MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 837 March, 1985
REVISED August, 1986

GPSG-Recognition is NP-Hard

Eric Sven Ristad

ABSTRACT:

Proponents of generalized phrase structure grammar (GPSG) cite its weak
context-free generative power as proof of the computational tractability of GPSG-
Recognition. Since context-free languages (CFLs) can be parsed in time propor-
tional to the cube of the sentence length, and GPSGs only generate CFLs, it seems
plausible that GPSGs can also be parsed in cubic time. This longstanding, widely-
assumed GPSG “efficient parsability” result is misleading: parsing the sentences
of an arbitrary GPSG is likely to be intractable, because a reduction from 3SAT
proves that the universal recognition problem for the GPSGs of Gazdar (1981) is
NP-hard. Crucially, the time to parse a sentence of a CFL can be the product
of sentence length cubed and context-free grammar size squared, and the GPSG
grammar can result in an exponentially large set of derived context-free rules. A
central object in the 1981 GPSG theory, the metarule, inherently results in an in-
tractable parsing problem, even when severely constrained. The implications for
linguistics and natural language parsing are discussed.

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the Laboratory’s artificial intelligence
research has been provided in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-80-C-0505. The
author is indebted to Ed Barton, Robert Berwick, Noam Chomsky, James Higginbotham,
Shaun Keller, Richard Larson, Alexis Manaster-Ramer, Stanley Peters, Geoff Pullum,
Dave Waltz, Scott Weinstein, and an anonymous LI referee for assistance in writing this
paper.

(©Massachusetts Institute of Technology, 1985, 1986

1 Introduction

Proponents of generalized phrase structure grammar (GPSG) cite its weak
context-free generative power as proof of the computational tractability of
GPSG-Recognition. Since context-free languages (CFLs) can be parsed in
time proportional to the cube of the sentence length, and GPSGs only gen-
erate CFLs, it seems plausible that GPSGs can also be parsed in cubic time.
Gazdar (1981:155) argues that this would in turn provide “the beginnings
of an explanation for the obvious, but largely ignored, fact that humans
process the utterances they hear very rapidly.”

This widely-assumed GPSG “efficient parsability” result is misleading:
parsing the sentences of an arbitrary GPSG is likely to be intractable, be-
cause a reduction from 3SAT proves that the universal recognition problem
(RP) for the GPSGs of Gazdar (1981) is NP-hard. This complexity classi-
fication means that the fastest recognition algorithm for GPSGs could take
at least exponential time. Therefore nothing in the GPSG formal framework
guarantees efficient parsability, contrary to Gazdar’s argument from weak
context-free generative power. Crucially, the time to parse a sentence of a
CFL can be the product of sentence length cubed and context-free gram-
mar size squared, and the GPSG grammar can result in an exponentially
large set of derived context-free rules. A central object in GPSG theory, the
metarule, inherently results in an intractable parsing problem, even when
severely constrained. Section 2.3 below contains a formal proof.

The apparent paradox between the efficiency of context-free parsing and
the intractability of GPSG parsing is resolved below. I also discuss how the
recognition problem is posed and the implications of this result for linguistics
and natural language parsing.

2 Complexity of GPSG-Recognition

This section begins by formally specifying the class of generalized phrase
structure grammars described by Gazdar (1981).2 After providing some

!Joshi (1985:226) and Peterson (1985:315) make similar assumptions about the con-
nection between weak context-free generative power and efficient processability.

2GPSG theory has changed considerably since Gazdar (1981). Gazdar, Klein, Pullum
and Sag (1985), henceforth GKPS, contains a detailed and precise formal exposition of
current GPSG theory. Ristad (1986a) analyzes the computational complexity of that

relevant technical background, I prove that the problem of determining for
an arbitrary GPSG G and input string w whether w is in the language
L(G) generated by G is as hard as any nondeterministic polynomial time
computation (NP-hard), and hence likely to be intractable.

2.1 Formal Specification of GPSG

The GPSGs of Gazdar (1981) contain sets of nonterminal symbols Vy, ter-
minal symbols Vr, basic rules R, and metarules M. Basic rules are the
set of rules required by a context-free grammar for English not handling
unbounded dependencies. They are interpreted as node admissibility condi-
tions rather than conventional context-free rewrite rules. A example basic
rule is 1a, which is equivalent to the rewrite rule 15.

a. [s NP VP]
b [S - NP VP] (1)

Metarules are a grammar for generating a grammar. They typically express
many of the linguistic relationships expressed by transformations in transfor-
mational grammar. Unlike transformations, whose domain can be an entire
tree, the domain of metarules is effectively restricted to trees of depth one.
Formally, they are functions from basic rules to sets of context-free rules
with fixed input and output patterns that contain variables and constants.
If a context-free rule matches the input pattern under some specialization of
the metarule’s variables, then the metarule generates a context-free rule cor-
responding to the metarule’s output pattern under the same specialization
of the metarule’s variables. Metarule 2 performs Subject- Auxiliary inversion
in Gazdar (1981):

[[-}:{x’lx]——)VX] = [Q — [:}gnx]NPX])

Metarule 2 states that for every rule which expands a finite VP and intro-
duces a tensed auxiliary verb (e.g. the rule that generates structure 3), there

theory and proves that the universal RP for the GPSGs of GKPS can take more than
exponential time, that is, time proportional to ¢*(™ for some constant ¢, polynomial f (n),
and input string and grammar size n. Section 3 below explores the practical implications
of exponential time results.

is also a rule which expands the sentential category Q as that tensed auxil-
iary verb, followed by a NP and whatever else followed the tensed auxiliary
in the original rule (e.g. the rule that generates 4).

