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Abstract. The need for intelligent interaction of a robot with its environment
frequently requires sensing of the environment. Further, the need for rapid execution
requires that the interaction between sensing and action take place using as little sensory
data as possible, while still being reliable. Previous work has developed a technique for
rapidly determining the feasible poses of an object from sparse, noisy, occluded sensory
data. In this paper, we examine techniques for acquiring position and surface orientation
data about points on the surfaces of objects, with the intent of selecting sensory points
that will force a unique interpretation of the pose of the object with as few data points
as possible. Under some simple assumptions about the sensing geometry, we derive a
technique for predicting optimal sensing positions. The technique has been implemented
and tested. To fully specify the algorithm, we need estimates of the error in estimating
the position and orientation of the object, and we derive analytic expressions for such
error for the case of one particular approach to object recognition.
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Problem Definition

A robot often must recognize and locate objects in its workspace, or more informally, must
use sensory information to determine what objects are where, in order to manipulate them.
Since speed of operation is also an important consideration in robotics applications, the
interaction of sensing and action should take place using a minimal amount of sensory
data. This requires methods for optimally (or near optimally) selecting positions at
which to obtain sensory data. Clearly, the notion of optimal selection of new data points
will in part be tied to the specific recognition engine used to interpret those data points.
In previous papers |Gaston and Lozano-Pérez 84; Grimson and Lozano-Pérez 84, 85a,
85b] we have presented a constraint based recognition and localization technique that
uses as input, sparse, noisy, occluded measurements of the position and orientation of
small patches of an object’s surface obtained from any of several sensing modalities.
Applying this recognition system to such sensory input data results in a small set of
object poses, that is, a set of transformations taking a known object model from an
intrinsic coordinate system into a coordinate system defined relative to the sensor. In
this paper, we consider the problem of disambiguating from among this fixed set of object
poses. Note that the set of poses could include poses corresponding to different objects.
To disambiguate among a set of interpretations, we need to acquire sensory data that will
clearly distinguish one pose of an object from another, using as few additional sensory
points as possible. Thus, our problem is to optimally select places at which to obtain
the needed sensory data.

While we use the recognition system developed in [Grimson and Lozano-Pérez 84,
85a, 85b] as the basis for investigating sensing strategies for disambiguation, we expect
that some of the results of this investigation should have application in more general
situations of recognition and localization. To illustrate this, we begin with a set of
examples of the use of sensing strategies.

Example I: Disambiguating Multiple Interpretations

Suppose we are given a sparse set of sensory data points, each recording the position
and orientation of a small patch of some surface in the workspace of a robot. Our goal
is to determine what objects, from a set of known objects, are consistent with this data,
together with the pose (position and orientation) of the object that leads to such a
consistent interpretation. In the case of sensory data known to all lie on one object, we
take consistent to mean that a rigid transformation of the object will cause all of the data
points to lie on the object, with the correct surface orientation (to within some known
error bounds). In the case of sensory data that may come from more than one object, we
take conststent to mean that a maximum subset of the data satisfies the above condition.
In this case, of course, other interpretations of consistent are possible.

In [Grimson and Lozano-Pérez 84, 85a, 85b] we described an efficient constrained
search technique for matching the sensory data to faces of an object model, in order
to find the interpretations of the data. The sensory data consist of measurements of
the position and surface orientation of small patches of object surfaces. The objects
are modeled by sets of planar faces equations. The technique uses efficient constraints
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between data elements and model elements to determine the set of interpretations of the
data consistent with the model, that is the set of poses of the object that agree with the
input data. Empirical testing, as well as theoretical analysis [Grimson 84|, indicates that
in general, there will be only one consistent interpretation of the data. It is possible,
however, that more than one pose of the object will be consistent with the data, even for
non-symmetric objects and even if the object is known (see Figure 1). To determine the
correct pose, we will need additional sensing.

——
. . . . . . . _\
Figure 1. Example of multiple interpretations. Given only a sparse set of isolated data points, multiple

interpretations such as those indicated may be possible.

The simplest method for obtaining the supplementary sensory data is to sample the
object at random. If the sensing process is fast enough, and if, on average, only a few
additional points are required in order to remove the ambiguity, then such a random
sensing strategy could suffice. It is easy, however, to find situations in which a random
sensing strategy would be ineffective in disambiguating between possible interpretations
and in general one expects a random sensing strategy to have a very slow convergence.
Moreover, some sensing modalities, for example, tactile sensing, are inherently sparse,
and require considerable expense to obtain additional sensing points. In this case, it is
particularly desirable to perform recognition with minimal sensory interaction.

No. of Points 9 10 11 12 13 14 15 16 17 18 19 20 >20

No. of Trials 59 15 6 5 4 1 1 2 1 1 2 3

Table 1 — Histograms of points needed for disambiguation. Each column indicates the number of sensory
points needed to force a unique interpretation, and the number indicated in that column is the number

of trials, out of 100, for which that number of data points was required.

For example, Table 1 lists histograms of the number of additional, randomly chosen,
sensing points needed to uniquely disambiguate several consistent interpretations. We
generated an initial set of 9 points of data, all lying on a single object (shown in Fig-
ure 1), and determined the set of consistent interpretations of that data, using the system
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described in [Grimson and Lozano-Pérez 85a, 85b]. We then generated additional sense
points until only one interpretation remained consistent with the data. This process
was repeated for 100 trials, and the number of sense points needed to disambiguate the
interpretations was histogrammed. The results are recorded in Table 1, where each entry
is the number of trials terminating with the indicated number of sense points. The sen-
sory data was generated by randomly choosing approach directions towards the object,
and sensing for contact along them, much as might occur in tactile sensing. It can be
seen that choosing sensing directions at random may have a slow convergence towards
a unique interpretation, especially since in this case we are only dealing with the simple
case of data from a single known object.

In general, one would expect a tradeoff between random sensing strategies and fea-
ture driven sensing strategies. Given two possible interpretations of the data, consider
constructing the volume difference, consisting of all points contained in one but not both
of the interpretations. If the size of this volume relative to the volume of the object is
large, then in general, one would expect randomly generated additional sensing points to
quickly disambiguate the situation. On the other hand, if the relative volume is small,
one would expect that a large number of additional sense points would be needed before
one of them struck this volume difference. In this case, a more directed sensing strategy
is likely to be more effective.

Example II: Localization with Minimal Sensing

In the previous example, we discussed the problem of generating additional sensory data,
given some initial set of data and the interpretations consistent with it. A related problem
is to consider the optimal acquisition of all of the sensory data, rather than just that
needed to disambiguate interpretations. For example, consider a situation in which a
known object, with a fixed set of known stable positions is being sensed. This might
be the case, for example, when considering objects in pallets, or feeders. We would like
to determine the pose of the object with as few sensory points as possible. Here, the
initial set of interpretations is the set of stable configurations of the object. Given this
set of stable configurations, we want to determine the optimal sensing directions for
distinguishing that set of configurations. '

Example III: Simple Inspection

The problem of determining sensing positions can also arise in simple inspection tasks.
Suppose we are given an object pose, and a set of distinctive points defined on the object
model. In this case, we may be able to use the techniques developed below to choose
the sensing rays needed to test that the designated distinctive model points are in fact
present in the sensed object.




Assumptions

Thus, the problem to be addressed in this paper is finding effective and rigorous sensing
strategies for deciding between a set of possible poses of an object, or multiple objects.
" We will assume that the following are given:

e  Set of Interpretations — Some initial set of possible interpretations is assumed given.
This could be either from the application of some recognition process to a set of initial
sensed points, or from assumptions about the object to be sensed, in particular
that 1t 1s lying in one of a known number of stable positions. In each case, the
interpretation includes a computed transformation giving the pose of the model in
sensor coordinates.

e  Set of Sensing Directions — It is assumed that the initial sensory data were gen-
erated by sampling along a set of known directions. For example, in the case of
visual sensing these could be given by the orientation of the cameras relative to the
workspace. In general, determining optimal sensing rays is a four degree of freedom
problem. In this paper, we assume that the two rotational degrees of freedom are
restricted to a small set of possibilities by the sensing geometry, such as the given
camera orientations. We then optimize over the remaining two degrees of freedom.

e  Polyhedral Object Models — We assume that the objects to be sensed have been
modeled as polyhedra, although the objects themselves need not be polyhedral. Any
deviations between curved objects and their polyhedral models will simply contribute
to a small amount of error in the sensory data, to which a recognition system should
be insensitive.

The goal is to disambiguate between the set of interpretations by determining positions at
which to obtain subsequent sensory information. These positions should be such that by
sensing along one of the possible directions, the recorded information will disambiguate
between the set of possible interpretations (or some subset of the interpretations) in the
presence of possible error in the computed transformations associated with each of the
interpretations.

