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1 Introduction 1

1 Introduction

1.1 Models For Grasp, Fingers, and Contacts.

This paper addresses the problem of synthesizing stable grasps in the plane. The
grasped object can be any arbitrary polygon. The grasp is modeled as a set of
grasp points on the edges of the object. Input to the system will be this set of
grasp points and the corresponding set of contacting edges. Ouput will be a set
of spring constants and compressions at the fingers, such that the grasp is stable.
The behavior of the grasped object about its equilibrium is described by a diagonal
stiffness matrix.

Each finger is a virtual spring with programmable stiffness and compression.
The stiffness at a finger tip comes from the stiffnesses at its joint. The stiflness at a
finger joint in turn comes from the fixed stiffness of the tendon and motor, and from
the variable stiffness of the control loop. We assume that each joint has stiffness
control as its high level control loop.

The contacts between the finger tips and the object are point contacts without
friction. So, each finger tip can only exert a force normal to its edge of contact.
Each finger is therefore modeled as a linear spring normal to the edge of contact.

We assume that the weight of the object is small compared to the contact forces,
and so is neglected. A more realistic scenario is a grasp on a polygonal cross section
of a cylinder. The weight is perpendicular to the grasping plane, and is balanced
by the frictional forces at the rolling fingers. The fingers roll without friction in the
grasping plane. Figure 1.

1.2 Main Results

e We prove that all force-closure grasps can be made stable (Corollary 5). The
algorithm for constructing a stable grasp is both simple and efficient (Algo-
rithm 1). It costs O(n) time to synthesize a set of n virtual springs such that
a given force-closure grasp is stable (Complexity 1).

e We can choose the compliance center and the stiffness matrix of the grasp,
or in other words, choose the behavior of the grasped object about its stable
equilibrium. The object behaves as though it is attached to two linear springs
and one angular spring at its compliance center (Figure 4). The grasp is
robust to disturbances. If the object is accidentally displaced, there will be
restoring wrenches that will pull it back to its stable equilibrium. All this
is done automatically, fast, and without any extra cffort from planning or
execution.

e The planning and execution of grasps are greatly simplified, and a lot less
sensitive to crrors, because of the existence of stable configurations. Knowing
that a stable grasp exists on a set of edges, we can just grasp near the desired



The Synthesis of Stable Grasps In the Plane

W

71

T3

Figure 1: An example of planar grasps.

grasp points and let the fingers adjust themselves on these edges until they
end up on the planned grasp points. Any fast oscillation will be damped by
the mechanical damping of the fingers and some nominal damping in the joint
control loops. We will only see the fingers slide and comply to the edges until
the desired grasp is achieved. This execution is fast because the fingers can
be servoed in parallel, independently from cach other.

e The planning and execution of assembly operations is also greatly simplified
and a lot less sensitive to errors, because we can choose the center of com-
pliance and the stiffness matrix. Instead of planning for explicit force and
trajectory, we plan for a compliant behavior of the parts respective to each
other. For example, to do peg and hole insertion, we need to stably grasp the
peg, put the compliance center at the mouth of the hole, and push the peg
into the hole. ! A dextrous hand with active compliance is therefore much
more flexible than the RCC ? gripper, (Whitney 1982).

1This paper shows how to control the position of the compliance center in the horizontal plane
perpendicular to the axis of the hole. To control the position of the compliance center in the
vertical plane containing the axis of the hole, we need point contacts with friction, sce (Nguyen

1986).
2The Remote Center of Compliance wrist is a device with passive compliance whieh puts the center
of complianice at the tip of the peg. The springs and the center of compliance are fixed relative

to the peg.
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1.3 A Grasp Planner

I'igure 1 shows a planar grasp that is both force-closure and stable. Force-closure
is defined as follows:

Definition 1 A grasp G 1is force-closure if and only if we can ezxert, through the set
of grasp poinls, arbitrary force and moment on the object. Fquivalently, any motion
of the objecl 1s resisted by a conlact force, that 1s the object cannot break contact
with the finger tips without some non-zero external work.