[[I‘.,“Ec [: :}"&] is J[ap stupid]] (3)
lol : s I[vp Kim J[4p stupid]] (4)

The set of derived rules is closed under metarule application. That is, the
complete set of derived rules in a GPSG consists of the basic rules plus
the maximal rule set that can be arrived at by repeatedly applying each
metarule to each derived rule.

Unconstrained metarule application may generate infinite sets of rules
and describe arbitrary languages, including recursively enumerable ones. To
preserve both the weak context-free generative power of a GPSG grammar
and the supposedly attendant computational benefits, some formal con-
straints on metarules have been proposed in the GPSG literature. One
proposal is to constrain variables in the metarule pattern to be “abbrevia-
tory variables,” i.e. variables that can only stand for strings in a finite and
extrinsically determined range. Formally, each metarule variable may only
range over a finite subset of (Vay UVz)*. While this constraint can affect the
extensional language of the grammar in linguistically unmotivated and arbi-
trary ways, I adopt a stronger version of this constraint for the purposes of
examining its computational implications. In the proof below, all metarule
variables either are constants (e.g. 0,1) or stand for a single symbol and can
only have two possible values (e.g. 2 can only stand for the symbols 0, 1).
See Shieber et.al. (1983) for a discussion of Gazdar’s 1982 ‘abbreviatory
variables’ proposal and some other proposals for restricting metarules.

I further restrict the derivational power of metarules as follows. Metarules
are functions from context-free rules to context-free rules (not from rules to
sets of rules) that may only operate once in the derivation of a given rule.
That is, a metarule pattern may match a rule in only one way, and metarules
may not operate recursively on their own output. In addition, no unrecov-
erable deletion can occur in a derivation and no two metarules or basic rules
may be identical either in pattern or function.

2.2 The Classifications of Complexity Theory

Mathematical complexity theory measures the intrinsic lower-bound diffi-
culty of obtaining the solution to a problem no matter how the solution
is obtained. Complexity theory studies the structure of problems: it clas-
sifies problems according to the amount of computational resources (e.g.
time, space, electricity) needed to solve them on some abstract machine
model (e.g. a deterministic Turing machine). Complexity classifications
are invariant across a wide range of primitive machine models, all choices
of representation, algorithm, and actual implementation, and even the re-
source measure itself. The robustness of these classifications is especially
appropriate for cognitive science: while we do know what abstract problems
the brain solves, we don’t know much about the representations, algorithms,
or hardware involved.

P is the natural and important class of problems solvable in determinis-
tic Polynomial time — problems with efficient solutions. AP is the class of
all problems solvable in A ondeterministic Polynomial time. Informally, a
problem is in AP if we can guess an answer to the problem and then verify
its correctness in polynomial time. For example, the problem of deciding
whether a whole number i is composite is in AP because it can be solved
by guessing a pair of potential divisors, and then quickly checking if their
product equals 7. A problem T is NP-hard if it is at least as hard compu-
tationally as any problem in the class AP : if we had a subroutine that
solved T in polynomial time, then we could write a program to solve any
problem in AP in polynomial time on a deterministic Turing machine. Note
that T need not be in AP to be NP-hard. A problem is NP-complete if it is
both in AP and NP-hard. NP-hard problems can be solved only by meth-
ods too slow for even the fastest computers. Since it is widely believed —
though not proved — that no faster methods of solution can ever be found
for these problems, NP-complete problems are considered computationally
infeasible. A famous NP-complete problem is the traveling salesman prob-
lem, that is, to find the shortest route for a traveling salesman who must
visit a number of cities and return to the city he started at. Lewis and Pa-
padimitriou (1978) informally discuss these problems and other complexity
issues. Barton, Berwick, and Ristad (1986, forthcoming) further explores
the relationship between computational complexity and natural language.

Complexity classifications are established with the proof technique of re-
duction. A reduction converts instances of a problem T of known complexity

into instances of a problem S whose complexity we wish to determine. The
reduction operates in polynomial time. Therefore, if we had a polynomial
time algorithm for solving §, then we could also solve T in polynomial time,
simply by converting instances of T' into S. (This follows because the compo-
sition of two polynomial time functions is also polynomial time.) Formally, if
we choose T to be NP-complete, then the polynomial time reduction shows
that § is at least as hard as T, or NP-hard. If we were also to prove that .S
was in AP , then § would be NP-complete.