In the examples given above, we assumed that we had available techniques for ac-
quiring the sensory data, and techniques for solving the recognition and localization
problem. There are, of course, many techniques for obtaining information about the
three-dimensional positions of points on an object, as well as the local surface normals
at those points. Typical examples of such measurement processes tactile sensing le.g.
Harmon 82, Hillis 82, Overton and Williams 81, Purbrick 81, Raibert and Tanner 82,
Schneiter 82], binocular stereo [e.g. Baker and Binford 81, Barnard and Thompson 80,
Grimson 81, 85, Marr and Poggio 79, Mayhew and Frisby 81, Ohta and Kanade 85],
photometric stereo [e.g. lkeuchi and Horn 79, Woodham 78, 80, 81|, laser range-finding
[e.g. Lewis and Johnston 77, Nitzan, Brain, and Duda 77|, and structured-light systems
[e.g. Popplestone, et al. 75, Shirai and Suwa 71]. These methods can provide information
about the three-dimensional positions of points on the object, as well as the local surface
normals at those points, usually with some error in the measurements.

A number of different techniques have been developed for model-based recognition
and localization. If one views recognition as a search for a consistent match between
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data elements and model elements, then much of the variation between existing recog-
nition schemes can be accounted for by the choice of what descriptive tokens to match.
Examples of techniques relying on sparse distinctive features include the use of a few
extended features [Perkins 78, Ballard 81], the use of one feature as a focus, with the
search restricted to a few nearby features [Tsuji and Nakamura 75, Holland 76, Sugihara
79, Bolles and Cain 82, Bolles, Horaud and Hannah 83|, matching of high level descrip-
tions [Nevatia 74, Nevatia and Binford 77, Marr and Nishihara 78, Brooks 81, Brady 82]
and the use of geometric relationships between simple descriptors [Horn 83, Horn and
Tkeuchi 83, Ikeuchi 83, Faugeras and Hebert 83, Gaston and Lozano-Pérez 84, Grimson
and Lozano-Pérez 84, Stockman and Esteva 84, Brou 84]. The basis for the present work
is the approach presented in [Gaston and Lozano-Pérez 84, Grimson and Lozano-Pérez
84, 85a, 85b).

For the purposes of this paper, we will assume that such techniques are available.
Our concentration is on the problem of choosing optimal sensing strategies for interacting
with such techniques.

An Algorithm For Computing Sensing Directions

To demonstrate the approach of computing sensing directions, we first look at an example
in two dimensions (see Figure 2), where the object has three degrees of positional freedom
(one rotational and two translational).

|
S S
|

Figure 2. Two dimensional example of multiple poses. Both poses are consistent with the sensory data,

indicated by the small surface normals and the points of contact.

After our recognition and localization process has been applied to a sparse set of data
points, we are left with some set of poses of the object consistent with that data. We are
given a set of sensing directions, that is, a set of unit vectors §, indexed over 7 € I, such
that sensing can occur along directions parallel to any of these unit vectors, for some set
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of initial positions. For example, in Figure 3, if o is an offset vector, where o - §; =0,
then we can sense along the ray o + a8, as o varies. Equivalently, we can think of this
as having some finite portion of a plane perpendicular to §;, such that for any point on
the plane, we can sense along a ray through that point in the direction of §;.

°+t81

Ve
— ' A

Figure 3. Examples of the sensing geometry. Each vector § defines a sensing direction. The actual

sensing ray is defined by specifying an offset vector o relative to the origin of the sensing plane through

which the ray must pass, parallel to §.

We are also given some bounds on the sensitivity of the sensing device in measuring
surface normals and surface positions. In particular, we define ¢,, and ¢4 in the following
manner, illustrated in Figure 4. If fi4,,. is the surface normal at some point on an object,
measured in sensor coordinates, and fi¢.y.,. is the normal measured by the sensing device,
then
Noense Nyrye > €n.

If pyyy. is the actual position of a point on an object, measured in sensor coordinates,
and Py, . is the position measured by the sensing device, then

i’psense ‘_.ptruel < €q.
Thus, €, and ¢y describe the range of uncertainty in the measurements of normals and
distances, respectively.

The basic idea is that over the set of all given sensing directions {3;|i € I}, we want
to find a particular direction §;,, and an offset position o, such that sensing along the ray
o + a8;, will distinguish the poses. By distinguish, we mean that for all pairs of possible
poses, either the difference in the expected normals of the faces that intersect the ray, or
the difference in the expected positions of the points of intersection of the ray with the
corresponding faces of the poses, is greater than the sensitivity of the sensing device.

We note that a sensing ray which does not intersect exactly one of the possible poses
is acceptable. Indeed, in the case of two possible poses, sensing rays that would contact




Figure 4. Error bounds. The true surface normal is known to lie within a specified cone of the measured
normal, while the true position is known to lie within a specified ball about the measured position.

only one of the poses are likely to be among the best candidates for disambiguating
the two poses. Secondly, we note that if there are many possible poses, it may not be
possible to find one sensing ray that will distinguish between all of them. Instead, we
may have to use a series of measurements to determine the correct pose. The number of
such measurements will be bounded above by the number of poses, however.

The main problem to be faced in finding good sensing rays is the existence of error in
the computed transformations associated with each pose. Thus, for the sensing strategy
to be effective, the ray must both distinguish the poses, and be insensitive to errors in
the position and orientation of the poses.

The proposed method is quite simple and is illustrated in Figure 5, in which two
poses of the object are shown, one in solid lines, the other in hashed lines. The steps of
the method are as follows.

1. Pick a particular sensing direction § (we will assume the convention that § points
from the sensor towards the object). In the two-dimensional case, we can define a
line perpendicular to the sensing direction, which we will call the sensing line, with
origin at the point on the line closest to the origin of the sensor space. In three
dimensions, this would be a sensing plane. This is shown in Figure 5a.

2. We fix the position of this line at some arbitrary reference point, for example by
specifying the minimum distance of the line from the origin of the space to be d.
This is shown in Figure 5b.

3. Now consider one of the poses, for example, the one shown in hashed lines in the
figure. For each face f; in the model, with corresponding model unit normal 1, ;, we
let °N,, ; denote the unit normal rotated into sensor coordinates, 1.e. corresponding
to the orientation of the face relative to the pose of the object. If the face points
towards the sensor (§- *f,,; < 0), we project the boundaries of the face onto the
sensing line, as shown for example in Figure 5c. In other words, each end point
e of the edge is projected to a point on the sensing line, e + (d — e - §)§. In three
dimensions, this would entail the projection of the edges of a face onto the sensing
plane.

4. We can label the resulting segment of the §-line with the surface normal °n,, ; and
with the range of distances from the object face to the §-line. That is, if v is a point
on the edge, in sensor coordinates, then v - § — d 1s the distance from the point to
the §-line. We let o, ;,, and amax denote the extreme values taken on by v-§ — d
as v ranges over the edge, and the segment is labeled by

sn
{ Ny, {amin’i) amax,z‘}} -
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Figure 5. Projection of Poses onto the Sensing Line. In part {a) the sensing line is indicated, orthogonal
to the sensing direction. In part (b) this line is fixed at a distance d from the origin. In part (c) the
visible faces of one of the poses are projected onto the sensing line defined by the sensing ray. This
projection defines a partition of the sensing line. Here § is the sensing ray and d is the distance to the
origin. In part (d), the visible faces of the second pose are also projected onto the sensing line. In part
(e), the respective partitions are tested for distinguishability, based on differences in expected surface
orientation and differences in expected position, and the distinguishable regions of the sensing line are
marked. Using a sensing ray through the midpoint of either of the two marked regions would enable one

to disambiguate the two poses, as shown in part (f), in which the expected sensory points are indicated.
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. When all the visible faces of a pose have been projected onto the §-line, we can
perform hidden surface removal, to reduce the set of possibly overlapping segments
of the §-line to a set of disjoint segments. Each segment will be labeled by the
surface orientation of the corresponding face, in sensor coordinates, and the range
of distances to points on the face.
. We can perform this operation for each pose, obtaining a different disjoint partition
of the §-line, labeled by the appropriate surface normals and distance ranges, as
shown in Figure 5d (slightly offset for graphical clarity).
. Next, we intersect the set of all such partitions. That is, we define a new partition of
the &-line with two properties. First, each segment of this new partition lies within
exactly one segment of each of the partitions of the §-line corresponding to a pose.
Second, this new partition is the smallest (in terms of number of segments) such
partition. The label associated with each segment of the new partition is the union
of the labels of the corresponding segments of the individual partitions.
. This partition can now be analyzed for distinguishability. More precisely, given a
segment of the partition, the set of normals
{n;ljeJ}

associated with that segment 1s distinguishable if

,Jmax (n;-1,) < 2.
In other words, given a measurement of the actual object in this region, we can
uniquely determine to which pose it corresponds. Similarly, the set of distance
measurements

{(O‘min,j> O‘maX,j) 7 € J}

is distinguishable if

max {'amin,i — Omax,s } > 2¢€4.
1#]

We can collect all such distinguishable segments of the partition, thereby determining
the set of possible sensing points along the particular choice of §. This is illustrated
in Figure 5(e).

If there were no error in the transformations associated with the poses, we would be

done, since any point in this set would disambiguate the poses, (see Figure 5(f) for an

example). To account for possible error in the transformations associated with the poses,

however, we need to be somewhat judicious in our choice of sensing point. The basic idea

is to choose a point such that the face with which contact is made remains the same over

small perturbations in the transformation. In two dimensions this is most easily done

by choosing the midpoint of the longest segment. In three dimensions, the easiest way

to choose such a point, from among the set of distinguishable polygons on the sensing

plane, is by applying the notion of a Chebychev point, defined as follows. Suppose we

are given a polygon on a plane, each of whose edges is defined by a pair (1, d;), where

N is a unit normal lying in the plane, and d; is a constant such that points along the

edge are defined by

{vlv-n; —d; =0}.

