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ABSTRACT. For both biological systems and machines, vision begins with a largs
and unwieldy array of measurements of the amount of light reflected from surfaces in the
environment. The goal of vision is to recover physical properties of objects in the scene,
such as the location of object boundaries and the structure, color and texture of object
surfaces, from the two-dimensional image that is projected onto the eye or camera. This
goal is not achieved in a single step; vision proceeds in stages, with cach stage producing
increasingly more uscful descriptions of the image and then the scene. The first clues
about the physical properties of the scene are provided by the changes of intenssty in
the image. The importance of intensity changes and edges in early visual processing
has led to extensive research on their detection, description and .use, both in computer
and biological vision systems. This article reviews some of the theory that underlies the
detection of edges, and the methods used to carry out this analysis.
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I. INTRODUCTION

For both biological systems and machines, vision begins with a large and unwiecldy array
of measurements of the amount of light reflected from surfaces in the environment. The
goal of vision is to recover physical properties of objects in the scene, such as the location
of object boundaries and the structure, color and texture of object surfaces, from the two—
dimensional image that is projected onto the cye or camera. This goal is not achieved
in a single step; vision proceeds in stages, with each stage producing increasingly more
uscful descriptions of the image and then the scene. The first clues about the physical
propertics of the scene are provided by the changes of intensityin the image. For example,
in Figure 1, the boundaries of the sculpture, the markings and bright highlights on its
surface, and the shadows that the trees cast on the snow all give rise to spatial changes
in light intensity. The geometrical structure, sharpness and contrast of these intensity
changes convey information about the physical edges in the scene. The importance of
intensity changes and edges in early visual processing has led to extensive research on
their detection, description and use, both in computer and biological vision systems.

Figure 1. A natural image, exhibiting intensity changes due to many physical factors.

The process of edge detection can be divided into two stages: first, intensity changes
in the image are detected and described; second, physical properties of cdges in the
scene arc inferred from this image description. Scction 2 concentrates on the first stage,
about which more is known at this time. Section 3 bricfly describes some areas of vision
research that address the second stage. This article mainly reviews some of the theory
that undcrlies the detection of edges, and the methods used to carry out this analysis.
There is also some refcrence to studies of early processing in biological vision systems.
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This article docs not present a complete review of the edge detection literature; rather
it introduces the rcader to some of the basic issucs that are considered central to the
problem of edge detection.

2. THE DETECTION OF INTENSITY CHANGES

The most commonly used methods for detecting intensity changes incorporate three
essential operations. TFirst, the image intensities are either smoothed or approximated
locally by a smooth analytic function. Second, the smoothed intensities are differentsated,
using cither a first or second derivative opcration. Third, simple features in the result of
this differentiation stage, such as peaks (positive and negative cxtrema) or zero-crossings
(transitions between positive and negative values), are detected and described. This
section first describes briefly the role of these operations in the detection of intensity
changes and then presents in more detail, some of the mcthods used to carry out these
operations.

The smoothing operation serves two purposes. First, it reduces the effect of noise
on the detection of intensity changes. Second, it sets the rcsolution or scale at which
intensity changes are detected. The sampling and transduction of light by the eye or
camera introduces spurious changes of light intensity that do not correspond to significant
physical changes in the scene. Smoothing of the intensities can remove these minor
fluctuations due to noise. TFigure 2a shows a one-dimensional intensity profile that is
shown smoothed by a small amount in Figure 2b. Small variations of intensity, due
in part to noise in the digitizing camera, do not appear in the smoothed intensities.
Approximation of the intensity function by a smooth analytic function can serve the
same purpose as a smoothing operation.

Significant changes in the image can also occur at multiple resolutions. Consider,
for example, a leopard’s coat. At a fine resolution, rapid fluctuations of intensity might
dclineate the individual hairs of the coat, while at a coarser resolution, the intensity
changes might delineate only the leopard’s spots. Changes at different resolutions can
often be detected by smoothing the image intensities by different amounts. Figure 2¢ il-
lustrates a more extensive smoothing of the intensity profile of Figure 2a, which preserves
only the gross changes of intcnsity.

