MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 865 October 1985

Concurrent Programming Using Actors:
Exploiting Large-Scale Parallelism

Gul Agha
Carl Hewitt

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

June 8, 1986

Abstract

We argue that the ability to model shared objects with changing
local states, dynamic reconfigurability, and inherent parallelism are
desirable properties of any model of concurrency. The actor model
addresses these issues in a uniform framework. This paper briefly de-
scribes the concwrrent programming language Act$ and the principles
that have guided its development. Act$ advances the state of the
art in programming languages by combining the advantages of object-
oriented programming with those of functional programming. We also
discuss considerations relevant to large-scale parallelism in the context
of open systems, and define an abstract model which establishes the
equivalence of systems defined by actor programs.

The report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory’s
artificial intelligence research is provided in part by the the System Develop-
ment Foundation and in part by the Advanced Research Projects Agency of
the Department of Defense under Office of Naval Research contract NO0O14-
80-C-0505. The authors acknowledge helpful comments from Fanya Mon-
talvo, Carl Manning and Tom Reinhardt.

This empty page was substituted for a
blank page in the original document.

1 BACKGROUND 2

1 Background

The theory of concurrent programming languages has been an exciting area
of research in the last decade. Although no consensus has emerged on a
single model of concurrency, many advances have been made in the develop-
ment of various contending models. There have also been some consistent
paradigm shifts in the approach to concurrency; an interesting discussion of
such paradigm shifts may be found in [Pratt 83].

The actor model of computation has developed contemporaneously in
the last decade along with other models based on Petri Nets, the A-calculus,
and communicating sequential processes. There has been a great deal of
useful cross fertilization between the various schools of thought in address-
ing the very difficult issues of concurrent systems. Over the years Hoare,
Kahn, MacQueen, Milner, Petri, Plotkin, and Pratt, have provided fruitful
interaction on the development of the actor model.

Landin [65] first showed how Algol 60 programs could be represented in
applicative-order A-calculus. Kahn and MacQueen [77] developed this area
further by expanding on the construct of streams which captured functional
systems. Brock and Ackerman(77] extended the Kahn-MacQueen model
with the addition of inter-stream ordering information in order to make it
more suitable for concurrent computation. Pratt [82] generalized the func-
tional model by developing a theory of processes in terms of sets of partially
ordered multisets (pomsets) of events. Each pomset in Pratt’s Process Model
represents a trace of events. Pratt’s model satisfies several properties de-
sirable in any model of concurrent computation. For example, the model
does not assume the existence of global states: a trace is only a partial
order of events. Thus the model is compatible with the laws of parallel pro-
cessing formulated in [Hewitt and Baker 77] and shown to be consistent in
[Clinger 81].

On the practical side, McCarthy [59] first made functional programming
available by developing LISP. The standard dialect of LISP now incorpo-
rates lexical scoping and closures which makes the semantics simpler and
programming modular [Steele, et al 84]. Act$ generalizes the lexical scop-
ing and upward closures of LISP in the context of parallel systems.

Hoare [78] proposed a language for concurrency, called CSP, based on
sequential processes. CSP, like Act3, enhances modularity by not permit-
ting any shared variable between processes; instead, communication is the
primitive by which processes may affect each other. At a more theoretical
level, Milner [80] has proposed the Calculus of Concurrent Systems (CCS).

2 THE ACTOR MODEL 3

One of the nice properties of CCS is its elegant algebraic operations. In
both CSP and CCS, communication is synchronous and resembles a hand-
shake. In contradistinction, the actor model postulates the existence of a
mail system which buffers communication.

The plan of this paper is as follows: the first section outlines the actor
model. The second section describes the Act3 language. The final section
discusses the general principles of open systems and there relation to the
actor model.

2 The Actor Model

In this section we motivate the primitives of the actor model. We will outline
the basic issues and describe a set of minimal constructs necessary for an
actor language.

2.1 Foundational Issues

A number of difficult open problems and foundational issues in the design of
programming languages for concurrent systems merit attention. We consider
the following three significant:

1. Shared Resources. The programming model must deal with the
problem of shared resources which may change their internal state.
A simple example of such an object in a concurrent environment is a
shared bank account. Purely functional systems, unlike object-based
systems, are incapable of implementing such objects [Hewitt, et al 84].

2. Dynamic Reconfigurability. The programming model must deal
with the creation of new objects in the evolution of the system. In
particular, to accommodate the creation of new objects, there must
be a mechanism for communicating the existence of such new objects
(or processes) to already existing ones. Thus when a bank creates a
new account, it should be able to inform its book-keeping process of
the existence of such an account. Since the interconnection topology
of processes is static in systems such as CSP and dataflow [Brock 83],
this requirement is necessarily violated these systems.

