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Machine recognition of naturally spoken language requires developing more
robust recognition algorithms. A recent study by Shipman and Zue suggests
using partial descriptions of speech sounds to eliminate all but a handful
of word candidates from a large lexicon. The current paper extends their
work by investigating the power of partial phonetic descriptions for develop-
ing recognition algorithms. First, we demonstrate that sequences of manner of
articulation classes are more reliable and provide more constraint than certain
other classes. Alone these results are of limited utility, due to the high degree
of variability in natural speech. This variability is not uniform however, as
most modifications and deletions occur in unstressed syllables. Comparing the
relative constraint provided by sounds in stressed versus unstressed syllables,
we discover that the stressed syllables provide substantially more constraint.
This indicates that recognition algorithms can be made more robust by ex-
ploiting the manner of articulation information in stressed syllables.
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The Speech Recognition Problem

Communication between humans and machines would be greatly facilitated
by natural speech input-output capability. While speech output devices are
approaching natural performance levels, speech input is far from natural. Cur-
rent speech recognizers, both commercial and experimental, provide only re-
stricted recognition capability. The vocabulary must be specified in advance,
most systems must be trained to a particular talker, and sentences must gen-
erally be spoken as sequences of isolated words and phrases [1] [2] [3] [4].
Attempts to extend the current recognition technology to less restricted tasks
have been relatively unsuccessful.

The sensitivity of existing recognition systems to specific tasks indicates
that the current technology will not scale up to the problem of recogniz-
ing naturally spoken language. More robust recognition algorithms will be
needed to handle the high degree of variability and noise in natural speech.
The present paper takes a step towards the development of such algorithms
by determining what information is important in recognition. Examination
of the phonemic structure of a large English dictionary reveals that certain
speech sounds provide much more constraint in differentiating words from one
another than do other speech sounds. The same sounds are also highly per-
ceptually and acoustically salient, indicating that these sounds carry much of
the linguistic information in speech.

The Approach

Not all information is of equal importance in recognition. In order to develop
robust recognition algorithms it is first necessary to determine what the im-
portant information 1s. There are two dimensions along which importance
may vary. First, certain information provides more constraint in recognition
than other information. Second, certain information is more reliably present
in the input than other information. We will term something a good recogni-
tion cue if it is both highly constraining and relatively reliable.

By finding and exploiting good recognition cues we seek to maximize
constraining power while minimizing sensitivity to noise and poor sensory
input. This would also seem to be an underlying motivation for Marr’s idea
of identifying natural constraints [5|. Natural constraints are those which
are imposed on a recognition problem by the physics of the objects being
recognized, the physics of the recognition modality, or the biology of a natural
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recognition system. Since natural constraints capture important properties of
a recognition domain they serve the goal of being highly constraining while
also being relatively insensitive to noise.

Our investigation is divided into two main parts. First we identify certain
reliable properties of speech sounds (manner of articulation classes), and de-
termine how much constraint these properties provide in differentiating words
from one another. Then we identify certain reliable parts of words (stressed
syllables) and determine their constraining power. However, some general
robustness criteria for recognition algorithms are presented first.

Criteria for a Robust Recognition Algorithm

Several central requirements for a successful recognition algorithm can be
identified. These issues have previously been raised by researchers in computer
vision and object recognition [5] [6] [7], however they are of importance for
recognition tasks in general.

e A recognition algorithm should degrade gracefully with increasing noise
in the sensory input.

e A recognition algorithm should degrade gracefully with increasing com-
plexity in the recognition task.

e A recognition algorithm should be able to handle partial or missing data.

There are two underlying motivations for these requirements. First, real-world
recognition tasks occur in the presence of noise, poor sensors, and missing
data. If a system is to be useful for such tasks its performance must degrade
gracefully in poor environments. Second, human performance degrades rela-
tively gracefully. People do not make the gross sorts of errors made by current
recognizers — such as recognizing a poly-syllabic word where there is only one
vowel nucleus. If a system is to be natural to humans, it must preserve the
robustness of human perception.

Current speech recognizers are extremely fragile when evaluated accord-
ing to these criteria. Even small changes in environmental noise, speaker
characteristics, or the recognition vocabulary have a major impact on perfor-
mance. For future generations of speech recognizers it is important to consider
how to make the recognition algorithms more robust, or we have little hope
of reaching the goal of natural speech input capability.
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Phonetic Classes Might Make Good Recognition Cues

We are interested in the problem of recognizing words from a sequence of
sounds. In English the inventory of these sounds is limited to forty or so
phonemes. Each phoneme can have several different acoustic realizations,
called allophones. This allophonic variation is caused both by local context
and by the individual differences between speakers. For instance a /t/ in a
retroflex context as in “truck” is extremely strong, making it more like the /¢/
“chuck” than the /t/ in “tuck”. This contextual variation depends greatly on
the speaker — some speakers have very strong /t/’s which are often similar
to /t/’s while others have very weak /t/’s which rarely resemble /¢/’s.

