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ABSTRACT: Perceptual studies suggest that the visual system uses the “rigidity” as-
sumnption to recover three-dimensional structure from motion. Ullman (1084) recently
preposed a computational scheme, the meremental rigidity scheme, which uses the rigid-
ity assumption to recover the structure of rigid and nonrigid objects in motion. The
scheme assumes the input to be discrete positions of elements in motion, under ortho-
graphic projection. We present formulations of Ullman’s method that use velocity infor-
mation and perspective projection in the recovery of structure, Theorctical and computer
analyses show that the velocity ‘based formulations provide a rough estimate of structure
quickly, but are not robust over an extended time period. The stable long term recovery
of structure requires disparate views of moving objects. Our analysis raises interesting
questions regarding the recovery of structure from motion in the human visnal system.
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1. Introduction

An important source of three dimensional information is provided by the relative mo-
tions of clements in the changing two dimensional image.  The human visual system
is capable of recovering structure from motion, under both orthographic and perspee-
tive projection, and in the absence of all other cues to 3 D structure (see, for example,
Miles, 1931; Wallach and O'Connell, 1953; Braunstein, 1976; Johansson, 1978; Ullinan,
1979). In studying the computation of structure from motion, one immediately faces
the problem that the recovery of structure is underconstrained; there are infinitely many
3 D structures consistent with a given pattern of motion in the changing 2 D image.
Additional constraint is required to establish a unique interpretation.

Early perceptual studies suggested that the rigidity of objeets may play a key role in
the recovery of structure from motion (Wallach and O’Connell, 1953; Gibson and Gibson,
1957; Green, 19615 Johanssou, 1975, 1977). Computational studies later established that
rigidity is a sulliciently powerful constraint to derive a unique interpretation of structure,
under a variety of viewing conditions. For example, Ullman and Fremlin (Ullman, 1979)
showed that under orthographic projection, three views of four non coplanar points are
sufficient to guarantee a unique 3 D interpretation (up to an unavoidable reflection about
the image plane). In the case of perspective projection, Longuet Higgins and Prasdny
(1981) proved that the instantancous velocity field and its first and second spatial deriva-
tives at a point admit at most three different 3 D interpretations. Tsai and Huang (1981)
showed that, with the exception of a few special configurations, two perspective views
of seven points in motion are sufficient to guarantee a unique 3-D interpretation. Wax-
man and Ullman (1984) also addressed the uniqueness of the recovery of structure under
perspective projection, basing their results on a kinematic analysis of continuous image
flows. Additional theoretical results have been obtained for various classes of restricted
motion, such as planar surfaces in motion (Hay, 1966; Longuct Iliggins, 1984; Waxman
and Ullman, 1985; Ullman, 1985; Negahdaripour and Horn, 1985). pure translatory mo-
tion (Clocksin, 1980), planar or fixed axis rotation (Hollman and TFlinchbaugh, 1982;
Webb and Aggarwal, 1981; Bobick, 1983; Bennett and Hoffman, 1984a,b; Sugic and Ina-
gaki, 1984), and translation perpendicular to the rotation axis (Longuet Higgins, 1983).
A review of the theoretical results vegarding the recovery of structure from motion can
be found in Ullman (1983).

Irom theoretical studies of the structure from notion problem, it can be concluded
that by exploiting a rigidity constraint, 3- D structure can be recovered from motion
alone, using image information that is integrated over a small extent in space and in
time. These theoretical studies have also given rise to algorithms for deriving the rigid
3 D structure of moving objects (for example, Ullman, {979; Longuet Higgins, 1981; Tsai
and Huang, 1981). Experimentation with these algorithins has revealed two important
limitations. First, although it is possible in theory to recover stricture from motion
information that is integrated over a small extent in space and time, such a strategy
may not be robust in practice. A small amount of crror in the image measurements
can lead to very different solutions (Ullman, 1983). Sccond, most previous algorithns
derive a three dimensional structure only when a rigid interpretation is possible, and
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otherwise do not yield any interpretation of strueture or yield a solution that is incorrect,
or unstable.

The first observation above suggests that a robust algorithin for recovering structure
should use motion information that is more extended in space or time. This conclusion
is supported in recent computational studies by Nagahdaripour and Horn (1985) and
Ullman (1984). Negahdaripour and Horn addressed the recovery of the motion of an
observer relative to a stationary planar surface. It was shown that a robust recovery
of both the observer motion and the orientation of the plane is possible when dense
measurcments of the spatial and temporal derivatives of image brightness are integrated
over a large region of the changing image. Thus, consideration of motion information
that is more extended in space can lead to a stable recovery of structure. Bruss and
Horn (1983) also proposed an algorithm for recovering the motion of an observer relative
to a stationary scene, which integrates motion information over an extended region of
the tmage. The study by Ullman (1984)., which will be developed further in this paper,
demonstrated that a robust recovery of structure is also possible when motion information
is integrated over an extended period of time. The extension in time can be achieved,
for example, by considering a large numnber of discrete frames or by observing continuous
motion over a significant temporal extent.

With regard to the human visual system, the dependence of perecived structure on
the spatial and temporal extent of the viewed motion has not yet been studied systemati-
cally, but the following informal observations have been made. Regarding spatial extent,
two or three points undergoing relative motion are suflicient to clicit a pereeption of 3-D
structnre (Borjesson and von IHofsten, 1973; Johansson, 1975), although theoretically the
recovery of structure is less constrained for two points in motion, and perceptually the
sensation of structure is weaker. An increase in the number of moving clements in view
appears to have little affect on the quality of perceived structure (for example, Petersik,
1980). Regarding the temporal extent of viewed motion, Johansson (1975) showed that
a brief observation of patterns of 11)(>{ri11g lights generated by human figures moving in
the dark (commonly referred to as biological motion displays) can lead to a perception of
the 3D motion and structure of the figures. Other perceptual studices indicate that the
human visual systemn requires an extended time period to reach an accurate perception of
3-D structure (Wallach and O'Conuell, 1953; White and Mueser, 1960; Green, 1961). A
brief observation of a moving pattera sometimes yields an impression of structure that is
“flatter” than the true structure of the moving object (Ullman, 1984). Thus, the human
visual system is capable of deriving some sense of structure from motion information that
is integrated over a siall extent in space and time. An accurate perception of structure
may, however, require a more extended viewing period. _

It was noted carlier that most algorithins for recovering structure from motion are
unable to interpret nonrigid motions. There are, however, some exceptions to this. Ben-
nett and Hoftman (1984b) studied the minimum amount of motion information required
to derive a unique interpretation of the structure of a set of diserete elements undergoing
nonrigid motion, when it is assumed that the clements are rotating about a fixed axis
in space. Hoffman and Flinchbaugh (1982) proposed an algorithm for interpreting the
3 D motion and structure in biological motion displays. This algorithm decomposes the




overall nonrigid motion into pairs of points that are rigidly linked and rotating in a plane,
and triplets of points forming two hinged links that rotate in the same plane. Koenderink
and Van Doorn (1984; Koenderink, 1981) examined the class of bending deformations,
which satisfy the physical constraint that distances along the surface of the object are
preserved by the transformation. This class of deformations exceludes any stretehing or
compressing of the object surface. In its current formulation, the method proposed by
Koenderink and Van Doorn for recovering the structure of bending surfaces requires that
the surfaces be complete, in contrast with other algorithims that are able to interpret the
structure of isolated points in motion. To conclude, the algorithis discussed above for
recovering the structure of nonrigid objects in motion all address restricted classes of
these motions, such as fixed axis motion, planar motion, and bending deformations.

The mechanism for recovering structure from motion in the human visual systemn
appears not to be based strietly on the rigidity assumption. It is an everyday experience
to perceive the structure and motion of deforming objects such as a flowing river, an
expanding balloon, or a dancing ballerina. Perceptual studies reveal that the human
visual system can derive some sense of structure for a broad range of nonrigid motions,
including stretehing, bending and even more complex types of deformations (Johansson,
1964, 1978; Jansson and Johansson, 1973; Todd, 1982, 1984). Tt is also the case that
displays of rigid objects in motion sometimes give rise to the perception of somewhat
distorting objects (Wallach, Weisz and Adams, 1956; White and Mueser, 1960; Green,
1961; Braunstein, 1962; Sperling et al., 1983; Tildreth, 1084a; Adelson, 1985).

In this paper, we focus on the recent work of Ullman (1984), which provides a
more fexible method for deriving the structure of rigid and nounrigid objects in motion,
and provides a natural means for integrating motion information over an extended time
period. This method makes use of the rigidity assumption, but in a different way from
previous studies. The algorithm, called the incremental rigidity scheme, maintains an
internal model of the structure of a moving object, which is continually updated as new
positions of image clements are considered. The initial model may be flat, if no other cues
to 3 -D structure are present, or it may be determined by other cues available, for example,
from binocular sterco, shading, texture, and perspective (Marr, 1982; Ballard and Brown,
1982; Horn, 1985). As cach new view of the moving object appears, the algorithin
compites a new sct of 3-D coordinates for points on the object, which maximizes the
rigidity in the tranformation from the current model to the new positions. In particular,
the algorithm minimizes the change in the 3-D distances between points in the model.
The formulation presented by Ulhan assumes the input to the recovery process to consist
of a sequence of discrete frames, each containing a set of diserete feature points. Through
the process of repeatedly considering a new frame in the sequence and updating the
current model of the structure of the moving features, the ineremental rigidity scheme
builds up and maiantains a 3-D model, and can be applied to both rigid and nonrigid
objects in motion. Turther details of the inceremental rigidity scheme are presented in
soction 2 and in Appendix A.

The ineremental rigidity scheme has a number of advantages, from a computational
perspective (Ulhnan, 1984): (1) because it integrates information over an extended time
period, it provides a stable recovery of structure, particularly in the presence of error in
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the image monsm‘(-mmnls.-(2) it allows deviations from rigidity, while always maintaining
some model of the 3 D structure of the ohjeet, (3) it provides a natural means for
interactions with other sources of 3 D information, aud (1) empirical studies suggoest
that the algorithm is able to recover the correct. 3 D structure. The behavior of this
algorithm is also consistent in several ways with human pereeptual hehavior (Ulhman,
1984).

In this paper, we develop Ullman’s work further, in several directions. First, in
section 2, we present a continuous formualation of the ineremental rigidity scheme, which
uses velocity information at diserete points as input to the recovery process. In sectjon
3, we then examine in more detail, the behavior of the ineremental rigidity scheme when
presented with rigid objects undergoing rotation about a single axis in space, under
orthographic projection. In particular, through computer simulations and a theoretical
analysis, we examine the behavior of the diserete formulation as a function of the angular
displacement between frames, and compare this behavior with that of the continuous
formulation. Finally, in section 4, we present. both diserete and continuous formulations
of the incremental rigidity scheme that use perspective projection. Through computer
simulations, we begin to examine the behavior of the perspective formulations, when
presented with rigid objects undergoing both pure rotation about a single axis, and pure
translation through space.

The main conclusions of the paper are the following. The direct use of velocity
information as input to the ineremental rigidity scheme can provide a rough estimate of
the structure of a moving object over a short viewing period, but is not sufliciently pow-
erful to allow a detailed and robust recovery of structure over an extended time period.
The computation of a stable long term solution appears to require the use of views of
a moving object that differ significantly. This fmplies the need for a recovery process
with memory of the past views, but this memory need not be extended indefinitely and
continuously into the past. A small nmunber of diserete views of a moving object are suf-
ficient for recovering 3 D structure. Tn the case of the incremental rigidity scheme, the
use at every instant of a current model of the 3- D structure of the object, and a present
view that is sufficiently different from preceding views, can provide a robust recovery of
structure. In the case of rotation of a rigid object about a single axis in space, both the
rate of convergence of the algorithin to the final solution and the quality of the solution
decrease as smaller angular displacements between viewed frames are considered. Tn the
limit of the continuous formulation, the solution is no longer stable. The behavior of the
perspective formulation of the ineremental rigidity scheme is more complex than that
of the orthographic formulation. We found that if the absolute position of an object
in space is known throughout the motion of the object, then the perspective formula-
tion performs well, similar to the orthographic formmlation. The results of computer
simulations revealed o degradation in performance with suwaller angular and spatial dis-
placements between frames, but this degradation was somewhat nore severe than in the
orthographic formulation. Again, in the limit of the continuons foriulation, the solution
is no longer stable. Gur analysis raises important questions regarding the quantitative
ability with which the human visual systemn can.recover structure from rotion; these

questions are discussed in section 5.