In this case, the known NP-complete problem T is 3SAT, and the prob-
lem S of unknown complexity is GPSG-Recognition. Therefore, the proof
will reduce instances of 3SAT (a 3-CNF Boolean formula F') into instances of
GPSG-Recognition (a GPSG G and an input string z). The 3-Satisfiability
problem (3SAT) is to determine, given a boolean expression in 3-CNF,
whether the formula is satisfiable. 3SAT is NP-complete. An example of a
satisfiable 3-CNF boolean formula with five clauses is:

(avbve)n(@vdve)A(evdVeE)A(BVeVd)A(aVvdVe)

A Boolean ezpression is an expression composed of variables (e.g. z), paren-
theses, and the logical operators V (OR), A (AND), and negation. Negation
is represented as a horizontal bar over the negated expression (e.g. Z is the
negation of the variable z). A literal is a variable or the negation of a vari-
able. Variables may have the values 0 (false) and 1 (true), as do expressions.
An expression is satisfiable if there is some assignment of 0’s and 1’s to the
variables that gives the expression the value 1.

A Boolean expression is in conjunctive normal form (CNF) if it is of the
form Ey AE;A---AEj and each clause E; is of the form a;; Va2 V- -V i,
where each q;; is a literal — either a variable z or a negated variable Z. An
expression is in 8-CNF if each clause in the CNF expression contains exactly
three distinct literals.

2.3 Reduction from 3SAT to GPSG-Recognition

Recall that a reduction is an algorithm for converting instances of one prob-
lem into instances of another problem. In the reduction below, it is im-
portant to distinguish the process by which the metarules are constructed
(the reduction) from the process by which metarules are applied in GPSG
to generate a set of context-free rules. In particular, the reduction does not

generate all possible truth assigments for the variables in F'; this would of
course require exponential time, and invalidate the reduction. The work of
generating all possible truth assignments is done by the metarule applica-
tion process, not by metarule construction. For example, in part 2.c of the
following proof, the reduction tests w; and @ for equality in order to con-
struct the metarules which instantiate negated variables. The reduction will
require O(m®logm) time to construct the |w| metarules. The constructed
metarules, however, never test w; and @ for equality in the metarule appli-
cation process.

Theorem 1 GPSG-Recognition is NP-hard

Proof. The proof will reduce 3-SAT to GPSG-Recognition in polynomial
time. Assume as input a 3-CNF formula F of length m using the n variables
q1,92s - - - yqn. Let w be the string of formula literals in F'; in general, w; will
denote the i** symbol in the string w.

In the following reduction, S will be the distinguished start nonterminal
of the constructed GPSG; 0 and 1 will be special metarule constants; a; and
b; will be metarule variables that range over the metarule constants 0, 1; and
A, B, #, and { will be special grammar symbols. I will use 0¢ to denote the
length 7 string of all 0’s, where 0 is a metarule constant. Thus, 0° denotes
00000.

The reduction constructs a GPSG grammar G such that the special
symbol # is an element of L(G) iff F is satisfiable. The idea is that the
constructed GPSG will guess an assignment of truth values for the formula

variables, and then determine if the guessed assignment satisfies the formula
F.

The constructed metarules will use the right-hand side of the context-
free rules to record guesses and as a scratchpad during the evaluation of the
guess. The string z to the left of the “}” symbol represents the formula F,
where z; is the literal in the i, position of debracketing of F', w. The string
y to the right of the “}{” symbol encodes an assignment of truth values to
variables, where the jt* position y; stores the truth value assigned to the
formula variable g;.

To “guess” an assignment, the metarules will generate all possible truth
assignments to the n variables, exactly as a deterministic Turing machine
might if it were simulating a nondeterministic Turing machine. To verify

the guess, some metarules substitute the guessed variable values for the
formula literals, and other metarules “evaluate” the instantiated formula.
For the 3-CNF formula to be true, every clause must be true, and for a
clause to be true, at least one of the three variables in the clause must be
true. The following metarules exploit the regularity of 3-CNF formulas in a
very obvious manner.

G contains

1. n 4+ 1 basic rules:

the it? rule: [4 — 0l*1$190"~¥] where 0< i< n

The basic rules, in conjunction with some of the metarules, will gen-
erate all possible assignments to the formula variables.

2. the metarules

(a) in(n—1) metarules, which generate all possible truth assignments

(b)

when they are applied to the basic rules. (n is the number of
distinct variables in the formula F.) For all 7 and for all j, 1 <
1 < j < n, construct the metarule:

[A——>0|”|Ia1...a,~...aj...an] =

[4 — ol tay... Qio10j@i41 ... Q5 _10i@j41 ... Q)

These metarules exchange any two symbols (in positions ¢ and
7) in a string of length n. Therefore, if one of these metarules
applies to a rule, it will exchange the truth values assigned by
the rule to the variables ¢; and ¢;. Since any subset of these
metarules can apply one by one to the basic rules before the next
metarule (immediately below) shuts off the process, any posssible
truth-assignment to the variables can be encoded in the substring
to the right of the “}” symbol. (See the formal proof of lemma 1
below.)