3. Inherent Parallelism. The programming model should exhibit in-
herent parallelism in the sense that the amount of available concur-
rency should be clear from the structure of programs. It should not

2 THE ACTOR MODEL 4

be necessary to do extensive reasoning to uncover implicit parallelism
that is hidden by inappropriate language constructs. In particular, the
assignment command is a bottleneck inherited from the von Neumann
architecture. Assignment commands tie the statements in the body of
a code in such a way that only through flow analysis is it possible to
determine which statements can be executed concurrently. Functional
Programming has the advantage of being inherently parallel because
it allows the possibility of concurrent execution of all subexpressions
in a program [Backus 78].

The object-based and functional, A-calculus-based languages represent
two of the most important schools of thought in programming language the-
ory today. As the above discussion suggests, both have certain advantages.
Act8 attempts to integrate both in a manner that preserves some of their
attractive features.

2.2 Basic Constructs

The actor abstraction has been developed to exploit message-passing as a
basis for concurrent computation [Hewitt 77; Hewitt and Baker 77]. The
actor construct has been formalized by providing a mathematical definition
for the behavior of an actor system [Agha 85]. Essentially, an actor is a
computational agent which carries out its actions in response to processing
a communication. The actions it may perform are:

e Send communications to itself or to other actors.
e Create more actors.

e Specify the replacement behavior.

In order to send a communication, the sender must specify a mail ad-
dress, called the target. The matl system buffers the communication until it
can be delivered to the target. However, the order in which the communica-
tions are delivered is nondeterministic. The buffering of communications has
the consequence that actor languages support recursion. In languages re-
lying on synchronous communication, any recursive procedure immediately
leads to deadlock [Hewitt, et al 1984] [Agha 1985].

All actors have their own (unique) mail addresses which may be commu-
nicated to other actors just as any other value. Thus mail addresses provide

2 THE ACTOR MODEL 5

a simple mechanism for dynamically reconfiguring a system of actors. The
only way to affect the behavior of an actor is to send it a communication.
When an actor accepts a communication, it carries out the actions specified
by its behavior; one of these actions is to specify a replacement actor which
will then accept the next communication received at the mail address.

Two important observations need to be made about replacement. First,
replacement implements local state change while preserving referential trans-
parency of the identifiers used in a program. An identifier for an object
always denotes that object although the behavior associated with the ob-
ject may be subject to change. In particular, the code for an actor does
not contain spurious variables to which different values are assigned (see
[Stoy 77] for a thorough discussion of referential transparency). Second,
since the computation of a replacement actor is an action which may be
carried out concurrently with other actions performed by an actor, the re-
placement process is intrinsically concurrent. The replacement actor cannot
affect the behavior of the replaced actor.

The net result of these properties of replacement actors is that compu-
tation in actor systems can be speeded-up by pipelining the actions to be
performed. As soon as the replacement actor has been computed, the next
communication can be processed even as other actions implied by the cur-
rent communication are still being carried out. In actor-based architectures,
the only constraints on the speed of execution stem from the logical depen-
dencies in the computation and the limitations imposed by the hardware
resources. In von Neumann architectures, the data dependencies caused by
assignments to a global store restrict the degree of pipelining (in the form
of instruction pre-fetching) that can be realized [Hwang and Briggs 84].

All actors in a system carry out their actions concurrently. In partic-
ular, this has the implication that message-passing can be used to spawn
concurrency: An actor, in response to a communication, may send several
communications to other actors. The creation of new actors also increases
the amount of parallelism feasible in a system. Specifically, continuations
can be incorporated as first-class objects. The dynamic creation of cus-
tomers in actor systems (discussed later) provides a parallel analogue to
such continuations.

2.3 Transitions on Configurations

To describe an actor system, we need to specify several components. In
particular, we must specify the behaviors associated with the mail addresses

2 THE ACTOR MODEL 6

internal to the system. This is done by specifying a local states function
which basically gives us the behavior of each mail address (i.e., its response to
the next communication it receives). We must also specify the unprocessed
communications together with their targets. The communication and target
pairs are referred to as tasks. A configuration is an instantaneous snapshot of
an actor system from some viewpoint. Each configuration has the following
parts:

e A local states function which basically gives us the behavior of a mail
address. The actors whose behaviors are specified by the local states
function are elements of the population.

o A set of unprocessed tasks for communications which have been sent
but not yet accepted.

e A subset of the population, called receptionist actors, which may re-
ceive communications from actors outside the configuration. The set of
receptionists can not be mechanically determined from the local states
function of a configuration: it must be specified using knowledge about
the larger environment.

e A set of external actors whose behavior is not specified by the local
states function, but to whom communications may be sent.

A fundamental transition relation on configurations can be defined by
applying the behavior function of the target of some unprocessed task to
the communication contained in that task (see the definition below). Given
the nondeterminism in the arrival order of communications, this transition
relation represents the different possible paths a computation may take. The
processing of communications may, of course, overlap in time. We represent
only the acceptance of a communication as an event. Different transition
paths may be observed by different viewpoints, provided that these paths are
consistent with each other (i.e. do not violate constraints such as causality).