2. Discrete and Continuous Formulations of the Incremental Rigidity

Scheme

In this seetion, we first deseribe Ullman®s (1984) original formulation of the incremental
rigidity scheme, which assumes the visunal input to consist of a sequence of frames, cach
containing a number of discrete points that may correspond to identifiable features in the
changing image. We then present a formulation that uses velocity information at discrete
points in a continuously changing image as input to the recovery process. The analysis
in this section assumes orthographic projection of the scene onto the image plane.

The motivations for considering a continuous formulation are threefold. First, on the
basis of the results of computer simulations, Ullman (1984) noted that when analyzing
objects undergoing rigid rotation, the convergence of the ineremental rigidity schenie to
the correct solution was slower when smaller angular separations between frames were
used. This suggests that the scheme may perform better when successive views of the
object differ significantly. We considered the limit of arbitrarily close frames, both as
a means of studying this phenomenon, and to determine whether a robust recovery of
structure is still possible under these conditions. A sccond motivation is that recent
work on the computation of an instantancous 2 D velocity field from the changing im-
age suggests that a unique veloeity ficld can be obtained for general classes of motion,
exploiting a constraint on the smoothness of the velocity field (Horn and Schunck, 1981;
Hildreth, 1984a,b; Nagel, 1084). Ultimately, it may be useful to integrate the results of
such velocity ficld computations with the recovery of structure from motion. A third
motivation is that Ullman’s formulation of the incremental rigidity scheme leads to the
solution of a set of nonlincar equations. It is shown in Appendix A that the continuous
formulation presented here leads to the solution of a set of linear equations. This makes
a theoretical analysis of the solutien more accessible, and could in principle result in a
more cflicient computer implemnentation.

2.1 Ullman’s Discrete Formulation

The incremental rigidity scheme maintains and updates an internal model M(t) of the
viewed object, which consists of a sct of 3-D coordinates: M(¢) = (2:(¢),y:(t), 2(¢)).
In this section, we assume orthographic projection (the case of perspective projection is
addressed in section 4) onto the X — Y image plane, so that (w;(¢),y:(¢)) are the image
coordinates of the 7 th point, and z;(¢) is the current estimate of the depth at the ¢ th
point. (We assume a left handed coordinate system, with the positive z axis pointing
away from the observer.) In Ullman’s formulation, when no other 3-D cues are present,
the initial model M(¢) at ¢ = 0 is taken to be flat; that is, z(0) = 0 {or some other
constant value) for ¢ = 1, ..., n, where nis the number of poiuts in motion. In principle,
other initial configurations could also be considered. The theoretical analysis of section 3
examines the long term stability of the ineremental rigidity scheme, independent of the
initial model of the structure of the moving points.

Given a current model M () at time ¢, and the image of the moving points in a
new frame at a later time ¢, the problem is to compute a new model M (¢') such that
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the transformation from M (2) to M(#') is as rigid as possible. Sinee o, (1) and y;(¢') are
known, this requires the computation of the unknown depth values = (#'). (It is assumed
that the correspondence hetween points in the two successive frames is known.) The new
depth values are computed as follows. Let £;;(1) denote the distance between points 4
and 7 al time £, To make the transformation as rigid as possible, the values z(¢') for
the new model are chosen so as to make {;;(#) and 1;;(#') as similar as possible. For this
purpose, Ullman defined a measure of the difference hetween 4 (t) and 1;;(t') as:

(Li(t) - L (1))?

(l(l.ij (t).,lij(f.l)) = —l’!‘-—"~§~-2('-)-)~~, (21)
li.‘i(t)

and formulated the recovery of structure as the computation of z;(#') that minimize the

following overall deviation from rigidity:

D(t.t') = d(li;(1).1;(t). (2.2)
1,7

After the values z;(¢') have been determined using this minimization process, the new
model M(#') = (z;(t'). y:(t'). 2:(t')) becomes the current model. A new frame is then
registered and the process repeats itself. In this way, the scheme maintains rigidity by
keeping the total distances between points in the model as constant as possible. The
wotivation for the cubic factor in the denominator of Eq. (2.1) is that the nearest
neighbors to a given point are more likely to belong to the same object than distant
neighbors, so that a point is more likely to move rigidly with its nearest neighbors. The
lfj(t) factor diminishes the influence of distant points in the recovery process.

It should be noted that in the case of orthographic projection, only relative depth
values, z;(t) — z;(t), can be recovered, rather than absolute depth values, because nnder
this form of projection, the image of a given object does not change with its absolute
depth. In addition, 3--D structurce is determined only up to a reflection about the image
plane, since the orthographic projection of a rotating object, and its mirror image rotating
in the opposite direction, coincide.

2.2 The Continuous Formulation

A continuous formulation, which uses velocity information at discrete feature points,
an be developed as follows. Assume again that there always exists an internal model
M(t) = (2:(t),y:(t),2:(t)). Assume also that the image velocities ;(¢) and g,(¢) are
known. The problem is then formulated as the computation of the z components of
velocity, #;(¢), that minimize the total continuous change in the distances between the
points. The general form of the measure of overall deviation from rigidity is given by:

(3]
e
—

De(t) = D de(lis (1)), (

In our analysis, we consider different possibilities for the measure, d.(4;(£)). The theo-
retical development of section 3.2, for example, considers the behavior of the inereinental
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rigidity scheme, as the frames become infinitesimally close, using the following diserete

measure of the change in the distance between pairs of points:

Ny (12 2 (112 «
Al (015 () = (3 (0) - L2 (0)*. (2.4)
The derivation of the continuous measure of rigidity is outlined in section 3.2.1. It results
in the following expression for D (1), as a function of the coordinates and velocities of
the points (the arguments, ¢, have been omitted for simplicity):

(8]
[}
~—

D.(t) = 2: ((arg =) (g = y) 4 (e = ) (@ )+ (20 25) (B - i’j))a' (
i
This particular measure of rigidity was used in the theoretical study for analytic siw-
plicity.  The computer simulations of the continunous formulation use the measure of
change in the distance between points given again by the limit of (L, (8) = 1;(¢')?, for
infinitesimally close frames, which is:

de(li; (1) = (L ()™, (2.6)

In tertas of the coordinates and velocities of the points, this yields the following overall
measure of deviation from rigidity:

T, — ol & — ) + (i — yi )% — U5 z— z) (% — 3))?
by = o (sl pal gl st s il )

%,
(Eqs. (2.5) and (2.7) usc slightly different measures of rigidity, but serve the same role
as measures of overall changes of rigidity for the continuous formulation. In the present
paper we do not use different notations for these measures, as it will be clear from the
context which measure is used. More specifically, Eq. (2.5) is used in the theoretical
analysis of section 3.2, and Eq. (2.7) is used in the computer simulations of section 3.1.)
In other respects, the continuous formulation is similar to the discrete formulation. A
model of the structure of the moving points is built up by continually taking into account
new velocity information over an extended time period. Again, because orthographic
projection is used, only relative velocitios, 2;(t) — 2;(t), can be recovered. This can
clearly be scen in Bqgs. (2.5) and (2.7), in which the coordinates of the points and their
time derivatives all appear in dilferences between pairs. Further details of the continuous
formulation arc presented in section 3 and Appendix A.

The analyses presented in this paper mainly consider single rigid objects in motion,
which are compact in the sense that the internal distances between pairs of points do not
differ much from one another. In this case, the additional lfj factor of Bq. (2.1) has little
influence on the behavior of the algorithin, so we omitted it in our theoretical analysis and
computer situlations for the sake of simplicity. In general, however, a proper weighting
{and not necessarily a cubic factor) of the inilucnce of different distances among points
is necessary for a better performance of the algorithm.
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3. DPositions vs. Velocities as Input to the Recovery of Structure

We stated carlier that on the basis of computer simulations, Ullman (1984) observed
that when analyzing objects undergoing rigid rotation, the convergence of the incremen-
tal rigidity scheme to the correet solution was slower when smaller angular displacements
between frames were used. In this section, we analyze this phenomenon from a theoret-
ical perspective, focusing on the long term stability of the computed 3 D model. We
first examine the behavior of the continuous formulation, which uses a current model
and measured image veloeitios at diserete points as input o the recovery process. We
then turn to the diserete formulation, which uses the diserete positions of discrete points
as input, and examine the long term stability of its solution as a funetion of the angular
displacement between frames. Our main conclusions are the following. Tirst, for the
particular class of motions considered, the discrete formulation always yields a 3 D so-
Iution that converges asymptotically to the correct solution, but the rate of convergence
varies with the angular displacement. The rate of convergencee inereases with inercasing
angular displacement up to a maximun, and then decerecases with further inereases in
this displacement. The position of this maximum depends on such factors as the type of
motion and geometric structure of the points.

Although the orthographic projection is in general not physically valid, it is used here
because it allows a simpler forinulation of the problem, and is therefore better suited to
theoretical analysis and computer implementation. It allowed us to gain a deeper insight
into the nature of the phenomena studied. We nevertheless implemented the equivalent
perspective formulation and confirmed that the basic results remain valid under this
formulation. The use of perspective projection cnables the recovery of the structure
of objects undergoing pure translation, which was not possible under the orihographic
projection. In the case of translation, the rate of convergence of the computed 3D model
to the true structure also increases with inerecasing spatial displacements between frames.

Before prescuting the results of the theoretical analysis, we illustrate the behavior
of the discrete and continuous formulations through the results of computer simulations.
We show that the continuous formulation yields an initial fast convergence to a close
approximation of the true structure of the moving points, but then oscillates over a large
range. It consequently does not yield a stable long-term recovery of structure.

3.1 Observations from Computer Simulations

In this scction, we bricfly illustrate the behavior of the diserete and continuous formula-
tions of the incremental rigidity scheme, for the special case of rigid rotation of a small
sct of discrete points about the vertical axis. (For details of the computer implementa-
tion, sce Appendix A.) Tn the case of the discrete formulation, we examine the rate of
convergence of the algorithin and the quality of thie solution that it yiclds, as a function
of the angular displacement between frames. We then compare its performance with that
of the continuous formulation. In all of the examples presented here, the input cousisted
of a set of five points in space. The first point is assumed to lie at the origin of a co-
ordinate system that is displaced from the viewer along the line of sight. The position
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of this [irst point is constant throughout the motion of the points. The coordinates of
the remaining four points were chosen randomly. Fig. | illustrates a typical set of five
points, showing their projections onto the X - ¥V plane .(l"ip;, la) and the X - Z plane
(IMig. (b). In the simulations, the projected positions and velocitios of the points were
computed analytically, rather than measured from real image sequences,

a Y b ZA

‘xﬁ
<Y

Figure 1. A sct of five points with random coordinates is projected onto (a) the X — ¥ plane,
and (b) the X — Z plane.

Fig. 2 illustrates the behavior of the discrete formulation of the ineremental rigidity
scheme, as a function of the angular displacement between frames. Each figure shows
a birds’ cye view of the set of rotating points (that is, their projection onto the X — 7
planc), with filled circles representing the true positions of the points and open circles
representing the structure computed by the algorithim. Tig. 2a shows the true positions
of the points and the initial model at time ¢t = 0. The initial model is assumed to be
flat. Tigs. 2b and 2¢ show the true and computed configurations of points after 120° of
rotation. This final position was reached by taking three steps of 40° (Tig. 2b), and 12
steps of 10° (Tig. 2¢). It can be seen that the use of a smaller number of more disparate
views yields a 3D model that is closer to the true solution. As noted in Appendix A a
steepest descent minimization algorithm was used for most of our computer simulations.
We also analyzed a small number of examples uzing an exhaustive search algorithm to
find the minimum solution, and again found the accuracy of the solution to vary with
the angular displacement between frames. We therefore believe this to be a fundamental
behavior of the ineremental rigidity scheme that is not simply a cousequence of the
particular algorithm used to implement the sehere, This observation is supported further
by the theoretical analysis of the next section.