One metarule, to stop the generation of truth assignments:
[A—0%ta;...a,] = [B—0¥tay...a,]

This metarule prevents any of the metarules described above
from changing a guess while the following metarules determine if
the guess satisfies F'.

(c)

(d)

|w| metarules are needed to instantiate the variable truth assign-
ments generated by the preceeding metarules into the formula lit-
erals. Note that the basic rules assign formula literals the truth
value 0 by default. Consequently, we only need to instantiate
literals with the truth value 1. For each literal in F, there will be
exactly one metarule: 7 will index the 3t* literal in w, and j will
index the corresponding formula variable, whose value is encoded
in the string to the left of the { symbol. A negative literal (e.g.
@) will be true when its variable is false, while a positive literal
(e.g. a) will be true when its variable is true. Formally, include
the following metarules for all 7,1 < i < |w|:
o If w; = ¢; for some j, then construct this metarule to watch
for ¢; being true:
[B — ay ...a.;_10a;+1 e Q) tbl ...bj_llbj.H ...b,.] =
[B —ay ... a;_lla,-.,,l e a|w, Ibl e bj_11bj+1 e bn]
e Otherwise, w; = @j for some j, and we construct this metarule
instead to watch for ¢; being false:

[B —a... a,~_10a,.-+1 <o Q| I b.. .bj_l()b_,'.H oo bn] =
[B —a... a,'_lla,-_H ces a|,,,| ibl e bj-106j+1 e bn]
Note that these metarules instantiate the negation of formula
variable ¢; in the #** position of w.

Include Z|w| metarules to verify that the guessed assigment satis-
fies F. (Recall that the formula F' is in 3-CNF, and therefore |w|
will be a multiple of 3.) According to the definition of 3SAT, a 3-
CNF formula is true if all its clauses are true, and a clause is true
if any of its three literals is true. Accordingly, these metarules
will erase a 3-CNF clause iff at least one of its three literals is
true. Therefore, if the metarules can erase the entire string to
the left of the “}” symbol, then the formula is satisfiable. There

are seven such metarules for each k, 0 < k& < J—‘;—’l -1:

[B—-éOOlal...aaktbp..bn]
[B—010a;...a3; 1b;1...5,]
[B—100ay...a3% $b1...b5]
[B—01la;...a3k $b1...b,]
[B—101lay...a3, $b1...b4]
[B— 110a;...a3¢ tb1...b,]
[B—11la;...a3; $by...5,]

[B—ai...asx tbr...0y]
[B—ay...azelby...b,]
[B—ay...a3xib1...b,]
[B—ai...as, 1by...bg]
[B—ay...asklbr...b,]
[B—ai...asx }by...by]
[B—ay...asx by ...b,]

Lrrendy

(e) Finally, one metarule, to erase the assignment string and generate
the accepting production:

[B—tay...an)] = [S— #]

As we mentioned above, clauses are erased iff they are true, and
this metarule can only apply if all 3-CNF clauses in F have been
erased. Thus, this metarule is used iff all the clauses are true,
and the formula is satisfiable.

G contains the production [§ — #] iff F is satisfiable, so # € L(G) iff F is
satisfiable.

The result of applying any metarule (aside from those described in the
first construction) is to change a basic rule so that the metarule cannot apply
to it again. Note that the time required for the reduction is essentially the
number of symbols needed to write the grammar down. The reduction can
be performed in O(m3logm) time because the longest metarule is of length
O(mlogm), and there are O(m?) metarules. []

As promised earlier, I now prove that all possible truth assignments can
be generated by the first metarule schema above, subject to the restriction
that a metarule may only operate once in the derivation of a given rule.
This is equivalent to proving that we can generate all binary numbers from
0 to 2™ — 1 inclusive, using only n + 1 binary numbers and the metarules
in 5.

Lemma 1 The %n(n — 1) metarules described by the schema 5, which can
exchange any two bit positions 7 and j in a binary number of length n,

Vi,j, 1<i<j<mn, 5)
5
[@1...ai...0;...a,]) = [a1...0i_10j8i41...05_10:aj41 ... ap]
can generate all binary numbers from 0 to 2" — 1 using only the n + 1
binary numbers 1°0"~*, where % ranges from 0 to n (inclusive), even though
no metarule may apply twice in the derivation of any given binary number.

Proof. Let a(k) be a binary number with k£ 1's in its binary representation,
0 < a < 2", and let B(k) = 1¥0"~* be the k™ binary number. Then the
following algorithm, expressed in a generic programming language, derives
a(k) from B(k) using the metarules:

PROCEDURE = DERIVE(a,(3)

1 fori=1to [%]

2 if a; # B; then do

3: for j = n to 0 step —1

4: if a; # B; then goto 6

5: next j

6 Let 3 be the result of applying the metarule
[al...ai...aj...an] -

[a1 coe @i 1050541 ¢+ Q5 1Q;Q5471 an]

to 3, switching bit positions 7 and j in the number 3

7: next ¢

No metarule can be applied twice because 7 and ; are different every time
a metarule is applied (in line 6). In any derivation, at most [2] metarules
are applied (see line 1; in fact, exactly MIN(k,n—k) metarules are applied
in any derivation). []

Ezample derivation. Let a(5) = 0010011110, a binary number with 5 1's

in its binary representation. Also let B(5) = 1111100000, the 5% binary
number. Then the following table illustrates how the algorithm of lemma 1
derives a(5) from S3(5).