Definition 1 Possible Transition. Let ¢; and ¢z be two configurations.
c1 s said to have a possible transition to co by processing a task v, symbok-
cally, ¢y —— ey ifr € tasks(c1), and furthermore, if a is the target of the
of the task then the tasks in co are

tasks(cz) = (tasks(cy) —{r}uT

3 THE ACT3 LANGUAGE 7

where T 1s the set of tasks created by o in response to 7, and the actors in
c2 are
actors(cz) = (actors(c1) — {a})U AU {c'}

where A are the actors created by o in response to r and o' is the replacement
specified by . Note that o and o' have the same mail address.

In the actor model, the delivery of all communications is guaranteed.
This form of fairness can be expressed by defining a second transition re-
lation which is based on processing finite sets of tasks until a particular
task is processed, instead of simply processing a single task [Agha 84]. A
denotational semantics for actors can be defined in terms of the transition
relations; this semantics maps actor programs into the initial configuration
they define [Agha 85].

3 The Act3 Language

Act8 is an actor-based programming language which has been implemented
on the Apiary architecture. The Apiary is a parallel architecture based on
a network of Lisp machines and supports features such as dynamic load
balancing, real-time garbage collection, and the mail system abstraction
[Hewitt 80]. Act3 is a descendant of Act2 [Theriault 83] and is written in a
LISP-based interface language called Scripter.

A program in Act3 is a collection of behavior definitions and commands
to create actors and send communications to them. A behavior definition
consists of an identifier (by which the actor may be known), a list of the
names of acquaintances, and a script (which defines the behavior of the actor
in response to the communication it accepts). When an actor is created its
acquaintances must be specified. For example, a bank-account actor may
have an acquaintance representing its current balance.

When a communication is accepted by an actor, an environment is de-
fined in which the script of the actor is to be executed. The commands in
the script of an actor can be executed in parallel. Thus Act8 differs funda-
mentally from programming languages based on communicating sequential
processes since the commands in the body of such processes must be exe-
cuted sequentially.

We will first provide the syntax for a kernel language, Act, and use it
to explain the basic concepts of message-passing. We then discuss some

3 THE ACT3 LANGUAGE 8

extensions to Act which are provided in Act8. Finally, we illustrate these
extensions by means of examples.

3.1 The Kernel Language Act

The language Act is a sufficient kernel for the Act$ language: all constructs
in the Act8 language can be translated into Act [Agha 85]. Since there are
so few constructs in Act, it will be easier to understand the primitives in-
volved by studying Act. The acquaintance list in Act is specified by using
identifiers which match a pattern. The pattern provides for freedom from
positional correspondence when new actors are created. Patterns are used
in pattern matching to bind identifiers, and authenticate and extract infor-
mation from data structures. The simplest pattern is a bind pattern which
literally binds the value of an identifier to the value of an expression in the
current environment. We will not concern ourselves with other patterns
here.

When an actor accepts a communication it is pattern-matched with the
commaunication handlers in the actor’s code and dispatched to the handler
of the pattern it satisfies. The bindings for the communication list are ex-
tracted by the pattern matching as well. The syntax of behavior definitions
in Act programs is given below.

(act program) ::=
(behavior definition)* ({(command)*)
(behavior definition) ::=
(define (id {(with identifier (pattern)) }*)
(communication handler)*)

(communication handler) ::=
(Is-Communication (pattern) do {(command)*)

The syntax of commands to create actors and send communications is
the same in actor definitions as their syntax at the program level. There are
four kinds of commands; we describe these in turn. send commands are used
to send communications. The syntax of the send command is the keyword
send followed by two expressions: The two expressions are evaluated; the
first expression must evaluate to a mail address while the second may have
an arbitrary value. The result of the send command is to send the value
of the second expression to the target specified by the first expression. let

3 THE ACT3 LANGUAGE 9

commands bind expressions to identifiers in the body of commands nested
within their scope. In particular, let commands are used to bind the mail
addresses of newly created actors. new ezpressions create new actors and
return their mail address. A new expression is given by the keyword new
followed by an identifier representing a behavior definition, and a list of
acquaintances.

The conditional command provides a mechanism for branching, and the
become command specifies the replacement actor. The expression in the
become command may be a new ezxpression in which case the actor becomes
a forwarding actor to the actor created by the new ezpression; in this case
the two actors are equivalent in a very strong sense. The expression can also
be the mail address of an existing actor, in which case all communications
sent to the replaced actor are forwarded to the existing actor.

(command) ::= (let command) | (conditional command) |
(send command) | (become command)

let command) (let ({let binding)*) do (command)*)
g

(conditional command) ::= (if (expression)
(then do (command)*)
(else do {(command)*))

(send command) ::= (send (expression) (expression))
(become command) ::= (become (expression))

A Recursive Factorial. We first provide a simple factorial example to il-
lustrate the use of message-passing in actors to implement control structures.
The code makes the low level detail in the execution of an actor language
explicit. We will subsequently provide some higher-level constructs which
will make the expression of programs easier. The factorial actor creates cus-
tomers, called FactCust, whose behavior is also given below. Note that the
behavior of a factorial is unserialized, i.e, it is not history sensitive.