Since allophonic variation is partly due to speaker characteristics, it is dif-
ficult to build phonemic recognizers which are not trained to a given speaker.
Even for a given speaker, there is a high degree of variability in individual
phonemes. Thus while sequences of phonemes are highly constraining — they
uniquely specify words to within homophones - they are also highly variable.
According to our criteria a good recognition cue should be both reliable and
highly constraining, meaning that phonemes are not particularly good recog-
nition cues.

A given phoneme can be characterized by both its place and manner
of articulation. For example, the place of articulation for the phoneme /3/
(as in “ship”) is palatal, because the sound is made by raising the articulators
towards the roof of the mouth (the palate). On the other hand, the manner of
articulation for /5/ is frication, because the sound is made by exhaling through
a partial closure of the vocal tract, causing aperiodic (or fricative) noise. There
are approximately a half dozen manner classes and a half dozen place classes
which together can be used to define the space of English phonemes.

The manner of articulation of a phoneme refers to gross characteristics of
the speech production process. Therefore manner of articulation differences
are very pronounced. This is observable both in the acoustic signal and in
studies of human perception of speech sounds. The acoustic characteristics
of different manner classes are visually striking in spectrographic displays of
speech [8]. The speech spectrogram of the word “snack” in Figure 1 illustrates
this marked acoustic difference. The first segment is the fricative /s/, the
second segment is the nasal /n/, the third segment is the vocalic /e/, and the
fourth segment is the stop consonant /k/. Each of these four manner classes

has a characteristic appearance.

A set of perceptual studies examining the confusability of English phon-
emes further demonstrates the salience of manner of articulation classes. In
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Figure 1. A spectrogram of the word “snack”, illustrating the difference
between the four manner of articulation classes: fricative, nasal, vocalic,
and stop. A spectrogram is a three dimensional display of the speech
signal where time is along the x-axis, frequency is along the y-axis, and
amplitude (the z-axis) is encoded in the darkness of the display.

these studies peoples’ phoneme recognition errors were examined. Almost all
of the confusions were between phonemes in the same manner of articulation
class [9]. There is also anecdotal evidence that manner classes are perceptually
important. For example, the non-word “shpeech” is still recognizable as the
word “speech”, while “tpeech” is not. This may be due to the fact that /s/
and /5/ both belong to the same manner class — strong fricative, while /t/
belongs to a different class — stop consonant.

The acoustic and perceptual salience of manner of articulation phonetic
classes indicates that they are reliable cues for recognition. However, it re-
mains to be seen how much constraint these manner classes provide. Clearly
by moving from a space of forty phonemes, to six classes we are losing some
amount of information. The question is just how much.

Sequential Constraints Are Important

In addition to the limited inventory of speech sounds, only certain combina-
tions of sounds may occur in a given language. For instance “vnuk” is clearly
not a valid English word, because the sound sequence /vn/ is illegal. These
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sequential constraints may be useful when there are unknown sounds in a
sequence — a sequence beginning with /v/ cannot have an /n/ as the next
sound.

Sometimes sequential constraints can be very powerful. For the partial
sound sequence /ka-t/, where /-/ denotes an unknown sound, only three
of approximately forty possible sound sequences form valid English words.
These are /kast/, /kent/ and /kept/, corresponding to the words “cast”,
“can’t”, and “capped”. Such contextual constraints are highly local. If the
same partial sound sequence /k&-t/ is embedded in sequences of any length,
/s/, /n/, and /p/ are still the only phonemes which can replace the /-/ to
form valid English words. t

Even when contextual information cannot be specified in detail, sequen-
tial constraints can still be very powerful. In the above example assume
further that the specific identity of the vowel is unknown. Thus we have the
partial sequence /kV-t/, where /V/ denotes the presence of some unknown
vowel. Despite the fact that the vowel identity is unknown, there are only five
phonemes which can replace the /-/ in order to form English words. These
are /r/ and /1/ as well as the three phonemes /s/, /n/ and /p/ from above.

How Powerful are Sequential Constraints?

The examples of the previous section suggest that sequential information can
provide substantial constraint on the identity of unknown speech sounds.
However, in these examples we assumed that the identity of at least some
of the neighboring phonemes was known in detail. We have already seen that
phonemes are difficult to recognize in the sensory input. Thus, even if sequen-
tial constraints are very powerful, there is little hope of reliably recognizing
the necessary phonemes.

