of time. That is, vector-valued
functions have the same two elementary types of discontinuity.
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Figure 3: Two elementary types of discontinuity of a single-valued function
[ of one variable ¢, and their conjunction. a) A step-change; f can take
any finite value at t). b) An impulse; f at ¢y is equivalent to an impulse
function, and the limits at ¢, are equal. The impulsc is depicted by a vertical
line capped by an arrow to indicate nonfinite value. ¢) A “stepulse” (see
section 6.1): f at ¢, is equivalent to an impulse, and the limits of f at t,
are unequal.

What are the ways a function can violate (1) and therefore be discon-
tinuous? Taking f to be force as a function of timne, we will assume the
right and left limits exist for motion at a biological scale*. Furthermore,
we will assume that f is defined at ¢y, cither taking on some finite value or
the valuc of an impulse function®.

Given the assumptions above, there are only two ways for f to be dis-
continuous at ¢y. One possibility is that the lelt and right limits of f at ¢,
are unequal. In this case we say f is step-discontinuous at ¢,. This is the
first elementary force discontinuity; it is shown in Figure 3a.

Consider next the case that the left and right limits of f at #, are equal.
Then there are two ways for f to be discontinuous at ty: f(¢y) can have a
finite value not equal to the value of the limits, or f(ty) can have the value
of an impulse. We claim the former sort of discontinuity is tn principle
undetectable. To sce this, note that the choice of a finite value of f(t))
cannot affect velocity or position, since more generally, changing the value
of a function at isolated points does not affect its integral (Bracewell, 1965).

4 Brownian motion is an example where such limits can fail to exist.

SAn impulse function has value zero except at a single point, yet its integral from
g ; g

—oo to oo is finite and nonzero (Bracewell, 1965). Thus the value of an impulse is

not finite.



It is the remaining subcase in which f(ty) has the value of an impulse that
is of interest to us. An impulse is the second elementary force discontinuity;
it is shown in Figure 3b.

4 Three-Dimensional Kinematics

So far we have argued that starts, stops, and force discontinuities should be
explicit boundaries in the representation of motion. To find these bound-
ary conditions in the image, one must understand their three-dimensional
kinematics. In this scction, we will express boundaries as conditions in
three-dimensional kinematics. Two points must be made with regard to
this task. First, force, per se, is invisible; we must infer it from the acceler-
ation it causes. Second, it is inconvenient to seek an impulse discontinuity
in a (force) function. It is easier to find a step discontinuity in the integral
of that function (Bracewell, 1965). Both force discontinuities will therefore
be expressed in terms of kinematic step discontinuities.

4.1 Starts and Stops

Starts and stops will now be precisely defined. Let a reference frame—the
“scene frame”—Dbe chosen. We have the intuition that an object stops at
a certain time if it moves for a period prior to that time and is stationary
for a period after that time. More formally, let (1) be speed as a function
of time in the scene frame. Define a stop at ¢, when Je > 0 such that
Vt € (to — €, to), s(t) # 0, and Vt € [t, ty +€), s(t) = 0. The definition of
a start is analogous. (In practice, measurement of speed will be subject to
the spatiotemporal resolution limits of a visual system; see Appendix II.)

4.2 Dynamic Boundaries

Consider any kind of force discontinuity. Begin again with Newton’s Second
Law: F'(t) = ma(t). Note immediately if F(t) is discontinuous® at some ¢,

8A vector-valued function of one variable is continuous at a point if its components
are continuous at that point (Secley, 1970). Therefore, a vector-valued function has a
discontinuity at a point if one or more of its components has a discontinuity at that



then (md(t)) is also discontinuous at t;. But mass, at a biological scale,
does not fluctuate much at all, let alone discontinuously” Thus given any
type of dynamic discontinuity, and an assumption of constant mass, a(t)
must have a discontinuity at ty. In particular, step discontinuities of force
bring about step discontinuities in the acceleration vector.

We turn next to the case of impulses. Since an impulse of force will
change the velocity of an object in an instant, an object moving in three
dimensions that is subject to an impulse will undergo a step discontinuity
of its velocity vector. A simple approach to the result is to note that the
integral of acceleration is velocity, and the integral of an impulse is a step
function. Hence, an impulse in force yields a step discontinuity in velocity.