The differentiation operation accentuates intensity changes and transforms the im-
age into a representation from which propertics of these changes can be extracted more
easily. A significant intensity change gives rise to a pcak in the first derivative or a zero-
crossing in the second derivative of the smoothed intensities, as illustrated in Figures 2d
and 2e, respectively. These peaks or zero---érossings can be detected straightforwardly
and properties such as the position, sharpness and height of the peaks capture the loca-
tion, sharpness and contrast of the intensity changes in the image. The detection and
description of these features in the smoothed and differentiated image provides a com-
pact representation that captures meaningful information in the image. Marr (1) called
this representation the Primal Sketch of the image. Later processes, such as binocular
stcreo, motion measurement and texture analysis, whose goal is to recover the physical
propertics of the scene, may then opcerate directly on this description of image features.
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Figure 2. Detecting Intensity Changes. (a) One-dimensional intensity profile; the intensities
along a horizontal scan line in an iinage are represented as a graph. (b) The result of smoothing
the profile in (a). (c) The result of additional smoothing of (a). (d) and (¢) The first and sccond
derivatives, respectively, of the smmoothed profile shown in (c). The vertical dashed lines indicate
the peaks in the first derivative and zero-crossings in the second derivative that correspond to
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two significant intensity changes.




2.1 THE ONE-DIMENSIONAL DETECTION OF INTENSITY
CHANGES

The theory that underlies the detection of intensity changes in two--dimensional images
is based heavily on the analysis of one-dimensional signals. This scction discusses three
topics that have been addressed in this analysis: (1) the design of optimal operators for
performing smoothing and differentiation, (2) the information content of the descrip-
tion of signal features such as zero-crossings, and (3) the relationship between features
that arc detected at multiple resolutions. Studies of these issucs have used a variety of
theoretical approaches that appear to yicld similar conclusions.

Some of the carly methods for detecting intensity changes incorporated only limited
smoothing of the intensitics and performed the differentiation by taking first or sccond
differences between neighboring image clements (examples of this carly work can be found
in (2-8)). In one dimension, this is equivalent to performing a convolution of the intensity
profile with opcrators of the type shown on the left in Figures 3b and 3¢. Additional
smoothing can be performed by increasing the spatial extent of these operators.

The operators in Figures 3b and 3c contain step-like changes. Other studies have
cmployed Gaussian smoothing of the image intensities (for example, 9-13). Combined
with the first and second derivative operations, Gaussian smoothing yields convolution
opcrators of the type shown in Figures 3d and 3e. Several arguments have been put forth
in support of the use of Gaussian smoothing. Marr and Hildreth (11, 12) argued that the
smoothing function should have both limited support in space and limited bandwidth in
frequency. In general terms, a limited support in space is important because the physical
edges to be detected are spatially localized. A limited bandwidth in frequency provides a
means of restricting the range of scales over which intensity changes are detected, which is
sometimes important in applications of edge detection. The Gaussian function minimizes
the product of bandwidths in space and frequency. The use of smoothing functions that
do not have limited bandwidths in space and frequency can sometimes lead to poorer
performance, reflected in a greater sensitivity to noise, the false detection of edges that
do not exist, or a poor ability to localize the position of edges (see, for example, 11, 14).

Shanmugam, Dickey and Green (15) derived an optimal frequency domain filter
for detecting intensity changes, using the criteria that the filter: (1) yiclds maximum
energy in the vicinity of an edge in the image, (2) has limited frequency bandwidth,
(3) yields a small output when the input is constant or slowly varying, and (4) is an
even function in space. Tor the special case of detecting step changes of intensity, the
optimal frequency domain filter corresponds to a spatial operator that is approximately
the second derivative of a Gaussian (for a given bandwidth) shown in Figure 3e.