Since manner of articulation phonetic classes are acoustically relatively
reliable, they make a reasonable candidate for investigating sequential pho-
netic constraints. Unlike a phoneme sequence, a broad phonetic sequence is
already only a partial specification. Therefore, the paradigm becomes that
of determining how many words in a particular lexicon match a given broad
phonetic sequence. For instance, given the six manner classes — stop, vocalic,
nasal, liquid or glide, strong fricative, and weak fricative — we find that the

tThe two words “cactus” and “caftan” are exceptions to this. Words borrowed
from other languages are often exceptions. Since the exceptions tend to be very
low frequency, likelihood information could be useful in recognition.
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sequence
[STOP] [VOCALIC] [STRONG-FRIC] [STOP]
matches 35 words in Webster’s Pocket Dictionary of 20,000 words.

In order to perform this investigation systematically we can map each
word in a large lexicon into its corresponding broad phonetic sequence, and
then see how many different words map into the same sequence. That is, we
can partition the lexicon into equivalence classes of words according to their
broad phonetic descriptions. The smaller these equivalence classes, the more
constraint 1s provided by the broad phonetic representation. In the limiting
case, when sequences of phonemes are used rather than sequences of broad
classes, the equivalence classes will almost all be of size one.t

Shipman and Zue [10] performed exactly this study using Webster’s
Pocket Dictionary, and mapping the words into manner of articulation se-
quences. In the next four sections we present their results and extend them
in several ways. First, we add information about the stress pattern of a word
to the representation. Second, we contrast the constraint provided by place of
articulation classes with that provided by manner classes. Third, we consider
using only the phonetic information in the stressed syllables of words.

Investigating Broad Phonetic Constraints

The power of broad phonetic constraints was demonstrated by a set of studies
reported by Shipman and Zue [10]. These studies examined the phonemic
distribution of words in the 20,000-word Merriam Webster’s Pocket Dictio-
nary. In one study the phonemes of each word were mapped into one of the
six broad manner of articulation classes: vocalic, stop, nasal, liquid or glide,
strong fricative, and weak fricative. For example, the word “speak”, with the
phoneme string /spik/, was mapped into the sequence
[STRONG-FRIC] [STOP] [VOCALIC] [STOP]

The result of this mapping is a partition of the lexicon into equivalence classes
of words with the same broad phonetic class sequence.

It was found that, even at this broad phonetic level, approximately one
third of the words in the 20,000-word lexicon could be uniquely specified —
were In equivalence classes of size one. The average number of words in the

tThe equivalence classes won’t all be size one because of homophones — words
which sound the same.
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same equivalence class was approximately two, and the maximum was approx-
imately 200. In other words, in the worst case this broad phonetic representa-
tion reduces the number of possible word candidates to about one percent of
the 20,000-word lexicon. Shipman and Zue examined several smaller lexicons
and found this to be stable for lexicons of about 2,000 or more words; for
smaller lexicons the specific choice of words can make a large difference in the
distribution.

The average equivalence class size measure used by Shipman and Zue
1s somewhat misleading because it only reflects the number of equivalence
classes, and not the distribution of words across classes. A better measure
1s the expected value of the class size, which is the average number of words
matching an arbitrarily chosen word in the lexicon. To see the difference
between these two measures, consider a partitioning of 10 elements into two
classes of size 5 each, versus a partitioning into two classes of sizes 1 and 9
each. In both cases the average class size is 5, whereas the expected class size
is considerably smaller in the first case than in the second (5 versus 8.2).

To the extent that words cluster in a particular equivalence class, the
average class size is an overly optimistic estimate of the number of words
matching a given broad phonetic class sequence. Thus, we use the expected
equivalence class size, denoted E(w), and given by

C
> S+ Ly
=1

where S, 1s the size of the i-th equivalence class, L; is the relative frequency
of the i-th equivalence class - %, N is the size of the lexicon, and C 1is the

number of equivalence classes.

The expected class size for Shipman and Zue’s study is 21, approximately
an order of magnitude greater than the mean class size. However, this still
only represents approximately 0.1 percent of the entire lexicon. The results
of this study are summarized in the first row of Table 1.

Word Frequency Effects

Partitioning the lexicon into equivalence classes implicitly gives all words equal
weighting, because each word is counted once regardless of how frequently it
occurs in English. However, word frequency in English is far from uniform.
This means that the previous results are not particularly useful in determining
how many words can be expected to match an arbitrary English word. In order
to determine how word frequency affects the broad phonetic organization of
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a lexicon, it is possible to weight each word in the lexicon in relation to its
frequency of occurrence. Thus, the class size S; is replaced by the frequency
weighted class size F;, given by
Si- Y p(w)
weW,
where p(w) is the probability of finding word w in a large corpus of text, and
W, is the set of words in the i-th equivalence class.

In the frequency weighted case, the expected value is the number of words
which will match an arbitrarily chosen word from written English text, as
opposed to an arbitrarily chosen word from the lexicon. Similarly the percent
unique is the percentage of words in running text which map into equivalence
classes of size one. In their original study, Shipman and Zue examined the
frequency weighted lexical distribution for the words in the Pocket dictionary,
using the million-word Brown Corpus of written English [11]. It was found
that when word frequency is taken into account the expected equivalence class
size grows somewhat. These results are summarized in the second row of Table
1.

