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Abstract. Variable precision logic is concerned with problems of reasoning with
incomplete information and under time constraints. It offers mechanisms for handling
trade-offs between the precision of inferences and the computational efficiency of deriving
them., Of the two aspects of precision, the specificity of conclusions and the certainty of
belief in them, we address here primarily the latter, and employ censored production rules
as an underlying representational and computational mechanisin. Such rules are created
by augmenting ordinary production rules with an ezception condition, and are written in
the form if A then B unless C, where C is the exception condition.

From a control viewpoint, censored production rules are intended for situations in
which the implication A = D holds frequently and the assertion C holds rarely. Systems
using censored production rules are free to ignore the exception conditions, when time is
at premium. Given more time, the exception conditions are examined, lending credibility
to initial, high-specd answers, or changing them. Such logical systems thercfore exhibit
variable certainty of conlusions, reflecting variable investment of computational resources
in conducting reasoning. From a logical wiewpoint, the unless operator between B and C
acts as the exclusive-or operator. From an ezpository viewpoint, the if A then B part of the
censored production rule expresses an important information (e.g., a causal relationship),
while the unless C part acts only as a switch that changes the polarity of B to =B when
C holds.

Expositive properties are captured quantitatively by augmenting censored rules with
two parameters that indicate the certainty of the inplication if A then B. Parameter §
is the certainty when the truth value of C is unknown, and « is the certainty when C is
known to be false. ,
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Variable Precision Logic Is Concerned with Specificity and Certainty

You cannot tell an ordinary logic-based reasoning system much about how
you want it to do its job. You cannot give the following instructions, for
example:

e Give me a reasonable answer immediately, even if somewhat general; if
there is enough time, give me a more specific answer.

e Give me a reasonable answer immediately; if there is enough time, tell
me you are more confident in the answer or change your mind, giving
me another, better answer.

Suppose, for example, that you want to know what John is doing, given
that it is Sunday. A quick answer is that he is probably working in his
yard. A more specific answer, obtained by taking into consideration the
‘time of year, is that he is specifically raking leaves. A more certain answer,
obtained by noting nice weather, is that he is certainly working in his yard,
rather than reading. :

A system that gives more specific answers, given more time, is what
we call a variable-specificity system. A system that gives more certain
answers, given more time, is what we call a variable-certainty system. There
can be various combinations of the two systems, reflecting the fact that
specificity and certainty are inversely related: we can gain specificity at
the expense of certainty, or we can gain certainty by sacrificing specificity.
This point can be illustrated by going back to our example about what John
is doing on Sunday. In this exammple, the less specific statement, “John
is working outdoors,” is more certain than the more specific statement,
“John is working in his yard.”

Variable specificity and variable certainty are two aspects of what we
call variable precision. Thus, in general, we say that a variable-precision
system is a system that exhibits either variable specificity or variable cer-
tainty or some tradeoff between the two.

The purpose of this paper is to show how we have extended ordinary
logic so as to enable logic-based systems to exhibit variable precision in
which certainty varies while specificity stays constant. As a vehicle to
implement such a logic system we employ censored production rules, which
are production rules with exceptions.

Before we explain censored production rules in detail, however, we dis-
cuss the need for rule-repair mechanisms, which is our second motive for
extending logic with censors.

Censors Make Exceptions Explicit, Facilitating Rule Repair




The rules that we postuate for the world are normally tentative because
there arc few regularities that hold universally for any entity or class of en-
tities. There is always a possibility that rules may have to be revised in
the face of new facts or new happenings. Ileraclitus’s panta rei, i.e., all is
in motion, applies not only to the outside reality but also to our mental
representations of that reality. Because our knowledge is fluid and subject
to modifications, a representation of that knowledge should make modifi-
cations easy and natural. A corolary is that changes to formal descriptions
should closely reflect changes in our own thinking.

What then do we do when a rule (or a theory) which has worked well
in the past does not work in some newly observed situation? There are
several possibilities:

1. To consider the rule invalid, and ignore it in the future.

2. To continue to use the rule without change, realizing that using it
will result in error occasionally.

3. To modifiy the rule, so that the rule applys correctly to all encoun-
tered situations.

4. To develop a new rule, substituting the new rule for the old one.

5. To remember the situations for which the rule does not work, treating
them as exceptions.

All of these choices force a trade-off between estimated cost and esti-
mated benefit. In some situations we may not be able to afford the time or
other resources to make modifications to the rule before we need to use it.
Also, which type of rule repair is best depends on the type of contradiction
found to the rule.

Action 1, to invalidate the rule, is simple and prevents us from making
errors, but may leave us handicapped. If the rule worked well in many
cases, then invalidating it deprives us of the benefit of using it when it does
work.

Action 2, to use the rule without change, is also simple. It preserves the
benefit of employing it when it does work, but using it will lead to some
errors which may be costly. ‘.