Then the distance from any point v to an edge is given by

v-f,; - d;.
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The Chebychev point of a polygon is the point which maximizes the minimum distance
from the point to any edge of the polygon, that is, the point v that satisfies

min (v -0, — d;) > min (u-0; — d;) Yu
] g

where the value taken by this expression at the Chebychev point is called the Chebychev
value of the polygon. Clearly, the polygon with the maximum Chebychev value will
be the least sensitive to perturbations in the computed transformations, and thus the
Chebychev point with the maximum Chebychev value, as measured over the set of all
distinguishable polygons, defines the best sensing position. Note that we can improve
the reliability of the sensing strategy even further by choosing the maximum Chebychev
point as measured over connected sequences of distinguishable segments.

9. We repeat this process over all sensing directions §,, choosing the direction that best

distinguishes the feasible poses.

While this analysis has been done in two dimensions, it clearly extends to the general
three dimensional case. Here, the visible faces are projected into polygons on a sensing
plane, and the intersection of the projections over all poses gives a partition of this plane,
which can be tested for distinguishability.

An Implementation of the Technique

In testing the proposed algorithm, we have chosen a slightly modified implementation of
the technique, that avoids some of the difficulties of performing hidden surface removal,
and of intersecting polygonal partitions of a plane. One means of circumventing these
difficulties is to use a regular grid tesselation of the plane.

In particular, suppose that we partition the §-plane with a rectangular grid whose
elements have sides of length h. Rather than trying to compute polygonal regions on the
§-plane that are distinguishable, we shall examine each grid segment within the bounds
of the projected object, seeking those segments that are themselves distinguishable, and
then we will piece these grid elements back together.

The steps of the new algorithm, many of which are identical to those of the previous
solution, are sketched below.

e Initially, mark all grid segments as active.

e Given a pose, and a sense direction §, test each face for visibility. If the normal of
the face, in sensor coordinates, is given by “n,, ;, then a face is visible if §-*fi, ; < 0.

e  For each visible face, project its vertices onto the §-plane, resulting in a set of new
vertices that define a polygon on the plane.

e  Given this polygon on the sensing plane, compute the smallest bounding rectan-
gle composed of an integral number of grid elements which encloses the enscribed
polygon. This rectangle has no intrinsic merit, but is simply a convenient means of
restricting the search process.

e  For each grid element lying in this enclosing rectangle, apply the following test. If
the grid segment lies entirely outside of the polygon, nothing is done. If some edge of
the polygon passes through the segment, this segment is marked as inactive. If the
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grid segment is still active and lies entirely within the polygon, a label is attached
to the grid segment. This label is composed of two elements. The first is the normal
of the face whose projection resulted in the current polygon on the sensing plane,
measured in sensor coordinates. The second is the range of possible positions that
could be achieved by intersecting a sensing ray passing through a point in this grid
segment with the face of the underlying interpretation. If the vector o, lying in the
§-plane, defines the midpoint of the grid segment, this range is given by

2h
[e7s) + —2— tané

where «g is the value of « for which the ray o + a8 intersects the face of the pose, h
is the size of the grid segment, § is given by cos§ = °n - §, and °n is the normal of
the face in sensor coordinates.

e  Repeat this process for all visible faces. This results in a set of active grid segments,
each of which is labeled by possibly several labels of the type described above.
This set of labeled active grid segments represents the equivalent of the partition
of the sensing plane described in the ideal solution. Note that we have avoided the
hidden surface problem by incorporating multiple labels for a grid segment, from a
single pose. This may reduce the number of distinguishable segments, by applying
additional constraints on the criteria of distinguishability, but it also greatly reduces
the computational expense of the process.

e Once a partition of the grid is obtained for each pose, test the grid segments for dis-
tinguishability. First, only grid segments that are active in all poses are considered.
Such a segment is considered distinguishable if for all pairs of sets of labels, either
all the face normals of one label are distinguishable from all the face normals of the
other (in the sense defined in the previous section), or all the distance ranges of one
label are distinguishable from all the distance ranges of the other (also in the sense
defined in the previous section).

e  Finally, collect the set of distinguishable grid segments into convex connected com-
ponents.

e Compute the best sensing position as the center of the largest square (with sides
an integral number of grid segments) that can be placed entirely within the set
of distinguishable grid segments. Note that if the square has sides of size s then
the Chebychev value for the segment is at least s/2. This process can be repeated
over all sensing directions, and the midpoint of the largest such connected convex
collection of distinguishable grid segments can be used to define the best sensing
position. To save on computation, it is also possible to define a minimum size for
an acceptable convex connected component, and to only apply this process until the
first such acceptable component is obtained.

In Figure 6, we illustrate the above technique on the multiple poses of Figure 1. Note
that each of the small circles denotes a point on the grid of the sensing plane that is
distinguishable. We can then determine the best sensing position by finding the largest
square area filled by such distinguishable points. The figure illustrates the computation
for each of three different sensing rays.
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Figure 6. Example of distinguishable points. For the multiple poses of Figure 1, we show three different
sensing plane projections. The small circles mark positions, on the defined grid, that are distinguishable

in these poses.
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Bounds on Transform Errors

In order to use such an algorithm, we need to determine values for two parameters. First,
errors in the computed transformation associated with a pose will affect the threshold
needed to determine distinguishability. For example, if there is no error in the computed
transformation, then two surface normals are distinguishable if the angle between them
exceeds the range of error in measuring such normals. When error is present in the
transformation, its effect on the expected surface normals must be added to this thresh-
old, thereby reducing the set of distinguishable normals. Second, we need a bound on
the minimum Chebychev value (or its approximation) such that errors in the computed
transformation will not affect the expected values of the sensor along the sensing ray.
In order to deal with these parameters, in this section we will derive theoretical bounds
on the possible errors in the computed transformations. In doing so, we will also derive
criteria that can be imposed on the computation of the transformation from model coor-
dinates to sensor coordinates in order to reduce the range of possible error. Depending
on the sensor data available, it may not always be possible to satisfy these criteria, in
which case higher possible errors will have to be tolerated.

Computing the Transform

There are many different methods for determining the transformation from model co-
ordinates to sensor coordinates, and the errors associated with that computation will
clearly be dependent on the specific method. To illustrate the disambiguation technique
developed here, we choose one particular scheme, and derive specific error bounds on
the model transformation for that scheme. This will then allow us to actually test our
disambiguation algorithm. We being by reviewing the process used in [Grimson and
Lozano-Pérez 84] for computing the transformation from model coordinates to sensor
coordinates.

We are given a set of possible poses of the sensed data, each one consisting of a set of
triples (p,, A, f;), where p, is the vector representing the sensed position, i; is the vector
representing the sensed normal, and f; is the face assigned to this sensed data for that
particular pose. We want to determine the actual transformation from model coordinates
to sensor coordinates, corresponding to the pose [see also Grimson and Lozano-Pérez 84].

We assume that a vector in the model coordinate system is transformed into a vector
in the sensor coordinate system by the following transformation:

v, = Rv,, + Vg

where R is a rotation matrix, and vg is some translation vector. We need to solve for R
and vg.

Rotation Component

Suppose 1, ; is the unit normal, in model coordinates, of face f;, and f.; is the corre-
sponding unit normal in sensor coordinates. Given a two such pairs of model and sensor
normals, an estimate of the direction of rotation f;; such that a rotation about that
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direction would take 1, ; into i, ; is given by the unit vector in the direction of
(B — i) X (A —fgy).

If there were no error in the sensed normals, we would be done. With error included
in the measurements, however, the computed rotation direction ¥ could be slightly wrong.
One way to reduce the effect of this error is to compute all possible #;; as 7 and j vary
over the faces of the pose, and then cluster these computed directions to determine a
value for the direction of rotation t.

Once we have computed a direction of rotation ¥, we need to determine the angle
of rotation about it. This is given by

cosf =1 — ! j (l?s’i 'l:lm’f)
sinf = (F xf,) - i,

Hence, given ¥, we can solve for . Note that if sin @ is zero, there is a singularity in
determining #, which could be either O or 7. In this case, however, T lies in the plane
spanned by 1, ; and i,,; and hence, only the § = 7 solution is valid.

As before, in the presence of error, we may want to cluster the ¥ vectors, and then
take the average of the computed values of 6 over this cluster.

Finally, given values for both & and #, we can determine the rotation matrix R. Let
Tz, Ty, 7> denote the components . Then

1 0 0 ri Tely Tolz 0 —r. Ty
R=cosf |0 1 Of+(1-cosb) |ryry rf, ryrz| +sinf | 72 0 -r,
0 0 1 TaTz TzTy rﬁ —Try Tz 0

Note that in computing the rotation component of the transformation, we have
ignored the ambiguity inherent in the computation. That is, there are two solutions to
the problem, (,4) and (-1, —6). We assume that a simple convention concerning the
sign of the rotation is used to choose one of the two solutions.