Condition E(z) | Max | % Unique
Unweighted 21 223 32%
Freq. Weighted 34 223 6%

Table 1. Equivalence class sizes obtained by mapping the words in Web-
ster’s Pocket Dictionary into manner of articulation phonetic class se-
quences. After Shipman and Zue.

The fact that expected class size increases when words are weighted by their
frequency of occurrence means that more common English words tend to
fall in slightly larger than average equivalence classes. This is contrary to
expectation — common words should be more easily distinguishable from
one another, not less. However word frequency is confounded with the fact
that common words tend to be shorter than uncommon words, and therefore
contain less phonetic information. Thus, word length may be contributing to
the observed result that more common words fall in slightly larger equivalence
classes. It may also be that the broad phonetic representation fails to capture
certain information which is important in differentiating common words from
one another. In the next section we investigate syllabic stress patterns as
another potential source of constraint in lexical access.
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Stress as an Additional Source of Constraint

One salient characteristic of isolated words which we have not utilized thus
far is lezical stress, the stress pattern of the syllables in a word. Lexical stress
appears to be important in distinguishing certain words from one another.
For example, the words “campus” and “compose” both map into the broad
phonetic sequence

[STOP] [VOCALIC] [NASAL] [STOP] [VOCALIC] [STRONG-FRIC]

However, “campus” is stressed on the first syllable whereas “compose” is
stressed on the second syllable. This alone is enough to easily distinguish
these words from one another. Lexical stress patterns can be successfully
extracted from the speech signal. A system for identifying stress patterns in
isolated words has recently been implemented [12]. The system performs 87%
correct classification into three stress levels, and 97% correct classification
into two stress levels.

In order to investigate the constraint imposed by lexical stress patterns,
a lexicon study was run where stress information was added to the represen-
tation. Each word was encoded according to its broad phonetic classification
and its syllabic stress pattern. In this scheme, a syllable is classified as being
either stressed - [S], or unstressed — [U]. Thus the word “piston”, with the
phonetic string /pls-tIn/, would be represented as

[STOP] [VOCALIC] [STRONG-FRIC] [STOP] [VOCALIC] [NASAL]+([S] [U]

There were two experimental conditions. In the first condition words were
not weighted according to their frequency of occurrence. These results are
presented in the first row of Table 2, and can be compared with those of
Shipman and Zue in the first row of Table 1. The results of the two studies
are quite similar, indicating that adding stress information provides some, but
not much, additional constraint.

In the second condition, the frequency weighted class size was used. These
results are given in the second row of Table 2, and can be compared with the
second row of Table 1. In this condition, the lexical stress information provides
some additional constraint. In particular, the stress pattern substantially
increases the percentage of the lexicon which is uniquely specifiable — {rom
6 to 25 percent.

Since stress information plays a larger role when word frequency is taken
into account, this indicates that stress is important in differentiating certain
common words from one another. Perhaps subsequent psychophysical inves-
tigation can test whether stress is important in human perception of common
words. In later sections we will return to the role of stress in recognition, when
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Condition E(z) Max % Unique
Unweighted 18 209 39%
Freq. Weighted 28 209 25%

Table 2. Equivalence class sizes obtained by adding stress information to

the manner of articulation phonetic class sequences.

we examine the interaction between stress information and the variability of

speech sounds.

Place of Articulation Classes

Above we saw that manner of articulation differences are highly salient, and
are based on gross characteristics of the speech production process. Place
of articulation differences on the other hand, are much more subtle. For
example the difference between the palatal fricative /8/ and the dental fricative
/s/ 1s a slight lowering of frequency. This difference is illustrated by the
spectrograms of the words “shoe” and “sue” in Figure 2. In addition to being
relatively subtle, place differences are highly variable across different speakers
and phonemic contexts. One speaker’s /§/ can be similar to another speaker’s
/s/; and the /8/ in “she” is very similar to the /s/ in “sue”.

of 0 o1 02 ok ] CA (Y] a o OB LY L ! !3:
£ T B T 38
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Figure 2. Spectrograms of the words “shoe” and “sue” illustrating the
frequency difference between /s/ and /3/.
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Since the differences between place classes are less salient than the differ-
ences between manner classes, it is reasonable to ask how much constraint
is provided by place versus manner class sequences. We ran a lexicon study
to investigate this, where the words in the Pocket dictionary were mapped
into one of the six place classes: vocalic, palatal, labial, velar, dental, and
glottal. For example, the word “speak”, with the phoneme string /spik/, was
represented by the pattern

[DENTAL] [LABIAL] [VOCALIC] [VELAR]

Table 3 summarizes the results of this experiment. In the first row the words
are not weighted according to frequency of occurrence, and in the second row

they are.
Condition E(z) Max % Unique
Unweighted 41 336 21%
Freq. Weighted 90 336 3%

Table 3. Equivalence class sizes obtained using place of articulation pho-
netic class sequences.