Action 3 calls for creating a new rule by modifying the old one, an
action 4 calls for developing a new rule from scratch. If the modification
to be made to a rule is small, then action 3 is the better choice. But
if this modification is complicated or unclear, then action 4 is the better
choice. In general, both actions lead to a better and more precise rule, but
both require time and effort. In science, where standards for precision and
certainty are high, one of these two actions is a usual choice, no matter the
cost. The problem of incrementally refining rules to accomodate new facts
is explored in Reinke and Michalski [1985].

If the exceptions arc few and easy to remember, then action 5, to re-
member exception conditions, is a good choice. It preserves the usefulness




of the old rule, but prevents us from making mistakes in situations rec-
ognized as exceptions. Even when there are more than a few exceptions,
remembering them still may be the best action to take, particularly when
it is not clear how to make changes to the old rule or how to create a new
one.

Another situation when remembering exceptions may be the best choice
is when a modified or completely new rule is significantly more complicated
then the original rule. A simple rule with exceptions may be better then a
complicated one without exceptions, particularly when the exceptions occur
only rarely. When the number of exceptions grows, they may be generalized
via the introduction of a new rule, reducing the overall complexity of the
original rule.

From this point of view, the purpose of this paper is to introduce ideas
centered on the exception-remembering approach to knowledge modifica-
tion. Again, we employ censored production rules, which are production
rules with exceptions. This leads us to forms of representation that we be-
lieve are more natural and comprehensible than other logically equivalent
forms.

The following sections define the meaning and formal properties of cen-
sored production rules and show how such rules can be used and learned.

Censored Rules are If~-Then-Unless Rules

Each rule in a production system represents a packet of knowledge that
is easy to interpret, to explain, and to modify. In this paper, we write
production rules in the form:

If (premise)
then {action) (1)

The (premise) is a logical product of predicates representing some elemen-
tary conditions, and the (action) is what is to be done when (premise) is
satisfied. [

If the (premise) part of the rule is not satisfied, no (action) is performed.
If the (action) part is replaced by a predicate or a conjunction of predicates,
then the rule becomes an implicative assertion:

(premise) = (dectston) ' (2)
Winston [1983] introduced the concept of a production rule augmented

with an unless condition:

If (premaise)
then (decision)
unless (censor) ‘ (3)




The (censor) is a logical condition (typically, a predicate or the disjunction
of predicates) that, when satisfied, blocks the rule. Thus, a censor can be
viewed as a statement of exceptions to the rule.

In the original formulation, given in Winston [1983], the censor is logi-
cally interpreted according to

(premise)&—(censor) = (decision) (4)

which is logically equivalent to

(premise) = (decision) V (censor) (4a)

In this formulation, the role of the unless condition is similar to the
definition of an ezception described by Etherington and Reiter [1983]. The
difference is that in Winston’s formulation there is an additional stipulation
that an unlimited effort is put into showing that (premaise) is true, but only
one-step effort is put into showing that (censor) is true, and when one-step
effort fails, the (censor) condition is assumed to be false.

In this paper we present another interpretation of the unless condition,
discuss its validity, and argue for the utility of rules with the new type of
unless conditions. '

We believe that our censored production rules capture certain aspects
of commonsense knowledge that are absent from ordinary production rules,
thereby facilitating human rule creation and comprehension. Our intention
is not to develop a cognitive model of human reasoning, however. Conse-
quently, the use of unless conditions in censored production rules is not a
precise model of the human use of the word unless.

We now treat the logical aspects of unless conditions condition. Once
that is done, we treat the expositive and control aspects.

The Unless Operator Is Logically Equivalent to Exclusive-or

Let us consider a simple statement with an unless condition: “If it is
Sunday, John will work in his yard, unless the weather is bad.” Writing
this statement as an if-then rule, we have the following:

If it is Sunday
then John works in the yard
unless the weather is bad (5)

If we substitute the propositional symbol S for “it is Sunday,” Y for
“John will work in his yard,” B for “the weather is bad,” and denote unless
by the symbol |, then we can say S implies Y unless B, which we can write
as follows:




[44]

S=Y|B (6)

Suppose we interpret (6) according to (4). Then we write this:

S&-B =Y (7)

According to (4a), we can also write this:

S=>YVB (7a)

If the weather is not bad, then —B is true. And if —B is true and it is
Sunday, then we can infer that John is in the yard. If the weather is bad,
then B is true, the if-part of rule (7) is not satisfied, and nothing can be
inferred about whether John is or is not in the yard.

The commonsense meaning of the expression (5), however, supports the
inference that if the weather on Sunday is bad, then John does not work
in the yard. Such an interpretation of expression (5) requires the following
pair of assertions:

S&-B =Y (8)
S&B = Y (9)
These assertions can be writtten equivalently as:
S = ((-B=Y)&(B = -Y)) (10)
By manipulating the then part, we obtain
S = ((Y&—B) Vv (~Y&B)) (11)
and finally,

S = (Y ®B) (12)

where ® denotes the exclusive-or operator. ;

Thus, the logical interpretation of the unless operator, |, requires it to
act like the exclusive-or operator, ®, that connects the then part and the
unless part of a censored rule.