5 Image Motion

In this section we examine how the three-dimensional conditions of the
previous section project to the image. It will be shown below that from
almost any viewpoint, the three-diinensional boundaries will also be two-
dimensional boundaries in the image. Furthermore, it will be shown that
a boundary in the image always indicates a three-dimensional boundary;
that is, there are no “false targets”. Finally, we show that to find all mo-
tion boundaries, a visual system must detect ezactly four features of image
motion: starts, stops, and step discontinuities of velocity and acceleration.

5.1 From Three Dimensions to Two

First we must show that almost any two-dimensional image of a three-
dimensional boundary contains a boundary. Starts and stops in three- )
dimensions are also starts and stops in the image if the viewer is at rest with
respect to the scene frame. Likewise, we show in Appendix III that step’

point.

"We have assumed throughout that the mass of the blob is constant. If mass is allowed to
vary, do new motion boundarics obtain? Continuous variation of mass, as exemplified
by a rocket, most of whose mass is fucl, cannot cause an acceleration discontinuity. A
discontinuity of mass—a break, explosion, or agglomeration - will cause an acceleration

discontinuity.
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Figure 4: The relations among the six types of motion boundaries.

discontinuities in the three-dimensional velocity and acceleration vectors
will almost always appear as the step discontinuities in the corresponding
two-dimensional image vectors.

5.2 False Targets

Does the appearance of a boundary in the image imply a boundary in three
dimensions? In Appendix III, we show this is always the case for dynamic
boundaries. It remains to examine image speed zeroes. In orthographic
projection, a false target occurs when ¥, = 0 but ¥ # 0. There is thus
a false target whenever £ == § = 0 # 2. The probability of this exact
occurrence is zero. Hence false targets will be rare8. (The argument for
perspective projection is similar.)

6 Compound Motion Boundaries

In this section, we consider the possibility of co-occurrence of two or more
of the quartet of elementary motion boundaries thus far defined. We show
that the two reference frame boundaries can co-occur, as well as the two
dynamic boundaries. Furthermore, reference frame and dynamic bound-
aries are independent. When such combinations are considered, a total of

81t is also important to ask whether the three-dimensional kinematic conditions of Section
4 could have arisen from circumstances other than the dynamic boundaries we wish to
detect. The answer is no because Newton’s Second Law can be considered a definition
of force. That is, a step discontinuity of velocity is equivalent an impulse of force, and
a step discontinuity of an object’s acceleration vector is equivalent to a step-change in
the force on that object.



fifteen mathematically distinct motion boundaries emerge. Some of these
are physically odd. We must emphasize that this set of boundaries does not
constitute a complete motion representation; eras of motion—periods be-
tween successive boundaries—must also be described (Rubin, 1985). Also,
we make no claim that all fiftcen compound boundaries are psychologically
distinct.

6.1 Conjunctions Within a Boundary Type
6.1.1 Conjunction of Start and Stop: Pause

There is an event that is the limiting case of both starts and stops as defined
in section 4.1. We call this occurrence a pause; it is illustrated in Figure 2c.
A pause is more formally described as a speed zero such that there are open
intervals that contain it but no other speed zeroes. Pauses occur naturally
in simple systems: consider the motion of an inchworm, or a pendulum
at the ends of its swing. Note that the terms stop, start, and pause are
mutually exclusive.

6.1.2 Conjunction of Step and Impulse: “Stepulse”

A step and an impulse can also co-occur. We call this event a “stepulse;”
it is illustrated in Figure 3c. A stepulse occurs when a tetherball is struck
so hard that the tether breaks. Henceforth, the terms step, impulse, and
stepulse will be taken as mutually exclusive. The elementary boundaries
and their conjunctive progeny are shown in Figure 4.

6.2 Conjunctions Across Boundary Types

Starts and stops can coincide with dynamic boundaries. Consider a bean-
bag striking the ground, an event that involves the coincidence of a stop
and a stepulse. More generally, at a given moment, velocity (and hence ref-
erence frame boundaries) and acceleration (and hence dynamic boundaries)
are independent. To enumerate the combinations, note that at a motion
boundary, there arc four possible dynamic circumstances: step, impulse,
stepulse, and continuity (no dynamic boundary). Similarly, there are four
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Figure 5: Four types of start. Time is plotted on the abscissas; speed s or
its derivative § are plotted on the ordinates. Start occurs at time ty. The
four possible starts are determined by the continuity of s and s at ¢,.

dynamic boundary. If s is continuous, but not §, then there is a co-occurring
step discontinuity of force. If 5 has no step discontinuity, but s does, there
must be an impulse. Finally, if both s and § are step-discontinuous, a
stepulse has occurred.