B8 metarule used next S

1111100000 [a1a2a3a4a5a6a7as3a9a10] = [agarazasazagarasaias) 0111100010
0111100010 [a1aza3a4a5a6a7a5a9a10] = [a1a8a3a4a5a6a7a2a9a10) 0011100110
0011100110 [a1a2a3a4a5aga7a3a9a10] = [a1a2a3a7a5a6a4a8a9010) 0010101110
00101_01110 [a1a2a3a4a5aea7asagam] = [a1a2a3a4aea5a7asa9am] 0010011110

2.4 Example reduction from a 3SAT instance

This section uses an example reduction to provide a concrete illustration of
the preceeding proof. Suppose the input 3SAT instance F is:

F=(aVbVec)A(@VbVe)

Then the string of formula literals w is abcabe, and the symbols gy, ¢z, and
g3 refer to the formula variables a, b, and ¢, respectively.

10

The reduction algorithm described above constructs the following GPSG
in polynomial time in the length of F. Note that the metarule application
process, and not the reduction algorithm, generates all possible truth as-
signments to F’s variables.

1. 4 basic rules, and

[A — 000000 000] [A — 000000 $ 100]
[A — 000000 §110] [4 — 000000 } 111]

2. 25 metarules
(a) 3 metarules to generate assignments

[A — 000000 § alazaa] = [A — 000000 § aza1aa]
[A — 000000 t ayaz2a3] == [A — 000000 } asaza]
[A — 000000 t ayaz2a5] = [A — 000000 }a;aza;)

(b) one metarule to freeze assignment generation
[A — 000000 } ajazaz] = [B — 000000} a;aja;)
(c¢) 6 metarules to instantiate formula literals
¢ 3 metarules for unnegated variables

[B — 0a3a3a4a5ae t 1bzb3] == {B — 102030405(13 I lbzba]
[B — 6102004115(13 1 ble]-] = [B — a1a21a4a5a6 tble]-]
[B —_ 0.10.2(130.40(16 1b1163] = [B 4 a1a2a3a41a5 Ibllbs]

e 3 metarules for negated variables

[B — ai0agasasae 1 b10bs] =—> [B — ajlasasasae-fbi0bs]
[B — ajazaszlasag IObzba] - [B — ajazazlasag I Obzba]
[B — ajazazaqas0 t b1b20] = [B — ajazazagasl I b1b20]

11

(d) 14 metarules to verify guessed assignments, and

[B — 001{1102(13 Iblbzba
[B — 010(110.203 Iblbzba
[B — 100(110.20.3 i b1b2b3

] [B — ajazas § bybzbs]
]
]
[B — 0llaiazas t bibsbs)
]
]
]

[B — ajazaz § bibybs]
[B — ajaqaz §bybybs]
[B — aiazas } bybabs)
[B — aiazas }bibabs]
[B — a1a20a3 by bybs]
[B — ajazas }b1babs)

[.B — 1010.1(120.3 xb],bzba
[B g 110(1102&3 I blbzbs
[B — 111ajazas § b1babs

[B — 001 § bybzbs]
[B — 010 £ bybybs]
[B — 100 £ bybybs]
[B — 011 1 bybzbs]
[B — 101 1 bybybs]
[B — 110§ bybybs]
[B — 111 £ bybsbs]

[B — 1b1bbs]
[B — 1b1bybs]
[B — 1b1bybs)
[B — 1b1b2bs]
[B — 1b1byb3]
[B — 1b1babs]
[B - ﬂ’lbzba]

proeee il

(e) one metarule to create the accepting production

[B — Ia]_azaa] = [S — #]

If we apply the metarules to the basic rules constructed
subset of the resultant context-free rules is:

above, a proper

[4 — 000000 § 010]

[B — 000000 £ 000]
[B — 000000 £ 100]

[B — 010101 } 000]
[B — 110001 £ 100]

[B — 101 £ 000]
[B — 000 1101]

[B — $000]
[B — 1110}

(S —#]

[4 — 000000 £ 001]

[B — 000000 $ 001]
[B — 000000 § 101]

[B — 011100 } 001]
[B — 111000 § 101]

[B — 100 £ 001]
[B — 011 $ 110]

[B — 001]
[B — $111]

[4 — 000000 £ 101]

[B — 000000 t 010]
[B — 000000t 110]

[B — 000111 £ 010]
B — 100011 } 110]

[

(B — 1101011
[B — 010} 111]
[

B — $011]

[A — 000000 £ 011]

[B — 000000 £ 011]
[B — 000000 £ 111]
]
]

[B — 001110 $ 011
[B — 101010 $ 111

[B — 001 £ 100]

[B — $100]

The formula F is satisfiable, because the production [§ — #] is generated
by metarule application.

