MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo 838 April, 1985

Prism Trees: An Efficient Representation For
Manipulating And Displaying Polyhedra
With Many Faces

Jean Ponce

Abstract: Computing surface and/or object intersections is a cornerstone of many al-
gorithms in Geometric Modelling and Computer Graphics, for example Set Operations
between solids, or surfaces Ray Casting display. We present an object centered, informa-
tion preserving, hierarchical representation for polyhedra called Prism Tree. We use the
representation to decompose the intersection algorithms into two steps: the localization
of intersections, and their processing. When dealing with polyhedra with many faces
(typically more than one thousand), the first step is by far the most expensive. The
Prism Tree structure is used to compute efficiently this localization step. A preliminary
implementation of the Set Operations and Ray Casting algorithms has been constructed.

(© Massachusetts Institute of Technology, 1985

"This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory’s Artificial Intelligence
research is provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research contract N00014-80-C-0505, the Office of
Naval Research under contract number N00014-77-C-0389, and the System Development
Foundation. This work was done while Jean Ponce was a visiting scientist on leave from
INRIA, Paris, France.




Introduction - ‘ 1

1. Introduction

We address the problem of computationally efficient representation of polyhedra.
Many algorithms for manipulating polyhedra are naturally decomposed in two steps:
the localization of the faces that intersect a given field of interest, and the subsequent
processing of these faces. Here are some practical examples:

1. Clipping: Localize all the faces of a polyhedron that intersect a viewing pyramid,
then process them to determine which ones are visible.

2. Set Operations between solids: Localize all the intersecting faces of two polyhedra,
then process them to find the intersection polygons of the two polyhedra, and to
determine whether or not all the other faces are part of the resulting solid.

3. Ray Casting: Localize all the faces of a polyhedron intersected by a semi-infinite
straight line (the light ray), and process these faces to find the first intersection, and
compute the display parameters.

In the case of polyhedra with many faces (typically more than one thousand), the
localization step is the most expensive. This is more generally true of algorithms that
manipulate a large number of objects. The basic method proposed in the litterature
to speed up this step is to include each object in a simple enclosing box, then build a
hierarchy of these boxes, and use it to direct the search. This method has been used for
the Clipping and Ray Casting problems by Clark [1076], Rubin and Whitted {1980}, and
more recently by Weghorst, Hooper, and Greenberg [1985]. It has also been applied to
algorithms for Set Operations, essentially in the Constructive Solid Geometry approach
(Requicha and Voelcker [1982]).

All these algorithms are “object” based: low level boxes in the hierarchy usually
represent either complete polyhedra, or primitive solids. They are not well suited to
the manipulation of a set of polyhedra each having thousands of faces. Such polyhedra
are of practical importance, in particular they can be models of real, digitized objects
that no simple CAD system can handle. Examples are organs from CT scanners (Artzy,
Frieder and Hermann [1978]), or objects measured using a laser rangefinder (Faugeras
and Pauchon [1983]).

Two recent methods, one for Set Operations between solids (Mantyla and Tamminen
[1983]), and the other for Ray Casting of fractal surfaces (Kajiya [1983]) have been
designed to deal explicitly with such polyhedra. They use “face” hierarchies that enclose
the faces themselves in boxes.

We present a new method, called Prism Tree, to represent polyhedra with many
faces. This is also a “face” representation, that describes polyhedra as a ternary tree
of prisms as enclosing boxes (Figure 1). It generalizes the Strip Tree representation for
planar curves (Ballard [1981]) and derives from a polyhedral approximation algorithm
(Faugeras et al. [1984]) that is described in Section 2. However, Prism Trees have much
wider applications, in particular they are information preserving, which is not the case
of the approximation algorithm. ‘

The representation is intrinsic to the surface, as opposed to the EXCELL structure
used by Mantyla and Tamminen [1983], or to the Octree representation for volumes
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Figure 1. The Prism Tree representation for polyhedra. At each level, the surface ST associated with a
node is represented by an enclosing prism (dotted lines) The surfaces associated with the sons of a node
partition the surface associated to their father. The link between a node and the associated ST is only made
explicit at the leaf level (solid lines). As these surfaces partition the original polyhedron, the representation
is information preserving. ) '

(Jackins and Tanimoto [1980], Meagher [1982], Iftikhar [1981]), that are attached to a
particular reference frame. It is therefore invariant under rigid transformations. We show
that Prism Trees can be used to speed up the localization step of Set Operations and Ray
Casting algorithms for polyhedra with many faces. They unify the approaches of the
Mantyla and Tamminen (although the data structures are very different) and Kajiya
algorithms, and in general demonstrate an improvement over these methods.