7 The Trace of Motion

Above we showed how velocity and acceleration step discontinuities, starts,
and stops in the image imply motion boundaries. We have yet to explore
position in the image. That is, can information in the static trace of mo-
tion in the image be useful in determining what motion boundaries have
occurred? We show in this section that the answer is yes, gwen a contin-
uous trace in the image that has been created continuously’ in time. The
results are summarized in Table 2.

7.1 Terminal Points

First, it is clear that given a generic viewpoint, there is a terminal point in
the image if and only if there is a terminal point in the three-dimensional
trace. The moving blob must have had zero speed at the terminal point,
otherwise the blob would have moved #At in the next small time interval

9The correct traversal of the trace must be specified at a point of self-intersection.

11
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Table 2: Tlustration of features of image traces that allow inferences about

motion boundaries. The boundary interpretations here are necessary; pos-
stble boundaries—such as an impulse coinciding with the speed zero at a

cusp—are not listed.

At, making the point nonterminall?,

7.2 Cusps and Corners

First we will define cusps and corners. Next we will show that cusps and
corners in a three-dimensional curve almost always project orthographically

to cusps and corners, respectively, in the image. Finally, we will prove that

cusps and corners necessarily entail motion boundaries.

10 Another possibility is that the blob exploded. We assume a visual system would be able
to detect such a dramatic event and distinguish it from a speed zero.




7.2.1 Definitions

Let i’(s) be the unit tangent vector to the three-dimensional curve, where
s is arclength. At a certain distance s, along the curve, let T (sy) and
T (s0) be the left- and righthand tangent vectors. When the tangent is
continuous at sg, T'' (s0) = T (s0). By definition, there is a cusp at sq if
the two tangents are anti-parallel: T (s0) = ~T (sy). Finally, there is a
corner at s, if the two tangents are neither parallel nor anti-parallel. A
concise way of expressing the conditions above is with the dot product
d="T (s0) - T (50). At a particular place on a curve, if d = 1, the tangent
is continuous; if d = —1, there is a cusp; and if d € (—1,1), there is a
corner.

7.2.2 Detection

In Appendix III we show that, almost always, there is a tangent discontinu-
ity in the image iff there is a tangent discontinuity in the three-dimensional
curve. We must show more specifically that image cusps (corners) are
reliably related to three-dimensional cusps (corners). This is clear: any
reasonable projection to the image will map a pair of antiparallel vectors
(at a point in R*) to a pair of antiparallel image vectors. Furthermore,
two arbitrary R°* tangent vectors (as in a corner) will almost never map to
antiparallel image vectors.

7.2.3 Motion Boundaries

We interpret cusps and corners in the image by noting that the velocity vec-
tor of a curve is always parallel to the tangent vector to the trace. Consider
a corner. We claim that a corner implies either a speed zero (a reference
frame boundary) or a step-discontinuity of velocity (force impulse). Sup-
pose the object has finite speed at the corner. Then speed must change
instantaneously at the corner, else the trace would have been extended
along the direction of velocity; that is, there would have been no corner.
Therefore, there is a speed zero or a force impulse at a corner.

At a cusp, velocity exactly reverses direction. Thus cusps entail speed
zeroes. (A cusp could also involve a force impulse, as a corner, but the

13



inipulse must be exactly antiparallel to the direction of motion.)

7.3 Curvature Discontinuities

We show in Appendix III that (almost always) image velocity and accel-
eration are continuous iff three-dimensional velocity and acceleration are
continuous. If p(t) is a plane or space curve, then whenever the curve has
nonzero speed, curvature is given by (Flanders et al., 1970, p. 489):

k(t) — Hp(t)lz‘p(t)P* (p(t) ’ p(t))zl (2)
p(t)[®

Curvature of plane and space curves is thus a continuous function of
velocity and acceleration. By Appendix 1II, velocity and acceleration in
the image are continuous iff they are continuous in the space curve. But
then curvature in the image is continuous iff space curvature is continuous.
Contrapositively, there is (almost always) a curvature discontinuity in the

image of the trace ilf there is a curvature discontinuity in the trace.

i

Furthermore, by inspection of (2), we can see that almost all step dis-
continuities of force (acceleration) bring about discontinuities in curvature.
Note that force impulses cause corners which are infinities of curvature.
Thercfore, almost always, there is a step-change of curvature (as opposed
to a corner, which is an isolated infinity of curvature) iff there is step-change
of force.