(define (Factorial())
(Is-Communication (a doit (with customer =m)
(with number =n)) do

(become Factorial)
(if (NOT (= n 0))
(then (send m 1))
(else (let (x = (new FactCust (with customer m)
(with number n)))
(send Factorial (a do (with customer x)
(with number n-1))))))))

3 THE ACT3 LANGUAGE 10

(define (FactCust (with customer =m)

(with number =n))

(Is-Communication (a number k) do
(send m n*k)))

The acceptance of a communication containing an integer by Factorial
causes n to be bound to the integer and concurrently for factorial to become
“itself” so that it can immediately process another integer without any in-
teraction with the processing of the integer it has just received. When the
factorial actor processes a communication with a non-zero integer, n, it will:

e Create an actor whose behavior will be to multiply n with an integer it
receives and send the reply to the mail address to which the factorial
of n was to be sent.

e Send itself the “request” to evaluate the factorial of n — 1 and send
the value to the customer it created.

The customer created by the factorial actor is also an independent actor.
The work done to compute a factorial is conceptually distributed by the
creation of the customer. In particular, this implies that computation can
be speeded-up if several factorials are to be evaluated concurrently. In the
case of the factorial, the same result can be obtained by multiple activations
of a given function. However, the solution using multiple activations does
not work if the behavior of an actor is serialized.

3.2 Functional Constructs

In this section we will develop some notation for representing expressions
at a higher-level. Act8 provides many such constructs which make Act3
far more expressive than Act, although the two languages have the same
expressive power. To allow functional programming without forcing the
programmer to explicitly create the customers, Act8 provides call expres-
stons which automatically create a customer and include its mail address
in the communication sent; the value of the ezpression is returned (in a
message) to the customer created at the time of the call. The code below
specifies a factorial actor in expressional terms. By comparing the code to
that in the previous section, one can see how it is executed in an actor-based
environment.

3 THE ACT3 LANGUAGE 11

(define (call Factorial (with number =n))
(if (=n 0)
(then 1)
(else (* n (call Factorial (with number n-1))))))

Parallel control structures can also be specified quite easily. For ex-
ample, a parallel algorithm for evaluating the factorial function of n is by
recursively subdividing the problem of computing the range product from
1 to n. We define an actor, RangeProduct, for recursively computing the
range product in the above manner. The code for Rangeproduct is given
below. Note that the One-0f construct provides a generalized conditional
command: it dispatches on the value of the expressions (cf. the guarded
command [Dijkstra 76)).

(define (call RangeProduct (with low =lo)
(with High =hi))
(One-0f
(if (= lo hi) o)
(if (> 1o hi) 1)
(if (< lo hi)
(Let ((mid = (/ (+ lo hi) 2)))
(* (call Rangeproduct (with low lo)
(with high mid))
(call Rangeproduct (with low (+ mid 1))
(with high hi)))))))

The pipelining of the replacement actors implies that two calls to the
RangeProduct actor are in fact equivalent to creating two actors which func-
tion concurrently. This equivalence follows from the unserialized nature of
the behavior: In case the behavior is unserialized, the behavior of the re-
placement is known immediately and thus its computation is immediate; in
particular, it can be computed even before a communication is received.

Act8 provides a number of other expressional constructs, such as delayed
expressions and allows one to require lazy or eager evaluation strategies for
expressions. Such evaluation strategies have been used in extensions of pure
functional programming to model history-sensitive behavior [Henderson 80].
However, because these systems lack a mail address abstraction, the inter-
connection network topology of processes is entirely static.

3 THE ACT3 LANGUAGE 12

3.3 Modelling Local-State Change

A problem with functional programming is the difficulty of dealing with
shared objects which have changing local states. Some constructs, such
as delayed expressions have been defined to model changing local states.
However, the problem with these techniques is that they create expressional
forms totally local to the caller and thus can not be used to represent shared
objects. Actors permit a graceful implementation of shared objects with a
changing local state. The example below shows the implementation of a
bank account in Act8. A bank account is a canonical example of a shared
object with a changing local state.

We use the keyword Is-Request to indicate a request communication
is expected. A request communication comes with the mail address of the
customer to which the reply is to be sent. The customer is used as the target
of the reply. A request also specifies a mail address to which a complaint
can be sent, should the request be unsuccessful. From a software point of
view, providing independent targets for the complaint messages is extremely
useful because it allows the error-handling to be separated from successfully
completed transactions.