Mathematically, let wy = (fix,f,-y,m,»z)f' be the planar wrench that can be ez-
erted through point contact P;. Grasp G 1s force-closure if and only if the set of n
wrenches {w1,...,wn} has rank equal to three and there exists a set of non-negative
coefficients {ay,...,a,} such that:

7”n
~
LO{,'Wi = 0
11

A Grasp Planner can generate a stable grasp G on a set of edges {ej,...,e,} as
follows:

e Synthesize a sct of grasp points {Py,..., P,} for which the grasp G at these
grasp points is force-closure.

Better yet we find the optimal set of grasps with independent regions of con-
tact {ry,...,r,} for the given n edges. The regions are independent from
cach other, in the sense that as long as we pick grasp point P; in region r; the
resulting grasp G = {Py,..., P,} is always force-closure. The set is optimal
in the sense that the smallest region has the largest length for the given set of
edges, so this length gives a lower bound on the accuracy in finger positioning,
(Nguyen 1985). We then pick the mid point of the region r; as the optimal
grasp point F;.

e Synthesize a corresponding set of virtual springs, such that grasp G is stable.
Each finger F; behaves as a virtual spring with lincar stiffness k; and com-
pression o;,. We can also construct the set of n virtual springs such that the
grasp has some desired compliance center and stiflness matrix.

1.4 Other Related Works

Related works can be grouped as follows:

e Force-closure grasps — FForce-closure and total freedom capture the main con-
straint between the fingers and the grasped object. Force-closure is analyzed
in details in (Ohwovoriole 1980, 1984). Efficient algorithms for construct-
ing force-closure grasps are presented in (Nguyen 1985, 1986). Related to
force-closure are the notion of degree ol freedom (Bottema & Roth 1979),
(Hunt 1978), and the solution of systems of linear inequations (Hunt &
Tucker 1956).
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e Llquilibrium grasps - There are many works on analyzing the equilibrium
of forces in a grasp with different types of contact (Salisbury 1982), with
flexible contacts (Cutkosky 1984), or with friction (Abel, Holzmann & Mec-
Carthy 1985). TFinding a good grasp is often formalized as a search of the
space of all grasps with some goal function, such as optimum for internal
forces (Kerr 1984), or sccurity of grasp (Jameson 1985).

e Stable grasps — A stable prchension of a planar hand on a polygon can be
found by centering the hand on the center of mass, and check for grasps that
are stable with respect to rotation, then stable with respect to translation
(Hanafusa & Asada 1977), (Asada 1979). (Baker, Fortune & Grosse 1985)
prove that stable grasps on a convex polygon exist, and present efficient algo-
rithms that require no incremental search.

e Compliant grasps —- We can have active stiflness control of the hands and the
grasped object as in (Salisbury & Craig 1981), (Salisbury 1984, 1982), or build
in some proximity damping as in (Jacobsen, Wood, Knutti & Biggers 1983)
Grasps can be achicved easily with active compliance and slipping at the
fingers as in (Fearing 1984), or by exploiting the passive compliance of the
object with the fingers and the environment as in (Mason 1982). Grasping a
peg and inserting it into a hole is currently done best with a passive compliance
wrist known as the Remote Center of Compliance (Whitney 1982).

2 Planar Grasps With Virtual Springs

Each finger is modelled as a virtual spring with arbitrary finite stiffness. The spring
behavior can be implemented by a control loop which enforces:

f = K(xo — X) (1)

where f is the force applied by the finger tip on the grasped object, K is the stiffness
matrix of the finger at its tip, and x (resp. X,) is the actual (resp. desired) position
of the finger tip.

The contacts between the finger tips and the grasped object are point contacts
without friction. The finger tips slide on the edges of grasped object when this later
is moved away from its equilibrium. The springs will compress or stretch depending
on the configuration of the grasp, and depending on the displacement of the object.

Given that each finger of grasp G behaves like a spring, we would like to derive 1)
the anaiytical conditions for which G is in stable equilibrinm, aud 2) the compliant
behavior of grasp G about this stable equilibrium.
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Figure 2: Contact between the finger and the grasped object.

2.1 Potential Function of a Grasp

Figure 2 shows a finger F; with linear stiffness k;, contacting without friction on an
edge ¢;. The compression of finger F; when the grasped object is moved away by
(z,y,0) from its equilibrium is:

d; (1 — cos0) + p;sin@ + zcos(a; +0) + ysin (o + 0)
cos @

(70} (:c,y,0) = 0Oi t+ (2)
where o; and u; are respectively the orientation and moment of the line of action of
the spring k; about the point of rotation O, d; is the algebraic distance from O to
edge ¢;. The spring k; has direction the normal of the edge e;, and has compression
0o when grasp G is in equilibrium.