Translation Component

Next, we need to solve for the translation component of the transformation. Suppose
we consider three triplets from the pose, (p; ;,fs 1, f2), (Pe ;>0¢,5, f5), and (P, 0s k, fi)
such that the triple product fip, ; + (,,,; X iy k) is non-zero, (i.e. the three face nor-
mals are independent). Then, it can be shown that the translation component of the
transformation, vg, is given by

M (A X N k)] Vo = (ﬁg,i "Psi— di) (e, X Ng i)
+ (o P, — dy) (Ao X Agy)
+ (Bok - Peg — di) (o X fig j)
As in the case of rotation, if there 1s no error in the measurements, then we are done.

The simplest means of attempting to reduce the effects of error on the computation is to
average vo over all possible trios of triplets from the pose.
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Errors in the computed transformation

We now consider possible errors in each of the parameters of the transformation, as a
function of error in the sensor measurements. The results are summarized below, more
explicit details may be found in the appendix.

Errors in 1.

Let 1, ; be the unit normal of face f;, in model coordinates, let ﬁfm’i be the associated
unit normal transformed into sensor coordinates, and let A, ; be the actual measured
unit normal, in sensor coordinates. Suppose that the sensitivity of the measuring device

was €,, that is,
Al

N, Ng; > €n.

Then an absolute bound on the possible error in the computed value for the direction of
rotation, I'¢, in relation to the true direction of rotation, ¥, is given by

52‘5]' 1—n?

f't . i\'c Z 2’
\/1 - {51‘53'77 — \/1—_——5_12\ 1- 5]2}
where
[ B iy, Ny, = By
T\ T -0l E—

Note that if «; is close to €, then the error bound becomes increasingly large. This

. . . . N N . P
is to be expected, since in this case, f1,,,; ~ N, ; and thus small errors in the position

3T
of i can lead to large errors in the position of . Similarly, if n is near 1, large errors
can also result. If we restrict our computation (where possible) to cases where ; and 7
are small, then we have an approximate bound on the error in computing the direction
of rotation given by
f‘t . f‘c > €n.

This bound is supported by the results of the simulations reported in [Grimson and
Lozano-Pérez 84].

Errors in 4.

We know that the angle of rotation 6 is given by

Al - (F x Apy)

tang:-(f‘xﬁ'm)-(fxﬁm)

N . . . . Y .
where 1, is the unit normal of a face in model coordinates, 1}, is the corresponding
normal transformed into sensor coordinates, and t is the direction of rotation.

If we let 4 denote the true direction of rotation, £, denote the computed direction
of rotation, and A, denote the measured surface normal corresponding to #i},,, then the
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constraints on the error in computing the angle 6 are that £;-#, > cos¢ and #i}_ -fi, >
€n, = cos ¢. In the appendix we show that the correct value for 6 is given by
1 cosa

tan()t =
sinv cos

where

~ a ] ~ -
r; x 1 Ty X 1
cosf = ~——————At — ) —toom :
'rt X l’lm| [rt X l’lm]
Furthermore, we show in the appendix that the worst case for the computed value of §
is given by

1 cos(a—[p+¢
sinw cos (B + [¢¥ + 7))

N

tanf, = —

where
cosw = cos (¢ + ¢) — (1 — cosv) cos ¢ cos ¢

1—cos?yp
cosf = cosz/)\/

1 — cos? 4 cos? v

1 —cos?y
CcOS~y = cos ¢ cos —_—.
1 —cos*w

We could use these expressions to derive bounds on the possible variation in # as a
function of ¢ and 1+, but this is a rather messy task. Instead, we show in the appendix
that if ¢ and ¢ are small, then an estimate for Af such that

tan (6; + Af) ~ tané,
is given by
Al = |o+ ¢l
This bound is supported by the results of simulations reported in [Grimson and Lozano-
Pérez 84].

Errors in Rv

We have computed expressions for the possible error in # and 4. In particular, we will
denote the error in # by Af# and the vector error in £ by 6# such that £ §# = 0. We now
consider the problem of estimating bounds on the possible error in applying the computed
rotation matrix to an arbitrary vector v. We know that the rotational component of the
transformation of v is given by
R(#,0)v =cosfv + (1 —cosf) (f-v)F +sinf ( x V)
where I and 6 are the parameters determining the rotation.
We show in the appendix that if we ignore higher order terms, a Taylor series
expansion yields the following bound on errors in the computed value of a rotation:
|R(F+6F,0+ Af)v — R(£,0)v] < (2]6F| + |A8)) |v].
Now, if the errors ¢ and ¢ are small, then we know that
A0 < 6+ .
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Furthermore,
|62] = [sin | = |¢]

and this implies a bound on variation in v of

3¢+ ¢ |v].
Moreover, if we are careful to restrict our computation appropriately, then ¢ ~ ¢, and
thus
|R(f + 6,0+ A8)v — R(F,0) < |4¢]||v].

Effective bounds on rotation errors

Unfortunately, this is still a fairly weak bound. For example, an error cone of radius {5
about the measured surface normals would give rise to potential errors in the computed
rotation on the order of the magnitude of the rotated vector. This is obviated to a
large extent by the fact that we do not rely on a single measurement in computing the
transformation parameters. Rather, we use several sets of measurements, and use the
mean value as the result when computing ¥ and 6.

To see how this helps reduce the effective bound, consider the following argument.
Suppose that the error in computing 6 is uniformly distributed over the range [—2¢, 2¢].
If we take n measurements and average, then the distribution of error about the correct
value . should approach a normal distribution, by the Central Limit Theorem. If we
assume a uniform distribution for the error in each measurement, then the variance in
the error can be shown to equal

4¢?

_3".
If there is no systematic error in the measurements, i.e. each measurement error can be
considered independent of the others, then the distribution of average error is essentially
a zero-mean normal distribution with variance

42

3n

(462
\/ 3n
Similarly, if the magnitude of the error vector, éf, associated with the computation of

and hence with standard deviation

the direction of rotation, ¥, is uniformly distributed over its possible range, and the
measurements are independent, then the distribution of error in 2 |6F| is given by an
identical normal distribution, since the maximum error in |6F| is essentially ¢. By linearly
combining the two distributions, the error in the computation of Rv is given by a zero-
mean normal distribution with variance

82

g.

While an absolute bound on the error in computing Rv is given by 4 |¢| |v|, tighter,
but less certain, bounds are possible. For example, if we impose a 0.95 probability that
the error does not exceed the bound, then an expression for this bound is given by the
normal distribution error function, and in this particular case, by

3.92\/2

V3n
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As the number of samples n increases, this bound becomes increasingly tighter.

Note that while we have assumed a uniform distribution of the errors in the individ-
ual measurements, this is not a critical assumption. Since we are only seeking estimates
for the bounds in computational error, other distributions will give similar results.

In summary, given some lower bound on the number of samples to be used in com-
puting the transformation from model coordinates to sensor coordinates, and given that
the assumption of small errors in the measurements of surface orientation holds, then the
error in the computed rotation of a vector v is given by a zero-mean normal distribution,
scaled by the magnitude |v|, with standard deviation

8
Vont

where n is the number of measurement samples and ¢ is the angle of maximum error in
the measurement of surface orientation at each sample point.

Errors in vg.

We know that the translation component of the transformation is given by

B, i B k] Vo = (B Pey = di) (B, 5 X 017, 1)
+ (i Poyj = d5) (B X B )
+ (B Pogk = di) (B x A, 5)
where 11, ; 1s a face normal in model coordinates, ﬁ,m,i is the corresponding face normal

is the position vector of the contact point in
sensor coordinates, and d; is the constant offset for face ¢.

transformed into sensor coordinates, p

£,

If the error in measured surface normals is given by ¢,, = cos ¢ such that fi,-2l, > €,
and the error in measured contact positions is bounded in magnitude by ¢4, then the
error in each component

(Bl 4k Peg — di) (A, ; x A )

is bounded in magnitude by

\/Ls sin¢ — (s 4 A)sin (¢ — 2¢)]* + (s + A)*sin (2¢) sin (4¢)
where
s = ﬁi’n,k "Pek — di
A<es+ ]ps,k!\/i\/m

ot N
cos¢ = nmﬂ' ’nm,j.

If we restrict our computation to cases in which the faces are nearly orthogonal,
then this bound on the components of the translation vector reduces to

[s — (s + A)cos (20)].
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Choosing the Parameters

We now consider deriving a formal definition of distinguishability as applied to surface
normals and to distances. Consider first the case of distinguishing poses on the basis of
measured surface normals. Suppose that « denotes the angle between surface normals
associated with two different possible poses. What is the minimum size of o needed to
distinguish these poses?

Clearly, the expected normals must differ by an amount that is bigger than the
sensitivity of the measurements themselves. Thus, o must at least exceed 2cos™ 1 ¢, = 2¢.
Since there is also some error associated with the computed transformations associated
with each pose, the angle must also exceed this error. By the previous analysis, if we use
a single measurement to determine the rotation matrix R, then this error is bounded by
|[4¢| and hence, we have the bound

a > 2¢ + 2(44) = 104.
For most values of ¢, this bound is far too large to be of much use.

If we use several measurements to compute R, however, then more effective bounds
can be used. Asshown previously, assuming no systematic error implies that the error in
the computed surface normal associated with a transformed face is given by a zero-mean
normal distribution with standard deviation

Vine

where n is the number of measurement samples.