(define (Account (with Balance =b))
(Is-Request (a Balance) do (reply b))
(Is-Request (a Deposit (with Amount =a)) do
(become (Account (with Balance (+ b a))))
(reply (a Deposit-Receipt (with Amount a))))
(Is-Request (a Withdrawal (with Amount =a)) do
(if (> a b)
(then do (complain (an Overdraft)))
(else do
(become (Account (with Balance (- b a))))
(reply (a Withdrawal-Receipt (with Amount a)))))))

Note that the become command is pipelined so that a replacement is
available as soon as the become command is executed. The commands for
other actions are executed concurrently and do not affect the replacement
actor which will be free to accept further communications.

3 THE ACT3 LANGUAGE 13

3.4 Transactional Constructs

Analyzing the behavior of a typical program in terms of all the transitions it
makes is not very feasible. In particular, the development of debugging tools
and resource management techniques requires us to preserve the abstractions
in the source programs. Because actors may represent shared objects, it is
often critical that transitions relevant to independent computations be kept
separate. For example, if the factorial actor we defined is asked to evaluate
the factorial of —1, it will create an “infinite loop.” Two observations should
be made about such potentially infinite computations. First, any other
requests to the factorial will not be affected because the guarantee of delivery
means that communications related to those requests will be interleaved with
the “infinite loop” generated by the —1 message. Second, in order to keep
the performance of the system from degrading, we must assess costs for each
“computation” independently; we can then cut-off those computations that
we do not want to support indefinitely.

To formalize the notion of a “computation,” we define the concept of
transactions. Transactions are delineated using two specific kinds of com-
munications, namely, requests and replies. A request, ri, may trigger an-
other request, say ry; if the reply to rs also precedes the reply to ry, then
the second transaction is said to be nested within the first. Proper nesting
of transactions allows simpler resource management schemes since resources
can be allocated dynamically for the sub-transaction directly from the trig-
gering transaction.

Transactions also permit the development of debugging tools that al-
low one to examine a computation at different levels of granularity [Man-
ning 84]. Various constructs in Act3 permit proper nesting of transactions;
for example, requests may be buffered while simultaneously preserving the
current state of a server using a construct called enqueue. The request is
subsequently processed, when the server is free to do so, using a dequeue op-
eration. Enqueue and dequeue are useful for programming servers such as
those controlling a hard copy device; they guarantee continuous availability
[Hewitt et al 1984].

Independent transactions may affect each other; requests may be sent
to the same actor whose behavior is history-sensitive thus creating events
which are shared between different transactions. Such intersection of events
creates interesting problems for the dynamic allocation of resources and for
debugging tools. Dynamic transaction delimitation remains an exciting area
of research in the actor paradigm.

4 OPEN SYSTEMS 14

4 Open Systems

It is reasonable to expect that large-scale parallel systems will be composed
of independently developed and maintained modules. Such systems will be
open-ended and continually undergoing change [Hewitt and de Jong 85].
Actor languages are intended to provide linguistic support for such open
systems. We will briefly outline some characteristics of open systems and
describe how the actor model is relevant to the problem of open systems.

4.1 Characteristics of Open Systems

We list three important considerations which are relevant to any architec-
ture supporting large-scale parallelism in open systems [Hewitt 85]. These
considerations have model theoretic implications for an algebra used to char-
acterize the behavior of actors:

e Continuous Availability. A system may receive communications from
the external environment at any point in time. There is no closed-
world hypothesis.

e Modularity. The inner workings of one subsystem are not available
to the any other system; there is an arms-length relationship between
subsystems. The behavior of a system must be characterized only in
terms of its interaction with the outside.

e Extensibility. It is possible for a system to grow. In particular, it is
possible to compose different systems in order to define larger systems.

Actors provide an ideal means of realizing open systems. In the section
below, we outline a model which realizes the above characteristics and, at
the same time, abstracts the internal events in an actor system. We thus
address the problem of abstraction in the context of open system modelling.

4.2 A Calculus of Configurations

We have described two transition relations on configurations (see §2.3).
These relations are, however, operational rather than extensional in nature.
The requirements of modularity imply that an abstract characterization of
the behavior of an actor system must be in terms of communications re-
ceived from outside the system and those sent to the external actors. All

4 OPEN SYSTEMS 15

communications sent by actors within a population, to other actors also
within the population, are not observable from the outside.

In the denotational semantics of sequential programming languages, it is
sufficient to represent a program by its input-output behavior, or more com-
pletely, as a map from an initial state to a final state (the so-called hustory
relation). However, in any program involving concurrency and nondeter-
minism, the history relation is not a sufficient characterization. Specifically,
when two systems with identical history relations are each composed with an
identical system, the two resulting systems have different history relations
[Brock and Ackerman 81]. The reason for this anomaly is the closed-world
assumption inherent in the history relation: It ignores the possible interac-
tions of the output with the input [Agha 85].

Instead, we represent the behavior of a system taking into account the
fact that communications may be accepted from the outside at any point.
There are three kinds of derivations from a configuration:

1. A configuration c is said to have a derivation to ¢’ given an input task
7, symbolically, ¢ L o if

states(c') = states(c)
tasks(c') = tasks(c)Ur A target(r) € population(c)

where states represents the local states function (see §2.3), and tasks
represents the tasks in a configuration. The receptionists remain the
same but the external actors may now include any actors whose mail
addresses have been communicated by the communication accepted.