Assuming that the weight is perpendicular to the grasping plane of the object,
or that the effect of gravity is negligible, the potential function of grasp G is equal
to the sum of the potentials of all its springs:

n

U(z,y,0) = >, ;- k; o? (z,y,0) (3)

i1

where k;, 0;(z,y,0) are respectively the spring constant and compression at finger
F;, and n is the number of fingers in grasp G.
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2.2 Grasp Equilibrium

The grasp G is in equilibrium if and only if the sum of all forces and moments in
the grasping plane of (7 is zero. This is equivalent to the first partial derivatives of
the potential function U(z,y,0) being all zero. Formally:

Theorem 1 A grasp G composed of n virtual springs ts in equilibrium if and only

if:

au — L —_

gL = > 0i,co80; = 0

9z | (0,0,0) L !

QQ‘ = Y  kioi,sina; = 0 (4)
3y 1(0,0,0) i 1T !

r')U’ - n k —

=i oy A O ; . — 0

D0 ((),U.()) g1 .1 "™i¥0 p’t

where the spring constants k;, and the compressions o,, are all positve. o;, and u;
are respectively the orientalion and the moment of the line of action of spring k;.
The spring k; 1s oriented along the normal of edge e;.

The above system of equations can be rewriten in a force-closure form:
n
Z fioug = 0, Jio 20 (5)
i:l

where f;, = k;0;,, and u; = (cos a;, sin ai,,u,;)t is a unit contact-wrench representing
the point contact at finger F;. Force equilibrium exists if and only if there exists a
set of positive contact forces ® {f1o,..., fno} such that equation (5) holds, or if the
grasp is force-closure. The force-closure condition is sufficient but not necessary for
the existence of force equilibrium. For example, a grasp on two parallel edges can
have force equilibrium with two opposite wrenches instead of the minimum of four
wrenches required for planar force-closure, (Nguyen 1985).

Corollary 1 If grasp G ts force-closure, then we can always find a set of positive
contact forces at the fingers, such that G is in equilibrium.

2.3 Grasp Stability

The grasp G is stable if and only if the potential function U(z,y,0) of G reaches
a local minimum. We can write the Taylor’s expansion of the potential function
U(z,y,0) about the equilibrium as follows:

n

1 1
Ulz,y,0) = ) 5 kiok + x'V Ul(u,o,n) + ’ixt Hl((),o,o) X + .. (6)

11

The contact force is positive (resp. negative) if the finger is pushing into (resp. pulling ont of)
the object.
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where x = (x,y,())". So, a multivariable function reaches a local minimum if 1) the
first partial derivatives are all zero, and 2) the Hessian matrix of the sccond partial
derivatives is positive definite. Formally:

Theorem 2 A grasp G composed of n virtual springs is in stable equiltbrium if both
of the following hold:

o The gradient V U]y, 18 zero.

e The Hessian malriz HI((,’(,’(,) of the potential function U(z,y,0) is positive
definite.

DU 9 0

dx? Jedy  IxdO

7| e e o

Hy = Dy Oyt Dyol at (z,y,0) = (0,0,0)
RZAd LA bl VA /e 0

200z 30Dy D62

Sk, cos? o S kisina;cosay Y ki cos o
= S k;sin oy cos oy 3. k; sin® o 3 kg sin o

Y- ki cos o Y ki sin oy Yok (p} + 0i0ds)

U(z,y,0) is the potential function of grasp G, where (z,y,0) ts the displacement of
the object from its equilibrium configuration.

The first clause is a restatement of force equilibrium, Equation (4). Ior the
second clause, the Hessian matrix I is positive definite if and only if all its principal
minors are strictly greater than zero. A principal minor of a matrix M is the
determinant of an upper left submatrix of M. (Strang 1976).

det H, = ¥ k; cos’a; > 0

Y k; cos? oy 3 k; sin ¢ cos
detH2 _ i i 1 1 1 > 0

S k;sina;cosa; Y k;sin® oy

det Hy = detHp > 0

The first two principal minors are always strictly positive. The third principal minor
does not lead to a simple equation in terms the virtual springs. However, it has two
interesting special cases for which the Hessian matrix H, is diagonalizable. (In the
next section, we’ll see that the stiffness matrix of the grasp about the equilibrium is
cqual to the Hessian matrix. So the stiffness matrix is also diagonalizable, i.e. the
grasped object behaves as though it is connected with three independent springs,
Figure 4.)