In Tig. 3, we show a series of graphs that illustrate in a different way, the behavior
of the discrete formulation of the incremental rigidity scheme as a function of angular
displacement. In this case, the set of points shown in Figs. | and 2 were rotated by
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Tigure 2. (a) The true configuration of five points (filled circles) is compared with the initial
configuration of the points in the model (open circles) at time ¢ = 0. The projection is onto the
X — Z plane. (b) The comparison between the true aud compnted positions of the points after
three steps of 40°. (¢) The cowparison between the true and computed positions of the points
after 12 steps of 10°,

four full revolutions. Tach of the graphs show the ervor between the true and computed
structures, as a function of time. In particular, the following quantity is plotted:

.

D (dij = 1)? (3.1)

where dy; is the corvect 3 D distance between poiuts 7 and 7 in the object, and {;; is
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Figure 3. Graphs of the error.in the internal distances between points in the computed 3-D
model, as a function of time. The peiuts are rotated 4 full revolutions, in steps of (a) 407, (b)

207, (¢) 107, (d) 5 and (¢) 1°. (f) The graphs in 3a 3¢ are shown superimposed.
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the corresponding distance between points 7 and 7 in the computed model. The graphs
shown in Figs. 3a through 3¢ correspond to rotations with angular displacements of 407,
200, 107, 5 and 17, respectively. In Fig. 3, the five g;'l"zmphs are shown superimposed.
Again, it can be scen that the rate of convergence and quality of the solution improves
with larger angular displacements. For a particular total angalar extent, the error in the
computed model deercases with inercasing angular displacement. between trames. In the
case ol 407 displacements, the algorithm converges asymptotically and monotonically
to the final solution. Tor smaller displacements, the convergence is no longer strictly
monotonic, but is still essentially asymptotic toward the final solution. Fig. 4 shows
the same set of graphs superimposed, but with thie error plotted on a log scale. The
convergence of the sohition is now essentially linear, with varying slopes, suggesting that
the actual convergenee is exponential.

1)
o
~
ﬁ -
w . el 20
o _ ~.
= 3 _
\\\
1 ’ : 4

Number of Revolutions

Figure 4. Graphs of the error in the internal distances between points in the computed 3-D
model, as a function of time, plotted on a log scale. The points are rotated 4 full revolutions,
in steps of 407, 207, 10°, 5° and 1°. The graphs are shown superimposed, with the angular
displacements indicated above cach graph.

Fig. & illustrates the behavior of the continuous formulation of the incremental
rigidity scheme. The same set of points used previously was again rotated about the
vertical axis and the 3-D model was computed at infinitesimally closcly spaced times,
using the instantancous velocities projected onto the image (see Appendix A for details).
In Tig. 5a, we compare the true positions of the points (filled circles) with the best
solution (open circles) obtained over 10 full revolutions of the points. Although the model
is quite close to the true structure at this position of the points, the solution oscillates
significantly over an extended time period. A graph of the error in the computed model
over the 10 revolutions is shown in Tig. 5b. There is an initial fast convergence toward
the true structure of the points, but the algorithm then oscillates with high amplitude
away from the true solution. When the error in the model is high, depth reversals often
oceur. Fig. He¢ shows an example of the true and computed structures at a time of
complete depth reversal. Such reversals were also observed with the discrete formulation
of the scheme, although rarely.

Fig. 6 illustrates the typical behavior of the diserete formulation of the ineremental
rigidity scheine, averaged over 10 ("(mﬁgm'at‘,i(ms of five points. For cach of the conligura-
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Figure 5. (a) The best solution (open circles) obtained over 10 revolutions of the points is
compared with the true positions (filled circles), for the case of the continuous formulation. (b)
The error in the internal 3-D distances between points in the model; as a function of time. (c)
A complete depth reversal between the true and computed structures.

tions, the first point was placed at the origin of the coordinate system and the coordinates
of the remaining four points were chosen randomly. The set of points was then rotated
by three discrete angular steps, with the size of the angular displacements ranging from
17 to 90°. The initial 3 D model for the points was flat, and a new model was computed
for cach of the three discrete positions of the points. After the third step, we computed
the following measure of the absolute error in the internal distances between points:
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1 2: ldi - Lij] (3.2)
n dij -
1.7

where d;; is the true 3 D distance between points © and 7, [;; is the distance between
points ¢ and 7 in the computed model and n is the total number of pairs of points.
This measure was chosen because it expresses an average of the cerror in the model
relative to the true structure. (Note that a lower value for this measure corresponds to
less error in the computed model.) We also considered other measures of error in the
distances between points and in the actual depth values, and found the general behavior
of the algorithm to be the same under different measures. The above error measure was
averaged over the 10 conligurations of points, and is plotted in Fig. 6, as a function of
angular displacement. It can first be scen that in general, the error after three discrete
steps of the algorithm varies with the size of the angular displacement between frames.
There is a steady improvement in performance as the displacement inereases, to about
507, followed by a degredation for inerements of 607, and a steady deercase in performance
from 70 to 90°. The degradation in performance for an angular displacement of 607 was
common; 8 of the 10 coufigurations of points exhibited this behavior. This degradation
may be a consequence of the symmetry between the initial and final views, which ave
rotated 180° from one another. In general, the convergence of the algorithm for three
discrete steps degrades significantly for snaller angular displacements. This result is not
surprizing, in that there is very little change in the discrete views for such small angles
and a reduced total angular extent. The deterioration for large angles probably occurs
because at 90°¢, the number of views available to the structure from motion process is
reduced to two.

04 ‘t

Error

Angular Displacement

TFigure 6. Absolute error in the internal distances between points in the 3 D model computed
by the incremental rigidity schenie. The graph shows the error after three discrete views of the

rotating points are cansidered, averaged over 10 random contigurations of five pointa.
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Fig. 7 illustrates the error in the computed model, as a function of angular dis-
placement, for the case in which the overall rotation of the points was kept essentially
constant. The same set of 10 random configurations of points was rotated by diserete
angular steps, with the size of the steps varying from 107 to 900 In this case, cach
configuration was rotated by a total of (approximately) 1807 and 360, and the same
measure shown in q. (3.2) was then computed. This measure was again averaged over
the 10 configurations of points, and is plotted as a function of angular displacement in
Tig. 7. Fig. 7a shows the data for the case of 1807 of rotation. Note that for the angles
407, 507, 707 and 80", there are two points plotted, corresponding to nltiples of the
angular displacement that are just less than and greater than 1807, The graph that is
superimposed on the points passes between the pairs of points for these angles. Itig, 7D
shows the same data for the case of 3607 of rotation (for the case of angular displacements
of 50 and 707, the points were rotated hy a total of 3507). Also shown in Figs. 7a and
7h are the average errors in the solution that were derived by the continuous formulation
of the algorithm after 1807 and 360 of rotation of the 10 configurations of points. These
two data points arc indicated by the stars along the ordinate of the graph. The main
observation to be made is that when the points are rotated by a constant total amount,
there is still a strong dependence of the rate of convergence of the solution on the size
of the angular displacement between frames. There is again an improvement in conver-
genee rate as this angle increases, up to about 507 followed by a slight worsening for
an angle of 607, then improvement again for 707, followed by a steady worsening to 90°.
The degradation in performance for an angular displacement of 607 was again common,
oceuring for 7 of the 10 configurations of points. The deterioration of the convergence
rate with decreasing angular displacements is not obvious, because in spite of the fact
that the changes between consecutive frames are smaller, there are many more frames
altogether. In addition, while the continuous formulation provides a good estimate of the
true solution after 1807 (see Fig. 7a), the solution then degrades significantly, providing
a relatively poor solution after 360° of rotation (sce Fig. 7b).

To conclude, the results of computer experiments with the diserete formulation of
the incremental rigidity scheme show a clear dependence of the behavior of the computed
solution on the size of the angular displacements between frames. In the limiting case
of the continuous formulation. there is an initial fast convergence of the solution toward
the true solution, followed by a substantial oscillation of the solution. The next scction
presents a theoretical analysis that attempts to explain this phenomenon.

3.2 Analytic Study of Convergence Propertics

In this scetion we outline the main conclusions of our theoretical analysis. The purpose of
this analysis is not a general study of the behavior of the ineremental rigidity scheme, as
such an analysis would be too cumbersome. Rather it conceutrates on a formal analysis
of the convergence properties of the algorithm, for a family of examples that we believe
arc relevant to the general recovery of structure from motion. We emphasize the concepts
raised by this analysis, and connnent on their generality, This section considers a subset
of those exarnuples analyzed in the computer simulations of section 3.1.
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Tigure 7. Absolute error in the internal distances between points in the 3-D model computed
by the incremental rigidity scheme. The graph shows the error after a total of (a) 180° of
rotation, and (b) 360” of rotation. The errors are again averaged over 10 random configurations
of five points. The stars along the ordinate indicate the data points for the average errors of

the continuous formulation after 1807 and 360°.

To simplify the theoretical analysis, we consider in this section a measure of overall
deviation from rigidity that is somewhat different from the one used by Ullman, and it

is the following:
Dalt.t') = STUH() - 3 (#)*. (3.)
1,7

This new measure uses the difference between the squares of the distances, 12.(¢), rather
1 Y ey
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than the difference hetween the 1 (1) s themselves, thus avoiding the use of square roots.
3
)
included in the measure proposed by Ulliman as a means of reducing the contributions

This measure also does not contain the cubie factor, [7.(¢). in the denominator, which was
of distant points relative to nearby ones. In this theoretical analysis, we mainly consider
configurations of points that are compact, in the sense that the internal distances between
pairs of points do not differ much from one another. In this case, the cubic factor secms
not to be important,

The main problen that this theoretical analysis addresses is the long term stability
of the solutions obtained by the ineremental rigidity scheme, as a function of the angular
separation between succeessive frames, for the case of rotation of rigid objects about a
single axis in space. In the previous seetion, we observed the variation of convergence
rate with angular displacement, in the results of computer simulations. In the present
analysis, we examine this convergenee phenomenon through a study of the stability of
the ineremental rigidity scheme. In particular, we analyze the behavior of the internal
model under small perturbations, when it is near the true solution. We first examine the
limiting case, where the frames ave arbitrarvily close to one another, that is when ¢/ — ¢,
The analysis of this case is presented in seetions 3.2.1 and 3.2.2. We then explore the
convergenee properties of the discrete formulation in sections 3.2.3 and 3.2.4. Finally, in
section 3.2.5 we summarize the theoretical properties of the two schemes, as a function
of angular displacement.

3.2.1 The Continuous Formulation

In the case of the continuous formulation, L;(¢') can be determined to a good first order
approximation by [;;(¢) and its derivative, {;;(t), that is:

Li(8) w0 L (8) + L (8) x (¢ — ¢). (3.4)
As described ecarlier, when such an approximation is used, rather than computing the
depth values z(¢') that maximize rigidity, we can compute the z components of velocity
2;(t) that do the same task. Tt can be shown that in the limit, as ¢’ — ¢, using Eq. (3.3),
and the definition of [;;, the quantity to he minimized is:

D, (t) = }:((fvi =) (e = dg) + (i = wi) (5 = 95) + (20— z) (2 = )% (3.6)

Thus, given the model at time ¢, and the ¢ and y components of velocity in the image,
we compule the temporal derivatives of the depth values that minimize D.(2) given by
Eq. (3.5). This is the continuons formulation that we use in the theoretical analysis of
the convergence properties of the incremental vigidity schetne. ‘

Note again, that the quantities that can be computed are not the absolute values of
Z:(¢) but the relative values 2,(t) - 2;(¢}. 1t {ollows that without loss of generality, we can

every instant, the remaining n - 1 points are then given relative to this first point. Thus
the number of independent variables in the model is n — 1. Introducing the following
notational sitplification:
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aij = (ae= ) (8 - ay) 4 (g - yy) (G = 94)s (3.6)

I9q. (3.5) can then be rewritten as follows:

n 2n 1 n 1
Delt) = 30 gy (0= 2)(& = 500+ Yol + 55) (3)
DI B T 7 1

As deseribed above, we are looking for the 2;(t) that minimize D.(t). The necessary
condition for such a minimization is that the partial derivatives of D, (t) with respect to
the 2,(t) are zero:

aD.
PEAO

In seetion 3.5 we show that Tgs. (3.8) represent a set of i~ 1 lincar equations with n— 1

=0, (3.8)

variables Z; (¢ ) which generally have a unique solution. Tt follows that because D, (¢) > 0,
thus being bounded from below, the Z;(£) that satisfy I8qs. (3.8) also minimize D, (t), so
that these equations generally represent a suflicient condition for the minimization.