In a later study, Canny (14) uscd the following criteria to derive an optimal operator:
(1) good detection ability, that is, there should be low probabilities of failing to detect
real edges and falsely detecting edges that do not exist, (2) good localization ability, that
is, the position of the detected edge should be as close as possible to the truc position
of the edge, and (3) uniqueness of detection, that is, a given edge should be detected
only once. The first two criteria are related by an uncertainty principle; as detection
ability increasces, localization ability decreases, and vice versa. The analysis also assumed
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Figure 3. Smoothing and Differentiation. (a) A one-dimensional intensity profile. (b} A first
difference operator is shown in heavy lines on the left and the result of its convolution with the
profile in (a) is shown on the right. (c) A sccond difference operator is shown in heavy lines
on the left and its convolution with (a) on the right. (d) The first derivative of a Gaussian
(left) and its convolution with {a) (right). (e) The secoud derivative of a Gaussian (left) and its
convolution with {a) (right). (Note that in (b) through (¢}, the position of the filtered intensity
profile is shifted relative to the position of the original intensity profile shown in (a).)
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that extrema in the output of the operator indicate the presence of an edge. Tor the
particular case in which an “edge” is defined as a step change of intensity, the operator
that optimally satisfics these criteria is a linear combination of four exponentials, which
can be approximated closcly by the first derivative of a Gaussian shown in Figure 3d.
Poggio, Voorhees and Yuille (16) and Torre and Poggio (17) derived an optimal
smoothing opcrator, using the tools of regularization theory from mathematical physics.
They began with the obscrvation that numerical differentiation of the image is a math-
cmatically di-posed problem (18), because its solution does not depend continuously on
the input intensities (this is cquivalent to saying that the solution is not robust against
noise). The smoothing operation serves to regularize the image, making the differentia-
tion opceration mathematically well-posed. In the case where the image intensities are
assumed to contain noise, the following method was used to regularize the image. First,
let I(z) denote the continuous intensity function, which is sampled at a sct of discrete
locations zx, 1 < k < n, and let S(z) denote the smoothed intensity function to be
computed. It was assumed that S(z) should both fit the sampled intensities as closely
as possible and be as smooth as possible. Using the tools of regularization theory, this
was formulated as the computation of the function S(z) that minimizes the following

expression:
n

> (I(or) - () + A [ 18" @) Pda.

k=1

The first term measures how well S(z) fits the sampled intensities and the second term
measures the smoothness of S(z). The constant A controls the trade-off between these
two measures. Poggio, Voorhecs and Yuille showed that the solution to this minimization
problem is equivalent to the convolution of the image intensitics with a cubie spline
that is very similar to the Gaussian. Torre and Poggio (17) further expanded upon
the theorctical properties of a broad range of smoothing filters, from the perspective of
regularizing the image intensities for differcntiation.

Another approach to the smoothing stage is to find an analytic function that best
models or approximates the local intensity pattern. An early representative of this ap-
proach was the Hueckel operator (5, 7). Surface—fitting methods used a variety of basis
functions to perform the approximation, including planar functions (19) and quadratic
functions (20). More recently, Haralick (21, 22) uscd the discrete Chebychev polynomi-
als to approximate the image intensities. In these methods, a differentiation operation is
then performed analytically on the polynomial approximation of the intensity function.
The method of approximation used by Haralick (21, 22) is roughly equivalent to smooth-
ing the image by convolution with spatial operators such as those derived by Canny (14)
and Poggio, Voorhees and Yuille (16). A rigorous comparison between the performance
of surface-fitting versus direct smoothing methods has not yet been made.

A second issue that bears on the choice of operator for the smoothing and differen-
tiation stages is the information content of the subsequent description of image features.
That is, to what extent does a representation of only the significant changes of intensity
capture all of the important information in an image? This question led to a number
of theoretical studies of the reconstruction of a signal fromn features such as its zero-—
crossings. Although the goal of vision is not to reconstruct the visual image, these results
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are important because they suggest that an image can be transformed into a compact
representation of its features with little loss of information.

An carly study by Logan (23) that interested many vision rescarchers addressed the
information content of the zcro-crossings of a signal. Logan proved that if a signal has
(1) a frequency bandwidth of less than one octave and (2) no zeros in common with its
Hilbert transforim, then the signal can be entirely reconstructed from the positions of its
zero-crossings, up to a multiplicative constant. The second condition is almost always
satisfied for physical signals. This result has also been extended to two dimensions (1).
This analysis is interesting, because it shows that the zero-crossings of a signal are very
rich in information. Its dircet relevance to vision is limited, however, because the initial
smoothing and differentiation of an image is typically performed by operators that are
not onc-octave bandpass in frequency.

Other studies have addressed the information content of features of signals that are
more relevant to visual processing. Tor example, Yuille and Poggio (24) proved some
interesting results regarding the zero-crossings (or more gencrally, the level- crossings*)
of an image that is convolved with the second derivative of a Ghussian, over a continuous
range of scales. Before stating the results, we introduce the scale—-space representation of
zero-crossings used by Witkin (25), illustrated in Figure 4. First, let the one-dimensional
Gaussian function be defined as follows, where o is the standard deviation of the Gaus-
sian: \

G(z) = ée—ﬁ‘.