We first sketch the underlying polyhedral approximation algorithm (Section 2). Then
we define the Prism Tree structure, and give some properties (Section 3). Section 4 de-
scribes a set operations algorithms for Prism Trees, and Section 5 generalizes to the Prism
Tree structure a Ray Casting algorithm proposed recently by Kajiya [1983] for fractal sur-
faces. The crucial localization step has been fully implemented. The implementation of
the processing step is under way. Examples, featuring set operations between synthetic
solids and Ray Casting display of both synthetic and real objects, are given. Detailed
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procedural versions of the algorithms can be found in the appendix.

2. Polyhedral Approximation

In this section, we describe the polyhedral approximation algorithm (Faugeras et al.
[1984]). As we will see in the sequel, the Prism Tree employs a variant of this algorithm.
The data consists of a polyhedron of genus 0 (ie without holes, we will see the reason
of this restriction below), whose faces are not necessarily triangular. The polyhedron is
described by an object graph OG whose nodes are the vertices of the polyhedron, and
arcs are the polyhedral edges joining them. The algorithm generalizes to 3D space a
recursive polygonal approximation algorithm (Duda and Hart [1973]). Using a breadth
first approach, it approximates the initial polyhedron by a polyhedron with triangular
faces T;s.

ST

P T

Figure 2. The split step. The triangle T = PQR is replaced by the three triangles Ty = PQM,T; =
QRM,T; = RPM that are closer to the original surface.

At each level of the recursion, we associate to each triangle T a set of attributes: a part
ST of the surface to approximate, the three vertices P,Q, R of T, the error e7 measured
by the maximum distance between the points of ST and the triangle plane, and the point
- M where this maximum is reached. The triangulation is represented by an adjacency
graph AG: the nodes are the triangles themselves, and two nodes are linked by an arc iff
they share a common edge.

Starting with a rough approximation (described below) of the surface , the algorithm
loops over the following steps until the error associated to each triangle is less than a
given threshold e.
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Split Step: For each triangle T such that er > ¢, do: (Figure 2)

1. Let T1,T2,T5 be the three triangles PQM, QRM and RPM, and ST, ST,, ST; the
associated surfaces (obtained with a method to be described), compute the corre-
sponding errors er,, €r,, €T,, and the points where they are reached My, M3, M3.

2. Replace T by the T;s in the adjacency graph (in particular, for each previously neigh-
bor of T, replace T in its list of neighbors by the coresponding T;).

If we only use this step, old edges are never removed, even if they are a very bad approx-
imation of the surface. This is the reason why we use the following step.

Figure 3. The Adjustment step. The triangles T and T® are replaced respectively by T and T¢, and T}
and T?

Adjustment Step: For each pair of neighboring triangles T = P*QR and T® = P*QR
that have been created at the previous step and whose associated error is greater than e,
“eliminate the edge QR (Figure 3):

1. Find in ST® U ST® the point M that is the closest to the bissector plane of T and
T®, and lies at the maximum distance from QR.

2. Let T{ and T4 be the triangles P°QM and P°RM, compute as before the associated
surfaces STy, ST7, the errors €} and €3, and the points M{ and M7. Compute the
same way the triangles le and Té’ and their attributes.

3. Replace T° and T® by the four new triangles in AG.
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We have outlined the algorithm, we now initialize the adjacency graph, and define the
STs recursively .

Initialization of AG: Choose three points P,@, R on the surface (Figure 4). We can
compute the shortest cycle of OG that contains these points and is the closest to their
plane. As the surface is of genus 0, this cycle cuts it into two connected components STy
and ST» (Giblin [1977)). The initial graph is composed of two nodes corresponding to
the same triangle PQ R, but whose associated surfaces are STy and ST,. The two nodes
are linked by three arcs corresponding to the three edges of the triangle. Notice though
that any other initial triangulation could have been used. In particular, triangulations
based on the smooth patches between surface discontinuities (as in the Intrinsic Patches
representations of Brady, Ponce, Yuille, and Asada [1984]) could be used to yield better
approximations of the original surface.