2. A configuration c is said to have a derivation to ¢’ producing an output
task 7, symbolically, ¢ => ¢', if

states(c') = states(c)
tasks(c') = tasks(c) — 7 A target(r) & population(c)

where the states and the tasks are as above, and “—” represents set

theoretic difference. The external actors of ¢’ are the same as those of
¢. The receptionists may now include all actors whose mail addresses
have been communicated to the outside.

3. A configuration c has a internal or silent derivation to a configuration
¢', symbolically, ¢ =% ¢!, if it has a possible transition to ¢’ for some
task 7 in c.

4 OPEN SYSTEMS 16

We can now build a calculus of configurations by defining operations such
as composition, relabeling (which changes the mail addresses), restriction
(which removes a receptionist), etc. We give the axioms of compositionality
to illustrate the calculus of configurations.

Definition 2 Composition. Let ¢; || c2 represent the (concurrent) com-
position of ¢; and cz. Then we have the following rules of derivation about
the composition:

1. (a) Let 7 be a task whose target is in c1, then

1 =5 ¢}, 0 => b
erll ez =2 ¢ | ¢

(b) Let X be any derivation (input, output, or internal), provided that
if X is an input or output derivation then its sender or target,
respectively, is not an actor in cy, then

A
g == ¢}

A
1 “ cp == C'l ” c2
2. The above rules hold, mutatis mutandis, for cz || c1 .

The only behavior that can be observed in a system is represented by
the “labels” on the derivations from its configurations. These represent the
communications between a system and its external environment. Following
Milner [80] we can define an observation equivalence relation on configu-
rations. The definition relies on equality of all possible finite sequences of
communications sent to or received from the external environment (ignoring
all internal derivations). One way of formalizing observation equivalence is
inductively:

Definition 3 Observation Equivalence. Let ¢; and c2 be any two tasks,
i be either an input or an output task, o* represent any arbitrary (finite)

number of internal transitions, and LE represent a sequence of internal tran-
sitions followed by a p transition, and furthermore i be defined inductively
as:

1. C1 &g C2

2. Rk+1 C2 1f

5 CONCLUSIONS 17

(a) Vu(if a1 £y c} then Jcy{cs £y ch) A ¢} mpch)
() Yu(if cq £ ch then Icl(c1 £k ch) A ¢} =g ch)

Now ¢y is said to be observationally equivalent to ¢z, symbolically, c¢1 =~ c2,
szIc(cl ~k C2).

The notion of observation equivalence allows one to distinguish between
systems which behave differently in response to new tasks after they have
sent some communication to an external actor. On the one hand, obser-
vation equivalence creates fewer equivalence classes than a history ordering
on all events; such a relation retains too much information. On the other,
observation equivalence distinguishes between more configurations than the
history relation between inputs and outputs, which has been shown to not
retain enough information about the behavior of the system.

We can characterize actor programs by the equivalence classes of initial
configurations they define. Properties of actor system can be established in
a framework not relying on a closed-world assumption, while at the same
time providing an abstract representation of actor systems that does not
rely on the internal details of a system’s behavior.

5 Conclusions

Actor languages uniformly use message-passing to spawn concurrency and
are inherently parallel. The mail system abstraction permits a high-level
mechanism for achieving dynamic reconfigurability. The problem of shared
resources with changing local state is dealt with by providing an object-
oriented environment without the sequential bottle-neck caused by assign-
ment commands. The behavior of an actor is defined in Act3 by a script
which can be abstractly represented as a mathematical function. It is our
claim that Act$ has the major advantages of object-based programming
languages together with those of functional and applicative programming
languages.

An actor language also provides a suitable basis for large-scale paral-
lelism. Besides the ability to distribute the work required in the course of
a computation, actor systems can be composed simply by passing messages
between them. The internal workings of an actor system are not available to
any other system. A suitable model to support the composition of different
systems is obtained by composing the configurations they may be in.

References

[Agha 84] Agha, G. Semantic Considcrations in the Actor Paradigm of Concurrent
Computation. Proceedings of the NSF/SERC Seminar on Concurrency .
Springer-Verlag, 1984, Forthcoming

[Agha 85] Agha, G. Actors: A Model of Concurrent Computation in Distributed
Systems. A.l. Tech Report 844, MIT, 1985.

[Backus 78] Backus, J. Can Programming be Liberated from the von Ncumann
Style? A Functional Style and Its Algebra of Programs. Communications of
the ACM 21, 8 (August 1978), 613-641.

[Brock 83] Brock. J.D. A Formal Model of Non-determinate Dataflow
Computation. LCS Tech Report 309, MIT, Aug, 1983. .