12

3 The EP Paradox Resolved

At first glance, a proof that GPSG-Recognition is NP-hard appears to con-
tradict Gazdar’s efficient parsability argument noted above. GPSGs only
generate CFLs and CFLs can be recognized in polynomial time (O(n3) for
a sentence of length n). Therefore it would seem that GPSGs can also be
recognized in polynomial time, simply by converting the target GPSG into a

weakly equivalent context-free grammar (CFG) and recognizing using that
CFG.

This argument is misleading because it ignores both the effect convert-
ing the GPSG into a CFG has on grammar size, and the effect grammar
size has on recognition speed. The crux of the matter is that even a highly
constrained GPSG grammar can result in an exponentially larger derived
context-free rule set. Informally, each metarule application can more than
double the size of the GPSG grammar G. Since there are O(|G|) metarules,
the resulting derived grammar can be of size O(|G| - 2|1, that is, exponen-
tially larger than the GPSG.2 Standard context-free parsers like the Earley
algorithm actually run in time O(]|G|? - n®) where |G| is the CFG size and
n the sentence input length, so the hypothetical GPSG grammar G will be
recognized in time

o((I6] - 24 . n?)

Even if the GPSG grammar is held constant, the exponential increase in
derived grammar size will result in an astronomical constant multiplicative
factor, which will dominate the performance of the Earley algorithm for all
expected inputs (that is, those of a million words or less), every time we use
the derived grammar. Thus, in the worst case, if a GPSG with 10 symbols
recognized a given sentence in .001 second, a grammar with 50 symbols
would recognize the same sentence in 35.7 years, and a grammar with 100
symbols could take at least 101° centuries.* (Gazdar’s (1981) toy grammar

3This mathematical analysis is vindicated in practice. Phillips and Thompson
(1985:252) observe that in their parser based on the GPSGs of Gazdar (1982), “To expand
the [GPSG] grammar completely . . . would be ridiculously wasteful of space and time.
(The toy grammar of English we use with GPSGP [their parser], of 29 phrase-structure
rules and four metarules, which expands to 85 rules, is equivalent to several tens of millions
of context-free rules.)” Similarly, Shieber (1983:137) notes that typical post-Gazdar(1982)
GPSG systems contain “literally trillions” of derived rules. Ristad (1986b:83) estimates
that the GKPS grammar for English corresponds to at least 10°® context-free productions.

*Evans (1985:237) experiences the real-world intractability of GPSG-Recognition first
hand in his GPSG-based parser, and proposes to manage it by eliminating lexical am-

13

contained many hundreds of symbols, so a grammar size of 100 is somewhat
small.)

The resolution of the EP paradox may also be understood as a special
case of the central distinction between problem complezity and algorithm
complezity. As I mentioned earlier, the complexity of a problem is its inherent
complezity, the computational cost of solving a problem, no matter which
existing or undiscovered algorithm is used. Conversely, the complexity of
an algorithm is the cost of a specific algorithm or procedure for solving a
problem. Thus, the fact that GPSGs can succinctly encode some CFGs
indicates straightforward use of standard CFG recognition algorithms will
fail to be efficient for GPSGs, because a GPSG is weakly equivalent to a very
large CFG, and CFG size affects recognition time; yet that fact in no way
bears on the complexity of the GPSG recognition problem. The complexity
result, on the other hand, firmly establishes that no known or yet to be
invented algorithm for GPSG-Recognition will be efficient, unless P = N'P.

Although known grammar conversion procedures increase both the gram-
mar size and recognition time for the GPSG, the preceding discussion does
not in principle preclude the possibility of “compiling” the GPSG into a
“fast” grammar.® If the compiled grammar is truly fast and assigns the
same structural descriptions as the uncompiled GPSG, and it is possible
to compile the GPSG in practice, then the complexity of the universal RP
would not accurately reflect the real cost of parsing. But until such a sug-
gestion is forthcoming, I assume that it does not exist.

4 Restricting Metarule Application

Since the central problem is that GPSG metarules are capable of deriv-
ing any finitely large set of rules, including exponentially large ones, we
must further constrain metarule application if we wish to solve the GPSG-

biguity and by keeping both grammar and input string size as small as possible: “The
attempts to overcome the time and space problems have only been partially successful . .
. . The only remedies seem to be, keep phrases as short as possible (for example, do not
try to test large noun phrases inside complex sentences if it can be avoided — use proper
nouns instead), make sure no words are duplicated in the lexicon, keep the number of ID
rules currently loaded down where possible”

®Barton (1985) shows how grammar expansion increases both the space and time costs
of recognition, when compared to the cost of using the grammar directly.

14

Recognition problem in polynomial time and thereby obtain an efficient
parsability result.

A list of restrictions necessary to remove GPSG-Recognition from the
class of NP-hard problems is:®

e strictly bounded “chaining” — only a constant number of metarules,
fixed in advance for all GPSG grammars, can operate in the derivation
of a given context-free rule.

o each metarule may derive a rule set only polynomially bigger than its
input rule set.