8 Psychophysical Evidence

While watching motion, human observers sometimes have subjective im-
pressions of flecting, significant events (see again the bouncing ball of Figure
la). We will call perceived motion boundaries “subjective” and those that
we have defined mathematically “theoretical.” We hypothesize that our
four elementary theoretical motion boundaries describe a competence of a
human observer (Chomsky, 1965; see also Yilmaz, 1962 and Marr, 1982);
the human visual system in principle represents these clementary events.
(We do not claim the human visual system distinguishes all fifteen com-
pound motion boundaries.) That is, there is a subjective motion boundary

14



planetary orbit

(no boundaries) pendular motion
(two boundaries)

cycloidal motion

R prolate cycloidal motion
(two boundaries)

{no boundaries)

Figure 6: Motions and motion boundaries (marked by heavy slashes) a)
Planetary orbit—no boundaries. b) Pendulum. The two terminal points
are the only boundaries. ¢) Cycloidal motion: the cusps are motion bound-
aries. d) The motion of a prolate cycloid: there are no boundaries.

if and only if there is a theoretical motion boundary. For example, the
planetary orbit shown in Figure 6a has no theoretical motion boundaries,
and none are seen.

We present evidence for our claim below. While it seems to be the
case that there are subjective boundaries if and only if there are theoretical !
boundaries, it is not clear that the visual system distinguishes the fifteen
compound boundaries of Table 1. We begin by showing that the human
visual system is sensitive to aspects of acceleration, a capacity necessary
for the detection of step-changes of force.

15



8.1 Sensitivity to Acceleration

There is solid evidence to suggest human sensitivity to aspects of motion
acceleration. A display can be generated of a bouncing ball. A second dis-
play can be made that creates a trace identical to that of the first display,
but traverses it at constant speed. The two displays, differing in accelera-
tion but not average speed, appear strikingly distinct (Rubin, 1985). The
constant-spced ball seems to whip around the apices of its path.

Additional evidence that the human visual system is capable of repre-
senting aspects of acceleration comes from work in a motion extrapolation
paradigm. Rosenbaum (1975) showed subjects an object that moved hor-
izontally at constant acceleration and disappeared behind a barrier. Sub-
jects indicated when they thought the object—now no longer in view—
reached a marked location on the barrier. Results showed that subjects
extrapolated motion at constant acceleration, as opposed to, say, the av-
erage velocity of the object while it was visible. In an extension of Rosen-
baum’s work, Jagacinski et al. (1983) found that extrapolated trajectories
of constant-acceleration were modeled by a period of coustant acceleration
followed by a period of constant velocity. Thus it is clear the human visual
system is sensitive to some aspects of acceleration; it remains to be shown
that step-changes and impulse are among these aspects.

8.2 MNReference Frame Boundaries

Pauscs, as in the pendular motion of Figure 6b and the cycloidal motion
of Figure Gc, are subjcctive boundaries. If a constant horizontal velocity is
added to a cycloid, prolate and curtate cycloids obtain. These new trajec-
tories have no pauses, and—when the trajectories are sufficiently distinct
from a cycloid—no motion boundaries are seen (Rubin, 1985). See Figure
6d.

The perception of starts has been examined by Runeson (1974, 1977).
He presented a variety of starts differing in how speed changed as a func-
tion of time!!. Runeson argued that human perception distinguishes two
sorts of starts. Undramatic starts are seen when speed increases smoothly

1 A1l of Runcson’s displays were of lincar motion.

16



from zero to some asymptotic velocity. Otherwise, dramatic or eventful
starts are seen. Perception of undramatic starts involves simply a sensa-
tion of velocity and its inception. Eventful starts are perceptually more
complex: observers report something happening at the beginning of motion
distinct from their sensation of velocity. Runeson’s results are consistent
with our claim that starts cause subjective motion boundaries. However,
our scheme distinguishes four types of starts to Runeson’s two. Whereas
all of our start types arc motion boundaries, they are not all perceptually
distinct: stepulse and impulse starts are dramatic; smooth and step starts
are uneventful. (The perception of stops is analogous; stepulse and impulse
stops are violent, whereas smooth and step stops arc peaceful.)

8.3 Dynamic Boundaries

Force impulses, as exemplified by bounces, are seen as motion boundaries.
To examine the appearance a step-change of force, we created a display of
a ball moving with constant acceleration in one direction. When the di-
rection of acceleration was suddenly switched, the change was conspicuous
to observers as a motion cvent. Furthermore, force step-changes are per-
ceptually distinct from a force impulses; the former are legato, the latter,
stacatto.