The second derivative of the Gaussian function is then given by the following expression:

d*G(z 1 =z _=?
G"(ZI:) = —:l'x—(z—) = 0—3(0_—: - l)e 207,

Suppose that a one-dimensional signal I(z) is convolved with G"(z) for a continuous
range of standard deviations ¢ and the positions of the zero-crossings are marked for
each size or scale. Figurc 4 shows an intensity profile (Figure 4a) that is convolved
with a G"(z) function with large o (Figure 4b). The positions of the zero-crossings are
marked with heavy dots. In the scale-space representation of Figure 4c, the vertical
dimension represents the value of ¢ and the horizontal dimension represents position in
the signal. For cach value of o, the positions of the zero—crossings of I(z) x G"(z) are
plotted as points along a horizontal line in this diagram. For example, points along the
dashed line at o = o; indicate the positions of the zero-crossings of the signal in Figure
4b. The scale-space representation of zero -crossings illustrates the behavior of these
features across scales. For small o, the zero -crossings capture all of the changes in the
original intensity function. At coarser scales (larger ), the positions of the zero-crossings
capture only the gross changes of intensity.

The scale-space representation is visually suggestive of a fingerprint. In fact, in
much the same way that a fingerprint uniquely identifics a person, the scale-space rep-
resentation may uniquely identify an image. Yuille and Poggio (24) proved that for
almost all one-dimensional signals, the scale-space map of the zcro-crossings of the sig-
nal convolved with G"(z) over a continuum of scales determines the signal uniquely, up

*The level -crossings of a signal arc the points at which a value v is crossed by the signal, where

v may be non-zero.
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(2) arc commonly found in the scale-space representation, while those of the type labelled (3)
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11

to a multiplicative constant and an additional harmonic function. The proof provides
a method for reconstructing a signal I{z) from knowledge of how the zero-crossings
of I{z) * G"(z) change across scales. The use of Gaussian smoothing is critical to the
completeness of the subsequent feature representation, but the basic theorem applies to
zero-crossings and level-crossings of the result of applying any lincar differential oper-
ator to the Gaussian-filtered signal. Yuille and Poggio also derived a two-dimensional
extension to this result.

Carcful observation of the contours in the scale-space representation of Figure 4c
reveals that the contours either begin at the smallest scale and continue as a single,
isolated contour through larger scales as shown in Figure 4d(1), or they form closed,
inverted bowl-like shapes as shown in Figure 4d(2). Additional zero-crossings are never
created as scale increases; that is, there are no contours in the scale-space representation
of the type shown in Figures 4d(3) and 4d(4). This obscrvation has been supported
by a number of theoretical studies (26-28), which have also shown that the Gaussian
function is the only smoothing function that yields this behavior of subsequent features
across scale. This observation applies to zero—-crossings and level-crossings of the result of
applying any linear differential operator to the Gaussian-smoothed signal. This behavior
of features across scale has been exploited successfully in the qualitative analysis of one—
dimensional signals (25).

To summarize, the analysis of one-dimensional signals has been important for de-
veloping a solid theoretical foundation on which to base methods for detecting intensity
changes in an image. Several theoretical studies attempted to derive an optimal operator
for detecting intensity changes, using a varicty of criteria for evaluating the performance
of the operator. All of these operators essentially perform a smoothing and differentiation
of the image intensitics. Furthermore, the one—dimensional analyses all point to opera-
tors whosce spatial shape is roughly the first or second derivative of a Gaussian function.
Mathematical studies also addressed the information content of representations of image
featurcs and the behavior of these features across multiple scales. These latter studies
also stressed the importance of Gaussian smoothing.* Interestingly, the initial filters in
the human visual system also appear to perform a spatial convolution of the image with
a function that is closely approximated by the second derivative of a Gaussian (29). It is
also well known that the human visual system initially analyzes the retinal image through
a number of spatial filters that differ in the amount of smoothing that is performed in
space and in time (29).

2.2 THE TWO-DIMENSIONAL DETECTION OF INTENSITY
CHANGES

The problems that were addressed in the one- dimensional analysis of intensity signals
also arisc for the detection of intensity changes in two-dimensional images, although
their solution is more complex. The design of optimal operators for performing the

*It should be noted again that some edge detection methods that perform an analytic approx-
imation of the imtensity function may be equivalent to those performing a direct smoothing

operation with a Gaussian function.
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smoothing and differentiation stages, for example, is complicated by a larger selection
of possible derivative operations that can be performed in two dimensions. Many of the
mathematical results regarding the information content of image features and behavior
of features across scale have been extended to two dimensions, but the algorithins for
extracting and describing these features in the image are also more complex than their
one-dimensional counterparts. This section reviews some of the techniques used to detect
and describe intensity changes in two- dimensional images.