¢ a metarule may only use “abbreviatory variables.”

5 Defining the Recognition Problem

Following complexity theory practice, I use the universal recognition prob-
lem — given a grammar G and an input string z, is 2 € L(G)? — to
formally analyze GPSG’s efficient parsability (EP) claims. Alternately, the
recognition problem (RP) for a class of grammars may be defined as the
fized language RP (FLRP): given an input string z, is ¢ € L for some fixed
language L? For the FLRP, it does not matter which grammar is chosen to
generate L — typically, the fastest grammar is picked.

It seems reasonably clear that the universal RP is of greater linguistic
and engineering interest than the FLRP. The grammars licensed by linguistic

%In order to guarantee that these three restrictions are sufficient, GPSG must be com-
pletely and exactly formally specified, in a manner which ensures that proliferation of
categories will not make the recognition problem intractable. Another aspect of current
GPSG formulations which make them NP-hard — and probably intractable — is the im-
mediate dominance/linear precedence (ID/LP) formalism. See Barton (1985) for a proof.
Note that the linguistically untenable restriction of prohibiting metarule variables of any
kind is probably sufficient, when coupled with restrictions on ID/LP, to guarantee poly-
nomial time recognition. Such a restriction would mean that a metarule, which may only
“match” one basic rule, can only derive exactly one rule. The size of the derived context-
free rule set would be the size of the basic rule set plus the number of metarules. This
restriction is linguistically unmotivated because it fails to capture linguistically impor-
tant generalizations. For example, any metarule applying to singular and plural sentences
would have to be replicated at least twice: once to handle the singular case, and once to
handle the plural case.

15

theory assign structural descriptions to utterances, which are interpreted se-
mantically, translated into other human languages, and so on. The universal
RP, unlike the FLRP, determines membership with respect to a grammar,
and therefore more accurately models the parsing problem, which must use
a grammar to assign structural descriptions.

The universal RP also bears most directly on issues of natural language
acquisition. The language learner evidently possesses a mechanism for se-
lecting grammars from the class of learnable natural language grammars L
on the basis of linguistic inputs. The more fundamental question for linguis-
tic theory, then, is “what is the recognition complexity of the class Lg?”. If
this problem should prove computationally intractable, then the (potential)
tractability of the problem for each language generated by a G in the class
is only a partial answer to the linguistic questions raised.

Finally, complexity considerations favor the universal RP. The goal of a
complexity analysis is to characterize the amount of computational resources
(e.g. time, space) needed to solve the problem in terms of all computation-
ally relevant inputs. We know that both input string length and grammar
size and structure affect the complexity of the RP. Hence, excluding either
input from complexity consideration in order to argue that the RP for a fam-
ily of grammars is tractable would not advance our scientific understanding.”

Linguistics and computer science are primarily interested in the universal
RP because both disciplines are concerned with the formal power of a family
of grammars. Barton, Berwick, and Ristad (1986, forthcoming) elaborates
and extends these arguments.

"This “consider all relevant inputs” methodology is universally assumed in the formal
language and computational complexity literature. For example, Hopcroft and Ullman
(1979:139,346) define the context-free grammar RP as “Given a CFG G = (V, T, P, S) and
astring ¢ in T*, is z in L(G)?”, and the context-sensitive language RP as “Givena CSG G
and a string w, is w in L(G)?” Garey and Johnson (1979) is a standard reference work in
the field of computational complexity. All 10 automata and language recognition problems
covered in the book (pp. 265-271) are universal, i.e. of the form “Given an instance of
a machine/grammar and an input, does the machine/grammar accept its input?” The
complexity of these RPs is always calculated in terms of grammar and input size.

16

6 The Complexity of Succinctness

Section 3 resolved the EP paradox with an argument that superficially linked
representational succinctness with computational complexity: exponential
grammar expansion retards CFG recognition times when using standard al-
gorithms. Therefore, it may be tempting to blame intractability on expres-
sive economy. However, there is no causal relationship between succinctness
and intractability — simply because the two notions are mathematically
distinct.

Complexity results characterize the amount of resources needed to solve
instances of a problem, while succinctness results measure the space re-
duction gained by one representation over another, equivalent, represen-
tation. There is no casual connection between computational complexity
and representational succinctness, either in practice or principle. In prac-
tice, converting one grammar into a more succinct one can either increase
or decrease the recognition cost. For example, converting an instance of
context-free recognition (known to be efficient) into an instance of context-
sensitive recognition (thought to be intractable) can significantly speed the
RP if the conversion decreases the size of the CFG logarithmically or better.
Even more strangely, increasing ambiguity in a CFG can speed recognition
time if the grammar size is reduced sufficiently and slow it down otherwise
— unambiguous CFGs can be recognized in linear time O(|G|? - n), while
ambiguous ones can require cubic time O(|G|? - n®). Berwick and Weinberg
(1982) discuss these issues in greater detail.