Triangle: T
Error: E |
Split Point: M|
Surface: ST |

[PQ] [QR] [PR]

Triangle: T
Error: E
Split Point:M 5
Surface: ST -

Figure 4. The initial adjacency graph. The three paths [PQ], [QR]| and [RP] define a cycle that cuts the
surface into two parts ST; and ST,. They define the initial graph.

Definition of the STs: We consider only the split step (the case of the adjustment
step is quite similar and will be omitted), and use once again the fact that a cycle of a
surface of genus 0 cuts this surface into two components. Suppose (Figure 5) that we have
associated to a triangle T a surface ST, delimited by a cycle composed of the three paths
[PQ], [QR], and [RP]. Let Pia, P23, Ps;1 be the bissector planes of the pairs (T1,T%),
(T2,T3), and (T3,T;). Find a path [PM] between P and M in ST as the shortest path as
close as possible to P3 ;. Define similarly the path [QM]. The three paths [PM], [MQ)],
and [QP] define a cycle [PMQ] in ST that cuts it into two connected components ST;
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[omj

[PM]

Figure 5. The surface ST is split into three parts by the paths [PM], [QM], and[RM]

and ST'. We associate ST; to T;. We can now find in ST' a path [RM], that splits ST"
into two components STy and STj3, that we associate to T and Ts3.

The polyhedral approximation algorithm (Faugeras et al. [1984]) was initially pro-
posed in the context of Computer Vision, with the purpose of obtaining from an original
polyhedron (typically with 5000 faces) a reasonable approximation with only typically
500 faces. The main point was to compress the information as much as possible, while
preserving as much as possible the shape of the object. Unfortunately this is not always
possible, in particular for very complicated objects with important concavities, and in
practice the approximation can become relatively poor (Ponce 1983]). We now derive
from this algorithm the Prism Tree structure, and show that these problems disappear,
mainly because this representation is information preserving.
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3. Prism Trees

3.1. Definition

The polyhedral approximation algorithm provides us naturally with a hierarchical
representation of the surface: the successive subdivisions of the surface yield a ternary
tree structure, where each node represents a triangle and the associated surface, and
stores two kinds of information, geometric and structural.

The information carried by the STs is too complex for being directly used at each
level of the tree, so the “geometric” part of a non-leaf node is a simple box, easier to
manipulate. However, we store in each leaf of the tree a description of the associated
connected component ST of OG. In fact this description will not only contain the edge
information corresponding to OG, but also a description of the faces of the original
polyhedron adjacent to ST. This is important as it is in fact this face information that
will be used in the processing step of our algorithms.

Since by definition, the ST's partition the original graph, this makes the representation
information preserving: the original polyhedron can be recovered from its Prism Tree
representation. Consider a triangle T, and the bissector planes P;, P, P; of T and its
neighbors. We define the box associated with ST to be the smallest truncated pyramid
(called prism) with three faces PP, parallel to the P;s, and the two remaining ones, T'B;
and T By, parallel to T, that encloses ST (Figure 6).1 A

The structural information of each node consists of three pointers, noted Son [z],
7 € [1,2,3]. The root of the tree points to the two half-surfaces defined by the initialization
step. The Sons of a node associated to a split triangle point to its three sub-triangles,
and the Sons of a node associated to an adjusted node point to its two sub-triangles (the
third pointer is nil). We will refer to a node by a pointer Pt to it. Figure 7 shows the
Prism Tree model of a sphere. Notice that the prisms get thinner and thinner as the
resolution increases.

3.2. Some Properties

We now give fundamental properties which relate the intersection of two prisms to
the intersection of the underlying surfaces. The first one is obvious: if two prisms don’t
intersect, then the underlying surfaces don’t intersect either. In this case, we say that
the associated nodes have a null intersection.

The converse proposition is evidently false in general: two surfaces can have an empty
intersection, although the associated prisms intersect. In fact, it is impossible to decide
that the surfaces associated to two nodes intersect before the leaf level, as the STs
themselves are only represented at this level. So we say that two nodes that are not

t This is a natural way to define the box as, by definition, ST is the part of the surface that lies within
the P;s (or more precisely, it is the part of the surface delimited by a cycle which is the intersection of
the surface and the three planes), even though in the general case, points of ST can lie outside of the P;s
(remark however that if ST is convex, then it lies entirely inside the P;s). The two remaining faces are

used to “close” the box, and their distance corresponds to erp.
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Intersection of ST and PP3

Figure 6. Definition of the prism associated to a triangle. The upper part of the figure shows the geometry
of the bissector planes PP;s and the parallel planes T'B;s. The lower part shows T and its neighbors Tis,

and the constructed enclosing prism.