Larly work on edge detection primarily used directional first and second derivative
opcrators for performing the two-dimensional differentiation (2-10, 19, 20, 30-32). A
change of intensity that is extended along some orientation in the image gives rise to a
peak in the first derivative of intensity taken in the direction perpendicular to the orien-
tation of the intensity change, or a zero-crossing in the second directional derivative. The
simplest directional operators are formed by extending onc-dimensional cross—sections
such as those shown in Figure 3 along some two-dimensional direction in the image. Di-
rectional operators have differed in the shape of their cross-scctions, both perpendicular
to and along their primary orientations. Macleod (9) and Marr and Poggio (10), for
cxample, used directional derivatives that embodied Gaussian smoothing.

In principle, the computation of the derivatives in two directions, such as the hori-
zontal and vertical directions, is sufficient to detect intensity changes at all oricntations
in the image. Several algorithms, however, use directional operators at a large number of
discrete orientations (for example, sce (4, 7, 8, 14, 32)). A given intensity change is de-
tected by a number of directional operators in this case and the output of the dircctional
operator that yields the largest response is typically used to describe the local intensity
change. Two examples of algorithms of this type are those of Nevatia and Babu (32) and
Canny (14). An cxample of the results of Canny’s algorithm is shown in Figure 5. The
contours of Figurc 5b represent only the positions of the significant intensity changes in
Figure 5a.

Other related differential operators that are used in two dimensions are the first and
sccond derivatives in the direction of the gradient of intensity (14, 17, 22). The intensity

gradient, defined as follows:

o1 a1

5z 3y

is a vector that indicates the direction and magnitude of steepest increase in the two-
dimensioual intensity function. Let n denote the unit vector in the direction of the
gradient. The differential opcrators E!% and % are non—directional operators, in the
sensc that their value does not change when the image is rotated. They are also nonlinear
opcrators, and unlike the lincar differential operators, cannot be combined with the
smoothing function in a single filtering step. Methods such as those of Nevatia and
Babu (32) and Cauny (14) essentially use the directional derivative along the gradicnt

for extracting features.

V2= (

A sccond non-directional operator that is used for detecting intensity changes is the
Laplacian operator, V2 (1, 5, 11--13, 15, 33):

o f  o%f
Vif= <%+ —5.
/ dz’ + dy?
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Combined with a two-dimensional Gaussian sioothing function,

3

Glr) = e,

the Laplacian yiclds the function V2G given by the following expression:
2
ViG = 0% [‘—:—2 - 2] e_n_'vz".

r denotes the distance from the center of the operator and o is the standard deviation of
the two-dimensional Gaussian. The V2@ function is shaped something like a mexican hat
in two dimensions. Figure 6 shows an example of the convolution of an image (Figure 6a)
with a V2G operator (Figure 6b). The Laplacian is a non-dircctional second derivative
operation; the clements in the output of the Laplacian that correspond to the location
of intensity changes in the image arc therefore the zero-crossings. The Zero-crossing
contours derived from Figure 6b are shown in Figure 6¢c. In this case, the zero-crossing
contours were located by detecting the transitions between positive and negative values
in the filtered image, by scanning in the horizontal and vertical directions.* A single
convolution of the image with the non-dircctional V2@ operator allows the detection of
intensity changes at all orientations, for a given scale. The two-dimensional orientation
of a local portion of the zero-crossing contour can be computed from the gradient of the
filtered image (12).

It is not yet clear whether directional or non-directional operators are most appro-
priate for detecting intensity changes. Both have advantages and disadvantages. The
use of the Laplacian is simpler and requires less computation than the use of either
directional derivatives or derivatives in the direction of the gradient. The directional op-
crators, however, yield somewhat better localization of the position of intensity changes
(14, 22), particularly in areas where the orientation of an edge is changing rapidly in the
image (34, 35). Features such as the zero-crossing contours, when derived with non-
directional operators, generally form smooth, closed contours, while features obtained
with directional operators generally do not have such special gecometric properties (17).
Marr and Hildreth (11) showed that if the intensity function along the oricntation of
an intensity change varies at most linearly, then the zero-crossings of the Laplacian ex-
actly coincide with the zero-crossings of a directional operator taken in the dircction
perpendicular to the orientation of the intensity change. Torre and Poggio (17) charac-
terized more formally, the relationship between the zeros of the Laplacian and those of
the sccond derivative in the direction of the gradient, in terms of the geometry of the
two-dimensional intensity surface. With regard to the use of dircctional versus non-
directional derivative operators, it is interesting to note that physiological studics reveal
that the retina analyzes the visual image through a circularly-symmetric filter whose
spatial shape is given by the difference of two Gaussian functions (see, for example, 36,
37), which is closely approximated by the V2@ function.