The Z(t) that satisfy Iqgs. (3.8) are expressed in terms of z; (). thus representing
a system of n — 1 differential equations with n — 1 variables. This system, however, is
generally difficult to solve explicitly, as it is noulinear. The only solutions that we were
able to verify by straight substitution are the true motion of the object and its depth
reversal (which are equivalent under orthographic projection). In the next section we
present a stability analysis of the true rigid motion solution; that is, we examine the
stability of the algorithm when its solution is close to the truce solution. (The computer
simulations address the full convergence behavior of the algorithm.) We concentrate on
rigid motion, because we feel that nonrigid transformations may disrupt the stability
of the solutions, introducing instabilities due to peculiar types of motion. For example,
the internal model may be too sluggish in adjusting itself when fast changes of structure
occur. By considering rigid motion in this analysis, we address more fundamental aspects
of the theory itsclf.

3.2.2 Stability Analysis of the Continuous Formulation

The idea of a stability analysis can be stated as follows. Suppose that at a given instant ¢g,
the computed 3 D model is very close to the true solution, that is z;(t0) = 2 (¢o) + ¢ (¢o)
where %;(¢) is the true depth value at point <. Because the system is perturbed at ¢, we
expect it in general to be perturbed for every ¢ > £y, that is z;(8) = 2Z(¢) + «;(¢). The
gystem is said to be asymptotically stable if the following is true:

thm G(t) =0, (3.9)

for every 4. If the ¢;(¢) remain bounded, but do not converge to zero, the system is
defined to be weakly stable. I, however, limy o ¢;(¢) = 0o for some 7, the system is said
to be unstable.
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If we suppose that ¢;(¢) is small enough for every ¢ > {4, then we can make the
following lirst order approximation of Igs. (3.8) in terms of ¢ (¢) and ¢; (1) (the arguments,
t, have been removed for simplicity):

w0, { D, . . "
) e O I SRS A N | N a2
e\ 0505 Dzidi; (3.10)
: |

A derivation of Eqs. (3.10) is given in Appendix B. Eqs. (3.10) can be readily solved for
(;(t) in terms of ¢;(¢). Tor notational simplicity, we write this solution in matrix form:

0D, 1 ' oD,
[ !: T ] [‘;"".“';"—*} o= A, (3.] l)
20 02025
where ¢ = (oo )7, 02 D. /020 z;] is the matrix whose element at row 7 and column
Jis OTD [0z and [02D,Jd30%] 1 is the inverse of the matrix whose clement. at
row ¢ and columu j is i)‘“’])a/()é,;(')éj, provided it exists. The matrix A is defined to be
02D, [040%;] Y0?D,.[/d#Az], and is evaluated at the true solution itself at every
instant.

Using the Eqs. (3.11) to study the stability of the system, it is not possible to prove
that the system is unstable. To do so requires a proof that ¢ is unbounded as ¢t - oo,
but in this case the first order approximation used to derive Eqs. (3.10) no longer holds.
It is still possible to determine, however, whether or not the system is asymptotically
stable. Indeed, we will show in this section, that for many types of motion, the continuous
formulation of the incremental rigidity scheme is not asymptotically stable. The results of
computer simulations provide evidence that the formulation is, in general, not unstable,
thus being weakly stable.

The Eqs. (3.10) represent a system of ordinary lincar differential equations, which
arc used in conjunction with Eq. (3.7) where D.(t) is defined. Note therefore, that A
has time dependent components. How do the different types of motion determine A? A
generalized motion of a rigid body can be desceribed instantancously as a rotation about
a fixed axis in space plus a translation of the origin of the coordinates. We noted before
that under orthographic projection, all that can be determined are the relative depths of
the points and not their absolute values. Also, in the same case, the only relevant data
to the problem of recovering structure from motion are the relative image coordinates
(terms a;; in Bq. (3.7)): Translation does not change any relative distances, as it changes
the positions of all points by the same amount. Thus only rotations need to be considered
in this problem.

As mentioned carlier, the matrix A in Tq. (3.11) is in general time dependent. Thus
this system cannot be solved by the standard method of characteristic values, available to
systems with constant coctlicients. Furthermore, the general rotation can have variable
angular velocity, and the axis of rotation cau change over time, making Tq. (3.11) very
diflicult to integrate analytically.

It is not necessary, however, to solve Eq. (3.11) in order to reach certain conclusions
regarding the nonconvergence of ¢ to 0. Tor examiple, let Lj(f) be n-- 1 arbitrary solutions
of I5q. (3.11) with initial conditions ¢;(0) specified. Then the 7~ 1 xn — 1 matrix B(t) =
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[ (8)s i, (#)] satislies the Liouville Jacobi formula (Yakubovich and Starzhinskii,

1975):

ot

Det(E(t)) = Del(E(0))exp (/0 ’[‘r(A(t'))dl') . (3.12)

It follows that a neeessary condition for lim, o E(f) = 0, that is, for the system to be
asymptotically stable, is:

/w Tr(A(t'))dt' = —oo. (3.13)

We found that condition 3.13 doces not hold for many interesting types of motion.
I'or example, for any three point coufiguration, rotating with arbitrary angular velocity
about an axis perpendicular to the viewing axis, we can derive the following relationship,
by using Bqs. (3.7) and 3.11 (details of the derivation are given in Appendix C):

Vig — 21)Eg + (231 — 29)3
Tr(A() = - P22 ;)zﬂ (22, ~ Z)21 (3.14)

22 - élég-+ é?

where 2y, 29, 21, 22 denote the z coordinates and velocities evaluated at time t. This trace
is periodic and has zero integral over the cycle, for rotations of fixed angular velocities
w:

2/ w
/ Tr(A())dt = 0, (3.15)
0

a result that contradicts Fq. (3.12). Thus, for any three point configuration have this
type of motion, the internal 3 D model computed by the continuous formulation will not
converge to the true structure.

The fact that this result is derived for three point structures is nontrivial. In fact, it
is shown in the analysis of the diserete formulation, later in this section, that converging
models can be constructed for three poiut configurations under certain conditions. A
detailed analysis for structures with a higher number of poiuts is in general very cum-
bersome, but we verified that Tq. (3.15) holds for special four point configurations,
such as those that when viewed along the rotation axis, appear as squarces, rectangles or
trapezoids.

We also note that having the rotation axis perpendicular to the viewing axis is the
best situation, as far as convergence is concerned, because depth inotion is lost as the
rotation axis is slanted towards the viewing axis (that iz, away from the image planc).
In particular, note that in the limiting case, where the rotation axis is parallel to the
viewing axis, no motion in depth occurs whatsoever, and so the structure cannot be
recovered from relative motion.

Is the instability of the continnous formulation due to properties of the projections of
the object at particular positions in its revolution, which somehow convey less information
to the recovery of structure from motion (for example, when many of the points belonging
to an object have little motion in depth)? Tu order to cheek this hypothesis, we explored
the convergence of the internal model when the object was oscillated back and forth
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over a small angular extent, around different positions. It was found again, by checking
the validity of Iiq. (3.15), that regardless of position, the internal model is unable to
converge Lo the true structure, thus giving a negative answer to the question raised. This
sigeested to us that the reason underlying the instability of the continuous formulation
may be based on the smallness of the angular displacement between consecutive frames,
and not on the structure of the frames themselves. Pursuing this idea further, the next
sections address the convergence behavior of the diserete (and more general) formulation
of the ineremental rigidity scheme, focusing on the effects of the size of the angular

displacements between frames.

3.2.3 The Discrete Formulation

The continuous formulation was derived from the approximation of Eqs. (3.3), as the
angular displacements between the consecutive frames used in the structure from motion
process become small, and it was expressed in Eq. (3.5). If we do not make such an
approximation we have a more general formulation, which is however diserete. By being
more general, this formulation allows a study of the incremental rigidity schemne as a
function of the angular displacement between frames, and enables us to verify whether
the total instability found in the continuous formulation is due to an “artifact” of the
approximation made, namely an infinitesimal angular displacement between frames, or
rather is due to a continuous process in which the system becomes less stable with smaller
angles and eventually becomes unstable when the displacement is small enough.

In order to stress the discrete nature of the general formulation, we first rewrite Eq.
(3.3), using as independent variable ¢ = k7, where & is an integer and 7 a fixed interval:

Dalkr) = D7 [(ralkr) = ;b)) (wsler) = 5 (kr))? + (zxlkr) = 2 (kr)?
= aa(k+ 1)7) = (6 + D7) = ((k+ 1)7) = g5 (K + )r)? - B0

~ (z((k + 1)7) = 2 ((k+ 1)7)?] .

Note that as in the continuous formulation, the quantities of interest for the theory are
relative rather than absolute, i.e. (% ((k+ 1)7) — 2;((k + 1)7)). Thus again, without loss
of generality we can set (2,0, 20) = (0,0,0), and study the behavior of the other n— 1
points relative to it. For notational simplicity, let:

bij (kt) =(ws((k + 1)) = 25 ((k + 1)) * + (y:((k + 1)7) ~ ;((k + 1)7))?

— (wi(kr) — 2, (k7))? — (yi(kT) — y;(k7))% (3.17)

We now rewrite Eq. (3.16 s using this notational simplilication and without explicitl
g k o I
SI')(F('ifyillg T:
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n 2n |
Dy(k) = M‘}:(bvfj(k) Pkt 1) zj("" ! 1))2 <z (k) - Zj(k))z)z
' ” ”1 (3.18)
¥ —N.\(b(,j(k) + zf(k + 1) - Z;‘-z(k))z.
j1

In the present formulation we are looking for the z;(k+ 1) that minimize Dg(k). As
in the continuous case, the necessary and sullicient condition for this minimization is:

D,

Oz(kt 1) v, (8.19)
which represents a set of n — | nonlinecar equations implicitly relating the z (k) and
z:(k-+ 1). The only instance in which we have been able to derive a full analytic solution
for these equations is in the two point case. This case is a degenerate one, because for
two points the 3 D structure is not determined uniquely by any number of views. It is
important to discuss this case, however, as it provides a relevant insight into the theory,
which is discussed further in section 3.2.5. Bqs. (3.18) aund (3.19) in this case reduce to:

[boi (k) + 2§ (k + 1) = 21 (k)] 21 (k + 1) = 0. (3.20)

The only nontrivial solution for this equation occurs when the termn inside the brackets is
zero. But using the definition of by, this condition essentially implies that the distances
between the two points is constant. In other words, the distance between the points in
the initial internal model at & = 0 will tend to remain the same throughout the entire
motion even if it is wrong. The model will only correct itself if its initial guess for the
distance between the points is small. In that case, the internal mnodel will be foreed
to change because the distance between the points in the projected plane will become
larger than the distance in the model. In this case, numerical calculations show that
the model expands, and even has a small overshoot such that the distance between the
points becomes a little larger than the true distance, and then stays at this condition
forever.