1. The compliance center, or point of rotation O of the planar object, is at the
common intersection of the lines of action of the springs, Ifigure 3. This is
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Figure 3: A stable grasp on a convex polygon.

equivalent to all the moments u; equal to zero. The third principal minor
reduces to:
det Hy = (det Hap) Y ki oy, d;

and is strictly positive if and only if ¥ k;0;,d; is positive. This sum is invariant
with the origin, and depends only on the contacting edges and the forces on
these edges. A special case, reported in (Baker et al. 1984), is when the fingers
contact without friction at places where the maximal inscribed circle becomes
tangent to the edges of the convex polygon. Note that all the distances d;
are greater than zero, so the third principal minor is greater than zero. The
grasp is stable respective to rotation and translation. However this grasp is
not force-closure since we cannot exert any torque about O.

. The compliance center, or point of rotation O of the object, is such that the
weighted sum of the virtual springs is zero. The weights in this sum are the
moments of the lines of action of the springs about this compliance center.
Specifically: '

7n
douik =0
i=1

The third principal minor becomes:

det Hy = (det Hy) Y ki (12 + oiods)

and is strictly positive if and only if:

i k; (u;‘) + (J’,‘,,d,‘) > 0
i1



2 Planar Grasps With Virtual Springs 9

The two special cases give only sufficient conditions for the existence of stable
grasps. Note that the first special case is included in the second one. The next
section will explore in detail the two suflicient conditions of the second special case.
We'll prove that a force-closure grasp can always be made stable, and we’ll show a
simple and direct algorithm for constructing stable grasps. For the moment, let’s
summarize the sullicient conditions for stability in the following corollary:

Corollary 2 A grasp G composed of n virtual springs 1s in stable equilibrium if all
of the following hold:

e Grasp G 1s in equilibrium, 1.e.:

n
Wi = 0 (8)
il
where Wy = — k; 0y, (cos a;, sin oy, ;)" 1s the contact wrench at finger F.

e The center of compliance and the wirtual springs are such that:
> ki =0 (9)
i1

. t
where k; = k; (cos o, sin o).

o The set of spring constants and the set of spring compressions are such that:

k; (,uf “+ 00 d1) > 0 (10)

n
i=1

where k; and o;, are respectively the stiffness and the compression at equilib-
rium; «o;, p; are the orientation and the moment of the line of action of spring
k; about the compliance center O.

2.4 Compliance About Stable Equilibrium

The restoring wrench applied on the grasped object is equal to the negative of the
gradient of U(z,y,0). Assuming that the disturbances of the grasped object from
its stable equilibrium are small, we deduce from the Taylor’s expansion of U(z,y,0)
that:

w = — VU(z,y,0)
z (11)

~ - H'(n,n,o) Y

0

The compliance behavior of the grasped object about its stable equilibrium is de-
scribed by a stiflness matrix which is equal to the Hessian matrix.
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The above approximation holds for displacement in orientation ¢ less than 10
degrees, and for lincar displacement in the zy-plane less than one tenth of the size
of the grasped object. The compliance of the grasp is more sensitive to errors in
orientation than location. The reason is that the stiffness normal to the edge of
contact varies drastically as we rotate the object close to 90 degrees. We might no
longer have restoring wrench in the correct direction, and the grasp might no longer
be force-closure. If there is no error in orientation, then the restoring force opposite
to a linear displacement always exists regardless of the amount of displacement.
The restoring force is nothing more than the non-null sum of the contact forces
generated by the springs.