- both leaves have a possible intersection. At the leaf node, we can decide if the surfaces
associated to two leaves Pt; and Pt, intersect by testing directly each face of ST} against
each face of ST». If any of these couples intersect, then ST} and ST, intersect, and we
say that Pt; and Pts; have a clear intersection. Otherwise, we say again that they have
a null intersection.

Let us state two more properties that are obvious, but are the basis of all the algo-
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Figure 7. Successive steps in the approximation of a sphere, and the associated Prism Tree
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rithms we have developed for manipulating Prism Trees. If the surface associated with
a node intersects an object (a line, another surface..), then the same property holds for
all the ancestors of the node. Conversely, if the surface associated to a node does not
intersect an object, then the same property holds for all the descendants of this node.
This will allow the efficient localization of intersections by pruning the tree of possibilities
as soon as possible.

3.3. A lemma

We have noted in the previous section that the geometric information carried by a
non-leaf node of a Prism Tree is too poor to directly test the intersection of the under-
lying surface with another object. We now give a lemma that, given certain additional
conditions of regularity, relates the intersection of a straight line and a prism to the
intersection of this straight line and the surface ST associated to this prism.
Definition: A prism is said to be regular if the associated planes PP;, PP;, and PP;
are the bissector planes Pi, Py, and P3 themselves.

The regular prism notion is analogous to the notion of regular strip introduced by Ballard
[1981] for Strip Trees. It ensures that the intersection of the surface ST associated to
a regular prism and the union of the PP;s is a closed curve. It is then easy to show
the following lemma (see Faugeras and Ponce [1985] for a more general statement and a
detailed proof, based on Jordan’s theorem).

Clear Intersection Lemma: If a straight line intersects both the planes T'B; and T By
of a regular prism, then it intersects the underlying surface ST an odd number of times.
As it implies that the line and the surface intersect, we also say that the straight line and
the prism have a clear intersection (Figure 8).

This lemma could be used for deciding if a point is inside or outside a polyhedron
represented by a Prism Tree, by counting the number of clear intersections of a semi-
infinite straight line traced from this point with the nodes of the tree, using a method
similar to the one developed by Kalay [1982] t.

A straight line that has a clear intersection with a prism intersects at least one time
the associated ST. We have implemented this property in our Ray Casting algorithm
(see Section 5) to prune as soon as possible the list of the triangles that may intersect a
given ray.

3.4. Some remarks

Contrarily to the polyhedral approximation algorithm, the Prism Tree is proposed
in the context of Geometric Modelling, and it is used only for localization purpose. In
our algorithms, the ultimate processing step is the same one as for a classical polyhedral -
representation. This slightly different approach has some important consequences.

First, we use in fact a variant of the approximation algorithm. We no longer stop
dividing a node when the error gets small, but when the size (number of points) of the
associated ST is less than a given value (6 points per leaf in the examples presented in

1 Mantyla and Tamminen [1983], using their Box-EXCELL data structure, have actually implemented
a similar method for testing the inclusion of a point inside a polyhedron.
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with ST

Figure 8. The clear intersection lemma. The ray intersects ST between its two intersections with the T B;s.

the sequel): so the depth of the tree representing a n faces polyhedron is O (Log (n)),
and the number of faces processed is proportional to the number of leaves found during
the localization step.

Second, as the representation is information preserving, and as the Prism Tree is used
for localization only, even poor approximations of an object give exact results. The only
difference is that the tree of a poorly approximated object may have bigger prisms at a
given level in the tree than a well approximated one, and that the tree can be unbalanced.

Note also that the Prism Tree is intrinsic to the surface it represents: its geometric
features are not constructed according to a particular frame, but to surface features. This
implies that the structure of a prism tree is invariant through rigid transformations.

A last, but important remark: the approximation algorithm has been designed for
surfaces of genus 0, which is an unfortunate restriction. We can extend our algorithms
and analyses to more general surfaces by initially dividing them in components of genus
0 (e.g., cut a torus in two components along its parabolic lines), and considering a simple
triangulation of these components as the initial AG. The drawback is the addition of a
(possibly) interactive first step to define this triangulation. But as long as this triangu-
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lation is simple enough (ie the number of initial nodes of the Prism Tree is bounded and
small enough), it does not change the overall complexity of the Prism Tree algorithms.