[Brock and Ackerman 81} Brock J.D. and Ackerman, W.B. Scenarios: A Model of
Non-Determinate Computation. In /07: Formalization of Programming
Concepts, Springer-Verlag, 1981, pp. 252-259.

[Clinger 81] Clinger, W. D. Foundations of Actor Semantics. Al-TR- 633, MIT
Artificial Intelligence Laboratory, May, 1981.

[Dijkstra 77] Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, 1977.

[Henderson 80] Henderson, P. Functional Programming: Applications and
Implementation. Prentice-Hall International, 1980.

[Hewitt 77) Hewitt, C.E. Viewing Control Structures as Patterns of Passing
Messages. Journal of Artificial Intelligence 8-3 (June 1977), 323-364.

[Hewitt 80] Hewitt, C.E. Apiary Multiprocessor Architecture Knowledge System.
Procecdings of the Joint SRC/University of Newcastle upon Tyne Workshop
on VLSI, Machine Architecture, and Very High Lcvel Languages, University
of Newcastle upon Tyne Computing Laboratory Technical Report,
October, 1980, pp. 67-69.

[Hewitt 85] Hewitt, C. The Challenge of Open Systems. Byte 10, 4 (April 1985),
223-242.

[Hewitt and Baker 77] Hewitt, C. and Buker, H. Laws for Communicating Parallel
Processes. 1977 IFIP Congress Proceedings, IFIP, August, 1977, pp. 987-992.

[Hewitt and de Jong 82] Hewitt, C., de Jong, P. Open Systems. A.L Memo 692,
MIT Artificial Intelligence Laboratory, 1982.

[Hewitt, ct al 84] Hewitt, C., Reinhardt, T., Agha, G. and Attardi, G. Proceedings
of the NSF/SERC Seminar on Concurrency. A.l. Memo 781, Massachusetts
Institute of Technology, 1984.

[Hoare 78] Hoare, C. A, R. Communicating Sequential Processes. CACM 21, 8

(August 1978), 666-677.

[Hiwang and Briggs 84] Hwang, K.and Briggs, F. Computer Architecture and
Parallel Processing. McGraw Hill, 1984.

[Kahn and MacQueen 78] Kahn, K. and MacQueen, D. Coroutines and Networks
of Paralle! Processes. Information Processing 77: Proceedings of the IFIP
Congress, IFIP, Academic Press, 1978, pp. 993-998.

[Landin 65] Landin, P. A Correspondence Between ALGOL 60 and Church’s
Lambda Notation. Communication of the ACM 8, 2 (February 1965).

[Manning 85] Manning, C. A Dcbugging Systcm for the Apiary. M.LT. Message-
Passing Semantics Group Memo, January, 1985.

[McCarthy 59] McCarthy, John. Recursive Functions of Symbolic Expressions and
their Computation by Machine. Memo 8, MIT, March, 1959.

[Milner 80] Milner, R. Lecture Notes in Computer Science. Vol. 92: 4 Calculus of
Communicating Systems. Springer-Verlag, 1980.

[Pratt 82] Pratt. V. R. On the Composition of Processes. Proceedings of the Ninth
Annual ACM Conf, on Principles of Programming Languages, 1982.

[Pratt 83] Pratt, V. R. Five Paradigm Shifts in Programming [.anguage Design and
their Realization in Viron, a Dataflow Programming Environment
Proceedings of the Tenth Annual ACM Conf. on Principles of Programming
Languages, 1983.

[Steele, Fahlman, Gabriel, Moon, Weinreb 84] Steele Jr., Guy L... Common Lisp
Reference Manual. Mary Poppins Edition edition, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa., 1984.

[Stoy 771 Stoy. Joseph E. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, Cambridge, MA, 1977.

[Theriault 83] Theriault, D. Issues in the Design and Implementation of Act2.
Technical Report 728, MIT Atrtificial Intelligence Laboratory, June, 1983.

CS-TR Scanning Project
Document Control Form Date: /17 % _/4s

Report# __Alm- §6s

Each of the following should be identified by a checkmark:
Originating Department:

mniﬁcial Intellegence Laboratory (Al)
(] Laboratory for Computer Science (LCS)

Document Type:

[0 Technical Report (TR) ﬁ Technical Memo (TM)
O Other:

Document Information Number of pages: o0 (36 macres)

Not {o include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
E\Single-sided or O Single-sided or
O Double-sided T Double-sided
Print type:
[J Typewriter [] OffsetPress B Laser Print
[inksetPriter [] Unknown [other:

Check each if included with document:

\ﬂ DOD Form (9,) O Funding Agent Form O coverPage
O spine O Printers Notes O Photo negatives
O other:

Page Data:

Blank Pageswy page numbes:

Photographs/Tonal Material ey pege nmbes:

Other (ot descripionpage numben).
Description : Page Number:

IMACE MAT! (1- 30) Lu~nBxD TiTLE ¢ Blhne rncstJc 19
(24 -3) Scarsanitiol. . DAD(S) TRETS (3