From the previous section, we have seen that if the compliance center is chosen
such that equation (9) holds, then the Hessian matrix has a diagonal form. This
means that the stiffness matrix also has a diagonal form:

K = H|(n,(),0)

S k;cos? o S k;sina;cosa; 0 (12)
= S k;sina;cosa; Y. k;sin? o 0
0 0 ki (1? + 0i0d;)

Note that the angular displacement is decoupled from the two linear displace-
ments of the object. The grasped object behaves as though there are three inde-
pendent springs attached to it. Figure 4.

e An angular spring with stiffness kjy, and axis perpendicular to the grasping
plane and going through the center of compliance O of the object.

ky = f: k; (Mf + Uiodi) (13)
-1

e Two linear springs with respective stiffness k,, k;, along two perpendicular
axes in the grasping plane of the object. The stiffncsses and directions of
these two linear springs are respectively the eigenvalues and the cigenvectors
of the following 2 X 2 symmetric matrix:

K,y = (14)

Y k; cos? o 3" k; sin o; cos o
Y k;sino; cosa; S k;sin? oy

The two eigenvalues k,, k;, are both greater than zero because K, is positive

definite. The two coresponding cigenvectors are perpendicular because K,y is

symmetric. We have a linear stiflness field in the shape of an ellipse.
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Figure 4: Compliance of the grasped object about its stable equilibrium.

The matrix K,, is nothing more than the sum of the individual stiffness matrices
of the fingers expressed in the global frame of the hand:

2

K. — y7 k cos? o sin o; cos o
hid =1\ sina;cosoy  sin’ oy

— T, Rot (o) ( o g) Rot (—a;)

where Rot(c;) is the rotation from the base reference frame to the local frame at
the finger tip.

The linear stiffness matrices add up to K,,. The angular effects of these virtual
springs also add up into the first sum of the angular stiffness kj:

ke = Y. kipl + Y fiod:
i=1 i=1

This angular effect depends on the moments of the lines of action of the springs
about the center of rotation O. The second sum depends on the configuration of
the fingers, whether the grasp is an outside-in or inside-out grasp (sce Section 3.2).
This sum describes the effect of the grasp configuration in resisting rotation of the
grasped object about O.
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3 Construction of Stable Grasps

In the previous section, we have derived the analytical conditions for stable equi-
librium. In this section, we will 1) explore the physical meanings of the analytical
conditions (9) and (10), 2) prove that a force-closure grasp can always be made
stable, and 3) give a simple algorithm for constructing a stable grasp assuming that
it is force-closure.

3.1 Center of Compliance

~ From Section 2.4, we saw that the stilfness matrix is diagonalizable with indepen-
dent lincar and angular springs if and only if cquation (9) holds. Let’s rewrite
equation (9) to make explicit the region in which the compliance center of the grasp
must be:

Yok = D7 |l (sign(u)ki) = O
i1 i1

When can we find a sct of positive spring constants {ky,...,k,} such that the
above equation holds? The equation looks very much like the force-closure condi-
tion in the plane, except that we deal with only force directions. It can always be
satisfied if the vectors {sign (u;)k;} span the space of all directions in the plane
(Nguyen 1985). The sign of the moment u; depends on the position of the compli-
ance center with respect to the line of action of the virtual springs. This means that
the compliance center must be inside some polygon dclimited by the lines of action
of the virtual springs. This polygon is called the compliance polygon of the grasp.
Figure 5 shows the compliance polygon {1, within which the compliance center of
grasp G must be.

We now prove that if the grasp is force-closure then the compliance polygon
always exists, and so equation (9) can be satisfied. Note that if grasp G is force-
closure then the two cones generated by (—ky, —ka) and (—ks, —k4) counter-overlap
in a non-zero convex polygon Cg, Figure 6. If we pick the compliance center O inside
this convex polygon, then the springs k; and ks, resp. ko and k4, have negative,
resp. positive, moments about O. One can check that there exists a positive linear
combination of —kj,kg, —ks, kg such that one walks counter-clock-wise along the
boundary of the convex polygon bounded by the lines of action of the springs.
Equation (9) holds, and so the compliance polygon is always non null for force-
closure grasps. The following corollary formalizes the above results:

Corollary 3 If grasp G s force-closure then:

e The compliance polygon of grasp G, denoted Q¢;, s non empty. The compli-
ance polygon Qg has boundary supports the lines of action of the springs. Qg
s the domain of the reference point O for which the vectors {sign(u;)ki} span
the space of ull directions in the plane.
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Figure 5: Compliance polygon of a grasp.

e The convez polygon Cg bounded by the lines of action of the springs is included
in the compliance polygon (.

o If we pick the compliance center O of grasp G within the polygon (g, then
there always exists a set of spring constants ky, ..., k, such that the stiffness
matriz of grasp G is diagonalizable, or such that equation (9) holds.