3.2.4 Stability Analysis for the Discrete Formulation

The stability analysis for the discrete formmlation begins with the same general argu-
ment as for the continuous case. Suppoese that at & = 0, the modeal 1s very close to the
true solution, i.c. z/(0) = 2/(0) 4 ;(0), where Z;(k) is the true depth value. We exarn-
ine whether or not the perturbation at later times converges to zero, that is, whether
limg oo ¢i(k) = 0. If this is the case, and the ¢ (k) always remain small, then we can
write an equation similar to Tq. (3.11) for the discrete formulation:

ck+1) = -

92Dy ! 92Dy ,
) . a— P A N AT A 3.21
dzi(k -+ 10z (k + 1)} L)Z‘i(/ﬁ + 1)0z;(k) (%) Re(E). (3.21)




Again, by the same arguments given in the continuous cases, we cannot use 8q. (3.21) to
prove the system to be unstable, but only verify whether its convergenee is asymptotic.

In this analysis we concentrate on three point configurations, because as in the con-
tinuous formulation, an analytic study with a larger nuiber of points is too cumbersome.
In the results of computer simulations, however, we found that the results derived here
scem to generalize readily to configurations with a higher number of points. We found in
all the cases studied, that if the viewed object is rotating with constant angular velocity
around an axis perpendicular to the viewing axis, then the diserete formulation yields
a converging internal model, but that the rate of convergence depends on the angular
displacements between cousecutively viewed frames.

In order to deline the concept of raie of convergencee, we first point out that recursive
use of Fq. (5.21) shows thatl (k) can be readily computed from ((0):

k 1
(k) = (T BGN(0). (3.22)
70

and thus the convergence of (k) to 0 depends only on this matrix multiplication, rather
than on the perturbations themselves. Furthermore, if B(y) is eyclie (as it is for rotations
in which the ratio between the angular displacement and 27 is rational), with cyecle m,
convergence depends only on the multiplications of the matrices over the eyele, which
we denote:

B, = Wﬁ B(j). | (3.23)
7= 0

Tnterestingly, the behavior of BZ, bears a strong sinilarity with geometric sequences.
Let us define the spectral radius of B,,. p(B,,). as the maximal modulus of the charac-

teristic values of B,,. Then it is possible to show (sce Appendix D) that:

pJ (Bm,) = p(B:Zn) (324)
From this result, one can understand the following important conclusion (see, for exam-
ple, Varga, 1962):

lim BY, =04 p(B,,) < L. (3.25)

m
M

In other words the necessary and suflicient condition for the internal model to be asymp-
totically stable around the true solution, is that the spectral radius of the rotation matrix,
B,., is less than 1. ‘

Furthermore, from Lq. (3.24), one sees that the spectral radins corresponds to a
“time constant” by which we can measure the velocity of convergence of the internal
model.  In fact, as p becones closer to 1, more revolutions are necessary to obtain
the same amount of convergenee of the systen, and the spectral radius of B? declines
exponentially with 7. This exponential decline, however, holds only for the case of small
perturbations, from which Bq. (3.22) was derived, and describes only a general trend, as
in fine detail, the cyclic matrix 13, is composed of a runltiplication of partial matrices
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that may impose a “noise”™ in the deeline. This noise can be seen in the simulations
shown in scection 3.1.

The dependence of the rate of convergence of the internal model on the angular
displacement between viewed frames, d, and its consequences, are better illustrated by
some examples. Fig. 8 displays p as a function of d for the case in which the viewed
object appears as an cquilateral triangle, when viewed along the rotation axis.

Spectral Radius

" Py
L2 T

30° 60° 90°

____Angular Displacement

Figure 8. Graph of the spectral radius p as a function of d for the case in which the viewed

object appears as an equilateral triangle, when viewed along the rotation axis.

The first result of interest in this graph is that p < 1 for every angular displacement
d such that 0° < d < 90°. This means that for almost every displacement used by the
algorithm, the true solution (up to a depth reversal) is an asymptotically stable one. This
result held for every configuration tried, provided that the rotation axis was perpendicular
to the viewing axis. Thus, in spite of the fact that the true solution is asymptotically
stable in the case of the discrete formulation, in the limit of arbitrarily closed frames,
that is, in the continuous formulation, the true solution is not asymptotically stable. As
can be scen in the figure, the spectral radius tends to 1 as d -+ 0. Thus, in the limit,
the condition expressed in Bq. (3.25) for the convergence of B, to 0, is not fulfilled.
This confirms our previous results regarding the lack of stability for the continuous
formulation.

In addition, from the limit of 1 at small displacements, p decreases with d, showing a
steady improvement in the rate of convergence of the internal model to the true solution
with displacements up to 8607, This observation was also made by Ullman (1984). The
behavior of p with sinall displacements is exaniined more closely in the next section. In
the rest of this seetion we discuss the aflect of large angular displacements on the spectral
radius.

For large displacements, the rate of convergence deteriorates as can be seen in Fig.
8, approaching the value of 1 for d = 90°. The spectral radius is 1 for displacements
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of 90" because only two different views of the objeet are available under orthographic
projection, which is too little information for recovering structure from motion based on
the assumption of rigidity. This result appears to be independent of other properties of
the moving points.

This behavior of p with angular displacement can be related to the convergence rate
obscerved in computer simulations. This is illustrated in Fig. 9. We began with the
set. of three points, whose true coordinates (when projected onto the X — Z plane) lie
around an equilateral triangle, as shown in Fig. 9a. The y coordinates of the points were
nonzero but small. These points were then rotated around the vertical axis, and the
crror measure shown in Eq. (3.1) was computed, as a function of time. Tig. 9b shows
an crror plot for the case in which the angular displacement between frames was 207,
and the points were rotated for a total of 10 revolutions. The corresponding graph, with
error plotted on a log scale, is shown in Tig. 9¢. It can be seen that on a log scale, the
long term convergence of the computed 3 D model is approximately linear. A measure
of convergence rate can be given by the slope of the line that hest fits this data, in a least
squares sense. In Tig. 9d, the slope of this line is plotted as a function of the angular
displacement between frames (the three point configuration was rotated for a total of 10
revolutions in cach case). It can be scen that this graph is qualitatively similar to the
graph of p shown in Fig. 8.

3.2.5 Convergence Under Small Angular Displacements and Instability of
the Continuous Formulation

The question addressed in this section is, why does the rate of convergence fall with
decreasing angular displacement between consceutive frames, eventually leading to in-
stability for the case of the continuous formulation? Oue would certainly expect poorer
corrections for the perturbations if smaller displacements are used, because less resolu-
tion is available in the image data. That is, the signal-to noise ratio is substantially
rednced. Many more views, however, are scen in the case of small angular displace-
ments, which might trade off with the deterioration in the data resolution. One must
keep in mind that there are two types of noise that can influence the performance of the
incremental rigidity scheme: (1) the noise from the image data, and (2) the difference
between the model and the true solution. In the computer simulations presented car-
licr, the image measurements were computed analytically, and hence had little error, so
that the primary source of noise was the diserepancy between the computed model and
true structure. This source of noise contributes to the deterioration of the solution with
smaller angular displacements between frames. From the results in the previous section,
we can conclude that in some sense, with decreasing displacement, the deterioration due
to poorer corrections occurs at a faster rate than the improvement with the number of
views. We explore this phenomenon in this section.

Tormally, we can express the above question asz, why does the spectral radius p
of the rotation matrix B, increase with decrcasing angular displacement d, eventually
tending to 1 when d — 07 This is certainly a characteristic of the curve of p vs. d
curve if d is small enough (sce Fig. 8). The matrix B, results from the multiplication
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Figure 9. The results of computer simulations. (a) The true three point configuration, projected
onto the X — Z plane. (b) The error in the computed 3-D model, as a function of time, for 20°
displacements between frames. (¢) The ervor in the 3 D model, plotted on a log scale. (d) The
rate of convergence of the solution, as a fuuction of the anguolar displacemeint between frames.
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of the matrices corresponding to partial displacements (15q. (3.23)). One would like to
define some quantity related to these partial displacement matrices, which expresses the
deterioration of their information content, and to study the connection of this quantity
to the general specetral radius as a function of d. This quantity and its relationship to
the spectral radius were found by numerical experimentation. The intuition underlying

these observations is what follows.

Given three point configurations and fixed angular displacements, an inspection
of the partial displacement matrices shows that they all have exactly the same two
characteristic values, ¢ and ey, which are real, and 0 < ¢; < | and 1 < ¢q. If these
characteristic values belonged to a diagonal matrix, then the effect of such a matrix would
be to change the perturbation veetor ¢ = (« 1.e2)T into (creq.eacy). Tn general, however,
the vector ¢ can point in any arbitrary dircction, and the effects of a diagonal matrix
on the length of ¢ would be different from direction to direction. Thus a meaningful
quantity belonging to these malrices must be some average of the eflect of the matrix
over all directions of the perturbation vector. An important exainple is the mean length
squared of the vector resulting from the application of the matrix to the geueral unitary
veetors, (cosy, stny). This quantity is the following:

1 2w

2, .2
— (cEeos?(y) + 2sin?(y))dy = L2 (3.26)
2w 0

The partial displacement matrices are in general not diagonal, but if d is small
cnough they can be closely approximated as orthogonally similar to the diagonal matrix
having ¢; and c¢o as its clements. If we begin with an arbitrary perturbation vector,
these matrices will rotate the vectors and transform the resultants as described above,
and then repeat this transformation until a cycle is completed. Thus for small enough
displacements, one can expect the diagonal matrices to work on perturbation vectors of
almost all directions, thus having an average cffect as described in the last paragraph.
Generally this mean effect always represents a decrease in the perturbation vector, which
is applied 27 /d times during a cycle of revolution of the object. Thus for small cnough
displacements one can expect a connection between eyq, ¢q, p and d given by an equation
of the following form:

2(d) + 2(d) ) /¢
pld) = (c—l—(i)-g———g-(——l)) . (3.27)

Eq. (3.27) closely matches the behavior of the spectral radius, for the equilateral
triangle case (Fig. 8) for d < 20°. For other configurations, relationships very similar to
this one were observed to apply. The importance of Eq. {3.27) is that it relates a quantity
that can be computed in any partial displacement matrix, namely (¢3(d) + ¢2(d))/2 (the
deterioration factor), to the spectral radins of the full rotation matrix, and it enables us
to reduce the problem of why the continuous formulation is unstable to the guestion of
how faxt does the deterioration factor tend to 1 as d — 0. In fact one can sce from Eq.
(3.27) that a necessary condition for limy Lo p(d) = 1 is that:
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2 2
lim AL LB g (3.28)

This condition, however, is not suflicient. For example, if the deterioration factor
approaches | lincarly with d, i.c. (¢2(d) + ¢2(d))/2 2 1 ad for small d, then becanse of
the power 27 /d in Iiq. (3.27) we would have limg o p(d) = ¢ 27 < 1. We expeet then,
that the deterioration factor approaches I faster than Tincar. This is indeed the case, as
can be seen by expauding (e?(d) + ¢5(d))/2 into the first fow powers of its Taylor series.
TFor any three point configuration, Hua expansion yields:

AL 2T x - pdt, (3.29)

This quadratic approach of the deterioration to [ is fast enough to ensure that limyg g =
1, as can be seen by substituting I2q. (3.29) into Eq. (3.27) and taking the limit.

Therefore, we confirm that the instability of the continuous formulation is due to
the fact that the deterioration in the data resolving power as a result of the small angular
displacements between frames is faster (quadratic with the inverse of the displacement)
than the increase of information due to the inerease in the number of frames (lincar with
the inverse of the displacement). This analysis provides theoretical support for the ob-
servation that for the case of the discrete formulation of the ineremental rigidity scheme,
the rate of convergence of the internal model to the true solution diminishes as the an-
gular displacements between frames decreases. In the limit of very small displacements,
that is, in the case of the continuous formulation, this deterioration leads to a lack of
asymptotic convergence of the model to the true structure.

4. Perspective Formulations of the Incremental Rigidity Scheme

In this scction, we first present discrete and continuous formulations of the ineremental
rigidity scheme that use perspective projection of the scene outo the image plane. We
then present a few examples of the results of computer simulations, in which the per-
spective formulations were applied to sequences of points undergoing both pure rotation
about a single axis in space and pure translation through space. The behavior of the
perspective formulation of the inceremental rigidity scheme is more complex than that
of the orthographic formulation. We found that if the absolute position of an object
in space is known throughout the motion of the object, then the perspective formula-
tion performs well, similar to the orthographic formulation. If the absolute position of
the object is unknown, the incremental rigidily scheme in general does not derive the
correct 3D structure. The results of computer simulations revealed a degradation in
performance with smaller angular and spatial displacements between frames, but this
degradation was somewhat more severe than in the orthographic formulation. In the
limit of the continuous formulation, the solution is no lenger stable.