Our unless operator takes precedence over the implication = operator.
This new interpretation of the unless operator is identical to that of ezcept
for operator in variable-valued logic defined by Michalski [1980].

Comparing the above described two interpretations of a censored rule,
the passive one given by equation (7a), and the active one given by equation
(12), it is clear that one uses the ordinary or operator in the right hand side,
whereas the other uses the exclusive-or operator. These two interpretations
are illustrated graphically in figure 1.
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Figure 1.

The Unless Operator Makes Expectations Explicit

Censored rules are important because their unless conditions have extra-
logical aspects:

e The unless operator has an ezpositive aspect because it allows us to
express certain expectations.

e The unless operator has a control aspect because it allows us to deploy
a variety of problem-solving schemes.

e The expositive and control aspects of the unless operator constitute its




pragmatics.

In this section, we look at the unless operator from the expositive point

of view. In the next, we look from the control point of view.

According to the logical interpretation, the rule

S=Y|B

is logically equivalent to

S = B|Y

and also to these negation-containing expressions:

S =-Y|-B
S = -B|-Y
Thus, the rule:
If it is Sunday
then John works in the yard
unless weather is bad

should be logically equivalent to the following alternatives:

If it is Sunday
then the weather is bad
unless John works in the yard
If it is Sunday
then John does not work in the yard
unless weather is not bad
If it is Sunday
then the weather is not bad
unless John does not work in the yard

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Conversion of (17) to (19), and (18) to (20), is done by negating both
the decision and censor conditions. Conversion of (17) to (18), and (19) to

(20) is done by swapping the decision and censor conditions.

At this point, we want to focus on the effect of swapping the decision
and censor conditions. Let us therefore look more carefully at (17) and
(18). These two rules seem to have different meaning. The first rule tells
us when John works in the yard, and the second, when the weather is bad.
They both imply the same logical conclusion: either John works in the yard




and weather is not bad, or John does not work in the yard and weather is
bad. '

Nevertheless the two rules seem different, because we treat the unless
condition like a causal precondition for the rclationship between if and then
parts. The unless condition defines an exception for the relationship. In
the example, we know that working in the yard has no influence on the
weather. Therefore, the first rule, (17), sounds reasonable, but the second,
(18), sounds strange.

Now recall our interpretation of a censored rule, given by expression
(10), which we repeat here for convenience:

S=((-B=Y & B = -Y)) (21)

A logically equivalent alternative, based on the strange-sounding form,
(18), is:

S=>(-Y=>B&Y = -B) (22)

The expression (22) provides perspective. Two assertions are implied:
“If it is Sunday and John does not work in the yard, then the weather is
bad” and “If it is Sunday and John works in the yard, then the weather is
not bad.” These assertions express the reverse of our sense of the depen-
dence between bad weather and working in the yard.

Censored production rules can be used to represent relationships that
involve mutual exclusion, rather than causal dependency between the de-
cision and the censor. Consider this rule:

If it is Sunday
then John works in the yard
unless he reads a book (23)

Transforming according to (14), we have:

If it is Sunday
then John reads a book ;
unless he works in the yard (24)

Both rules seem to be reasonable and to represent logically equivalent infor-
mation. But now let us represent rule (23) as a pair of rules corresponding
to expressions (8) and (9):

If it is Sunday and John does not read a book
then he works in the yard (25)
If it is Sunday and John reads a book

then he does not work in the yard A (26)




The first rule clearly implies that on Sunday John either works in the yard
or reads a book. We sense that he cannot do anything else on Sunday.
There is another asymmetry between (25) and (26). While rule (25) gives
us a specific information about what John does, rule (26) secms to be
obvious, because we know that a person cannot read a book and work in
the yard simultaneously. But when a person does not read a book, he could
be doing many things other than working in the yard.

Now let us represent expression (24) as a pair of rules corresponding to
expressions (8) and (9):

If it is Sunday and John does not work in the yard

then he reads a book (27)
If it is Sunday and John works in the yard
then he does not read a book (28)

Here again, only the first rule supplies useful information. The second rule
is redundant because we know, through commmon sense, that a person
cannot read a book and work in the yard at the same time.

This leads us to the following observation: if the action and the censor
in a censored rule are mutually exclusive assertions, then the active and the
passsive interpretation of a censored rule yield the same inferences. That is,
the passive interpretation, together with a commonsense mutual-exclusion
constraint, is equivalent to the active interpretation.

Let us now consider another example, taken from Winston [1983].