The price can be worth paying for including very complicated, real objects in a high
level Graphics environment. This is quite similar to the approach advocated earlier, that
first segments the surface into smooth patches (Brady, Ponce, Yuille, and Asada [1984]),
yielding better approximations of the original surface.

4. Set Opefations Between Solids

Boundary representation modellers (Braid [1979], Mantyla and Sulonen [1982]) repre-
sent surfaces by faces, edges, and vertices, and the neighborood relations between them.
Set operations between solids are then computed by first finding the boundary intersec-
tion (which is a set of polygons) of the two objects, and then classifying the faces, edges,
and vertices outstde or nside according to the operation considered.

The first step, finding the intersection polygons, is the most expensive one. A naive
implementation leads to a complexity of O (m.n), where the two objects compared have
respectively m and n faces. To speed up these algorithms, Mantyla and Tamminen [1983]
use the localization /processing decomposition scheme, by first localizing the intersecting
faces of the two objects, and then computing the polygons themselves. They organize the
3D space for each polyhedron into a hierarchical data structure, called Box-EXCELL.
This structure is not intrinsic to the surface. It consists of a hierarchy of non overlapping
rectangular celis, each of them pointing to all the faces whose enclosing boxes intersect
it. A cell that intersects too many boxes is subdivided, so that the number of boxes by
terminal cells remains small. For each edge of one polyhedron, they find all the faces
of the other polyhedron that it intersects by visiting the associated Box-EXCELL struc-
ture. Mantyla and Tamminen’s experiments show that the localization step complexity
is reduced to O (m + n) (it cannot be less in their case as each edge of both polyhedra is
visited). '

We use the same decomposition approach, but the localization of the intersection is
different. Our algorithm is a direct generalization of the Ballard’s algorithm (Ballard
[1981]) for finding the intersection of two curves. We represent the two polyhedra by
Prism trees and mark all the nodes that correspond to intersecting faces by visiting in
parallel the two trees (this is similar to the algorithms for Octrees intersections (Meagher
[1980]), although the result obtained by our method will not be approximate, as for
Octrees, but exact). At each level, if two prisms don’t intersect, then the associated
surfaces don’t intersect either, so the nodes and all their descendants are marked non-
intersecting. Otherwise, if the two nodes are leaves and the associated ST's intersect, we
mark them as intersecting, as well as their ancestors, otherwise we also mark them non-
intersecting. In the remaining case of two non-leaf intersecting prisms, the bigger prism
is subdivided (this heuristic, originally proposed by Ballard [1981] in the 2D case, has for
purpose to always compare prisms of equivalent sizes), and the recursion proceeds.

The processing step then begins: we classify the non intersecting tnside or outside
nodes of one tree with respect to the other one by classifying one node, and propagating
its status to its connected component of non-intersecting nodes (as two neighboring non-
~ intersecting nodes are necessarily either both inside or both outside), and eliminate
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the 2nside or the outside nodes according to the operation performed. The connected
component exploration is done by using a neighbor finding algorithm (Faugeras and Ponce
[1983,85]), analogous to the one developed by Samet [1982] for Quadtrees, and that finds
any neighbor of a node at the same level of the tree in constant average time. We have
not yet included in the program the construction of the intersection polygons, but we
intend to do it in a near future, by using a solid modeller for polyhedra developed by
Lanusse [1985]. As already noted, the addition of this module will not change the overall
complexity of the method, as the number of faces by leaf is always bounded.

Figure 9 shows the application of this algorithm to set operations between a sphere and
a double cone, whose Prism Trees representations contain approximatively 1000 leaves
each. The computing time for the localization step is only 25s on a VAX class mini-
- computer. Of the million of possible intersections, less than one thousand are actually
tested. The processing step takes about 1s. »

We may make some remarks about the complexity of the localization procedure. At
a given level of the tree, only the intersecting nodes are again subdivided. This would
lead, if only one of the sons of each intersecting node was also an intersecting one, to a
complexity of O (N;.K), where N; is the number of intersecting faces, and K the depth
of the tree. Such a best case is evidently not realized in practical experiments, but it
indicates that the complexity depends on the shape of the intersection polygon, and on
the logarithm of the total number of faces (corresponding to the depth K of the tree),
so the method seems better than the Mantyla and Tamminen one, although a more
careful study is necessary. Notice anyway that an advantage of this method is that,
the representation being intrinsic, it does not have to be recomputed when the object is
rotated (the same advantage holds with respect to Octrees (Iftikhar [1981]). A procedural
version of the localization algorithm is given in the appendix.