In both the discrete and coutinuous formulations, we assume that the positive z axis
points in the direction of the optical axis, with the-image plane at 2z = 1, as shown in Fig.
10. For notational convenience, we let (#:(4).9,(¢), 2:(t)) represent the true coordinates
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of point. 7 in space and (u; (1), v;(1)) denote the true projected image coordinates of point

1. The himage coordinates are given by:

The coordinates of the points in the computed model are denoted by (a;(8), y:(¢), z:(¢)).
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Figure 10. The imaging geometry for perspective projection. The positive z axis points in the

direction of the optical axis, with the immage plane at z = 1.

4.1 The Discrete Forrulation

In the discrete case, we compute the depth values z:(¢') that minimize the measure of
rigidity, Dy(¢,t') given by the following (for notational simplicity, (@4, y;, 2;) refer to the
coordinates of the points at time ¢ in the computed model, while (2], y!, 2) refer to the

coordinates of the poiuts at a later time ¢7):

Dy(t, t,) = Z(lij(t) - lij(t'))z

.3

7 )
=2 [((fz =)k (g = y)" o (- 2)?) (4.2)

i |
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This measure is the same as that used in the orthographic formulation (i.ce., it is derived
from Bq. (2.1) with the I2,(4) factor in the denomonator omitted, as shown in Tq. (A1)
of Appendix A).

As before, we assume that we have a current model (x;(2), y;(t), 2:(¢)). Rather than
assuming that «; (¢') and y; (') arc known, however, we assume that only w;(t') and v; ()
are known (they are derived [rom the true space coordinates at time £'). The coordinates
of the points in space al time ¢/ for the computed model are then given implicitly by:

wi(t') = u ()2 (t)
vi(t') == o (t")z (). (4.3)

By substituting Tgs. (4.3) into Bq. (4.2), Dy(t,t') can be expressed in terms of the
coordinates of the points as follows ((ul,v!) denote the image coordinates at time ¢'):

) 1
Dalt, ) = 3 [((1‘%’ =)o (s =) (2 2)*)
K (4.4)
— ((ufz) = ulhzh)? + (vizh - v}zh)? + () — 25)?) %}2
e 377 \ 1% 7~y = 7 .

After the values z;(¢') that minimize Dy(¢, ') are computed, Fgs. (4.3) are used to derive
the space coordinates x,(t') and y;(¢'). The new 3-D coordinates, (z;(¢), v (t'), z(t")),
then become the current 3 D model, a new frame in the sequence is registered, and the

process repeats itself.

In the case of perspective projection, 3- D structure can be recovered from relative
motion only up to a multiplicative scale factor. This is clear by inspection of Eqs. (4.1);
a constant scaling of the space coordinates (z;(¢), y:(¢), z(t)) does not change the image
coordinates {u;(t),v;(¢)). T most of the computer simulations, we assumed that the
overall scale factor is known; this is equivalent to assuming that the absolute position of
the object in space is known. In the simulations, the absolute coordinates of one of the
n points in motion was supplied to the algorithm and the coordinates of the remaining
n — 1 points were computed relative to the known point (similar to the simulations of
the orthographic formulation). If the absolute position of the object in space is not
known, then the scale of the computed 3 D model depends on the choice of the initial
configuration. Tor example, suppose that we assumne that the set of moving points
initially lies on a plane that is parallel to the image plane. The scale of the computed
3D model will then depend on where this initial plance is placed in depth. That is, if
the planc is positioned twice as far from the image plane, the computed 3 D model will
essentially be twice as large. We will briefly mention the results of computer simulations
in which the absolute position of the object in space is unknown. In these simulations,
when we began with a Hat initial configuration, we usnally placed the initial z coordinates
of the points at a depth that was approximately the mean of the true z coordinates of
the points in space. Purther details of the implementation of the discrete formulation
can be found in Appendix A. '
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4.2 The Continuous Formulation

In the continuous case, we compute the =z components of velocity that minimize the
measure of rigidity, D, (¢), given by the following (the coordinates and velocities are all

measured ab time ¢):

N\ Xy .'I".i Iifj‘ TA\Y Yy "l.-,f '?'J‘ AL 2y Z:’i - ZJ 2
De(t) = ) llzi =) (s _);,,j.)g/_+_, (y: 1( :,/l].)z : )(L’i ,(_ 2)? al I (4.5)
7

This measure is the same as that used in the orthographic case (see T, (2.7)). Tt is
assumed that a current model of the coordinates of the points in space is given, along with
the known coordinates and velocities of the points in the image plane, w; (£). v, (8), 4 (t), 0:(¢).
The velocities of the points in space for the computed model are then given implicitly
by:

Ik,,j(t) = ui(t)ii(t) + TZi(t)Zi(t)
Gi(t) = vi(t)2:(8) + 0:(8) z:(t). (4.6)
If we lot @y; = og — @5, yiy = ¥ — Y5, Ziy = 2z — 25, and 25 = 2 — Z;, then D(t) is

expressed in terms of the coordinates of the points as follows:

]2

D) = (@i (widy + iz — wjdy —abyzy) + yig(0idy + 0z — 02y — 0525) + 25245
e )_Z 2 4 y2 + 2%
1,7 J ) 3

(4.7)

In other respects, the continuous formulation is similar to the discrete formulation. A

model of the structure of the wmoving object is built up by continually taking into account

new velocity information over an extended time period. After the 3;(¢) are computed

by minimizing Bq. (4.7), Egs. (4.6) are used to derive &;(t) and ;(t), which are then

used to compute the new 3-D model. Again, because perspective projection is used, the

structure of the object can enly be computed up to a multiplicative scale factor. Further

details of the implementation of the continnous formulation are presented in Appendix

Al

4.3 Computer Simulations

In this section, we present some results of the computer simulations of the discrete
and continuous perspective formulations of the incremental rigidity scheme, for a small
number of examples. We first consider the case in which a set of discrete points is
translated through space, and then consider the rotation of a set of points about a
vertical axis. Through simulations of the diserete formmulation, we examine the rate of
convergence of the algorithm and the quality of the solution that it yiclds, as a function
of the size of the angular and spatial displacements between frames. We then observe
the limiting behavior of the continuous formulation for the case of rotation. We also note
the difference in performance of the perspective formulations when the absolute position
of the moving points in space is either known or unknown.
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It should be stressed that in the case of orthographic projection, it is not possible
to recover 3 D structure for objects undergoing pure translation, because the relative
positions of projected points in the image do not change as objects translate. The use of
perspective projection has the advantage of allowing the recovery of structure for trans-
lating objects. In the simulations presented hiere, objects were oscillated back and forth
in the direction parallel to the image plane. If the objects were allowed to translate
in one direction for a large extent, the projected image of the points would eventually
become so small that the recovery of structure would becore difficull due to a loss of
nuinerical accuracy in the measurement of the changing positions of the points. Oscil-
lating the points allows us to analyze their structure over an extended time period while
maintaining a relatively large image.

Tn the first set of examples, the input consisted of a sel of six points in space. The
coordinates of the points were chiosen randomly and the coordinates of one of the points
was known to the algorithm. The projections of the points outo the X - Y and X -~ Z
planes are shown in Figs. [la and L1b, respectively. This set of points was oscillated back
and forth in a direction paralle] to the image plane. The X — Z projection (birds’ eye
view) of the rightmost and leftmost position of the points in space are shown in Figs. 1le
and 11d, respectively. The z coordinates of the points in Figs., Lle and Lld are shifted
by 60 units from the initial positions shown in Tig. 11b. Tn the simmulations, the initial
points shown in Fig. [1b were first translated to the right in constant discrete steps and
then translated to the left with the same discrete steps. A 3 D model was built up over
several oscillations of the poiunts. The initial model for the structure of the points was
flat, with the z coordinates placed near the mean of the true z coordinates of the points.
For the particular set of points used in these examples, 2;(¢) = 80, 7 = 1,...,n, in the
initial 3 D model. Once the initial z/(¢) are specified, the initial z;(¢) and y;(¢) can be
determined from the image coordinates u; () and v;(t). The one point whose position is
known throughout the oscillation of the points is indicated by an arrow in Fig. 12a.

Fig. 12 shows a birds’ eye view of the computed 3-D model after 1 (left column),
4 (middle column) and 10 (right cohunn) complete oscillations of the points, using three
different sizes of spatial displacements between frames. The true 3-D structure of the
points is shown again in Tig. 12a. In the case of Fig. 12b, the size of the spatial
displacements between frames was 60, so that cach complete oscillation consisted of four
frames (i.e., the points were displaced to the right in one step, returned to the central
position, displaced to the left in one step and then returned again to the central position).
In the case of Tig. 12¢, the points were translated in steps of 30, so that a complete
oscillation of the points consisted of 8 frames. Finally, in the case of Tig. 12d, the points
were translated in steps of 5, so that cach full oscillation consisted of 48 frames. In Fig.
12¢, we show plots of the error in the computed models as a function of time, for 10
complete oscillations of the poiuts. The error measure used here is the same as that used
in the orthographic case, shown in Iiq. (3.2). The error plots for spatial displacements
of 60, 30 and 5 are shown superimposed, with the displacenmients indicated above cach
curve. From the results shown in Fig. 12, it can first be seen that the algorithm does
essentially converge to the true structure of the points. Second, the rate of convergence
of the computed model to the true solution decreases with smaller spatial displacements.
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Figure 11. A set of six points with random coordinates is shown projected onto (a) the X =Y
plane and (b) the X — Z plane. {¢) The rightmost position of the points during their oscillations
back and forth in the direction parallel to the image plane. (d) The leftmost position of the
points.
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For example, after a single oscillation (leftmost column), the model shown in Fig. 12b
(displacements of 60) is clearly closer to the true structure of the points shown in Tig. 12a
than the model shown in Fig. 12d (displacements of 5). The three error plots shown in
Tig. 12¢ also have periodic variations superimposed on a steady decline in error, with the
amplitude of the variations increasing with smaller spatial displacewments. Thus, in the
rase of the perspective formulation, it appears that the performance of the ineremental
rigidity scheme degrades with smaller spatial displacements when objects nudergo pure
translation through space. This result is analogous to the observation that in the case of
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orthographic projection, the performance of the scheme degrades with smaller angular

displacements when objects undergo rotation.

Number of Oscilla_tions

TFigure 12. (¢) Graphs of the error in the distances between points in the comnputed 3 D model,
as a function of time. The points underwent 10 complete oscillations, in steps of 60, 30 and 5.

Fig. 13 illustrates the behavior of the perspective formulation, for the case of rotation
of the points about a central vertical axis. The set of six points shown in Fig. 11 was
rotated about a seventh point that was placed at the position:

(ws(t), w:(2), z:(t)) = (0,0,80).