We prefer to pick the compliance center within the convex polygon Cg so that the
spring constants are more or less equal. Within this polygon, the desired location
of the compliance center O in the global frame depends on the task at hand. For
example, to insert a peg into a hole, we ideally want to put the center of compliance
at the mouth of the hole (Whitney 1982). Note that grasping the peg with force-
closure requires to put fingers on all four sides of the peg, which is unfeasible!
Luckily we can have force-closure with two point contacts with friction, and so we
can grasp at the top of the peg and at the same time have a compliance center at
the mouth of the hole, * (Nguyen 1986). We achieve the same effect as the RCC
gripper. But, with an active compliance hand, we have more flexibility in choosing
the compliance center and the stiffness matrix of the grasp. We can achieve both a
stable grasp and a desired compliant behavior of the grasped object during assembly.

4The analysis of stable grasps with 2 point contacts with friction is similar to the analysis given in
this paper. The form of the stiflness matrix is the same except the expression of kp has a minus
sign instead of a plus sign. ky = Y k; (;Lf - ai(,d,-)
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pik

paky

> wmki = 0

Figure 6: Compliance polygon always exists for force-closure grasps.

3.2 Outside-In / Inside-Out Grasps

We have seen in Section 2.4 that the left hand side of inequation (10) is nothing
more than the angular stiffness ky of grasp G when the object is slightly rotated
from its stable orientation. To have restoring couples in the correct direction, this
stiffness must be strictly positive. The stiffness ky can be rewritten as:

ke = X%, ki (U + 0iods)
= Yr, kp? + TN fiods

where f;, = k;o;, is the contact force on edge e; when grasp G is in equilibrium.
The first sum in the above expression depends on the placement of the compliance
center inside the compliance polygon ;. This sum is positive and increases as the
compliance center moves to the boundary of §1;;. The second sum is invariant with
the location of the compliance center. It depends only on the contact forces and
the relative configuration of the contacting edges.

How can we have positive angular stiffness ky? First, if the distances d; are
all strictly positive, then the angular stiffness ky is also strictly positive. This
observation leads to a classification of grasp configurations into three categories
defined as follows:

e A grasp G is called an outstde-in grasp if and only if the closed half planes of
the contacting edges of G intersect.

e A grasp G is called an inside-out grasp if and only if the open half planes of
the contacting edges of G intersect.
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Figure 7: Outside-in / inside-out / mixed grasps.

e A grasp G is called a mized grasp if and only if neither the closed half planes
nor the open half planes intersect.

Grasps on the boundary of convex objects are examples of outside-in grasps.
Grasps on the boundary of convex holes are examples of inside-out grasps. If a
grasp G has exactly the minimum number of contacts required for force-closure,
then grasp G is either outside-in or inside-out grasp. Mixed grasps come up only
when there are more contacts than the minimum of two for point contacts with
friction, and four for point contacts without friction, Figure 7.

From the expression of the angular stiffness ky, we see that it is always strictly
positive for outside-in grasps. We can prove this by noting that the second sum
is invariant to the position of the origin, so we can pick the origin to be in the
intersection of the closed half planes, and have all the distances d; positive.

The angular stiffness ks may be negative for inside-out, and mixed grasps. Fig-
ure 7 shows two grasps on a same triangular ring. One would suspect that the
two grasps on the triangular ring have the same behavior. But surprisingly, one
finds that the outside-in grasp is stable, while the inside-out grasp is in an unstable
equilibrium, corresponding to a local maximum of the potential function U(z,y,0),
or a negative stiffness ky.

Luckily, with force-closure grasps, we have another positive term in the ex-
pression of k;, which depends on the moments of the springs about the center of
comupliance. By scaling up the sct of spring constants while keeping constant the
set of contact forces we can make the first sum greater than the second sum, and
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have ky strictly positive. This is possible only if the moments y; are not all zero,
which means that the lines of action of the virtual springs do not all pass through

. v . -, . . . o, n
the compliance center. A suflicient condition is again the force-closure condition. °

The following corollary formalizes the above interesting results:

Corollary 4 The angular stiffness kg of grasp G can be made strictly positive if
etther of the following s true:
e Grasp G 1s an oulside-in grasp.

e The compliance center of G 1s not at the common intersection of the lines of
action of the wirtual springs.

e (Grasp G 1s force closure.