5. Ray Casting

Hidden surface elimination algorithms (Sutherland, Sproull, and Schumacker [1974]),
and in particular Ray Casting methods (Roth [1982]), although they are among the more
general and allow a lot of “special effects”, are usually computationally expensive: if N; is
the number of surface elements, N, ray-surface intersections must be computed for each
pixel. This makes the “naive” version of this approach unusable for moderately complex
polyhedral objects each often containing more than 1000 facets for images containing
at least a quarter million pixels. To increase the efficiency of Ray Casting algorithms,
localization methods have been used.

Clark [1976], and after him Rubin and Whitted [1980], enclose the objects composing
the scene in a hierarchy of simple boxes (parallelepipeds). At each level, if the box
does not intersect the ray, the corresponding objects are rejected. Otherwise, the box is
subdivided, etc.. Weghorst, Hooper, and Greenberg [1985] have successfully applied more
sophisticated versions of similar methods to very complex scenes. However, these methods
are object oriented: they use hierarchies of objects, bounded by simple volumes, but they
are not really designed for dealing with polyhedra that contain themselves thousands of
faces.
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Figure 9. The upper part of the figure shows the leaves marked intersection in the trees representing the
£ double-cone and the sphere. The lower part shows the difference, union, and intersection of the two objects




Ray Casting » 15

Figure 10. The fractal subdivision process: for each edge of the original triangle T, a subdivision point of
height z; is computed, and T is replaced by the four triangles Tys3, T12, Ta3, and Ty3. The “cheesecake”
is obtained by translating the original triangle along the Z axis.

Recently, Kajiya [1983] has proposed a face oriented method for rendering fractal
surfaces (Fournier, Russel and Carpenter [1982]) using Ray Casting. His surface model
is similar to ours, except that it is non deterministic. The surface is a polygonal height
field. It is recursively subdivided, each triangle being replaced by four subtriangles whose
vertices are generated by a stochastic process (the subdivision in 4 triangles eliminates the
need for an adjustment step, but on the other hand, the subdivision cannot be stopped
for some triangles as the polyhedral structure would not be preserved). Kajiya encloses
each triangle in a so called “cheesecake” extent (Figure 10), which is a prism obtained by
translating the triangle along the vertical to enclose the associated surface. To intersect
the ray with a surface, Kajiya visits the associated tree: if the ray intersects a box, then it
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is again tested agaiﬁst the descendants. Otherwise, the ray is guaranteed not to intersect
any of the descendants. The tree is visited until the first intersecting leaf triangle is
found.

The method is readily extendible to Prism Trees. There are, however, some differ-
ences: as the fractal surface is defined as a height field, the cheesecakes associated to the
sons of a given node never intersect each other. This implies that they can always be
sorted from the nearest to the farthest with respect to a given ray. In particular, if only
one fractal surface is displayed, the corresponding tree can be visited in a strict depth
first manner. If the closest node is always visited first, then it is guaranteed that the first
intersection found will be the actually closest one.

Prism Trees do not have this nice property, and in particular non-regular sons of a
same node may intersect. We have to maintain an active list of all the nodes whose
associated surface may intersect a given ray. This disadvantage is a price to pay for
generality. Notice however that the same problem would arise for fractal surfaces defined
on non-planar objects, or simply when several of them are to be displayed simultaneously.
Moreover, the clear intersection lemma of Section 3 is going to help us keeping the active
list short.

Assume that the ray is parameterized by A, and let A, (Pt) and Mgz (Pt) be the
values of this parameter at the extremities of the intersection of the ray with the node Pt.
Following Kajiya, we say that a node Pt; shadows a node Pty if Apaz (Pt1) < Amin (Pt1)
(Figure 11). Kajiya conjectures that this notion couid be used to prune the active list,
but remarks that, unfortunately, a node can be shadowed at a given level and though
have visible descendants, as the intersection of the ray with the box does not imply the
intersection of the ray and the surface. We solve this problem by proving the following
lemma.