Comparing Table 3 with Table 1 we see that place of articulation class se-
quences provide substantially less constraint than manner of articulation class
sequences, Thus manner information is both more salient and more highly
constraining than place information. This means that manner information is
a better recognition cue than place information. Place of articulation does
provide additional constraint — for instance place differences are all that dis-
tinguish between the sounds /p/, /t/ and /k/, it is just a less powerful cue.

Lexical Stress and Variability

The above results demonstrate that a broad phonetic classification of speech
sounds can in principle be used to generate a small number of word candidates
from a large lexicon. However, the acoustic realization of words and phonemes
can be so variable that phonemes and syllables are deleted altogether. A multi-
syllabic word such as “international” can have many different realizations,
some of which are illustrated in Figure 3. As can be seen from the Figure,
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not only can phonemes be deleted, but some pronunciations of a word may
have a different number of syllables than others.

The broad phonetic representation we have been using cannot handle the
deletion or insertion of a phoneme or syllable, because such deletions affect
the corresponding broad class sequence. Traditionally the problem of dele-
tion and insertion has been solved by expanding the lexicon via phonological
rules, to include various possible pronunciations of each word [13]. However
this approach is an ad hoc means of accounting for the observed variability
in pronunciation, rather than a general approach to modeling variability in
speech. Rather than trying to explicitly model the vartability, our approach
is to identify the relatively invariant properties of a word.

The idea of identifying the relatively invariant portions of a word 1s to
evaluate whether these portions of a word are also more highly constraining,
and hence better recognition cues. If this were the case, it would parallel our
earlier finding that the more invariant properties of phonemes also provide
more constraint in recognition. In the following sections we investigate this
hypothesis.

Exploiting Lexical Stress

In English, the sounds in unstressed syllables are more variable than those in
stressed syllables. For instance the variations in the pronunciation of “inter-
national” shown in Figure 3 all occur in the unstressed syllables. Perceptual
results have also shown that the acoustic cues for phonemes in stressed syl-
lables are more reliable than those in unstressed syllables [14]. Since the
information in stressed syllables appears more salient, a lexicon study was
run comparing the importance of phonetic information in stressed versus un-
stressed syllables.

In this experiment there were two conditions. The first condition pre-
served the broad phonetic sequence in the stressed syllables, while the second
preserved the broad phonetic sequence in the unstressed syllables. For exam-
ple, in the first condition the word “piston”, with the phoneme string /pls-tIn/
and the stress on the first syllable, would be represented by the pattern

[STOP] [VOCALIC] [STRONG-FRIC] [*]

where [*] marks the missing unstressed syllable. In the second condition the
same word would be represented by the pattern

[+] [STOP] [VOCALIC] [NASAL]

where [*] marks the missing stressed syllable.
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Figure 3. Different pronunciations of the word “international”, illustrating
that variability occurs primarily in the unstressed syllables. The top two
pronunciations both have deleted /t/’s, the first with 5 syllables and the
second with 4. The bottom pronunciation has an aspirated /t/ and 4
syllables.

13
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Mapping the stressed or unstressed syllables of a word into a placeholder
symbol preserves the stress pattern because the [*] corresponds to either a
stressed or an unstressed syllable depending on the condition. An equivalent
representation which makes this explicit combines the partial broad phonetic
sequence with the syliabic stress pattern. Thus, in the first condition the word
“piston” could equivalently be represented as

[STOP] [VOCALIC] [STRONG-FRIC] + [S][U]

where [8] and [U] correspond to stressed and unstressed syllables, respec-
tively.

The results of this experiment are given in the first three rows of Table
4. The first row is the same as the second row of Table 2, where the broad
class sequence from the entire word is augmented with the stress pattern.
The second and third rows show the cases where the broad class sequence
is derived only from the stressed or the unstressed syllables, respectively. In
all cases, the words are weighted according to their frequency in the Brown

Corpus.
Condition E(z) Max
Whole Word 28 223
Stressed Only 62 260
Unstressed Only 2052 3703
Unstr. Only (Poly) 321 1725

Table 4. Equivalence class sizes obtained when the manner of articulation
phonetic classes in either only the stressed or the unstressed syllables are
used.

We see from the second row of the Table that the phonetic class information
in the stressed syllables alone still provides substantial constraint. In sharp
contrast, the third row shows that the phonetic class information in the un-
stressed syllables alone provides almost no constraint. However in this latter
condition there was one very large equivalence class of 3703 words. This class
corresponds to all the monsyllabic words in the lexicon, which simply map to
the stressed syllable marker [S]. All the phonetic information for these words
has been ignored because it is in a stressed syllable.