This gives us a tighter definition of distinguishable surface normals. In particular,
if & denotes the angle between surface normals associated with two distinct poses, those
poses are distinguishable if

a > 24+ 2pd. _
The first term denotes the range of possible error in the measurement of the surface
normals, and the second term denotes the range of possible error in the expected values
of the surface normals. Here, p is a scale factor that is a function of the reliability of the
error bound. That is, p(c) denotes the point in the normal distribution described above
such that ¢ percent of the weight of the distribution lies below the value p.

For example, if the cutoff on the reliability of the bound is 0.95, and the number
of measurements involved in computing the transformation is at least 10, then p < 1.01
and thus the bound on two surface normals being distinguishable is

4.024.

We can also derive a formal definition of distinguishability based on position mea-
surements. We first note that if a face is defined by the pair (1i,,, d) in model coordinates,

such that a point v lies on the plane of the face if
v-n,—-d=0
then the same face, after transformation, is defined by the pair (ﬁin, d'), where
~f

n, = Rn,

d’:d—F(Vo'Rflm)‘
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We let the error associated with the computed value of A/, be denoted by w such
that w - 1] = 0. The magnitude of w can be bounded above by

Isin (p4)],

by the discussion above. We also let the error in computing vg be denoted by u. We now
seek a bound on the possible errors in computing the point of intersection of a sensing
ray with an object face, due to errors in the computed transformation.

Suppose that the sensing ray is given by a8 + o where § is a specified unit vector, o
is a specified offset vector orthogonal to §, and « 1s the free parameter specifying position
along the sensing ray. The correct parameter of intersection of the sensing ray with the
transformed face is given by the value of a such that

(a8 +0)-12), —d' =0

or
d -o

~ f
‘R
Gy = ~ 7 m
§-m,,
On the other hand, if we include the potential error in the computed transformation,
then the point of intersection is given by
' +u- (), +w)+vo-w|—o- (A, +w)

& (ol + w)

&y —

and thus the difference 1s given by
u-f, +(u+vg—o0)w §-w
r = PO N - T N .
§-nl +§-w §-0l +8-w

As a consequence, we can bound the error in the expected intersection point of the
sensing ray with the face by

, < Lul (ul+[vo - of) [w] W

Wi

G,

Iw! s-h

’ ~
!

s-n

| m‘ - IW:

ml -
where
. . . N N
w is the error in computing 1., = R,
ot 1s the predicted intersection point
u 1s the error in vg
§ is the sensing direction
o 1s the sensing offset vector
n,, is the face normal in transformed coordinates

v is the computed translation.

Thus, given this bound, two poses are distinguishable if their expected points of intersec-
tion are large enough,
loy = a2| > 2¢q + 1y + 72

As in the case of distinguishing on the basis of surface normals, the bounds for w and u
may be too large to be practical. We can reduce these bounds by using several measure-
ments to determine a value for vg. As in the previous case, this will lead to a zero-mean
normal distribution of expected error, and the effective range of error will be reduced.

Finally, we need to place bounds on the minimum Chebychev values needed to
guarantee that perturbations in the computed transformations will not cause the sensing
ray to miss the intended face. Let ¢ denote the Chebychev value associated with a
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particular face, whose transformed unit surface normal is i/, , and where the unit sensing
ray is given by §. Then the modified Chebychev value in the sensing plane is given by

clal - §1 At the same time, the variation in the position of a point on the face, as a
function of error in the computed transformation, is given by
Ap=u+q

where, as above, u denotes the error in the computed value of vo and q is the error in
the computed value of Rp, where p is the Chebychev point in model coordinates. The
magnitudes of these error vectors are bounded by the expressions derived above. Since
the directions of the error vectors are arbitrary, the condition on the Chebychev value
required to ensure contact with the face is

. o+ g

c> ——— -
5, - 8|

Thus, we have derived conditions on the parameters of the disambiguation algorithm
needed to guarantee the performance of the algorithm.

Discussion and Examples

When Do We Compute the Sensing Directions?

We have described a technique for determining optimal sensing directions. We have still
to consider, however, how to interface such a technique with the general problem of
recognition and localization. The simplest method is to obtain some initial set of sensory
data points, apply our recognition technique, and then use the disambiguation process as
required, based on the current set of consistent poses. For example, if there are several
consistent poses, we could choose the first pair, compute an optimal sensing direction
based on that pair and obtain a new data point. Then, we could determine which of
the set of poses are also consistent with the new data point and iterate. This technique,
while applicable to arbitrary sets of objects, has the disadvantage of high computational
expense.

In situations in which a large number of objects are possible, we may not be able to do
any better than to compute sensing points as needed, based on the current set of feasible
poses. In situations involving a single object, however, there may be an alternative
method for integrating the computation of sensing positions with the interpretation of
the sensory data.

In particular, given the analysis developed here, one can precompute optimal sensing
rays as a function of the difference in transformation associated with two poses. Take
any pair of poses of an object. There exists a rigid transformation taking one pose into
the other, which we can parameterize in some fashion. We compute the optimal sensing
direction for this pair of poses, and insert it into a lookup table, whose dimensions are
indexed by the parameters of the relative transformation. Since the workspace of the
sensory system is bounded, this is a bounded table (that is, the translational degrees
of freedom are not infinite in extent). The analysis can be used to compute an opti-
mal sensing ray corresponding to each entry of the table, where the parameters of the
transformation are quantized to some desired level.
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Now, when attempting to disambiguate two possible poses, one simply computes
the difference in the transformations, looks up of the precomputed sensing ray in the
appropriate slot of the table, transforms that ray by the transformation associated with
the first pose, and then senses along that ray to obtain an new data point. That data
point is added to the current set of sensory data, and the recognition and localization
process is applied. If a unique pose results, the process is stopped; if not, a new sensing
ray is obtained and the process continues.

By precomputing the sensing rays, we can avoid the computational expense associ-
ated with finding a new sensing position, and at the same time take advantage of the
efficiency of the technique is disambiguating multiple poses.

Avoiding False Negatives

We have seen in the previous discussion that the analytic error bounds on the computed
transformations for any pose are probably too large to be practical. We argued that one
way to reduce these bounds was to use several measurements in the computation of the
transformation. This led to a normal distribution of error in each of the components of
the transformation, and thus, given a level of desired confidence in the algorithm, tighter
bounds on the parameters were possible. In this case, we would expect that in general
the algorithm will succeed, and we need only consider alterations to the algorithm to
deal with the infrequent case when the errors in the computed transformation do exceed
the expected thresholds. There are two situations that can arise in this case. The first
is that the perturbation in the transform causes a surface normal to be sensed, that
does not agree with any of the expected normals. This is essentially a false negative,
since it implies that the poses are not distinguishable. The more damaging case is a false
positive, in which the perturbation in the transformation results in a sensor measurement
that coincidentally agrees with the wrong pose.

The easiest solution is to use more than one sense point. In this manner, false
negatives are easily handled, since the expectation is that not all sensed points will give
inconsistent data. This will be especially true if several sensing directions are used, in
particular if the sensing directions are orthogonal. As well, it is likely that false positives
can also be detected, since the expectation is that the correct pose will be found by most
sensor points, again especially if several directions are used, and a simple voting scheme
will arrive at the correct answer.

Testing the Algorithm

We have implemented the described technique, and tested it on a number of examples.
Because the worst case bounds are so large, we used the approximations described above,
with the expectation that on occasion an incorrect decision would be made, but that such
errors could be avoided by voting over several additional sensing points.

In particular, we ran the algorithm described in [Grimson and Lozano-Pérez 84] for
an object in arbitrary orientation relative to the sensors and with simulated sensing from
three orthogonal directions. Whenever there was an ambiguity in interpreting the sensed
data, we used the following disambiguation technique. We used the analysis developed
above to predict a sensing ray, and for each pose we predicted ranges of expected values
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for the sensory data along that ray. We then acquired an additional sense point along
the chosen sensing ray, and compared the recorded value with the expected ranges to
choose a pose.

Using a variety of simulated sensing errors, the disambiguation technique was applied
~to 1000 ambiguous cases. It was found in 336 of these cases that, due to the large
errors inherent in the sensory data, the algorithm could not distinguish reliably between
the possible solutions. In all of these cases, the poses differed by the reassignment of
one data point from one face to an adjacent face, and this resulted in nearly identical
transformations associated with the poses. Relative to the error resolution of the sensing
devices, these can be considered to be identical solutions. In 633 of the cases, the
disambiguation algorithm was able to determine the correct pose with only a single
additional sensory point. In the remaining 31 cases, the algorithm chose an incorrect
pose from the set of consistent poses.

We also ran a second version of the disambiguation algorithm on the same set of
data. In this case, rather than using predicted range of values to choose a pose, we
simply used the technique to generate the next sensing direction, and then ran the RAF
recognition algorithm [Grimson and Lozano-Pérez 84, 85a] with that sensory point added
to the original set of sensory data. In this case, we found that the algorithm identified
the correct pose in all 664 cases, with only from 1 to 3 additional sensory points required
to complete the identification.

Acknowledgments

Tomés Lozano-Pérez was critical to the development of this work, both in terms of the
underlying recognition technique and in terms of valuable comments and criticisms of the
material presented here. John Hollerbach and Rodney Brooks provided useful comments
on earlier drafts.