3.3 Making a Force-Closure Grasp Stable

If grasp G is force-closure, then:

e We can always synthesize a set of contact forces {fio,. .., fno} at the finger
tips such that grasp G has force equilibrium (Corollary 1).

e We can choose the compliance center and the corresponding set of spring
constants {ky,...,k,}, such that the stiffness matrix K of the grasp is diag-
onalizable (Corollary 3).

e We can make the angular stiffness ky strictly positive, and so have the stiffness
matrix K¢ positive definite (Corollary 4).

From Corollary 2, we conclude that we can always make a force-closure grasp
stable, and this is the culminating corollary of this paper.

Corollary 5 Let G be a planar grasp with n fingers, each is a virtual spring with
arbitrary finite stiffness k; and compression o;,. If grasp G 1s force-closure then we
can always synthesize a compliance center O and a set of n virtual springs such that

both of the following hold:

o The grasp configuration G s in a stable equiltbrium.

e The compliance behavior of the grasped object about its compliance center O 1s
described by three orthogonal springs: two linear springs in the grasping plane
of the object, and one angular spring about compliance center O.

5 . . - . - .

oIf the lines of action of the virtual springs all intersect at a common point, then we cannot generate
couple, so the grasp is not foree-closure. Conversely, the lines of action of the virtual springs of a
force-closure grasp never all intersect at a common poiut.
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Algorithm 1 A force-closure grasp G with n virlual springs can be made stable as

follows:

1.

Find a set of contact forces {fioy---,frno} such that force equilibrium 1s
achieved.

Pick a compliance center O from the compliance polygon (¢, or preferably
from the restricted convez polygon Cg;.

Find a set of positive spring constants {ki,...,k,} such that:
Y kipiug = 0
il

where u; and u; are respectively the direction and moment of the virtual spring
k; about the compliance center O.

Check that the angular stiffness kg of grasp G s strictly positive:

n

ky = Z k; (,U? + Uiodi)

t-1

If not scale up the set of spring constants {ky,...,k,} keeping the set of contact
forces {fioy-- - fno} unchanged, until kg ts greater than zero.

Find the virtual compressions at equilibrium:

1
10 ki 10
Output the set of spring constants {k;,...,k,}, and the respective set of com-
pressions {Oo,- .. ,0n0} Such that each finger F; behaves as a virtual spring as

follows:
F; _ [k O Oio — O;
- i) - (e o) %]

where F; 1s the force applied by the finger tip F; on the grasped object, and
(o3, 'r,-)t 1s the displacement of the finger normal and tangential to the ith con-
tacting edge.

Complexity 1 A force-closure grasp G with n wirtual springs can be made stable
in O (n) time. We assume that the n springs are sorted by their directions.

Proof:

e Step 1is equivalent to selving a system of three equations in n unknowns, and

so costs O (n) time. Iquation (4). Similarly, step 3 costs O (n) time.
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For step 2, the complete compliance polygon (1 is expensive to compute
because we have to check for force-direction closure on each of the O (n?)
polygons from the plane partition induced by the n lines of action. Each
check will cost O (n) time, so the compliance polygon (1; can be computed in
O (n®) time.

However, we can use the convex polygon C¢; bounded by the lines of action of
the virtual springs as a subset of {1, and pick the compliance polygon from
it. As noted earlier, we prefer to pick a compliance center within the convex
polygon Cg; so that the springs are more or less equal. The drawback is that
Cg is smaller than (). The convex polygon C; can be built in O (n) time
assuming that the edge normals are sorted. So, we can pick a compliance
center in O (n) time.

The remaining steps 4, 5, and 6 all costs O (n) time each.

We conclude that a force-closure grasp can be made stable in O (n) time. ®

3.4

Controlling a Compliant Grasp

Figure 8 shows the relationships between force and instantaneous displacement at
three different levels:

At the grasped object, we want to choose a compliance center and a stiffness
matrix for grasp G such that the grasped object is stable and have restoring
wrenches as follows:

? - Kgdx

From the desired compliance at the grasped object, we would like to deduce
the corresponding set of spring constants and compressions at the finger tips:

F = Kpdm

From the virtual springs at the finger tips, we then would like to derive the
stiffness at all of its joints:
T = K;df

We can go further and derive the gains in the control loop of each joint, such
that the above joint compliance is enforced. Or we can assume that each joint
has a stiffness control loop with programmable stiffness.