To get a better picture of the difference between the importance of
stressed and unstressed syllables another experimental condition was run.
In this condition only the multi-syllabic words in the Pocket dictionary were
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used. Again only the phonetic class sequence in the unstressed syllables was
preserved. The results are presented in the last row of Table 4. They are
similar to, although somewhat less dramatic than, the results for the whole
lexicon given in the third row of the Table.

Phonemes in Stressed Syllables Are Important

The results of the previous section demonstrate that the broad phonetic infor-
mation in stressed syllables provides much more lexical constraint than that
in unstressed syllables. This is true of phonemes as well as broad manner
classes. Table 5 presents the results of a study where the actual phonemes
in either the stressed or the unstressed syllables of a word were preserved,
together with the lexical stress pattern. The study was run using only those
words in the Pocket dictionary which contain at least one unstressed syllable.
The results are weighted by word frequency.

Condition E(z) Max
Stressed Only 6 44
Unstressed Only 34 241

Table 5. Equivalence class sizes obtained when only those phonemes in
the stressed or the unstressed syllables are used.

It should be noted that the difference in importance between the sounds
in stressed versus unstressed syllables is not simply due to the number of
phonemes which occur in stressed versus unstressed syllables. For the en-
tire (frequency weighted) lexicon, there are approximately 1.5 times as many
phonemes in stressed as in unstressed syllables, whereas the magnitude of the
effect is much larger than this. In addition, when only the multi-syllabic words
in the lexicon are considered, there are almost equal numbers of phonemes in
stressed and unstressed syllables.

The expected class size reflects two properties of a partition — the num-
ber of equivalence classes, and the distribution of words across those classes.
Best use of a given lexical partitioning (set of equivalence classes) is made
when there is a uniform distribution of words across classes. In the previous
experiment the distribution of words across classes was much more uniform in
the stressed condition than in the unstressed condition. This means that the
space of unstressed syllables is not as well utilized, strongly supporting the
claim that unstressed syllables carry less information than stressed syllables.



Phonetic Constraints 16

The phonetic information in unstressed syllables is both less reliable and
provides less constraint than the phonetic information in stressed syllables.
However, as was the case with place of articulation information, the unstressed
syllables still provide additional constraint in recognition. This suggests that
the information in unstressed syllables should be used primarily in verification.

Ambisyllabic Phonemes

In many English words, it is not clear to which syllable certain phonemes
belong. For example, in the word “mission” /ml&-In/, the /§/ can belong
to either the first or the second syllable. Such phonemes are called ambisyl-
labic, because they can belong to either of two neighboring syllables [15]. In
the studies of previous sections, phonemes were assigned to syllables using
a maximal onset algorithm [16]. Ambisyllabic phonemes were not handled
specially. Therefore, it is possible that ambisyllabic phonemes were assigned
to stressed syllables, and this contributed to the relative importance of the
stressed syllables. In order to investigate this possibility, another lexicon
study was performed using a version of the Pocket lexicon where ambisyllabic
phonemes had been marked.

Condition E(z) Max
Stressed Only 7 52
Unstressed Only 31 220

Table 6. Equivalence class sizes for stressed versus unstressed syliables
when the ambisyllabic phonemes are moved into the unstressed syllables.

In this study ambisyllabic phonemes were moved into the unstressed syllable
if either syllable was unstressed. For example in /ml$-In/ the /§/ was moved
into the unstressed syllable, producing /ml-58In/. As in the previous study the
actual phonemes in the stressed or unstressed syllables were used for partition-
ing the lexicon. The results are summarized in Table 6. If the ambisyllabic
phonemes were responsible for the relative importance of the stressed sylla-
bles, then moving them into the unstressed syllables should have produced
substantially different results. However, comparing Table 6 and Table 5, we
see that moving the ambisyllabic phonemes into the unstressed syllables had
almost no effect. Therefore the assignment of ambisyllabic phonemes did not
contribute substantially to relative importance of the stressed syllables.
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Implications for Recognition Algorithms

Our computational investigation of the Pocket dictionary has demonstrated
that certain speech sounds are both more reliable and more important in
recognition than other speech sounds. These results suggest using a partial
representation of words based on the manner of articulation information in
stressed syllables for recognition. Since such a representation does not nec-
essarily uniquely specify a given word or syllable, more detailed analysis will
sometimes be needed in order to determine what word was uttered.

We consider two possible control structures for taking advantage of par-
tial information in recognition. These are a hypothesize and test strategy, and
a coarse to fine strategy. In the hypothesize and test approach a broad clas-
sification of the speech signal is used to hypothesize words from the lexicon,
and then more detailed analysis is used to discriminate among the word can-
didates. In the coarse to fine approach a partial classification of the speech
signal is performed, and then more detailed analysis is used to recognize spe-
cific phonemes, using the broad phonetic context.

Each strategy has its relative advantages and disadvantages. The next
two sections consider some of the issues involved.