9 Discussion

9.1 Properties of Motion Boundaries

To be useful for recognizing different kinds of motion, a motion represen-
tation should be psychologically relevant, mathematically convenient, and
physically apropos. Psychological relevance means that the primitives of
the representation should be computable by the human visual system, and
the scheme should divide the class of trajectories into roughly the same
equivalence classes as human observers. Our trcatment of motion bound-
aries satisfies this criterion. Motion boundaries are the transient aspect of
a complete motion representation, the ongoing aspect of which is eras (Ru-
bin, 1985), descriptions of the periods between successive boundaries. The

17



human visual system is sensitive to a few motion events, and preliminarily,
it seems that our theoretical boundaries are at worst a refinement of the
psychological classification of motion transients!'?.

A mathematically convenient representation is one that has useful in-
variant properties. Our motion boundaries, based on local properties of
p(t), the description of three-dimensional position as a function of time,
exhibit three useful invariances. The motion boundaries do not depend
on the units for measuring space; they are invariant over spatial scaling.
Also, if a given motion is repeated twice as fast, the boundaries main-
tain their relative positions: this is speed scaling. Finally, the motion
boundaries are transparent. A local feature of a three-dimensional curve is
said to be “transparent” when there is an associated feature in the image
of the curve—call it the “shadow” of the three-dimensional feature—such
that whenever the shadow is found in the image, the feature is guaranteed
present in the world, and whenever the feature is present in the world,
images of the curve from almost all viewpoints contain the shadow. (See
Appendix IV.) Stated more simply, a transparent feature is one that can
be found without error from almost any viewpoint.

The result is even stronger than just stated: not only do the motion
boundaries have useful invariant properties; they are the only rcasonable
local properties of motions having those invariances. Consider the class of
local properties of curves that are invariant over spatial scaling. This class
consists of zeroes and impulses of a curve and its derivatives. This is the
same class as that of local curve properties invariant over speed (or force)
scaling. It is also the same as the class of transparent properties. Each of
these three types of invariance thus independently specifies the same class of
local properties. (See Appendix IV.) Furthermore, our motion boundaries
are the lowest-order members of this class's.

2Let X and Y be sets of sets that partition a universe U into equivalence classes. Then
X i8 said to be a refinement of Y if the members of a member of X are members of
cxactly one member of Y. A refincment of a classificatory system thus makes all the
original distinctions, and then some. Crucial to the notion is the fact that refinements
do not carve up the universe in an independent way.

13 An example of a higher-order term that is not a motion boundary is an impulse in the
eleventh derivative of the curve.
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There is no a priori reason that mathematically convenient boundaries
should be physically meaningful. In fact, the higher-order members of
the class of invariants described in Appendix IV (impulses in the eleventh
derivative of position, say) are probably without physical importance. But,
as we have argued, the lower-order members—starts, stops, and dynamic
discontinuities—signify meaningful force events.

9.2 Relation to Previous Work

Some of our suggestions for the representation of motion have been made
by others. Our work is distinguished from previous motion studies by the
following combination of features. First, the scope of our representation is
large, encompassing any piecewise-continuous motion of any shape that can
be construed as a point or blob. Sccond, the definition of motion bound-
aries is founded in the physics of the macroscopic world; our representation
makes force explicit. Third, we show rigorously that our theoretical motion
boundaries are in one-to-one correspondence with certain kinematic image
conditions, and, more importantly, are the lowest order members of the
class of reliably detectable local propertics of motion. Finally, our scheme
is “bottom-up;” no knowledge of the shape or motion of particular objects
is necessary.

Gibson (1979, p. 101) advanced the idea that motion can be divided
into natural parts, writing “. . . the flow of ecological events consists of
natural units” that are arranged hierarchically so that “lwlhat we take to
be a unitary episode is therefore a matter of choice . . . .” In contrast, we
suggest that motion boundaries are rigidly defined. (We do not rule out
the possibility of description at two or more scales; see Appendix I1.)

Runeson (1977) focused on how material properties of objects (relative
mass, elasticity, and so on) could be inferred from kinematics. While Rune-
son would be interested, say, in inferring the elasticity of a bouncing ball,
we are primarily interested in recognizing bouncing motion. Though his
goal differs from ours of motion recognition, his distinction between events
and processes is similar to our division between continuous motion eras and
transient motion beundaries. Events for Runeson are abrupt, cvanescent
occurrences that signify energy transfer; processes are enduring kinematic
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goings-on. Runeson’s events seem related to the dynamic subset of motion
boundaries in this paper.!* Runeson argued that a perceptual system must
give priority to dynamic events over processes because the former are more
informative about causal relations. By contrast, we give equal weight to
dynamic and reference frame boundarics in our motion representation.