References

Baker, H. H. and T. O. Binford “Depth from Edge and Intensity Based Stereo”
Seventh International Joint Conference on Artificial Intelligence, August 1981, 631—
636

Ballard, D. H. “ Generalizing the Hough transform to detect arbitrary shapes” Pattern
Recognition 13(2) (1981) 111-122.

Barnard, S. T. and Thompson, W. B. “Disparity analysis of images,” IEEE Pattern
Analysis and Machine Intelligence PAMI-2, 4, (1980), 333-340.

Brady, M. “Smoothed local symmetries and frame propagation.” Proc. IEEE Pattern
Recog. and Im. Proc.. (1982)

Brooks, R. “Symbolic reasoning among 3-dimensional models and 2-dimensional im-
ages.” Artificial Intell. 17 (1981) 285-349.

Brou, P. “Using the gaussian image to find orientations of objects.” Int. J. Robotics
Res. 3(4) (1984) 89-125.




24

Bolles, R. C., and Cain, R. A. “Recognizing and locating partially visible objects:
The Local-Feature-Focus method” Int. J. Robotics Res. 1(3) (1982) 57-82.

Bolles, R. C., Horaud, P., and Hannah, M. J. “3DPO: A three-dimensional part
orientation system” Paper delivered at First International Symposium of Robotics
Research, Bretton Woods, N.H. 1983. (Also in Robotics Research: The First In-
ternational Symposium, edited by M. Brady and R. Paul, MIT Press, 1984, pp.
413-424.) ,

Faugeras, O. D., and Hebert, M. “A 3-D recognition and positioning algorithm
using geometrical matching between primitive surfaces.” Proc. Eighth Int. Joint
Conf. Artificial Intell. Los Altos: William Kaufmann, pp. 996-1002. (Aug. 1983,
Karlsruhe, W. Germany).

Gaston, P. C. and T. Lozano-Pérez “Tactile Recognition and Localization Using
Object Models: The case of polyhedra on a plane.” IEEE Pattern Analysis and
Machine Intelligence PAMI-6, 3, (1984), 257-265.

Grimson, W. E. L. “A Computer Implementation of a Theory of Human Stereo Vision”
Philosophical Transactions of the Royal Society of London, B 292 (1981), 217-253

Grimson W. E. L. “The Combinatorics of Local Constraints in Model-Based Recog-
nition and Localization from Sparse Data”, MIT Artificial Intelligence Laboratory
Memo 7683, 1984.

Grimson, W. E. L. “Computational Experiments with a Feature-Based Stereo Algo-
rithm” IEEE Transactions on Pattern Analysis and Machine Intelligence 7 (1985),
17-34.

Grimson, W. E. L. and T. Lozano-Pérez “Model-Based Recognition and Localiza-
tion From Sparse Range or Tactile Data” Int. Journ. Robotics Research 3 (1984),
3-35.

Grimson, W. E. L., and T. Lozano-Pérez “Recognition and localization of overlap-
ping parts from sparse data” AIM-841. Cambridge, Mass.:Massachusetts Institute
of Technology Artificial Intelligence Laboratory. (1985a)

Grimson, W. E. L., and T. Lozano-Pérez “Recognition and localization of over-
lapping parts from sparse data in two and three dimensions” Proc. IEEE Intern.
Conf. on Robotics and Automation. Silver Spring: IEEE Computer Society Press,
pp. 61-66. (Mar. 1985b, St. Louis, MO).

Harmon, L. D “Automated Tactile Sensing” Int. Journ. Robotics Research 1 (1982)
3-32.

Hillis, W. D. “A High-Resolution Image Touch Sensor” Int. Journ. Robotics Research
1 (1982) 33-44.

Holland, S. W. “A programmable computer vision system based on spatial relation-
ships.” General Motors Publ. GMR-2078. Detroit: General Motors. (1976 Feb.)
Horn, B. K. P. “Extended Gaussian images.” AIM-740. Cambridge, Mass.M I T

Artificial Intelligence Laboratory. (1983)

Horn, B. K. P., and Ikeuchi, K. “Picking parts out of a bin.” AIM-746. Cambridge,
Mass.:M I T Artificial Intelligence Laboratory. (1983)

Tkeuchi, K. “Determining attitude of object from needle map using extended gaus-
sian image.” AIM-714. Cambridge, Mass.:M I T Artificial Intelligence Laboratory.
(1983)




25

Ikeuchi, K. and B. K. P. Horn “An Application of Photometric Stereo” Sizth Intl.
Joint Conf. on Artificial Intelligence (1979) 413-415.

Lewis, R. A. and A. R. Johnston “A Scanning Laser Range Finder for a Robotic
Vehicle” Fifth Intl. Joint Conf. on Artificial Intelligence (1977) 762-768.

Marr, D., and Nishihara, H. K. “Representation and recognition of the spatial
organization of three-dimensional shapes.” Proc. R. Soc. Lond. B 200 (1978)
269-294.

" Marr, D. and T. Poggio “A Computational Theory of Human Stereo Vision” Proc.
R. Soc. Lond. B 204 (1979) 310-328.

Mayhew, J.E.W. and J.P. Frisby “Psychophysical and Computational Studies to-
wards a Theory of Human Stereopsis” Artificial Intelligence 17 (1981) 349-385.
Nevatia, R. “Structured descriptors of complex curved objects for recognition and visual
memory.” Ph.D. thesis, Stanford University. AIM 250. Stanford, Calif.: Stanford

University Artificial Intelligence Laboratory. (1974)

Nevatia, R., and Binford, T. O. “Description and recognition of curved objects.”
Artificial Intell. 8 (1977) 77-98.

Nitzan, D., A. E. Brain, and R. O. Duda “The Measurement and Use of Registered
Reflectance and Range Data in Scene Analysis” Proc. of IEEE 65 (February 1977)
206-220.

Ohta, Y. and Kanade, T. “Stereo by intra- and inter-scanline search using dynamic
programming,” IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-7 2 (1985) 139-155.

Overton, K.J. and T. Williams “Tactile Sensation for Robots” Seventh Intl. Joint
Conf. on Artificial Intelligence (1981) 791-795.

Perkins, W. A. “A model-based vision system for industrial parts” IEEE Trans. Com-
put. C-27 (1978) 126-143

Popplestone, R. J., C. M. Brown, A. P. Ambler, and G. F. Crawford “Forming
Models of Plane and Cylinder Faceted Bodies from Light Stripes” Fourth Intl. Joint
Conf. on Artificial Intelligence Thilisi, Georgia, USSR (September 1975) 664-668.

Purbrick, J. A. “A Force Transducer Employing Conductive Silicone Rubber” First
International Conference on Robot Vision and Sensory Controls Stratford-upon-
Avon, United Kingdom (April, 1981).

Raibert, M. H. and J. E. Tanner “Design and Implementation of a VLSI Tactile
Sensing Computer” Int. Journ. Robotics Research 1 (1982) 3-18.

Schneiter, J. L. An Optical Tactile Sensor for Robots S.M. Thesis, Dept. of Mech.
Engr., Massachusetts Institute of Technology, August 1982.

Shirai, Y. and M. Suwa “Recognition of Polyhedrons with a Range Finder” Second
Intl. Joint Conf. on Artificial Intelligence (1971).

Stockman, G., and Esteva, J. C. “Use of geometrical constraints and clustering
to determine 3D object pose.” TR84-002. East Lansing, Mich.:Michigan State
University Department of Computer Science. (1984)

Sugihara, K. “Range-data analysis guided by a junction dictionary.” Artificial Intell.
12, (1979) 41-69.

Tsuji, S., and Nakamura, A. “Recognition of an object in a stack of industrial parts”
Proc. Fourth Int. Joint Conf. Artificial Intell. Los Altos: William Kaufmann
(1975) (Aug., Cambridge, Mass.) pp. 811-818




26

Woodham, R. J. “Photometric Stereo: A Reflectance Map Technique for Determin-
ing Surface Orientation from Image Intensity” Image Understanding Systems and
Industrial Applications, Proc. SPIE 155 (1978).

Woodham, R. J. “Photometric Method for Determining Surface Orientation from
Multiple Images” Optical Engineering 19 (1980) 139-144.

Woodham, R. J. “Analysing Images of Curved Objects” Artificial Intelligence 17
(1981) 117-140.

Appendix

In the appendix, we present a more detailed error analysis of the computation of the
transformation from model to sensor coordinates.

Errors in

We begin by considering the range of possible errors in the computation of the direction
of rotation, . By the analysis of [Grimson and Lozano-Pérez 84|, the rotation direction
# is computed by taking two pairs (fi,,, 01}, ), where fi,, is the unit normal of a face of
the model, and i}, is the same unit normal rotated into sensor coordinates, and letting
T be the unit vector in the direction of

(B = g 5) X (A — gy ).