The axis of rotation passed through this point and was perpendicular to the X - Z plane.
The position of this central point was known to the algorithm throughout the motion of
the points and the positions of the remaining six points were compated relative to this
central point. As before, the initial configuration was flat, with z;(¢) = 80,7 = 1,...,n.
The set of 7 points was rotated in angular steps of 40° and 5°. Figs. 13b and 13¢
show the computed 3 D model after total rotations of 40°, 80°, 1207 and 360° (indicated
on the left), for angular displacements between frames of 40° and 5°, respectively. The
true positions of the points are shown in I'ig, 13a. Tn Fig. 13d, the graphs of the error
in the computed models are shown as a function of total angular rotation, for three
full revolutions of the poiuts. Tt can be secen that the rate of convergence and quality
of the 3 D structure decrecases witle the smaller angular displacement between frames.
Although similar to the case of orthographic projection, the degradation in performance
with smaller angles was somewhat more severe in the casge of perspective projection.
Tig. 14 illustrates the behavior of the continuous formulation of the ineremental
rigidity scheme, for the case of perspective projection. The same set of points shown
in Fig. 11 was rotated about the vertical axis and the 3D model was computed at
infinitesimally closely spaced {frames, using the instantancous velocities projected onto
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Figure 12, (a) Projection onto the X — Z plane of the true 3-D structure of the set of poiuts.
(b) The computed 3-D model after 1 (left colummn), 4 (middle column) and 10 (right colnmn)
complete oscillations of the points, for a spatial displacement between frames of size 60, (c)
and (d) The same three computed 3D models, for spatial displacements of size 30 and 5,

respectively.
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the image. As in the previous rotation examples, a seventh point was placed at the center
of rotation of the points, and the position of this central point was known to the algorithm
throughout the rotation of the points. In Fig. 14a, we compare the true positions of
the points (left) with the best solution (right) obtained over four full revolutions of the
points.  Although the model is quite close to the true structure at this position of the
points, the solution oscillates significantly over an extended time period, similar to the
orthographic case. A graph of the error in the computed model over the four revolutions
is shown in Ifig. 14bh. The arrow marks the point at which the solution shown in Fig. 14a
was obtained. There is an initial fast convergence toward the true structure of the points,
but the algorithm then oscillates with high amplitade away from the true solution. We
conclude that sinmilar to the orthographic case, the direet use of velocity information for
the recovery of structure by the ineremental rigidity scheme does not lead to a robust

solution.

We should finally note that we also explored some examples in which no informaltion
about the absolute position of the points in space is known. In this casce, we began with
an initial configuration that was flat, and otherwise provided no further constraint on
the positions of the points.  The points were either oscillated back and forth in the
direction parallel to the image plane, or rotated about a vertical axis. We found that
the ineremental rigidity scheme would sometimes derive the correet solution under these
conditions, but in general, the algorithin did not derive the correet structure, although the
computed solution was essentially rigid. The computed solution was not just a scaled
or rotated version of the true structure, but actually a different one altogether. This
suggests that some additional constraint may be required to derive the correct solution.

To summarize, the perspective formulation of the incremental rigidity scheme ap-
pears to perform well when the absolute position of the object in space is known. This
formulation then allows the recovery of structure for objects undergoing pure translation
through space, as well as rotation. The results of computer simulatious revealed a degra-
dation in performance with smaller angular and spatial displacements between frames.
This degradation appeared to be more severe than in the case of orthographic projection,
when the points were rotated about a vertical axis. When the points were translated,
there was a more gradual deercase in the rate of convergence and quality of the computed
3-D model with smaller spatial displacements. In the limit of the continuous formulation,
the solution was no longer stable.

5. Summary and Conclusions

.

In this paper, we studied and generalized the incremental rigidity scheme for the recovery
of structure from motion. This algorithm, as first proposed by Ullman (1984), assumed
the visual input to consist of a sequence of frames, cach containing a finite number of
points. The scheme maintained an internal model of the structure of the viewed object,
which was updated from frame to frame, so as to be consistent with the changing image
and to be as rigid as possible. This internal model was shown to correctly converge to
the true structure of the object, for both rigid and nonrigid motions.
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Figure 13. (a) The true positions of the points after rotations by 40°, 80°, 120° and 360°.
(b) The computed 3 D model after retation of the points by 407, 807, 120° and 369°, for an
angular displacement between frames of 40°. (¢) The same computed 3 D models, for an angular

displacement of size 5°. ((d) on next page.)
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Figure 13. (d) Graphs of the error in the distances between points in the computed 3 D model,

as a function of time, for three full revolutions of the points.

In the present paper, we focused on an observation made by Ullman, that the rate
of convergence of the internal model to the true structure increased with the amount
of change between consecutive frames. A major part of our analysis focused on objects
that rotated with constant angular velocity around an axis perpendicular to the viewing
axis, and whose image was formed through an orthographic projection, at cqually spaced
angular displacements. The complete dependence of the convergence rate on the size of
the angular change was obtained for a large variety of objects.

Ullman’s obscrvation was confirmed for small displacements. Indeed, the conver-
gence rate first increased towards a maximum and then decreased, as a function of the
angular displacements between the frames. The deterioration of the algorithm for high
displacements can be understood if we note that the number of frames available for anal-
ysis in a given total number of revolutions of the object, or in other words, the amount
of information provided to the scheme, is reduced in inverse proportion to the angular
changes between the frames.

The deterioration of the algorithm for small displacements, however, has a more
complex and surprizing basis. In this case, although the muuber of frames used in a
given amount of rotation is high, the spatial resolution between the points is low (see
discussion on the beggining of scction 3.2.5). Our analysis indicates that the latter cffect
dominates for very small angular juinpa between frames, reducing the convergence rate.
Farthermore, we found that this reduction is such that in the limit of infinitesimally
small displacements, where only velocity information is used, the internal model does
not even have a full convergence to the true structure of the viewed object, but only a
rough approach to the correct solution.

In analogy to lincar algebra, cne can say that the transformations from frame to
frame of the internal model in the incremental vigidity scheme become ill conditioned as
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Figure 14. (a) The best solution (right) obtained over four revolutions of the points is compared
with the true positions (left), for the case of the continuous formulation. (b) The crror in the
internal 3-1D distances between poiuts in the model, as a function of time. The arrow in (b)

indicates the instant at which the solution in {a) was obtained.

the angular displacements decrease, i.c. they become sensitive to noise. This property
is not unique to the present transformations, but occur in other important situations
such as numerical differentiation. The noise sensitivity of a differentiation of order m
increases as n™ when the number of points » in a given interval is increased (Strang,
1976).

As mentioned before, the orthographic projection is in general not physically valid.
Tt was used in the present paper, because it allows a deeper analysis of the phenoinena
studied. This analysis is further validated because these results are not limited to the
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case of orthographic projection, or to the case in which the object rotates. Under certain
conditions, the ineremental rigidity scheme can be generalized successfully to formula-
tions that use perspective projection, and that in this case, the structure of the viewed
object is recoverable both for rotation and translation. Also, similar to the orthographic
case, the convergence rate of the internal model to the true structure deercased, if smaller
spatial changes between consecutive frames were used.

Inspection of previous results by other researchers suggests that the use of informa-
tion that is local in space and time is insufficient to allow a robust recovery of structure
from motion. We distinguish between two types of local information that arce relevant to
the problem: (1) spatial locality, which refers to the use of a small nummber of points or
features of the viewed objeet, and (2) temporal locality, which is the use of a small num-
ber of views of the object. Early algorithms for recovering structure from motion based
this recovery on a limited number of points and views, and were able to recover the strue-
ture of the viewed object when it was rigid. When an object deformed, some algorithis
could determine its nonrigidity through incousistencies of the underlying equations. Tt
followed that these schemes are not robust against noise, as noise has similar cffects as
nonrigidity.

It can be shown that motion information that is extended in space, but temporally
local, can be used to provide stable recovery of structure from motion (Bruss and Horn,
1983; Negahdaripour and Horn, 1985). Pereeptual evidence, however, suggests that
spatial extension is not necessary for the solution of the structure from motion problem
by the human visual system (Borjesson and von Iofsten, 1973; Johansson, 1975; Petersik,
1980).

On the contrary, Ullman’s incremental rigidity scheme, which was applied locally in
space, both in its original formulation and in the present paper, uses an internal model
that is updated constantly, in order to extend motion information over time, and converge
to the correct solution. Some perceptual studies suggest that this temporal extension
may be used by the human visual system (Wallach and O'Connell, 1953; White and
Muceser, 1960; Green, 1961).

We showed in the present paper, however, that an algorithm that overcomes tempo-
ral locality docs not nccessarily provide a robust solution to the structure- from-motion
problem. It scems that in this case, a necessary condition for a stable solution is the
use of views of the object that are significantly disparate. In the limit, the use of pure
velocity information allows only a rough solution to the structure -from motion problem,
which is less stable over an extended time period. A somewhat similar conclusion was
derived by Ullman (1983). who argued that in a temporally local scheme, the recovery
of structure from the instantancous veloceity field is impossible under orthiographic pro-
jection, and that for perspective projection, the recovery is unstable. We suggest that
the problems with using local veloeity information are too large to be overcome by an
extension of this information over time. In other words, the inaccuracies introduced by
a velocity based scheme cannot be corrected by the use of multiple views of the object.

Our results therefore hint that even in a temporally extended algorithm, a memory
of sufficiently distinct past views or internal models of the viewed object is necessary for
a robust recovery of its structure. We point out that the incremental rigidity scheme, in
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its original formulation and in the present paper, nsed memory of only one past internal
model.  Although in principle;, a memory of many past models could be used by the
algorithm, it is remarkable that such a minimal amount of past information is sufficient
to provide a robust recovery of structure. SUllL it may be the case that the use of multiple
past views or internal models for establishing a new model of 3 D strueture could inerease
the rate of convergence of the internal model.

In further support of the above conelusions, we note that in order to recover 3 D
structure from measured image velocities, it is essential that these velocities at least ap-
proximate the true projected veloeitios of moving clements in space. In general, however,
it iy difficult. to derive real projected veloeities from the optical flow pattern on the eye
or camera. PFactors such as changing illumination, specularities, shadows, and rotation
of an object surface relative to a light source, can create patterns of optical flow that do
not correspond to the real movement of features on a physical surface. The dilliculty of
computing correet, projected velocitios provides an additional motivation for not basing
the recovery of structure from motion directly on veloeity information.

Our analysis raises a munber of issues regarding the recovery of structure from
motion in the human visual system. First, it is not clear whether the visual system
achieves a stable solution to the structure from motion problem, or a rough solution
such as that provided by a velocity based scheme. The more robust solution may not be
essential if we consider that other perceptual cues, such as binocular sterco, may help
to improve the quality of the 3 D solution obtainable by the structure from-motion
process. Further psycophysical experiments are requived to examine this questiou.

A sccond point of interest is that our analysis suggests that if the visual system
incorporates a robust solution to the structurc-from motion problem, it must be able to
match corresponding points in very disparate views of moving objects. The displacements
between corresponding points may be larger than the spatial limits proposed for the
short-range perceptual process found for 2 D motion (Braddick, 1973, 1974, 1080; Pantle
and Picciano, 1976; Petersik, Hicks aud Pantle, 1978; Petersik and Pantle, 1979). A
similar conclusion, based on different grounds, was formulated by Petersik (1980). He
explored the sensations clicited by stroboscopic simulations of a rotating transparent
sphere filled with randomly positioned dots. By manipulating both spatial and temporal
variables in the siinulation, he concluded that corresponding clements in consecutive
frames can be matched over spatial and temporal distances that exceed the empirically
determined limits of the 2 D short range process. Even in this experiment, however,
points that reach the periphery of the sphere have sinall displacements from frame to
frame that may fall spatially inside the short-range process. It remnains, therefore, to be
established that these points do not provide all the information used by the subjects to
sense the continuous rotation and internal volume of the sphere. '

If the human visual systemn is able to mateh very distant correspouding points from
disparate views of a moving object, the question of how we solve this correspondence
problem becomes important (for a review of the motion correspondence problem, sce
Ullman (1981)). This correspondence could be established cither through the repeated
use of a short range matching process, or through the use of an explicit long range
matching process. In the first case, the short range process could provide an essentially
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continuous tracking of features in the changing image, and the positions of features could
then be sampled by a longer range tracking process that feeds disparale positions into
the structure from motion process (a similar idea has been suggested by Ullman (1981)).
In the latter case, a correspondence would be established directly from disparate views
of moving objects, without the aid of the intermediate short range process. Petersik’s
(1980) results may suggest that it is possible to solve this long range correspondence
problem for recovering structure. This correspondence problem could be solved in con-
junction with the structure from motion process; that is, a correspondence could be
chosen that subsequently gives rise to the most rigid 3 D interpretation (such a match-
ing process requires a global decision procedure, and may be well suited to solution by
parallel schemes such as Hopfield's “neuronal nets™ (1984)). Given the difliculty of solv-
ing this long range correspondence problem in general, however, it seems unlikely that
short. range measurements would not be used when they are available.
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Appendices

Appendix A

In this appendix, we present some of the details of the implementation of the ineremental

rigidity scheme used to derive the simulation results presented in sections 3 and 4.