Forbus (1981) undertook to describe complex motions by what he called
an “Action Sequence.” An Action Sequence is a concatenation of Acts,
each of which is a period (or a moment) of a single type of motion that can
be described by a particular equation. Bouncing motion is, for example,
represented as FLY UP, FLY DOWN, COLLISION, FLY UP, FLY DOWN,
and so on.

Some important differences between Forbus’s work and ours must be
noted. Forbus was interested in reasoning about motion from diagrams or
word problems; we are interested in perception. Forbus used a restricted
two-dimensional domain in which gravity is the only force. Furthermore, his
program only reasoned about Acts that are on a menu, namely, Collide and
Fly. The scope of our theory is greater; any sort of (piecewise-continuous)
force in three dimensions is acceptable, and more importantly, our scheme
does not rely on a menu of force equations; novel forces can be represented.

Two motion representations have been proposed to describe the mo-
tion of complex, articulated shapes. Laban (1975) developed an claborate
notation for transcribing choreography. “Labanotation,” as it is called, is
necessarily specific to the human form. Marr & Vaina (1980) offered a
means of representing the motion of objects that admit 3D model descrip-
tions. These two schemes thus have narrower scope than ours since they
apply only to certain classes of shapes. Moreover, their descriptions relate
the motion of parts to superordinate parts or the whole, paying less atten-
tion to the overall motion of the whole. (Marr & Vaina suggested without
motivation that the representation of the motion of the entire 3D model
mark speed zeroes and step discontinuities of velocity.)

Badler (1975) took a top-down approach to the description of motion
based on a sequence of static drawings. That is, his scheme required that
objects be recognized so that knowledge about them can be used in the mo-

" Events arc not precisely defined in Runeson’s work. He scems to have velocity but not
acceleration step discontinuities in mind.
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tion description. By contrast, we suggest a visual system extract the most
informative possible description of motion independent of object recogni-
tion. Badler did, however, suggest that the representation of motion make
explicit an assortment of conditions that included starts, stops, and trajec-
tory discontinuities.

10 Summary

We have proposed that blob motion be cut into eras at certain natural
boundaries. The eras can then be given qualitative descriptions (Rubin,
1985). This approach to representation for recognition is reminiscent of
Hoffman & Richards’ (1982,1984) work on static planar contours. They cut
contours at a boundary condition and then describe the resulting natural
parts qualitatively. A significant difference, however, is that the motion
boundaries of this paper are in themselves meaningful; Hoffman & Richards’
contour boundary condition serves only to separate parts.

We began by noting criteria for a motion representation suitable for
recognition: stability over niggling variations in trajectory, and invariance
over space and time scaling. We delined two types of motion boundaries
that satisfy the two criteria above. Dynamic boundaries (force discontinu-
ities) are a good foundation for a motion representation in that their ap-
pearance in the image is reliably related to events in the three-dimensional
world, regardless of the (smooth) motion of the observer. Reference frame
boundaries—starts, stops, and pauses—depend on the viewer’s frame. We
gave evidence that our theoretical motion boundaries underlie subjective
boundaries.

Appendix I: Rigid Bodies and Impulses

Claim. If a rigid body is subjected to a force impulse, then almost all its
points will move as if they have been subjected to a force discontinuity.
Proof sketch. Any thrce-dimensional motion of a rigid body is equiv-
alent at each instant to a unique twist (Coxeter, 1961). A twist is defined
by an axis /, an angular velocity w about [, and a translational velocity v
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along [. An impulse will cause a discontinuity in at least one of [, w, and v.

Case I: The impulse changes translation v instantaneously (and possibly
w as well). Then all points are affected, since translations have no invariant
points. Case II: The impulse affects the rotation of the object (but not
its translation). All points on the rigid body that lie on [ are invariant,
and will not show the impulse. But for a two- or threc-dimensional rigid
body, such invariant points constitute a measure-zero set. Hence there is
zero probability of choosing an invariant point on the body at random.
Case [1l: The impulse changes the twist axis [ instantancously into a new
axis I'. Then the only invariant points on the rigid body will be those that
lie on the intersection of I and I'. By Case 1I, there is zero probability of
selecting such a point.

Appendix II: Scale Problems

Here we describe (but do not solve) some problems of scale that affect the
detection of motion boundaries. These problems are analogous to scale
issues that arise when trying to represent static figures.