Scanning Agent Signoff: ’
Date Received: I/ / 1 /.15 Date Scanned: _I /L7 / 95 Date Returned: _// 130 R

N .
Scanning Agent Signature: ()‘V\/u/ﬁm J}\ /IN } C»«\“‘Pl

Rev 9/04 DSALCS Document Control Form cstrform.ved

JNCLASSIFIED

SET AT J_ASS'FITATION OF TwIS PAGE (When Deta Entered)
READ INSTRUCTIONS
1 REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIMENT'S CATALOG NUMBER
AIM 865 AD-A162422

4 TITLE (and Subtitle)

Concurrent Programming Using Actors: Exploiting

Large Scale Parellism

S. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e)

Gul Agha
Carl Hewitt

8. CONTRACT OR GRANT NUMBER(s)

NOO014-80-C-0505

9. PERFORMING ORGANIZ_AYION NAME AND ADORESS
Artificial Inteligence Laboratory

545 Technology Square
Cambridge, MA 02139

10. PROGAAM ELEMENT. PROJECT, TASK
AREA & WOAK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AN~D ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd.

Arlington, VA 22209

12. REPOAT DATE

13. NUMBER OF EOOES

14 MONITORING AGENCY NAME & ADORESS(/! different irom Contrelling Office) 8. SECURITY CLASS. (of this report)

Office of Naval Research
Information Systems
Arlington, VA 22217

S$a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tie abstract entered in Block 20, I dilterent from Repert)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side il necessary and ldontily by bleck namber)

Concurvrency

Distributed Computing
Programming Languages
Object-Oriented Programming

Actors

Functional Programming
Parellel Processing
Open Systems

20. ABSTRACT (Continue en reveree side If y and ié

ity by bleck mamber)

We argue that the abilty to modle shaared objects with changing local states
dynamic reconfigurabilty, and inherent parellism are desirable properties of
any model of concurrency. The actor model addresses these issues in a
uniform framework. This paper briefly describes the concurrent programming
language Act3 and the principles that have guided its development. Act3 ad-
vances the state of theart inprogramming languages by combining the advan-

tages of object-oriented programming with those of functional programming.
We also discuss considerations revelant to the large scale parellism i

DD , :‘::"n 1473 EOiTION OF 1 NOV 65 1S OBSOLETE
S/N 0:02-014- 6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Bnterec

L R TRT

FRBW e TR0 BAR

EBH “fﬁ

dRETvOD GO EY B

. % - ”
ﬁcw,» iu W & aTY dM;m:?i,ﬂﬂ &

sgrekd iﬁfwﬁ~ ‘@aﬁsaé Eﬁiaﬂ gn&mmbﬂ§@~ﬁ InsTIusanl
' aail&ﬁxﬁ% afsal agxa}

3 ,
i iRLR T QA)

CopfgA oD
Ewal fann

T RARG oS RO
AR St

g sgmmimwﬂ@ SR GIRTR Y
{}&:Asaﬁai Ssomegt fagal Taiofilzza

$?§N?6 yacionmasl 284
REILC AL .sgbl?dﬁ&d

YA FeOAER AT oy 3&4» FoINND Bl CRTUED L

gasa@& &9,#5@3? dotssasd beoasvha

Kid | N _vbviﬁ ﬁcair P41

. - s s S “ VTP RN
LIve et R Py ZRALT wYIRUDERE M sy Y3 SEtirrased e e

¥ ‘ ,' i .“ % -' "“
ss&a&ﬁ staf &) x;ﬁi&ﬁ
smatevd o6lismrnisl

B

m&am

SRR E TR R RS T TS - L R R RO £ & 0.1 5¥ (EQIgnEL 1k
“Nu wE f"«&‘a‘?s& 331;‘ T
bsnmim ai wxm&xuem
.
R - .
sgrok
. ' T e o W
3 2Eor A ’]gaﬁsﬁzwan~“
5itd ispuissney’ } k&:&w&l’!;&&*ﬁ
@ﬁi?ﬁsﬁﬁik ISR T L
GE R z¥l angh
5 - " et Aol
asikse fenol gnigesds d3tw sivalbds #vxaaﬁa
10 aslivsqosy %“dzmzaab 875 ﬁﬁ;iiﬁ%bﬁ inn@,
Foog.nl enles 1 ;3‘30 Iaba& vas‘
g 1‘3:,.;45 FUEG T e ﬂm ' 23l wrollay

g ﬂﬁﬁg?;gvaﬁ aﬂi h&a_ug awﬁﬁ wﬁﬁ&»gﬁiﬁkbﬂiﬁq 5

wsﬂaamﬁw&ﬁ
33“J1 §w 53%

ik

i ,zﬂ‘faﬁiéﬁ T aagsa
vﬁieﬂga aas;a$a walk ﬁw

wmewl €Y$5¢:§f:%€E3
520 W52

i, BEA R BT NE nod¥ASOTE gt

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