We assume that we are given ﬁm,i,ﬁ'm’i and that the sensitivity of the sensor to
errors in surface orientation is given by €,. That is, if ﬁ'm’i is the correct surface normal
transformed into sensor coordinates and 1 is the actual measured (or sensed) surface
normal, then

e R, > €. (4)

We will consider two stages in deriving bounds on the error in computing #. If we
let

N

A N, = My g
Vi = A . Y] >
Bm,g — My
and
i = Ny — Ng 4
7 ~ - b
Inm,i - ns,il
then the correct value for ¥ is given by
R Vi XV
ry = 5
V 1— (¥ -9;)
and the computed value is given by
ﬁi X ﬁ]'

Fo= et
\ 1- (117' ~uj)

We will first derive bounds on ¥, - ; and then use the result to bound ¥, - F..
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The vector fi; can be represented by the following parameterization
A, = oA, + B, + 6(f,, X AL,).
Then equation (4) produces the inequality
a+tfy2en (4')

where v = fi,,, -7 ,. We will consider the worst case, in which equality holds. Further-
more, the fact that i, is a unit vector yields the following constraint

ot +2aBy+ 81+ 62 =1. (5)
~h,

. ~ ~l ~ . . A~
Given N,,,1,,, and N,, we first consider the range of possible values for 1, ,

relative to fi,,, — A/, that is, we want bounds on the range of possible values for
m g p
(ﬁm — ﬁ;'n) i (ﬁm - ﬁS)
Iﬁm - ﬁ;n] N, — N,

E=v-4=

It is straightforward to show that
A, — A, | =1/2(1- 7).
Furthermore, using equation (5), one can show that
f, — 0] =+/2(1- 8- ay).
Finally, expanding out the dot product and substituting yields
2VT=/1-5—ay
By equation (4'), o = €, — 7, and substitution yields
g VI A+ en—(1+7)
24/1 = ey — B(1 — 7?)
The first problem to consider is what is the minimum value for E as 3 varies. In
particular, we find that

@:\/1—7(14—7)2 B =7)=(1-¢,)
o8 1 (1— eny— B(1 - 42)

This is zero when

Wity

1 —ey

p= 12 )
and this is a valid value for § provided v < ¢,. Taking a second partial derivative of £,
we find that the sign of 92 E/93? is given by the sign of

B(1=~%) +3(en—7)+eny - 1.
Substituting equation (6), we find that the sign of the second partial derivative is given
by the sign of

2(en — )

and this is positive, since v < €,. Hence, E achieves a minimum at the value of 8 given
by equation (8), and this value is
€n — 7
11—~
If v > €,, then the minimum value for E occurs for 8 at the limit of its range,

E =

(47

namely 8 = 1. In this case, E < 0, and is minimized when v = /€, taking the value

oo yE)

2
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In general, we will try to restrict the computation of  to those cases in which v < ¢,
in order to keep the magnitude of the possible error in  small. Note that the minimum
value for E is monotonic in =, that is, the minimum E increases as v decreases towards
-1.

Thus, we obtain the bound

where
N

Yi = (B -nm’i) .

We are now interested in obtaining bounds on ¥ -¥.. In essence, we have two cones
in the Gaussian sphere, centered about ¥; and V;, of radius é; and é; respectively. The
possible values of T, are given by the normalized cross products of vectors within these
cones. Clearly, if the cones overlap, then the computation for t is unstable. We avoid
this case by requiring that the cones do not overlap.

Note that if all the error in the computation of either i; or 1i; lies in the plane
spanned by ¥; and ¥;, then the normalization of the cross product will result in the
correct value y = f,. Clearly the maximum deviation of ¢, from #; will occur when the
error between 1i; and V; and the error between 1i; and ¥; lie maximally separated from
this plane. This requires that we check two cases, one in which the errors lie on the same
side of the plane and one in which the errors lie on opposite sides of the plane. We now
consider the first case.

Let n =¥, -V;. Then

1-682 . .
1—n?
/1-5]2

a; = 6;Vv; + \/1 T (V% ¥;)

a; = 6;V; + \/

a; x0; = 52 (Vi x ¥j) + 5]\/: — Z’Z (¥ x V) x ¥yl +5i\, - 7}’2 [V x (V; x ¥;)]
Thus
(Vi x ¥;) - (0 x 4,) = 6;6; [1 - nzj
and

a, -ﬁj = 51'5;,‘77 + \l/l - 53\/1 — 5]2
Then, by substitution,

5:5,3/T 7
N
\/l N S N

In the second case, we change 1, to

rt'f'c 2
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and thus
o o 1-62 1—52 )
uz~><uj:5j5¢(vi><vj‘)+6w1_n12[(vz‘>< x V5] - \l—n Vi x (B x 93]

Following through the same algebra leads to a bound on the dot product of
6;6;4/1 — 2

£, o8, > 1 -

\/ {5 bm /162, /1- ;}

where
n=V; "V,
. -~
~ Ny =Ny g
vV, = )
'nmz nm'LI
e
b 2y ——
I =7

oA Y
Vi ‘nmﬂ-nm’i.

It is straightforward to show that the bound in equation (9) is in fact smaller than
the one in equation (8).

Note that if v, is close to 1, then the error bound comes increasingly large. This is

to be expected, since in this case, fi,,; ~ 0., ; and thus small errors in the position of

m,1
fi, can lead to large errors in the position of £. Similarly, if 7 is near 1, large errors can
also result. If we restrict our computation (where possible) to cases where 7; and 7 are
small, then we have an approximate bound on the error in computing the direction of
rotation given by
f't . f'c Z €n.
This bound is supported by the results of the simulations reported in [Grimson and
Lozano-Pérez 84].

Errors in 6

We now want to consider bounds on the possible error in computing the remaining
parameter of the rotation component of the transformation, namely, the angle of rotation

. Given the expressions in equation (1) for cos# and sin f, the value of 4 is given by

tanf = — ﬁ:n'(f.Xﬁm)

(B xAy,) - (Fx )

~ . . . . “l . .
where fi,, is the unit normal of a face in model coordinates and n,, is the corresponding
normal transformed into sensor coordinates.

As in the previous section, we let ¥; denote the true direction of rotation and ¥ the
computed direction of rotation. We will assume that the error in the computed direction
of rotation is bounded by

Iy T > 6,
and that the measured value for fi! is given by i, such that

~ ] ~
n,, N> €y
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We shall make use of the following four unit vectors:

N f‘t Xflm
W = ]—:—:—'—
T4 X My
. T, X N,y
U= ——
IF, X Nl
. f‘tXﬁITn
§= ———
rtxnm‘
/ ~ ~f
§o fexm,
£ x A,

Given these definitions, it is straightforward to show that

-1 (n;,-W)

tan gt =

tanf, = — - .
C B, x Al (t-a)
Our method in obtaining bounds on the deviation between these two expressions
will be to bound fi, -1 as a function of Ail,, - W, and to bound t - as a function of § - W.
Once we have bounds on these expressions, they can be combined to bound the overall
expression for tan#.

First, we consider the range of values for
(F. X py)  (Fr X Aaypy)

[f'c X ﬁm' If't X ﬁml .

i

a-w=

In considering the range of values for 1 - W we note that because of the normalization
of the vectors, any error in ¥, lying in the £; — i, plane will have no effect on the dot
product. Thus, the worst case occurs when all of the error lies perpendicular to this
plane. Hence, we need only consider the cases where

o= af, + B (Fe x Apm),

where
a> b,
1=a?+p? (1 -cos2u)
cosv = Iy - N,y

Now, the worst case will occur for o = é,, in which case,

ﬂz . 1- 67::>

1 -—cos?v
so that the worst case will arise for

[ 1-62

t.=6t;+/——%— (F;xn
T VI—COSQV (¢ m)
In this case, the following expressions hold:
5. 1-62 .
Te X Ny = 6, (Fr X ) i\ T cos?s X (N, X 14))

X Npp) - (Fe Xﬁm):1—52COS v
(Fr X App) - (B X ) = 1~ cos® v
X

Aip) - (B X ) = 6, (1~ cos®v) .
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Thus, we have the bound
a-Ww2>pu

' s 1 —cos?v
p=or 1—62cos?v’

At this stage, we have i, -fi, > ¢, and @i - W > u. We can visualize this situation

where

by considering two cones in the Gaussian sphere, one centered about 1}, with radius €y,
and one centered about W with radius u. We are essentially asking for bounds on the
range of dot products between vectors lying within these two different cones. Assuming
that the cones do not overlap, the maximum and minimum dot products will occur for
the minimum and maximum angles between elements of the cones, respectively, and this
clearly occurs for vectors lying in the cones and lying in the fil,, — W plane.
Suppose we denote:

cosa = (ﬁ:n -W)

cos ¢ = €,

cosy = &,

cosé =p

Clearly, the extremal angles for these two cones are given by

atlp+¢E].

Thus, the range of possible values for

[=33
g

is bounded by
cos (a £ [¢ + €]).

An analogous argument can be made for the dot product t - . If we let
cosfB = (§ W)

cosy = p

Cosw = €, COSV — mm
= cos(¢+ ) — (1 — cosv)cosgcost
= (f-c . ﬁs)
where p is the bound
1 —cos?v
A Vg I
then the range of possible values for
t-a
is bounded by
cos (8 [+ 7).

Finally,
[f't X ﬁinl =sinv

|f. X A = sinw.
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Thus, by gathering all these expressions together, we obtain the following worst case

expressions:
-1 cosa
tan 0t -
sinv cos f3
—1 cos(a— (¢ +
and — (o (¢+€)

sinwcos(B+ (¥ + 7))

We note that this expression for the computed value of tanf has the expected
limiting case behavior. In particular, if the error parameters ¢ = ¢ = 0, then the entire
expression for tan f, reduces to that for tanf;.