Mathematical results regarding the information content and behavior across scales
of image features have some bearing on the choice of differential operators. For exam-
ple, Yuille and Poggio (28) showed that in two dimensions, the combination of Gaussian

*The design of robust methods for detecting zero-crossings remains an open arca of research
in edge detection.
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Figure 6. Detecting Intensity Changes with the V3G Operator. (a) A natural image. (b) The
result of convolving the image with a V3G operator. The most positive values are shown in
white and most negative values in black. (c) The zero-crossings of the convolution output shown

in (b).
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smoothing with any lincar differential operator yields zero-crossings or level-crossings
that bchave well with increasing scale, in that no features are created as the size of the
Gaussian is increased. In the casc of the sccond derivative along the gradient, Yuille
and Poggio proved that there is no smoothing function that avoids the creation of zero-
crossings with increasing scale. The completeness of the scale-space representation of
zero-crossings or level-crossings in two dimensions also requires the use of linear differ-
ential operators (24).

The analysis of intensity changes across multiple scales is a difficult problem that has
not yet found a satisfactory solution. There is a clear need to detect intensity changes at
multiple resolutions (2). Important physical changes in the scene take place at different
scales. Spatial filters that allow the description of fine detail in the intensity function
generally miss coarser structures in the image, while thosc that allow the extraction of
coarser features gencrally smooth out important detail. At all resolutions, some of the
detected features may not correspond to real physical changes in the scene. For example,
at the finest resolutions, some of the detected intensity changes may be a consequence of
noise in the sensing process. At coarser resolutions, spurious image features might arise as
a consequence of smoothing together nearby intensity changes. The problems of sorting
out the relevant changes at cach resolution and combining them into a representation
that can be used effectively by later processes are difficult and unsolved problems. We
mention here some of the research that has attempted to address these problems.

Marr and Hildreth (11) explored the combination of zero-crossing descriptions that
arise from convolving an image with V2G operators of different size. An example of
thesc descriptions is illustrated in Figure 7. The zero-crossings from the smaller VG
operator primarily detect the bumpy texture on the surface of the leaf, whereas the zero-
crossing contours from the larger operator also outline some of the highlights on the leaf
surface that are due to changing illumination (the arrows point to onc example). Marr
and Hildreth suggested the use of spatial coincidence of zero-crossings across scale as a
means of indicating the presence of a real edge in the scene. Strong edges such as object
boundaries often give rise to sharp intensity changes in the image that are detected across
a range of scales and in roughly the same location in the image. In the one-dimensional
scale-space representation*, these edges give rise to roughly vertical lines. The existence
of contours in the scale-space representation that are roughly vertical and extend across
a range of scales could be used to infer the presence of a significant physical change at
the corresponding location in the scene.

Witkin (25) developed a method for constructing qualitative descriptions of one-
dimensional signals that uses the scale-space representation. The method embodied two
basic assumptions: (1) the identity assumption, that zero—crossings detected at different
scales, which lic on a common contour in the scale-space description, arise from a single
physical cvent; and (2) the localization assumption, that the true location of a physical
cvent that gives rise to a contour in the scale-space description is the contour’s position
as o tends to zero. Coarser scales were uscd to identify important events in the signal and
finer scales uscd to localize their position. Events that persisted over large changes in scale

*The scale-space representation can be extended to two dimensions, in which the positions of
the zcro-crossings on the z — y plane are represented across multiple operator sizes.
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Figure 7. Multiple Operator Sizes. (a) A natural imnage. (b) and (c) The zero—crossings
that result from convolving the image with V%G operators whose central positive region has a
diameter of 6 and 12 image clements, respectively. The arrows in (a) and (c) indicate a highlight
in the image that is detected by the larger operator.
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also had spccial significance. Witkin’s method, called scale-space filtering, begins with
the scale-space description and collapses it into a discrete tree structure that represents
the qualitative behavior of the signal. Some of the heuristics embodied in this analysis
may be usceful for analyzing two - dimensional images.