In principle, tractable problems may involve succinct representations.
For example, the iterating coordination schema (ICS) of GPSG is an un-
beatably succinct encoding of an infinite set of context-free rules; from a
computational complexity viewpoint, parsing with the ICS is utterly trivial
using a slightly modified Earley algorithm.®? Tractable problems may also
include verbose representations: consider a random finite language, which
may be recognized in essentially constant time on a typical computer, yet
whose elements must be individually listed. Similarly, intractable problems
can involve either succinct or nonsuccinct representations. As is well known,
the Turing machine for an arbitrary recursively enumerable set may be ar-

8 A more extreme example of the unrelatedness of succinctness and complexity is the
absolute succinctness with which °, the dense language of all strings over the alphabet
%, may be represented — whether by a regular expression, CFG, or even Turing machine
— yet members of £* may be recognized in constant time (i.e. always accept).

17

bitrarily big or small.

The complexity result shows that GPSGs are not merely succinct encod-
ings of some context-free grammars; they are inherently complex grammars
for some context-free languages.

7 Conclusion

A central goal of this paper has been to define the framework within which
efficient parsability claims are best evaluated. Gazdar (1981) claims to offer
the beginnings of an explanation for efficient parsability, yet the universal
recognition problem for the GPSGs of Gazdar (1981) is provably NP-hard.
Inasmuch as his argument overlooks a computational problem that is likely
to be intractable, any support for GPSG on this basis is extremely weak.
Metarules, even when severely constrained, are one source of GPSG’s com-
plexity.

The moral of this result is that as far as we know casual appeal to
general mathematical results is not likely to rescue efficient parsability re-
sults. Specific constraints on the particular representations postulated by
linguistic theory are needed to explain efficient linguistic processing. This
does not imply that GPSG theory is without merit: on the contrary, I have
merely shown that its particular efficient parsability thesis cannot be main-
tained. Generalized phrase structure grammar, lexical functional grammar,
and transformational grammar are all probably intractable in an abstract
mathematical sense, and each theory must search elsewhere for an explana-
tion of efficient natural language parsing, if one is to be given at all.®

8 References

Barton, G. Edward (1985). “On the Complexity of ID/LP Parsing,” Com-
putational Linguistics, 11:205-218.

Barton, G. Edward, Robert Berwick, and Eric Ristad (1986, forthcoming).
Computational Complezity and Natural Language. Cambridge, MA:
MIT Press.

?Berwick and Weinberg (1984) discusses the complexity of LFG.

18

Berwick, Robert and Amy Weinberg (1982). “Parsing Efficiency, Computa-
tional Complexity, and the Evaluation of Grammatical Theories.” Lin-
guistic Inquiry 13:165-191.

Berwick, Robert and Amy Weinberg (1984). The Grammatical Basis of
Linguistic Performance. Cambridge, MA: MIT Press.

Earley, Jay (1970). “An Efficient Context-Free Parsing Algorithm,” Com-
munications of the ACM 13:94-102.

Evans, Roger (1985). “ProGram — a development tool for GPSG gram-
mars,” Linguistics 23(2):213-243.

Garey, Michael, and Johnson, David (1979). Computers and Intractability.
San Francisco: W.H. Freeman and Co.

Gazdar, Gerald (1981) “Unbounded Dependencies and Coordinate Struc-
ture,” Linguistic Inquiry 12:155-184.

Gazdar, Gerald (1982). “Phrase Structure Grammar,” in P. Jacobson and

G. Pullum (eds.), The Nature of Syntactic Representation. Dordrecht:
Reidel.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag (1985).
Generalized Phrase Structure Grammar. Oxford, England: Basil Black-
well.

Hopcroft, John E., and Ullman, Jeffrey D. (1979) Introduction to Automata
Theory, Languages, and Computation. Reading, MA: Addison-Wesley.

Joshi, Aravind (1985) “Tree Adjoining Grammars.” In Natural Language
Parsing, D. Dowty, L. Karttunen, and A. Zwicky, eds. Cambridge:
Cambridge University Press.

Lewis, Harry and Christos Papadimitriou (1978) “The Efficiency of Algo-
rithms,” Scientific American 238:96-109.

Peterson, I. (1985) Exceptions to the rule. Science News 128:314-315.

Phillips, John D. and Henry S. Thompson (1985). “GPSGP — a parser for
generalized phrase structure grammars,” Linguistics 23:245-261.

Ristad, Eric S. (1986a) “Computational Complexity of Current GPSG The-
ory,” Proceedings of the 24th Annual Meeting of the ACL, pp.30-39.

Ristad, Eric S. (1986b) “Complexity of Linguistic Models: A computational
analysis and reconstruction of generalized phrase structure grammar.”

S.M. Thesis, Department of Electrical Engineering and Computer Sci-
ence, M.I.T.

19

Shieber, Stuart M. (1983) “Direct Parsing of ID /LP Grammars,” Linguistics
and Philosophy 7:135-154.

Shieber, Stuart M., Susan U. Stucky, Hans Uszkoreit, and Jane J. Robinson
(1983). “Formal Constraints on Metarules,” Proceedings of the 21st
Annual Meeting of the ACL, pp.22-2T7.

20