Shadowing Lemma: if the intersection of Ray and Pty is clear, and if Pts is shadowed
by Pt;, then Pts and his descendants are not visible from the considered pixel, and Pty
can be removed from the active list.

Proof: as the intersection is clear, Ray intersects the surface associated to Pt; at a
point that verifies Ay, (Pt1) < A < Apaz (Pt1), and so hides the surface associated to
Pty, whose each point verifies Amgz (Pt1) < Apin (Pt2) < A'n

Using this property, we can find for each pixel the point of the scene seen by the pixel by
a breadth first visit of the trees of the objects composing the scene (so as to eliminate as
early as possible the shadowed nodes). At each step of the recursion a A,;,-sorted list of
the nodes that intersect the ray at this level is maintained. The process terminates when
the list is either empty or only composed of leaves. The first element of the list is then
used to compute the display parameters, by finding among the (few) faces associated to
this leaf the closest one that intersects the ray.

Again, we discuss the complexity of this algorithm. First notice the interest of the
clear intersection notion. In the ideal case, there are only clear and null intersections, so
the algorithm visits only one branch per tree and per pixel, and due to the shadowing
between trees, one can expect to visit entirely a single branch of a single tree. This is an
important advantage over Kajiya’s algorithm, where the execution time is proportional
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Pt Pt

Figure 11. The intersection of a ray with the nodes of a Prism Tree. Pt; and Ray have a clear intersection,
so Pty and Ptj, that it shadows, have no visible descendants. Conversely, the shadowing of Pt by Pt,
alone would not imply that Pt; has no visible descendant, as Pt; and Ray don’t have a clear intersection.

to the number of objects in the scene (although it is unlikely that several fractal surfaces
are going to be displayed in the same image).

In the case where few clear intersections occur, or the different surfaces are close
enough so that only few shadowings occur, the complexity degenerates, and becomes
again proportional to the number of objects. Even in this case though, it is likely that a
ray will in general intersect only one of the sons of a node, so only a few branches will be
explored.

Figure 12 shows the application of this algorithm to the union of the double cone
and the sphere, and to a Renault automobile part. The resolutions of the images are
respectively 512 x 512, with a CPU time of two hours for 2000 leaves, and 256 x 256, with
a CPU time of 28 minutes for 1000 leaves. Once again, in our case, the processing step is
not complete, as we display the approximation and not the surface itself. Nevertheless, the
remark made at the end of the previous section still holds, and a complete implementation
will not change the overall complexity of the algorithm. A procedural version of the
algorithm can be found in the appendix.

6. Conclusion

We have presented a new method for localizing the search for geometric intersections
in the polyhedral case. It has proved efficient for the two classical problems studied. We
are continuing our work on the complete implementation of the processing step. Also, a
more rigorous study of the algorithms complexity is needed.
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Figure 12. Examples of applications of Ray Casting to the union of the double cone and the sphere, and
to an automobile part :

We believe that Prism Trees have important potential applications, in particular for
complex, real 3D objects, digitized as polyhedra with thousands of facest. In this optic,
we give two examples.

Today’s most sophisticated Graphics systems deal with (relatively) simple objects. Us-
ing the Ray Casting algorithm in conjonction with a laser rangefinding system (Faugeras
and Pauchon [1983]) will allow us to include “real life” objects, from industrial parts to
statues, in such an high level Graphics environment and to obtain from them the realistic
images that only Ray Casting programs authorize.

Similarly, the Set Operations algorithm could be used in CT tomography (Artzy,
Frieder and Hermann [1978]) to obtain slices of an organ in an arbitrary direction, or
more generally to cut it along an arbitrary surface.

7. Appendix

We now present in more detail the procedures used to find the intersection of two
surfaces, and to display the object represented by the Prism Tree using a Ray Casting
method. We give them in a pseudo PASCAL form, the declarations of types and variables
being omitted.

7.1. The Surface-Surface Intersection Procedure

This procedure is straightforward, the two trees are visited in parallel in a depth
first search manner, until all the intersection leaves are marked (using the flag Mark).

-1 This is the typical output of scanning processes that measure successive slices of the surface of a 3D

object, as laser digitizers or CT scanning.
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Then all their ancestors are also marked. We suppose that we dispose of the following
functions: : >

Vol (Pt): this real function returns the volume of the box associated to Pt.
Leaf (Pt): this boolean function returns true iff the node Pt is a leaf.