If a man is an unmarried adult
then he is bachelor
unless he cannot be married (29)

Let us transform this rule to an vequivalent one according to the same
transformation that leads to (16):

If a man is an unmarried adult
then he is not a bachelor
unless he can be married (30)

Clearly, both rules (29) and (30), are perfectly legitimate statements. Also,
in both rules, the censor acts as a “switch,” validating or invalidating the
then part of the rule.

There is, however, an important difference between the two rules: in
one the censor condition is ordinarily false, whereas in the other, the cen-
sor condition is ordinarily true. Consequently, the following implication
ordinarily holds:
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If a man is an unmarried adult
then he is a bachelor (31)

Whereas the following implication ordinarily does not hold:

If a man is an unmarried adult
then he is not a bachelor (32)

Ignoring the censor in rule (29) does not invalidate the rule completely;
such a truncated rule still leads to a valid conclusion most of the time. How-
ever, ignoring the censor in rule (30) does invalidate the rule completely.
As we explain later, this leads to important expositive considerations in
connection with the use censored production rules. We will argue that
the preferred form of a censored rule is the one in which the if-then part
expresses an important, often holding relationship, whereas the censor rep-
resents a rarely occurring exception from the rule. This helps justify Win-
ston’s assumption, mentioned earlier, that less effort should be expended
to prove the premise than to prove the censor.

Summarizing, there are two important characteristics be remember for
censored rules of the form:

(premise) = (decision )| (censor ) (33)

e First, from a logical viewpoint, the unless operator | acts like the
exclusive-or operator.

e Second, from an expositive viewpoint, (censor) condition acts as a
switch that validates or invalidates the (decision). Its desired use is
when the assertion (premise)&(decision) holds frequently, and the as-
sertion (premise)&(censor) holds rarely.

The Unless Operator Supports Various Control Schemes

So far, we have discussed the unless operator from two points of view: from
the logical point of view, we showed that it is equivalent to the exclusive-or
operator; and from the expositive point of view, we showed that it makes
certain expectations explicit.

Because expectations are made explicit, there are a number of obvious
alternative control schemes for using censored rules. Here are the two
extreme possibilities:

e The Harry Truman method: Treat the unless operators as if they were
exclusive-or operators, thereby ignoring expectation information. Good
in situations for which expectations are unreliable.

o The ask-questions-later method: Ignore all censors. Good in situations
for which rapid response is critical.
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And of course, there are intermediate possibilities, of which the following
are representative:

e The decision-maker method: Assume all censor conditions are false
unless already known to be true. Put no effort into showing that a
censor condition is true.

e The trusting-skeptic method: Once a premise is established, try to show
that censor conditions are true, but fix the depth of rule chaining to
some prescribed number of levels or to some prescribed consumption of
resources. We call this the trusting-skeptic method because it reflects
an assumption that the indicated expectations are solid and that there
is little point in putting more than a little effort into overturning those
expectations. This is the original method proposed by Winston.

e The stubborn-donkey method: Do not allow situations in which censors
are triggered by rules that themselves have censors that are triggered
by other rules ad nauseum. Fix the depth of censor chaining to some
prescribed number of leves or to some prescribed consumption of re-
sources. We call this the stubborn-donkey method because the number
of times a conclusion can be reversed is limited.

e The tapered-search method: Allow any number of levels of censor chain-
ing, but reduce the resources allocated to showing that censors are true
in proportion to the depth of chaining.

Importantly, for all these and all similar schemes, tentative answers can
be reported as soon as the premise-decision parts of the rule base allow.
Then the censor parts of the rules can be pursued according to whatever
resource allocation scheme seems best. At any moment, the tentative an-
swer is the best answer possible relative to the chosen resource allocation
scheme and the expended resources. In principle, tentative answers may
change many times, but those tentative answers probably will not change
much in practice. j

From this point of view, our control proposals are reminiscent of the
progressive-deepening notion developed for chess-playing programs. Pro-
gressive deepening enables game-playing programs to produce reasonable
moves quickly, with better moves forthcomming if the clock allows.

From another point of view, our proposals are reminiscent of the work of
Carl Hewitt, whose early thesis argued persuasively that logical rules should
be augmented with knowledge about appropriate uses [Hewitt, 1972]. In
the thesis, the primary distinction was between antecedant and consequent
rules.

While on the subject of control, two other ideas spring to mind:
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e Why not devise a parallel-processing scheme?

e Why not devise a more refined, quantitative representation of expecta-
tion that would support more sophisticated control schemes?

These ideas seem natural to use, but we have not yet thought much
about parallel-processing, nor have we devised control schemes exploring
quantitative representation. We have developed a quantitative representa-
tion, however, which we describe in the next section.

The Augmented Unless Operator Makes Expectations Quantitative

Let us now give a more quantitative definition of a censored rule. Consider
the following rule:

P=D|C (34)

where P is a premise, D is a decision, and C is a censor. Although the unless
operator | is logically equivalent to the commutative exclusive-or operator,
the unless operator has a expositive aspect which is not commutative. In
order to capture the asymetry precisely, let us associate two parameters,
v and ~2, with rule (34).