Resolution

Any visual system that detects starts will have to face the following problem
of scale. Let speed be given by s(t) = |sin 1| for, say ¢ € (0,1]. Note there
are an infinite number of values of ¢t € (0,1] that satisfy the definition of
start. The number of starts actually perceived will be finite and depend on
the spatiotemporal resolution of the system. Analogously, if one inspects
(the static) graph of the function s(t), one will sce only a finite number of
points where the graph of the function touches the x-axis, depending on
the spatial resolution of the human visual system.

Discontinuity

The dctection of dynamic discontinuities is a scale problem that is not
solved simply by knowing the spatiotemporal resolution of a visnal system.
Consider the analogous static problem of deciding when a continuous curve
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has a corner. That is, when does the tangent change rapidly enough (with
arclength) to be considered discontinuous? Clearly no fixed “A tangent”
will suffice; rather, the critical value seems to depend on how rapidly the
tangent is changing in a neighborhood. We expect similar considerations
to apply to the detection of velocity and acceleration step discontinuities.

Description of Independent Scales

Consider how the human visual system might represent the shape of a tire.
It is reasonable to suspect the description has at least two distinct scales
(see Mandelbrot, 1977). At the larger scale, the overall rounded torus is
described; at the smaller scale, the terrain of the tread is represented. Cer-
tain motions will also be best described at two separate scales. Consider
the motion of a reaching hand: it moves through space along a smooth arc.
Looking closer, one might notice the hand is trembling. These two sorts
of motion are independent—independent in spatial and temporal scale and
independent in cause. Note that the representation of the tremble might
have motion boundaries (the pauses where the oscillation reverses direc-
tion), whereas there might be no boundaries in the larger scale description.
The punchline is that, for complex motions, motion boundaries must be
sought at a particular scale, and that descriptions at two or more scales
might be necessary.

Appendix IIT: Images of Discontinuities

Below we show that images of continuous curves are continuous. It is
intended that p be interpreted either as the position (scction 5), the tangent
(section 7.2), or the acceleration vector (section 7.3) of a three-dimensional
curve as a function of time, and I is any projection function that maps
space to an image plane such that the pre-image of every image point is
a one-manifold in space (a generalized “line of sight”). It is clear that
orthographic and perspective projection are reasonable in this sense.
Claim. Let p(t) : R — R% and I : R*® — R? be continuous func-
tions such that I~!(z,y) is a one-manifold in R° (i.e., rank(Jacobian(I))=2).
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Then £(t) is continuous == I(5(t)) is continuous, and I(§()) is continuous
= (almost always) that 5(t) is continuous.

Proof. Since the composition of continuous functions is continuous
(Seeley, 1970), we have immediately that the continuity of p implies the
continuity of I(p). Next, suppose that at some ¢, I (B(ty)) is continu-
ous, but that contrary to the claim we are to prove, 7 is discontinuous at
to. We consider only step discontinuities. Let 7' (t) = lim, + P(t), and
P (to) = lim, ., B(t). A step discontinuity at ¢y implies 7' (to) # P (to)-
By continuity of I(p), we know I(5'(¢y)) = I(p" (to)). But I assigns the
same R? value only to points in R° lying on a particular one-manifold.
There is zero probability that the two points p* (to) and P (ty) lic on one
of those special one-manifolds.

Corollary. Let 7 : R! +» R be a vector-valued function, and let [
be a reasonable and continuous imaging function as before. Then, almost
always, I(p) is discontinuous at t, iff 7 is discontinuous at t,.

Proof. (Contrapositive of claim above.)

Appendix IV: A Unique Class of Boundaries

In this appendix we investigate reliably detectable local properties of space
curves parameterized by time. Reliably dectectable events are those that
can be found with a 100% hit rate and no false targets. More specifically,
a reliably detectable curve event is one that is associated with a particular
image feature, such that almost all images of the curve possess that feature,
and whenever that feature appears in an image, it is certain the space curve
event has occurred. We are particularly interested in reliably detectable
events that are invariant over speed and space scaling.

We will show that 0 and impulses of the derivatives of a space curve are
the only reliably detectable events. The definitions and claims that follow
serve more to make precise the special properties of 0 and impulses than
to derive surprising mathematical results.

We begin by describing a moving point.