Hypothesize and Test

The hypothesize and test model, where partial information is used to hy-
pothesize words from the lexicon, consists of 3 stages. First, broad phonetic
sequence and stress information is extracted from the acoustic signal. Second,
the partial phonetic sequence in the stressed syllables is used to access words
from the lexicon. Third, if the lexical equivalence class contains more than
one word, more detailed phonetic analysis is performed.

Since lexical access matches the input sound sequence against the sound
sequences in the lexicon, it embodies more constraint than just sequential
phonetic information. If a given input does not match, it can either be because
the sequence violates the sequential constraints of the language, or because
the underlying word is not in the lexicon. For instance the sequence

[NASAL] [VOCAL] [STOP] [STOP] [VOCAL] [STRONG-FRIC]+[S][U] [S] [U]

corresponding to the word “madagascar” does not match against the Pocket
dictionary, even though it does not violate the sequential phonetic constraints
of English. Thus one potential disadvantage of the hypothesize and test strat-
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egy is that only those phonetic sequences occurring in a given lexicon can be
recognized.

One potential advantage of the hypothesize and test strategy is that the
set of word hypotheses can be used in phonetic verification. For instance
it can be determined which phonemes are most important in differentiating
among the word candidates. In the extreme case, when all the words in a
particular class have the same phoneme in the same position, there is no need
to do further verification of that phoneme to distinguish among the words.
In general, if some of the words in a given equivalence class share the same
phoneme in the same position, an importance-based ordering can be imposed
on more detailed analyses.

To determine how much constraint is provided by the word candidates,
the phonetic makeup of the words in each equivalence class was examined.
This experiment used manner of articulation phonetic information to form
the equivalence classes — as in the original Shipman and Zue study. Recall
that 32 percent of these equivalence classes contained only one word, meaning
that no further discrimination is necessary. Of the remaining equivalence
classes approximately 40 percent have words sharing the same phoneme in
the same position. These results suggest that having a set of word candidates
based on partial information can provide substantial constraint in detailed
phonetic recognition.

Coarse to Fine

In the coarse to fine strategy, first a broad phonetic segmentation is done.
Then the broad phonetic information is used to provide a context for more
fine-grained analysis. Finally, lexical access is done using the detailed pho-
netic sequence. The major disadvantage of this approach is that it doesn’t
exploit sequential phonetic constraints until after detailed phonetic analysis
is performed.

In order to use sequential phonetic constraints at the broad phonetic
recognition stage, these constraints must be decoupled from the lexical repre-
sentation. Below we investigate explicitly representing the sequential phonetic
constraints of English in terms of allowable n-tuples of broad phonetic classes.
To the extent that this representation is independent of any particular lexicon,
it can be said to capture general sequential properties of English.

Sequential phonetic constraints are relatively local, extending over at
most three consecutive sounds in English. For example, there are constraints
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such that English has the sequences /spl/ and /spr/, but not /spt/. At abroad
phonetic level this rule can be characterized as “[STRONG-FRIC]\- [STOP]\-
[LIQUID] is allowable but [STRONG-FRIC]\-[STOP]\-[STOP] is not”. The
locality of such rules implies that a second or third order characterization of
legal sound sequences should be sufficient for capturing sequential phonetic
constraints.

One way of discovering the allowable sequences is to observe all the n-th
order phenomena occurring in a large body of phonetic sequences. These ob-
servations can be used to construct a finite state model of broad phonetic con-
straints. The states of the model are n-tuples of broad phonetic classes, and

the transitions are single broad classes. A transition from state (z1, z2,...,Z,)
to state (z2,...,Z,, ;) occurs on input z,, where the z,; are broad phonetic
classes.

For a broad phonetic scheme such as the one we have been using, con-
structing these models is a relatively tractable problem because of the small
number of symbols. A third order characterization of our 6 class system has
only 216 possible states. For a more detailed representational scheme, with
40 or 50 labels the number of possible states rapidly becomes intractable.

A given model is formed by using the broad phonetic class sequences in a
large lexicon as the initial observations. For example the lexicon consisting of
the one word “cast”, with the phoneme string /kast/ and the broad phonetic
sequence

[STOP] [VOCALIC] [STRONG-FRIC] [STOP]

would generate a second order model with three states and two transitions.
However this model does not capture the legal sequences at the beginnings
and ends of words. Therefore we make use of two additional classes [BEG]
and [END] which mark before and after a word. Using these two additional
classes, the model shown in Figure 4 is obtained for the one-word lexicon,
“cast”.

To determine the extent to which broad phonetic sequence constraints
can be represented independent of a given lexicon, we compared second and
third order models for two lexicons — the Pocket Dictionary and Lorge and
Thorndike’s 3500 most frequent English words. The same six manner of artic-
ulation classes used in the lexicon studies were used for generating the models.
The number of states and transitions for each model are presented in Table
7. The second order model of the 3500 most frequent English words contains
nearly all the broad phonetic sequences found in the 20,000 word Pocket dic-
tionary. For the third order model, the 3500 word lexicon still contains most
of the broad phonetic sequences found in the larger lexicon.
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stop voc fric stop

Figure 4. Second order model of a one-word lexicon.