From the kinematics of the linked fingers, we know that the force and veloc-
ity at each finger tip relate with its corresponding joint torques and velocities by
the Jacobian J. Similarly, from the kinematics of the grasp, the velocity and ex-
ternal/internal forces applied at the grasped object velate with ihe velocities and
forces at the finger tips by the grasp matrix G, (Salisbury & Craig 1981). We get
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K¢
dx —_— F grasped object
G T l G'
Kr
dz —_— F finger tips
¢
7 A X, l J
dy —_— T finger joints
_— — = joint control loops

Figure 8: Linked chains and their loop equations.

loops from which we can derive very easily the stiffness matrix of one level in terms
of the stiffness matrix of another level. For example, given the desired compliance
K at the grasped object, we deduce:

Kr = G'Kg G
K; = J'G'KegGJ

This derivation is valid if the fingers of the hand and the grasped object are con-
nected in a linked chain. The linked-chain condition is equivalent to having fixed
grasp points, and being able to exert forces both ways through these grasp points.

Unfortunately, the grasp points are not fixed because there is no friction between
the finger tips and the edges of the object. So, the kinematics of the closed loop
chain change as the object is moved between the fingers. Also, there is no glue
between the finger tips and the object, so we can only push on the object, and not
pull this later. Finally, we can only press a linear spring normal to the edge of
contact because there is no tangential force due to no friction. This is why we have
to explicitly model the contacts and the fingers, then derive the potential function
and the compliance of the grasp.

This paper discusses in great detail the constraints in the top loop. Algorithm 1
shows how to synthesize a set of virtual springs at the finger tips to get a desired
compliance K/, of the grasped object. K/, is the Hessian matrix ol the potential
function of the virtual springs k; about the equilibrium. K, is the stiflness matrix of
the springs k; when expressed in the global reference frame. The stiffness matrices
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at the object K/., and at the fingers Kj, are related by the conservation of the
potential energy in the system, not by the fixed grasp configuration G.

From the kinematics of the fingers, we can deduce the stiffness at the finger
joints:

K! = J'KLJ

and use this to control the joints. Each finger can be servoed independently, and
so the execution of a grasp can very fast. Any oscillation will hopefully be damped
by the mechanical damping in the fingers and some nominal damping in the joint
control loops.

Grasp exccution is greatly simplified and a lot less sensitive to errors, because of
the existence of stable configurations. Knowing that a stable grasp cxists on a set
of edges, we can just grasp near the desired stable grasp points and let the fingers
adjust themselves on these edges until they end up on the planned grasp points.
The grasp is also robust to disturbances. If the object is accidentally displaced,
there will be restoring wrenches that will pull it back to its stable equilibrium. All
this is done automatically, quickly, and without any extra effort from planning and
execution.

4 Conclusion and Extensions

The contact between the grasped object and the fingers of a dextrous hand is differ-
ent from traditional bar linkages, or open linked arins in that the links vary as the
object is moved between the fingers. We have shown how to analyze a compliant
grasp by explicitly modeling the contacts and the fingers. From the potential func-
tion of the grasp, we deduce the sufficient conditions fer equilibrium and stability.
We presented an algorithm for synthesizing a set of virtual springs at the finger tips
to get a desired compliance of the grasped object. We also showed how to servo
a compliant grasp with stiffness control at the finger joints. The most important
result of this paper is: “All force-closure grasps can be made stable”. The result is
proved for the case the fingers behave as virtual springs, and the contacts between
the finger tips and the object are frictionless.

The same line of analysis and synthesis can be worked out for other types of
grasps such as:

e Planar grasps with point contacts with friction.
e 3D grasps with point contacts with/without friction.
e 3D grasps with solt finger contacts.

e Grasps with more complex contacts, such as edge/plane contacts, plane/plane
contacts, etc...
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Some of the extensions mentioned above are currently explored and will be reported
in (Nguyen 1986). Experiments also need to be done, and we’ll use the Salisbury’s
three-finger hand to experiment with compliant grasps.
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