Canny (14) used a different approach to combining descriptions of intensity changes
across multiple scales. Features were first detected at a set of discrete scales. The finest
scale description was then used to predict the results of the next larger scale, assuming
that the filter used to derive the larger scale description performs additional smoothing of
the image. In a particular arca of the image, if there was a substantial difference between
the actual description at the larger scale and that predicted by the smaller scale, then it
was assumed that there is an important change taking place at the larger scale that is not
detected at the finer scale. In this case, features detected at the larger scale were then
added to the final feature representation. Empirically, Canny found that most features
were detected at the finest scale and relatively few were added from coarser scales.

Poggio, Voorhecs and Yuille (16) have also begun to explore the issue of detect-
ing intensity changes across scales, using the methods of regularization theory. Recall
that their approach was to find a smoothed intensity function S(z), given the sampled
intensitics I(zx), which minimizes the following expression:

>-(tar) - S(ae))? + A [ 118" @)
k=1

The parameter A controls the scale at which intensity changes are detected. That is, if A
is small, S(z) closely approximates I(zx), and as X increases, S(z) becomes increasingly
more smooth. Regularization theory may suggest methods for choosing the optimal A
for a given set of data, which may be useful for analyzing changes across multiple scales
(16).

To summarize, there has been considerable progress on the detection and description
of intensity changes in two-dimensional images, but there still exists many open ques-
tions. A large body of theoretical and empirical work has addressed the question of what
operators are most appropriate for performing the smoothing and differentiation stages.
Emerging from this work is a better understanding of the advantages and disadvantages
of various opcrators and the rclationship between alternative approaches. It is unlikely
that a single method will be most appropriate for all tasks. The choice of operators
depends in part on the application, the nature of the later processes that use the descrip-
tion of image features, and the available computational resources. Some interesting work
has begun to address the problem of detecting and integrating intensity changes across
multiple scales, but a satisfactory solution to this problem still cludes vision researchers.
A problem that was not discussed here is the computation of propertics such as contrast
and sharpness of the intensity changes. There has been some work on this problem, but
it has not yet reccived a rigorous analytic treatment.

3. RECOVERING PROPERTIES OF THE PHYSICAL WORLD

In the introduction, it was noted that the goal of vision is to recover the physical proper-
tics of objects in the scene, such as the location of object boundaries and the structure,
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color and texture of object surfaces, from the two -dimaensional image that is projected
onto the eye or camcra. The detection of intensity changes in the image represents only,;
a first, meager step toward achieving this goal. This section briefly mentions some of the
arcas of vision that address the recovery of physical propertlos of edgcs in the scene.

The property of edges that is p(‘rhapq most 1mportdnf and moqt studlcd ;g thelr,
three-dimensional structure. The structuro of cdges is conveyed throug,h many sources.
For example, the relative locations of Lorrespondmg edges in left and right stereo v1ews
conveys information about the IOCdtIOIl of the edges in threc-dimensional qpaéé, 'a‘ﬁ
‘relative movement between cdg(‘s inl thic i image can be used to assess their relative position
in space. Three-dimensional structure can also be inferred from the shape of the two—
dimensional projection of edge contours, the way in which edges intersect in the image,
and variations in surface texture. Thesc latter cues are essential in the interpretation of
structure from a single, static photograph. Many algorithins that analyze these sources
are feature-based, in that the initial inferences regarding three-dimensional structure
are made at the locations of features such as significant intensity changes in the image.
Discussion of some of these processes for recovering three-dimensional structure can be
found, for example, in (1, 5, 7, 10, 13, 27, 30, 31, 38-40).

Another important property of edges is the type of physical change from which they
arise. For example, edges might be the consequence of object boundaries, changes in
surface orientation, shadows, highlights or light sources, surface markings, changes in
surface reflectance or material composition, and so on. Ultimately, it is nccessary to
determine the physical source of each cdge in the scene. While some interesting work has
been done in these areas, there remain many open problems (examples can be found in
(1, 5, 7, 13, 30, 31, 38-41)). The recovery of these physical properties of edges is likely
to be a main focus of future research on edge detection.

Acknowledgements: The author wishes to thank Tomaso Poggio for valuable com-
ments on a draft of this article.
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