Orthographic Projection: The Discrete Formulation

Ullman formulated the ineremental rigidity scheme as the computation of depth values
z(1'") that minimize the measure of rigidity given by D(t,¢'), as shown in EBq. (2.2).
The analyses presented in this paper mainly consider rigid objects in motion, which are
compact in the sense that the internal distances between pairs of points do not differ
much from one another. In this case, the additional distance factor in the denomonator
of the measure used by Ullman has little influence on the resulting solution obtained
by the algorithin. We therefore removed this factor in most of our simulations, and
minimized instead the following expression (the distances 1;;(t) and {;;(t') are expressed
in terms of the coordinates of the points, and (x4, y;, 2;) refer to the model coordinates
at time ¢, while (!, y!, 2!) refer to the model coordinates at time ¢'):

up-;

Daft,t) = 3 [((ws = 2,)* + (s = 3)* + (3 = 2)?)
(41)

_ 102 T Iy2 1_12%2
((mi mj) {k(yz y]) +(zi zj) ) :

The 2;(¢') that minimize Dy(¢,t') satisfy a system of nonlinear cquations given by:

dDy
Rather than solving this system of equations explicitly, we solved them implicitly through
the use of a steepest descent minimization algorithin for Bq. (A1), based on the gra-
dient of Dy(¢,¢') (Luenberger, 1973). The components of the gradient are given by the
following:

=0, i=1,...,n—1. (A2)

oD o~ L (8) — L, (¢

Jz:—(ti")- = -2 L —]—(_};F’Tju(z:(t) - z5(t)). (A3)
In the case of orthographic projection, only relative depths can be recovered. In the
implementation, we placed the initial point (2¢(2),yo(t), 20(t)) at the origin of the co-
ordinate system; that is, (x¢(t),yo(i), 20(¢)) = (0,0,0). At every instant, the remaining
n - 1 points were then given relative to this initial point. Unless otherwise stated, the
initial configuration of points was flat, that is, 2,(0) = 0, for 1,...,n — 1. From this
configuration, the algorithm can move toward twe cqually likely configurations, one be-
ing the wirror image reflection of the other about the image plance. In other words, this
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configuration is located at a saddlepoint in the solution space for the problem (the solu-
tion space is an n dimensional space in which a value for Dy(t,t') is assigned to every
possible combination of depth values z(t')), at which the gradient of Dy(t, ') is zero. To
make this gradient nonzero, the initial solution was perturbed slightly, thus causing the
algorithm to move in a particular direction.

The steepest deseent minimization method from nonlinear programming (see, for ex-
ample, Luenberger, 1973) was used to compute the z(¢') for each new frame. The current
depth values z;(¢) were used as the initial solution for z;(#') to begin the minimization
for the next frame. The objective function is given by Dy(6,1'), and its gradient. by Egs.
(A3). Golden section scarch was used to perform the one dimensional minimization
within the steepest deseent method.

Orthographic Projection: The Continuous Formulation

In section 2, we presented a continuous formulation, which requires the computation of
z components of velocity, #;(¢) that minimize the measure of rigidity given by D.(t), as
expressed in Bq. (2.3). In the computer simmlations, we used the particular measure of
overall deviation from rigidity given by:

LTy —T; N\Ty — Ii,'j Y — Yy :I'i - :l'j 2y T 24 :'Z,; - z':j 2
T e e

1,7

The Z(¢) that minimize Dy(t) satisfy a system of linear equations given by:

aDc . ’ -
0—2;"(—?57«0, z—-l,...,n—l. (A())

These equations are of the form:

z; —2;) =0.

9D. _, S (i = ;) (@ = &5) + (% = y;) (9 — 9;) + (2 — 2;) (3 = éj)(
0% - (i = 25)% + (¥ — y5)% + (2 — 25)?

(46)
In the case of orthographic projection, only relative z components of velocity can be re-
covered. Asin the diserete case, we again placed the initial point (2 (t), yo(t), 20(¢)) at the
origin of the coordinate system throughout the eutire motion, so that (zy(t), yo(t), 20(t)) =
(zo(t), 90(t), 20(£)) = (0,0,0). At cvery instaut the remaining n — 1 2 components of ve-
locity were then given relative to this initial point. Unless otherwise stated, we again
began with a flat initial configuration in which #(0) = 0, for 1,...,n — 1, which was
perturbed slightly so that the gradient of D¢ (t) is initially nonzero.

At cach moment, Z(¢) were obtained by solving a system of lincar equations, for
which we used the simple Gauss-Seidel relaxation method. The initial condition for the,
relaxation was usually the set of velocities computed in the previous iteration and 2; = 0
for the first iteration. To integrate motion information over an extended time period, we
then made use of the following approximations using @;(¢), :(t), and (¢):




.’)?.L'(f,) + J‘l(/)bf = :(71'(1 “+ bf)

ye(t) 4 ga(t)ot = yi(t + bt) (46)

2 (8) + 2 (8)01 = z (¢ + o).
Once the () were computed, by minimizing D, (). then the z (£ 4 6t) could be derived
from the current model z;(¢). The new model was then taken as M(¢ + 8t) = (a3t +
8t),yi(t+ 8t), (Lt + &6t)), and the process was continued. The time interval, 8¢, typically
corresponded to an angular displacement between frames on the order of 0.1 degrees. We
also experimented with angular displacements up to two orders of magnitude smaller,
and found the qualitative behavior of the algorithm to be the same.

Perspective Projection: The Discrete Formulation

In the case of perspective projection, the x and y coordinates at time ¢ can be expressed
in terms of the known image coordinates at time ¢ and the depth values to be computed,
z(t'), as follows:

z:(t") = ui(t')2z:(t')
yi (¢') = v ()2 (). (A7)

The measure of rigidity to be minimized is given by substituting Egqs. (A7) into Eq.

(Al):

1
Da(t,t') = Z { ((71 - 373')2 + (i — ?/J')2 + (2 — zj)2) !
1,7 (AS)
2 [ 112 ! 12\ 3 2
= ((ugz} — wi2})® + (viz) — vi2l)? + (2 — 2}) )’]
The z;(¢") that minimize Dg4(t,t') satisfy a system of nonlincar equations given by:
0Dy .
=0, =1,...,n—1. A9
0z:(t) ' " (49)

In the computer simulations, these equations were solved implicitly through the use of a
steepest descent minimization algorithin for Eq. (A8), based on the gradient of Dy4(t, t').
The components of the gradient are given by the following:

1
0Dd lij -1 I
— d T ) O B | r_J
Il -2 E T [wg(upz — uhzl) + vi{vjz — vjzh) + (2 — 25)] . (A10)
<7 N ’L‘]‘
J
The computed z(t) arc used to derive the new z;(¢') and y;(¢') using Eqs. (A7), which
then provide the new computed 3 D model. This new model also serves as an initial
solution to begin the minimization for the next frame.




Perspective Projection: The Continuous Formulation

In the continuous case, the z and y components of veloeity of the points in space can be

expressed in terms of the known image coordinates and velocities as follows:

:jti(t) = 'u,,:([.),i',;({) -+ ’l'l,,j(f,)zi(t)
- ;l'/t'(t) B ?)i(t)i’i(t) + ’l‘,'i(t);’i(t). (All)
If we let @i = @ — @, yij = Y — Yy, 2ij = % — zj, and Z; = 2 — Z;, then Dg(t) is
expressed in terms of the coordinates of the points as follows:

D(t) = g (wei 4 iz — iy — yzy) b oyij(vidi © ez — w53y — 052) + 24
D) = Y 2o Ll - ‘

g oy T Yyt 2
(A12)
The Z;(t) that minimize D, (¢) satisfy a system of lincar equations given by:
aD, :
—— =0 t=1,...,n~ 1. (A13)
Jdz;
These equations are of the form:
oD, _<— '
-—52—1 =2 L I),'j [ui(xi - .’173‘) + ’Ui(jl/i - yj) - (zl- - Zj)] = 0, (Al4)
1 .
where the b;; are given by:
bq:j — xij(uiz'i + ;2 — ’U,J'éj - ’l‘l,j;?:j) + :I/,;J'('quz"i + V2 — ’Uj,‘é’j - zﬁj‘zj) + z,;jé:,;j . (A15)

x?j + yt?j + 21?21'
At cach moment, the 2;(¢) were obtained by solving the system of lincar equations given
by Lqs. (A14), for which we used the simple Gauss-Seidel relaxation method. After the
%;(t) were knm.Nn, the Igs. (A11) were used to derive the z and y components of velocity
in space, #;(¢) and g;(¢). To integrate motion information over an extended time period,
we then made use of the approximations given in Egs. (A6) to compute a new model
(zi(t + 68), yi(t -+ 6t), z:(t + 6t)).

Appendix B

In this appendix, we explain how Iq. (3.10) was derived.

Eq 3.8 depends on the image coordinates (data) and en depth coordinates of the
points z({) and their velocitics ;(¢) (computed values). These depth variables are in
general displaced from the true motion values. This depacture can be incorporated in
Eq. (3.8) as follows:

oD

z)—;,—_(t, Bibeq Bt Bl B éy ) =0 (B1)
~2
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If the ¢ and ¢ arce small enough, as it is assumed in the stability analysis of section
3.2.2, then the first clements of the Taylor expansion of Lq. (B1) yields the following
approximation:

oD . . .
():(’)éq,(t Blyeir B 1021y ey Enct)
-1,
T8 Do UL P NS O
A A Zlyeees By 15R1 40y Rn-1)€Cq
' 1()zi02j s @ly s fn—1s <Ly ey P10y (B2)
I

n-1 .
oD : :
-+ ————— (£, 21y ey B 15 By B ;.
.Z()zidzj( 1 s&n-- 1 1yoyon 1) 7
i1
But the true rigid solution certainly minimizes . (3.7) as it sets it to 0, thus being a
solution of Eq. (3.8). It follows that the first term on the righthand side of Eq. (B2) is

0, from which Eq. (3.10) is concluded.

Appendix C

In this appendix we indicate the method by which equations of the type 3.14 and 3.15
were derived.

Equation 3.14 is derived by taking the necessary partial derivatives of D (Eq. (3.7))
by z; and 2; and combining them as indicated in Eq. (3.11). These derivatives are
evaluated at the true solution itself, that is at 2;(¢) and ,:Ei(t), and because we only
considered rigid motions in this paper, we could use the following relationship to simplify
the results:

ai; + (2 - ZJ)(’:'z - 3"3) = 0. (C1)
Eq. (C1) is derived by setting the distances between peints 7 and j as constant and
taking the temporal derivative of this distance.
The conclusion of Eq. (3.15) is derived by noting that, in a rigid rotation around
an axis perpendicular to the viewing axis, with constant angular velocity w, %; can be
written as:

2:(t) = e;cos(wt + &;). (C2)
Then, by direct substitution of Eq. (C2) in Lq. (8.14) and its integration as indicated
in Bq. (3.15), we derive the stated result. ’
The calculations cxplained in this appendix, though stmightfobward, are cumber-
some, and were done by using Macsyma, a computer system for performing algebraic
manipulation.

Appendix D

In this appendix we show that if C is an n X n matrix over an algebraically closed field

then:
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P (C) =p(C%), (D1)
where p is the spectral radius.
Let P be such that:

Plcp=1, (D2)

where J is in Jordan canonical form. It follows that:

C’ =Pyp-L (D3)

Similar matrices have similar characteristic values and thus similar spectral radii, thus:

p(C) = p(J), (D4)

and

p(C7) = p(J7). (D5)
Direct inspection of the matrices J7 show that they have the same type of triangulariza-
tion as J (that is, upper or lower triangularization), with the clements in the diagonal
being the 5 — th power of those of J. Thus it follows that:

p(39) = p(J), | (Do)
which together with Eqgs. (C4) and (C5) imply the result stated in Bq. (D1).