P=D|C:7,7 (31)

Both 7, and 7 are subjective point probabilities, one indicating the strength
of the relationship between P and D, and the other, between P and C.!

Now consider the following sets:

e ()is a finite universe of events.

e (lp is the set of events for which P holds.

e (pp is the subset of events for which both P and D hold.
e Qpg is a subset of events for which both P and C hold.

1 It may be better to introduce parameters indicating belief and disbelicf for both D and
C, as in MYCIN, or to introduce paranicters indicating lower bounds on the probabilities
of the truth and the falschood of both D and €, as in INFERNO [Quinlan, 1983]. For

simplicity, we cousider hiere only subjective point probabilities.
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Given these sets, the parameters 4, and 72 are defined as follows:

71 = |[Qpp)|
1= 2D . 32
|Qp| (32)
1Qp¢
= TCl 33
*~ Tap| : (33)

where [(;| denotes the cardinality of Q.

Relating these definitions to our example about John working in the
yard unless weather is bad, we can say that () is a set of days over a
sufliciently large period of time; (0p is the set of Sundays during this period
of time; (1pyy is the set of Sundays when John works in the yard; and Opc
is the set of Sundays with bad weather.

Assuming that there are significantly more Sundays when John works
in the yard than there are Sundays when the weather is bad, then Qpp is
considerably larger than the set Qp:

|Qppl| > [Opc] (34)

Thus, taking into consideration (32) and (33), we have

712> 72 (35)

In our example, v; stands for the ratio of Sundays when John worked in
the yard to all Sundays, and ~; stands for the ratio of Sundays with bad
weather to all Sundays.

And from the logical point of view, according to our interpretation of the
unless operator, the sets {lppy and (p: must be disjoint. Consequently,
the sum 51 + 42, must always equal 1. Thus, knowing ~;, it is easy to
compute ~yy; therefore rule (31) can be simplified:

P=D|C:¥« (36)

where 4 stands for 4; and 4y > 0.5. Because of (35), ¥ = 71 should be
significantly greater than 0.5, but we will only assume v > 0.5 . If y =1,
then P&C never holds, and rule (36) becomes

P=D

Note that v does not say anything about how often relations —P&D

and - P&-D hold.
Now suppose that v is 0.9 in the following rule:

P=D|C:~ | (37)
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If P holds, rule (37) allows us to make inference that D and —C hold
with certainty 0.9 and D and C will certainly 0.1. Thus if we know P
holds and do not know whether C holds or not, we infer that D holds with
certainty 0.9. On the other hand, if P holds and C does not, than we can
infer that D holds with certainty 1.

If both P and C hold, then we can infer that D does not hold. Symet-
rically,, if both P and D hold, we can infer that C does not hold.

Now suppose that we know D but know neither P nor C. If we ignores
v, then (37) can be written as a pair of expressions:

P&~C = D (38)

P&C = -D (39)

Expressions (38) and (39) can be rewritten as follows:

-D=-PvC (40)

D= -Pv-C (41)

If =D holds, then either =P or C. If we know that —C, then using (40)
we can infer with certainty 1.0 that —=P. If C, then nothing can be said
about —P in this case.

Similarly, if D holds and we know that C, then we can infer with cer-
tainty 1.0 that =P. If =C, then nothing can be said about —P.

Thus rule (37) permits us to generate a number of inferences of varying
certainty, depending on what is given and what is unknown. Also, there is
a natural relationship between the certainty of conclusions and the amount
of knowledge available.

The relationship between certainty and knowledge has an important
operational consequence. To illustrate, consider two cases:

e P is known to hold and there are insufficient time or space to determine
C. A system can infer the conclusion D, with certainty ~.

e P is known to hold and there arc sufficient resources to determine C. A
system can determine C and subsequently conclude D or =D, depending
on C, with certainty 1.




Rules may have Many Censors

A censored production rule may have more than one exception-denoting
censor. Consider, for example, the assertion that birds fly:

V z is-bird(z) = flies(z) (42)

This general assertion enables us to expect that any newly observed
bird flies. But not all birds fly. For example, penquins, ostriches, emus,
kiwis, and domestic turkeys do not fly. To include this information, we
write:

V z is-bird(z) = flies(z) | (is-penguin(z) (43)
V is-ostrich(z)
V is-emu(z)
Vv is-kiwi(z)
V is-domestic-turkey(z))

Thus the exceptions are disjunctively linked together as one censor con-
dition. Suppose we generalize these exceptions into one statement for spe-
cial birds. Then we can write:

V z is-bird(z) => flies(z)|is-special-bird(z) (44)

But then, the rule is still not entirely correct. Even a flying bird cannot
fly when it is dead or sick or has broken wings. Let us characterize all these
situations as bird being in an unusual condition. Then we can write:

Y z is-bird(z) => flies(z)| (is-special-bird(z) (45)
V is-in-unusual-condition(z))

where

V z is-special-bird(z) <= is-penguin(z) (46)
V is-ostrich(z)
V is-emu(z)
Vv is-kiwi(z)
V is-domestic-turkey(z)

and
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V z is-in-unusual-condition(z) <= is-dead(z) (47)
V is-sick(z)
V has-broken-wings(z)

Now a bird also cannot fly when its legs are stuck in concrete. This case
may also be classified as bird in an unusual condition. Thus, to update our
knowledge, we need not change our basic rule; we need only extend our
definition of unusual condition:

is-in-unusual-condition(z) <= is-dead(z) (48)
' V is-sick(z)

V has-broken-wings(z)

V has-legs-stuck-in-concrete(z)

Rules May Have Incomplete Censors

Censors are generalized whenever a disjunctive condition is added, as in
going from (44) to (45), or from (47) to (48). The generalized censor, (48),
fires in additional situations, preventing the rule from asserting the deci-
sion. Thus, generalizing a censor specializes a censored rule. Conversely,
specializing the censor (up to its complete removal) generalizes a censored
rule.

Let us now go back to the rule (42), and augment it by adding the
parameter 7:

Vzis-bird = flies(z)|is-special-bird(z) : v (49)

where 7 estimates the probability that any given bird flies. In the
case that a given bird does not fly, then according to rule (49) the censor
is-special-bird(z) must be true. This is at odds with (45), however, because
the bird may be not be a special bird, but rather, in an unusual condition.

Instead of generalizing the censor to correct rule (49), let us introduce
a parameter 6 that adds an additional uncertainty to compensate for the
incompleteness of the censor.

Vzis-bird(z) = flies(z)|is-special-bird(z) : 7,6 (50)

Ilerc is the intended meaning:
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e v is the degree of certainty that a bird flies when we do not know
whether it is a special bird or not.

e 4 is the degree of certainty that the given bird flies when we know that
it is not a special bird.

Thus 6 accounts for the fact that the censor is incomplete.
Now let us discuss the meaning of parameters v and § generally. Sup-
pose we insert into a censored rule a symbol UNK standing for “unknown:”

P = D|(C; VUNK) : v,6 (51)

The symbol UNK represents a disjunction of unknown conditions that
could block the inference of D from P.

If we know that the condition C| does not hold (—C}), then the strength
of the implication P = D, depends on the condition UNK. If none of the
UNK conditions hold, then D holds. If any of the UNK conditions hold, -
then D does not.

Parameter 6 is defined to be the degree of certainty that P = D when
—(C is true. This is equivalent to the degree of certainty that there is no
implicit part of the censor that holds when —Cj is true.

Parameter v is defined as the degree of certainty that P = D when
it is not known whether (C; V UNK) holds. The implication P = D has
the degree of certainty 1 when C; V UNK is known to be false. Thus, the
parameter v is equivalent to the a priori degree of certainty that none of
the censors hold.

Obviously the a prior:i degree of certainty of —+(C;VUNK) must be equal
to or smaller than the a prior: degree of certainty that —“UNK. Therefore,
v < 6. Note that § = 1 if it is certain that there are no conditions in the
censor other than Cj.

Let us rewrite rule (51) as two rules:

P = D|C*:~,6 (52)
C* & C; vV UNK (53)

Expression (53) can be rewritten as
-C*|(C; Vv UNK) (54)

where | denotes The symmetrical difference. In this form it clearly states
that the censor will not fire unless C) is true or UNK is true. Suppose now
that P holds and we ignore censor C, i.e., we ignore C1 and UNK, then we
can conclude D with the degree of certainty 4. Parameter « is therefore
called the 0-level strength of implication P = D (because no information
about the censors is taken into account). If we evaluate Cy, and C| is false,
then from P we can conclude D with the degree of certainty 6. Parameter 6
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is thus called the 1-level strength of implication (the known, m information
about the censor is taken into account). Recapitulating our discussion, we
define a censored rule as follows:

P=D|C:~,$ (55)

where P is the premise, D is the decision, C is the censor,

7 is the a priori degree of certainty that P => D when C is unknown (the
0-level strenght of implication), é§ is the a priori degree of certainty that
P = D when C is known to be false (the 1-level strength of implication).

The Provided Operator Complements the Unless Operator

Consider this statement:

If It is Saturday
then I will go to a concert
unless I cannot get a babysitter (56)

We can express this in our logic as follows:

S=C|B (57)

where S is for on Saturday; C is for I will go to a concert; and B is for [
cannot get a babysitter.
An alternative way to say the same thing is as follows:

If It is Saturday
then I will go to a concert
provided I can get a babysitter (58)

Similarly, statements such as the following can be expressed using the
provided form.

You will enjoy the hike unless the weather is bad (59)

Happy future is guaranteed unless we do not have peace (60)

Changing the polarity of the censor condition replaces unless by provided,
the negative censor used with an unless condition becomes a positive censor
with the provided condition, and vice versa.