We now seek an estimate for the error in the computed value of 6, in the special
case of ¢ and ¢ both small. In particular, we would like an expression for A# such that

tan (§; + Af) ~ tan (6.).
In this way, we can place a bound on the possible error in the computation of 4.
In the limiting case of ¢ and ¢ small, the bound u & §, so that £ ~ ¢. Furthermore,
cosw = cosv so that cosy = cos¢cose) = cos(¢+ ¢) and hence, v ~ ¢+ ¢). As a

consequence, finding an approximation for the deviation in tan @ reduces to comparing
the worst case of deviation between

cos (o — [¢ + )

tan (0c) = (AT 67 20))
and COS &x
tan (0;) = cosf (10)

By expansion,

tan #; + tan Af

1 — tanf;tan A#

and if we substitute Af ~ ¢ + 1, and use equation (10), then this expression can be

tan (6, + Af) =

expanded into
cos(a— ¢ — ¢) + [cos 8 — sina]sin (¢ + ¢) (1)
cos(B+ ¢+ )+ [sinf — cosalsin (¢ + )

Now, if cos 8 = sin «, then the second term in both the numerator and denominator

can be ignored, especially since sin (¢ + ¢') is also small. Requiring this to be true is
equivalent to requiring that
(5-Ww)° 4 (8, W) ~ 1
that is, that the component of the unit vector W in the direction of ii},, x § be small. It
is straightforward to show that
A A\ 2 . A
(W- (A, x s)) = [cotv (A, - §)?

Since we have already indicated that we will restrict our computation of the transfor-
mation parameters to those cases in which -1, << 1 it follows that cot v is small
and the second terms in both the numerator and denominator in equation (11) can be
disregarded.

By dropping these terms, we see that the remaining expression reduces to
cos (o ~ (¢ + 9]
cos (B 1 16+ )

Thus, if ¢ is small enough, it follows that the worst case deviation is given by
0. = 0,+ (¢ + ¢) and hence that a good approximation to the error, Af, in the computed

tan (6; + [¢ + ¢]) =




33

value of the rotation, 6, is given by
Al =~ ¢+ Y.

Errors in Rv

We have computed expressions for the possible error in + and 6. In particular, we will
denote the error in # by Af and the vector error in ¥ by 8t such that -6 = 0. We now
consider the problem of estimating bounds on the possible error in applying the computed
rotation matrix to an arbitrary vector v. We know that the rotational component of the
transformation of v is given by

R(#,0)v =cosfv + (1 —cosf) (f - v)F +sinf (f x v)
where T and 6 are the parameters determining the rotation.

We first consider the variation of this expression with respect to the angle of rotation.
In particular, under the assumption that Af is small, the following holds:

R(#,0+ A8)v — R(,0)v =|v|{(cos (6 + Af) — cos ) ¥
+ (cosf — cos (8 + AB)) (T -¥) T
+ (sin (0 + Af) — sind) (f x ¥)}
|V {—Afsin v + Afsinb (f - V)T + Afcosf (F x V)}.

Straightforward algebraic manipulation shows that the magnitude of this term is given

by
V| A0y /1 - (#-9)°
and this is bounded above by Af |v].
Next, we consider the variation with respect to ¥, so that
R(f+6t,8) — R(,0) =|v|{(1 — cos@)[(F-V)éF + (6F - V) [f + 61]]
+sinf [6F x £} .

(2)

We consider the magnitude of the second term in the right hand side of this expression,
by taking the dot product of this vector with itself. If we ignore terms in (6f - 6%), since
the assumption of 8 small implies such terms are negligible, then the magnitude of the
second term in equation (2) is given by

[(1 = cos®) (6F - ¥) + sinf (V - (F x 6F))]. (3)
We now consider a bound for this expression. Suppose we let k denote the unit vector
in the direction of éf, and let (}2\7) = cos¢. Since the worst case will occur when v
lies entirely in the plane spanned by 6t and f x &%, equation (3) reduces to

16%| /(1 — cosf)cos¢ + sinfsing| = |6F]|cos¢ — cos (6 + ¢)|.
It is clear that the worst possible value for this expression is 2 |6#|. Thus, the maximum
value for the magnitude of the second term in equation (2) is 26| and overall, the
maximum deviation due to a variation in ¥ is given by
2 [V]|6F].

Finally, we can piece together these two variations. By ignoring higher order terms,
it is clear that a Taylor series expansion of R (T, #) yields the following bound on errors
in the computed value of a rotation:

|R(F+ 6F,0 + AG)v — R(F,0)v] < (26| + |AB)) [v|.
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Now, if the errors ¢ and ¢ are small, then we know that
|A6] < |¢+ 9]
Furthermore,
|6F] = |sin¥] & |¢]
and this implies a bound on variation in v of

3y + Bl [v].
Moreover, if we are careful to restrict our computation appropriately, then ¢ ~ ¢, and
thus
IR (T + 6,0 + Af)v — R (F,6) < |4¢||v].

Errors in vg

We now consider bounds on the error associated with computing the translation compo-
nent vg of the transformation. Recall that the correct form for vg is given by
~ ~ N N ~ ] -/
[, i, A k| Vo = (nm,»; ‘Peyi di) (nm,j X nm,k)
L fat A2 .
il (nm,j "Pej T dJ) (nm,k X nm,i)
~ 1 ~ A~
+ (B - Pogk = di) (B X A5 )
where fi,,, ; is a face normal in model coordinates, fi,, ; is the transformed normal in
sensor coordinates, p, , is the position vector of the contact point in sensor coordinates,
and d; is the constant offset for face 2. We will consider error ranges for each of the
components
N A~/ ~
(B k- P = dk) (A X Ay )

separately.
!

m,; SO that the correct component is

We let s = Ny kP — dgp and v = ﬁ;m X N

simply s v and the computed component 1s
(s + A) (év + nd)

where 1 Is a unit vector orthogonal to v, and A, ¢ and n are values to be determined.
We assume that the measured position vector is given by p; + ép,, where ép; is a vector
of magnitude ¢,, and the measured normal is given by fi, ; such that fi, ;- ﬁ'm,i > €n.

First note that the magnitude of the error in computing the component of the
translation is given by

sv - (s+ A) (v 4 i) = Jls (1 - ) ~ AP (vev) 4 n2 (s + A)% (12)
Thus, we need to find bounds for s, A, (v - v), £ and n%. We know that s is a given scalar

value. If the angle between the face normals is given by 0, -1i; = cos¢, then
v.v=1-cos?¢ =sin’¢.
It is straightforward to show that
A= (- (p+6p)—d) -~ (A, -p—d)
€4+ I(ﬁs - ﬁlm) -pl
i+ [P V2V = .
Next, we consider bounds for &, 12, where

ﬁs,i X ﬁs,j = E (ﬁ'm,i X ﬁ’m,j) + 77ﬁ (13)

IN

IN
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for some unit vector h orthogonal to (ﬁ' X
(B0 X Ng,5) + (Api X Ap ) = (R g i) (Bmyg By ;) — (B By ) (Boyy By, )
Z 631. - (fls’z’ 'ﬁm,j) (ﬁs’j . ﬁ‘lln,i) .

: - Al
Moreover, the worst case (i.e. largest value) for i, ; - 1

-1
m,j oceurs at cos (5’ — COS en)

'
m,t

the vector ﬁ'm’j. (Note that we have assumed that the two cones do not overlap, i.e.
¢ > 2cos"le,). As before, we let ¢, = cos$. Then, by substitution and expansion, we
get

since this is the smallest angle possible between the cone of radius ¢, about 1,,, and

(g x 0g ;) - (7, ; x Ay, ) > singsin (¢ — 26).
At the same time, from equation (13)
(o X fig ;) - (), x A, ) = Esin’¢
so that we have the bound ‘
¢ sin (g - 2¢)
sin¢
Now the length of (¥i,; X N, ;) is given by

1 — (fg;- ﬁs,j)2
and to get a bound on 7%, we want to maximize this expression. As before, the worst
case occurs when the i, vectors lie at the limits of their respective cones, and
(g, Mg ) =cos(¢c+29).
We also have, however, from equation (13),
(e X fig ;) - (R, X A ;) = E%sin® ¢ + n?
< 1—cos® (¢ +26).
Substitution and expansion yield the following bound
n® < sin (46)sin (2¢).

We are now ready to bound the error in computing each component of the translation

vector vo. From equation (12), the magnitude of the error is given by

Vis(1= &) = AP (vev) + n? (s + &)
Substitution of the various bounds yields

\As sin¢ — (s + A)sin (¢ — 2¢)]> + (s + A)*sin (2¢) sin (46)

where
§=TNgk Psi— dk

A<e+|poi|V2VT— €y
CoS¢ = Ny - Ay 5.

Note that as ¢ — 0, this bound reduces to |Asin¢|. Furthermore, as ¢4 +— 0, this
expressions tends to 0, so that the error in the computed translation vanishes as the error
in the measurements do.

Typically, we will want to restrict our computations to cases in which the faces
are roughly orthogonal, so that ¢ &~ 7. In this case, the bound reduces to the simple
expression

Is — (s + A)cos (2¢)].