Definition. A position curve in " (PC,) is a continuous function
p:R- R, n>2
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We would like to generalize the notion of function in order that all
position curves be differentiable infinitely many times (see Lighthill [1958]
for a more elaborate generalization of functions). To this end we add a
value “#” to the range of real vector-valued functions, where * represents
infinity, as in an impulse. The following definition assures that the values
* are sparse.

Definition. A piecewise real curve (PRC,) is a function h : R
R" U {*}, n > 2, such that Vr* € R such that A(r*) = %, Je > 0 such that
Vre(r —er)U(r,r - e), h(r) # =

It is clear that a PC is a PRC. We next define the “generalized deriva-
tive” of a PRC so that impulses are treated correctly (see Bracewell, 1965).
That is, the generalized derivative at a step or stepulse is an impulse; the
generalized derivative at an impulse is 0; and the derivative at an ordinary
point matches the normal definition of derivative.

Definition. A the ¢** generalized derivative of a PRC, h is given
recursively by

« if lim, ;0 A D(r) # lim, ;o AED(7)

Vi e R, hOF) = 0 if A% D7) =«
RE-D@E) R DG

€

otherwise

lim_

where h() denotes h. The following is an immediate consequence of the
definition above:

Claim. The generalized derivative of a PRC is a PRC; hence a PRC
is infinitely generalized-differentiable.

We now discuss orthographic projections I : % > R2. We must state
precisely how the projection is related to the coordinate frame of the po-
sition curve. We want to rule out the troublesome possibility of I varying
erratically with r, as would be the case of a reference frame tied to a jack-
hammer. Any I can be exactly specified by six numbers: three rotations ¢,
3, and v, and the location of the image origin (a, b,c). We will call I an aris-
totelian view or projection of a PC5 when 0 == ‘;—‘: = ‘—'fg = ‘fl} = Z—‘r‘ = :—1";’ = gf
Simply put, an aristotelian view is stationary with respect to the world ref-
erence frame.

Next we prove a claim about reasonable images of position curves.
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Claim. Given an aristotelian projection I : %% +— R? and a PCj, p,
then I(p) : ® — R* is a PC,. Hence, IVV(p), the j** generalized derivative
of I(p), exists for all j.

Proof. First note that I(p) is the composition of continuous real-valued
functions and is thercfore continuous and real-valued itself. It is, therefore,
a PC,. But PCs are infinitely generalized-differentiable, so the claim is
proved.

We now want to formalize the idea of a reliably detectable event. Below,
the local event of the curve to be detected is some particular value p, (the
only strictly local property of a function is its value); its associated image
feature is q.

Definition. A j-transparent value of a PCs, p, under aristotelian view
is any py € ®% U {*} such that Ji; € R2U {*} such that for all aristotelian
projections I : ®3 — R? and for all r, pU)(r) = py <= I0)(p(r)) = 4.

Definition. A transparent value of a PCs; under aristotelian view is a
j-transparent value from some j.

We are now ready for the first major claim.

Claim. The only transparent values of a three-dimensional position
curve under aristotelian view are {*,0}. ‘

Proof. Consider the second generalized derivative of the position curve.
We claim * is transparent; this follows from Appendix III, where we show
that images of discontinuities are almost always discontinuities, and from
the fact that % is the derivative of a step-discontinuity. We claim that
0 is transparent due to the restriction to aristotclian view. The second
derivative of the change of viewpoint is zero, hence 0 on the curve maps
to 0 in the image, and almost always, 0 in the iage arises from 0 in the
space curve. It remains to show that other non-zero, non-impulse values
of curves cannot be transparent. This follows because the orientation of a

aristotelian image with respect to three-space is arbitrary (though fixed).
The only vector invariant over rotation is 0, but transparency quantifies’

over all aristotelian views.
We next investigate another sort of invariance.
Definition. A scaling of a PRCs h is a function

ah(r) if h(r) e R
9(’):{ + (if)h(r).:(z
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where «a is some constant.

For a given position curve, suppose all velocities are doubled. The
resulting motion is a scaling of the original motion. So is the motion that
obtains when all forces (accelerations) are multiplied by some constant.

Definition. A scalable value of a PRC3 h is any py € R™ U {x} such
that Vr € R and for all scalings g of h, h(r) =py <= g(r) =po

We state the following without proof.

Claim. A PRC, can have at most two scalable values, {*,d}

We have shown that transparency (under aristotelian view) and scala-
bility independently select special values * and 0. Note that a scaling of
the position curve is equivalent to a change of spatial units. Scalings of the
first and higher generalized derivatives of the position curve are speed and
force scalings, and so on.
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