Of course, in normal human use, the word provided introduces a pre-

condition rather than an exception.
Let us now introduce the provided operator, denoted [, to complement
the unless operator. Thus, the rule

P = D|C | (61)
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is assumed to be equivalent to
P = D[(—C) (62)
and the rule

P = D|(~C) (63)

is assumed to be equivalent to

P = D[C (64)

From the logical standpoint, the exclusive-or operator in A @ —B is equiv-
alent to A = B.

Thus, from the logical viewpoint, the provided operator acts as the
equivalence operator.

Because unless and provided operators are complementary, any censored
rule can be expressed using only a positive censor condition. Also, replac-
" ing one operator by another does not effect the strength of implication
parameters 6 and «:

P=D|C:é~ - (65)

gaurantees

P = D[C': 6,4 (66)

where C' = -C.

There is a small difference in the rule interpretation: in rule (66), 6 is
interpreted as the strength of implication P => D, when C' holds. The
parameter v remains to denote the strength of implication when we do not
know if C' holds or not.

Representing the In-which-case Condition

Suppose we want to represent the statement, “On Sunday I will fly a kité,
unless there is no wind, in which case I will write poetry.”

The unless operator does not enable us to express this statement di-
rectly. We could introduce an tn which case operator, but we prefer to
use two statements instead: “On Sunday I will fly a kite provided there
is wind,” and “On Sunday I will write poetry provided there is no wind.”
These statements are directly expressible as censored production rules:

S =KW (67)

S = P[-W , (68)
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Note that (68) can be expressed as a rule with an unless condition:

S=PW (69)

The English form sounds strange, however, in light of (67): “On Sunday
I will write poetry unless there is wind”. Rule (68), with a negative censor,
seems more appealing than rule (69) with a positive censor. There seems
to be a general regularity: from the expositive viewpoint, it is better to
use complementary censor conditions and the same censor operator, rather
than than to use complementary operators and the same censor condition.

One may ask why to use the censored rules at all, and instead use the
ordinary production rules:

S&W = K (70)

S&-W = P (71)

The answer depends on what we want to express. These two pairs of
rules are not exactly equivalent. The first pair (rules (67) and (68) can be
reexpressed as one expression: :

S= K[W Vv P[-W (72)

This is turn can be rewritten as

S=>W&KV-W&PV -(KV P) (73)

The second pair (rules (70) and (71)) can be reexpresed as

S = (W = K)&(-W = P) (74)

and then as

S =>W&KV -W&PV K&P (75)

Thus, the diference between the two pairs of rules, (67, 69) and (70, 71),
is in the third component of expressions (73) and (75). While the first pair
implies that a person may neither fly a kite nor write poetry on Sunday,
as well as that he will not simultanously fly a kite and write poetry. The
second pair implies that he must do one thing or the other and accepts the
possibility that both may be done at once. (This is not to say that flying
a kite and writing poetry is mutually exclusive, but only that there is a
difference between these two pairs of rules!).
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Distinguishing Rules from Definitions

Consider the following expression, which represents the sentence, “On Sun-
day John will fly a kite provided there is wind:”

S =KW (76)

Suppose we also want to express some knowledge about whether there
will be wind on Sunday. Assume that this condition is: “There will be
wind on Sunday (W) ¢f there is drop of temperature on Friday (DF) unless
Saturday is sunny (SS). We can write this condition as a production rule:

DF = W|SA (17)

Rule (76) is typically used in the forward direction for answering the
question “What will John do on Sunday?” On the other hand, rule (77) is
typically used in the backward direction for answering the question “Will
there be wind on Sunday?” Rules evoked in the backward direction are
called definitions. To reflect the differences in control of rule execution,
as well to facilitate human readibility, it is desirable to make a distinction
in the form of a forward-executed rule and a backward-executed definition
(though logically they are equivalent). Such a distinction can be very
simply by writing the rule (77) in the following form:

W < DF|SS (78)

This is to be read as W if DF unless SS. The < is interpreted as a
logical implication, but directed in the opposite direction than normal. We
used this form already in expressions (46) and (47), but without the unless
condition. Note that in this case, in order to interpret the rule correctly,
the censor SS is assumed to be linked by the exclusive-or operator with
the left side of < rather than with the right side.

Note that the operator linking a term being defined with the body of
the definition is typically equivalence. Thus, to have a complete logical
representation of a definition, one should use the equivalence sign rather
than implication.

Inference Rules for Trahsforming Censored Production Rules

This section gives a sample of inference rules applicable to censored pro-
duction rules. These rules have one or more premise rules together with an
assertion rule that is a logical consequence of the premise rules. To state
that an assertion A has truth value a we write

A:a ' (79)
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To express an inference rule stating that A is a logical consequence of
Aj,Aq,..., we write

Ay

As > A (80)

We will drop the certainty parameters § and « in censored rules when-
ever they are irrelevant for the given inference rule.