Lexicon Size Model Order States Trans
3,500 Second 51 163
20,000 Second 52 186
3,500 Third 165 528
20,000 Third 188 677

Table 7. Number of states and transitions in second and third order models
of the broad phonetic sequences in the 20,000 and 3,500 word lexicons.

Another way of determining the extent to which sequential constraints
can be represented independent of a particular lexicon is to use a model of
one lexicon as a recognizer for another lexicon. To the extent that a model
of one lexicon recognizes the sequences in other lexicons, it has presumably
captured general properties of English sound sequences. When models of the
3500 word lexicon were used as recognizers for the broad phonetic sequences
in the 20,000 word lexicon, the second order model recognized 99.3% and the
third order model recognized 95.9% of the sequences. This strongly supports
the fact that the models are independent of a given lexicon.

Explicitly representing broad phonetic constraints independent of a given
lexicon allows a system to recognize most legal broad phonetic sequences in the



Phonetic Constraints 21

language, whereas hypothesize and test is limited by the fixed set of sequences
in a given lexicon. This makes the coarse to fine model more attractive for
recognition. On the other hand, lexical access can provide additional con-
straint in verification. Given the tradeoffs between the two approaches, the
question becomes one of how much verification to do before lexical access.
The more verification which is done before lexical access, the more general
the algorithm in terms of the sequences it can potentially recognize, and the
less it can take advantage of the specific word hypotheses.

Extending the Model: Continuous Speech

The results of the previous sections demonstrate that a partial phonetic repre-
sentation can be very powerful for recognizing words. However, in continuous
speech individual words are not delineated in the sensory input. In order to
recognize words from continuous speech, potential word boundaries must be
located so that sound sequences in the input may be matched against words
in the lexicon. One straightforward approach is to hypothesize the beginning
of a new word for each successive sound in the input. However the combina-
torics of this approach are prohibitive, because for each sound in the input it
1s necessary to hypothesize words of all possible lengths starting at that point.

Certain sound sequences occur only at word boundaries. Therefore, it has
been proposed that word boundaries can be identified by exploiting sequential
phonetic constraints [16]. However, the useful phonetic cues for identifying
word boundaries are extremely detailed — at the level of specific phonemes
and allophones. Since detailed phonetic information is difficult to extract
reliably from the sensory input, this approach is probably more useful for
disambiguating word boundary hypotheses than for identifying potential word
boundaries.

Even at a broad phonetic level, the cues to potential syllable boundaries
appear to be quite strong. For instance there are only 14 possible manner of
articulation sequences which correspond to syllable onsets (out of more than
a hundred possibilities). This suggests that partial information may also be
of high utility in recognizing continuous speech.
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Summary

Not all information is of equal importance in recognition. We have demon-
strated — for both phonetic and syllabic sized units — that the more reliable
information is also more important in differentiating among the words in a
large lexicon. Specifically, we have seen that sequences of manner of ar-
ticulation classes are both more reliable and provide more constraint than
place of articulation classes. Furthermore, the stressed syllables of a word are
both more reliable and more highly constraining than the unstressed sylla-
bles. These results indicate that more robust recognition algorithms may be
developed by exploiting the more important information in the speech signal.

Since the more reliable information in the speech signal also provides
more constraint in recognition, any speech recognizer which treats the signal
uniformly will suffer unnecessarily high error rates. We suggest that these re-
sults be used to develop recognizers based on partial representations of speech
sounds. Another approach is to use statistical classifiers to implicitly capture
differences in importance. The fact that statistically based systems, such as
the one developed at IBM [1], capture the relative importance of different
speech sounds probably contributes to their high performance compared with
other recognizers.

While we have demonstrated that sequential constraints at the broad pho-
netic level are very powerful, there are also strong constraints at the acoustic
and detailed phonetic levels. For instance, expert human spectrogram readers
can achieve 85% phonetic labelling accuracy for syntactically and semantically
anomalous sentences [17]. This performance is substantially better than that
of any automatic phonetic or allophonic recognizer. Identifying these con-
straints may be the key to performing detailed phonetic recognition, in order
to differentiate among word candidates.

Acoustic, phonetic, and lexical constraints are particularly useful because
they apply early in the recognition process. In fact, such early constraints are
probably necessary for accurate recognition. Template matching and clus-
tering systems which do not use such constraints are very sensitive to noise,
phonetic context and speaker characteristics. Higher level constraints such
as syntax and semantics, while clearly important in recognition, cannot in
general make up for poor phonetic level recognition performance. This was
made painfully evident by the need in Hearsay-II to impose highly artificial
task constraints, in order to obtain passable recognition performance given a
poor phonetic front-end [18].
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