Marked (Pt): this boolean function returns true iff Pt is not nil and is marked (i.e. the
flag Mark is set to 1).

Prismint (Pty, Ptp) is a 3-valued function that returns clear, possible, or null according
to the type of intersection of Pt; and Pty. This function is the key of the algorithms that
manipulate the Prism Trees. In the special case of the leaves whose associated prisms
intersect (and only in this case), Prismint tests directly the intersection of the surface
patches themselves, and returns clear if they actually intersect.

Procedure Find — Sur faces — Intersection (Pty, Pty)
begin
if Prismint (Pty, Pty) # null then
begin
Ley « Leaf (Pty); Leg « Leaf (Pts);
if Le; and Le, '
then begin Pt; 1 .Mark « 1; Pty 1 .Mark «— 1 end
else (* The recursion proceeds *)
if Leg or (Vol (Pt1) > Vol (Pty))
then begin
fori —1to3do
Find — Sur faces — Intersection (Pty 1 .Son[i], Pty);
if Marked (Pt; 1 .Son (1))
or Marked (Pt; T .Son[2))
or Marked (Pt; 1 .Son[3))
then Pt; T .Mark « 1
end
else begin
for{ « 1to 3 do
Find — Sur faces — Intersection (Pty, Pty 1 .Soni]);
if Marked (Pty 1 .Son [1])
or Marked (Pty 1 .Son [2))
or Marked (Pt T .Son[3))
then Pty | .Mark «— 1
end
end
end;

7.2. The Ray Casting Procedure

The elements of the A,,;,-sorted list of nodes, Active — List, are 5-fields records: the
first field, Node, is the corresponding node of the Prism Tree, the second one, Nexzt, is
a pointer to the next element of the list, the third one, Old is used for the breadth first
visit of the tree. Its value is 1 if the node has been inserted at the previous iteration.
The last two fields caracterize the intersection of the ray with the prism. Apyoqe is the
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minimum value of the parameter A of the ray such that an intersection occurs, and Py ,ge,
set only if the node is a leaf and has a clear intersection with the ray, is the firstpoint of
intersection of ST and the ray. It is used for computing the display parameters.

We suppose to dispose of the following procedure and function:

Insert (Q, N, Apyn) inserts the element Np in the list Q by comparing the ), value

~associated to N to the one of the currently visited node.

Rayint (Ray, Pt, Amins Amazs Pmin) is a modified version of Prismint. It is also a 3-valued
function, the clear intersection notion being extended to the intersection of a straight line
and a regular prism. Its additional features are that it returns the extremal values Ain
and Mgz of the intersection of Ray and Pt, and in the case where Pt is a leaf and the
intersection is clear, it also returns the closest intersection point Py,

Function Raycast (Ray, Pt, Pseen):boolean;
begin (* initialize parameters *)
with Active — List T .Next 1 do
begin Node + Pt; Old «— 1; Anode +— —00 end;
’\max,O — +00; A = +00; Pyeen, + nil;
repeat (* main loop *) _
All — Leaves «— true; Empty «— true;
P « Active — List; @ «— P | .Next;
while Q # nil do (* auxiliary loop: visit the list *)
if Q T "\Node > Amu:t:,()
then @ «— nil (* the rest of the list is shadowed *)
else if Leaf (@ 1 .Node) (* non shadowed leaf? if yes, it shadows *)
then begin Empty «— false; Q « nil end (* everything behind *)
elseif @ 1.0ld=0
then (* non-leaf new node that gets old, go on *)
begin All — Leaves « false; @ 1.0ld « 1;
P—Q;Q Q1 .Next end
else begin (* non leaf old node, divide *)
for i «—1to0 3 do
begin

Inter «— Rayint (Ray,@ 1 .Node 1 .Son[i], Amin, Amazs Pmin);

if (Inter # null) and (Apin < Amaz,o0) then
begin (* insert the son *)
New(Np); Insert (Q,Np, Amin);
with Np 1 do

begin Old « 0; ANode “— Amin; PNode + Prin;

Node — Q 1 .Node 1 .Son [i] end;
if (Inter = clear) and (Amaz < Amaz,0)
then Amaz,0 ¢+ Amaz;
end end;

Q@ — Q1 .Next; P 1 .Next +— @

end; .

until All — Leaves or Empty;

if Empty then Raycast «— false

" else begin Pgeen — Active — Inst T .Next | .Pnoge; Raycast «— true end
end; '
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