P=D|C:~,6
P : True > D:~ (81)
C : Unknown
P=D|C:~,6
C : False '> P=D:~« (82)
P=D|C:~,6 .
D : Trae !> P = —=C : True (83)
P = D'_C
P2=>D¥_ l > P1VP2=>DLC (84)
P = D{|C
P Dzl_C l > P = 01&02LC (85)
P = Dl_Cl
D
P DLCZ I > P = D|(CyV Cq) (86)
P = D|C l
> P = D|C: 87
C1lCy [C (87)
P= D[Cl
D = D,|C; > P = D;|(C1V C,) (88)
Dy =D

In rule (88), the implication D; = D is needed to prevent the possibility
of having Cy and D; hold simultaneously.

For illustration of (88), let us consider an example. Suppose that the
input assertions are

On Sundays John Brite goes to a park unless he is writing poems (89)
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In the park he flies a kite unless there is no wind (90)

He flies a kite only in the park (91)

The inference rule (88) allows us to make the following deduction:

On Sundays John Brite flies a kite (92)
unless he is writing poems or there is no wind

Variable Precision Logic is Related to Non-Monotonic Logic

As mentioned earlier, conclussions from censored production rules depend
on the truth-status of the censors. The censors are assumed to be low-
likelihood assertions. Therefore, if their status is unknown and one wants
to (or has to) spare time or resources for determining it, the censors can be
ignored, and the conclussion still has a high likelyhood. These conclussions
may have to be revised, if the censors are found later to hold. Thus, the
mechanism of censored production rules enables one to make revisions in
once accepted conclussions.

This reminds one the non-monotonic logic, which specifically investi-
gates problems of revising beliefs and modifying tentative knowledge. In
non-monotonic logic, the basic rule of inference is ”If a negation of a for-
mula is not derivable from axioms by inference rules of the first order
theory, then accept the fomula as true”. To fomalize such a rule, this logic
extends the classical logic by introducing a proposition-forming modality
M. A proposition Mp states the p is consistent with everything believed. A
comprehensive treatment of various theorctical aspects of non-monotonic
logic, such as consistency and provability is given in [McDermott and Doyle,
1980).

Such an approach is quite different from the one taken in variable pre-
cision logic. We do not introduce any new modalities, but rather a new
operator (the unless operator). Also, unlike statements in non-monotonic
logic, censored production rules are assigned certainty parameters. These
parameters can be used for controlling the cxecution of the rules, and es-
timating the certainty of conlusions in any act of inference. Thus, the
variable precision logic adopts some aspects many-valued logic.

Summarizing, the goals and methods of variable precision logic are dif-
ferent from that of non-monotonic logic. While tha latter investigates the
formal implications from reasoning involving uncertain assumptions, vari-
able precision logic atempts to develop mechanisms for representing and
conducting reasoning that reflects different trade-offs between the certainty
(and/or specificity) of conlusions and the computational resources needed
to derive them.
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Conclusion

Classical logic was conceived originally as a prescriptive theory of how
an ideal mind might reason. For any inference, it assumes that all needed
premnises are known in advance, and it assumes that the truth value of those
premises do not change. It ignores the time and memory resources needed
for reasoning. In the real world, however, both humans and computers often
must reason using insullicient, incomplete, or tentative premises. Moreover,
both are subject to constraining time and memory limitations.

Nevertheless, both humans and computers must be able to react promtly
to new information, and they must be able to change or repair their knowl-
edge when new information produces contradictions or when initial as-
sumptions are withdrawn.

Here we have focused on one aspect of the problem by describing a
simple knowledge representation and a reasoning system that enables trade-
offs between the certainties of various conclusions and the effort needed to
derive those conclusions.

We showed that by factoring out conditions that have low likelihood
and by treating them outside of the main line of reasoning, a system can
easily exercise different control schemas for rule execution.

Commonsense reasoning seems to follow the most important and likely
lines of argument, ignoring myriads of low-likelihood exceptions. Variable-
precision logic, through the mechanism of censored production rules, pro-
vides a simple computational mechanism for capturing some of the prop-
erties of such reasoning. The same censored-production-rule niechnamism
also facilitates minor repairs to the rules.

We also suggest that a computationally-limited reasoning system should
associate rule premises and censors with numerical estimates of their like-
lihood and testing cost. These estimates enable an inference system to
decide which premises and censors to evaluate under given time and cost
constaints.

The control planning problem is one of several important topics that
were not discussed here, but which clearly invite further research. For
example, we need to understand how a reasoning mechanism can make
controllable trade-offs between certainty and specificity.

We also need to devise efficient algorithms for learning censored pro-
duction rules from specific cases and precedents, and to modify those rules
incrementally to account for new facts. Some initial work in this direction
was recently done by Becker (1985).
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