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1. Introduction

The central concerns of logic, from the perspective of philosophy, have been the pursuit of truth
and the investigation of the argumentation process. The focus -of logic involves answering questions
like: "What is the meaning of truth?", "How does one distinguish between valid and invalid
arguments?", and "What does it mean for a statement to logically follow from another?” Al, on the
other hand, is concerned with what constitutes intelligence. Al focuses on such questions as "What
is the meaning of 'intelligence’?”, "How does an inteltigent agent perceive, reason about and interaci
with its environment?", "How does the agent modify its behavior based on experience?”, and "How
does the agent cope with its own limitations and the limitations imposed by its surroundings”. Much
of the formalism developed in logic to describe the meaning of truth and argumentation is applicable
to Al; alone, however, this formalism is not wholly adequate. The problem is that logic in the
philosophic sense is concerned with the meaning of truth independent of the limitations of any
particular intelligent agent; Al, on the other hand, is very much concerned with how an intelligent

agent copes with its limitations when trying to discover the truth about a matter.

One viewpoint taken in Al, and the one examined in this paper, is to view traditional logic formalisms
as providing a model! of an "ideal” agent who is both omnipotent and omniscient, and then to explore
ways in which these logics can be modified to account for the limitations of intelligent agents in the
real world. These limitations take on many forms, each resulting in an agent having incomplete or
incorrect knowledge of the world. Konolige [Konolige 84}, for example, discusses three forms of
incompleteness resulting from reasoning based on 1) limited computational resources, 2) logically
incomplete inference rules and 3) an inability to focus on relevant facts. McCarthy [McCarthy 80a],
concentrates on the way in which people are able to jump to certain conclusions when faced with a

situation where not all of the relevant information is available.

This paper examines the approaches taken by McCarthy and Konolige for the problem of dealing
with incomplete knowledge about the physical world, focusing on circumscription and related
techniques for "jumping to conclusions”. The paper begins with a summary of the problems
addressed and the approaches taken by McCarthy and Konolige, respectively. The remainder of the
paper examines the properties of, and the relationship between, McCarthy's ideas on "simplicity" (or
minimality) and Konolige's ideas on "relevance". This portion of the paper is roughly broken into two

parts.

The first part begins with an informal discussion of the semantics of circumscription and its relation
to techniques proposed by other researchers around the same time to cope with incomplete

knowledge. This analysis leads to a generalization of circumscription that provides a means of




focusing circumscription on the relevant portion of the domain and encompasses several earlier
techniques. In addition, several new techniques are proposed, providing variations on
circumscription’s theme of minimality. During this first part it is assumed that the reasoning agent
that uses circumscription is logically complete although not omniscient and thus is not constrained by

physical limitations.

The second part discusses the relationship between circumscription and Konolige's work on
relevance, when applied to resource limited reasoning. This part begins with a discussion of some of
the computational bottle necks involved in computing circumscription. Next, | discuss Konolige's
notion of circumscriptive ignorance, a technique that allows a resource limited agent to focus on only
the relevant information for a particular problem. Konolige's result is then used to extend McCarthy’s
circumscription, and several other rules of conjecture, to make explicit the notion of ignoring

“irrelevant facts." Finally, the paper concludes with a short summary.

2. McCarthy’s Circumscription

People are often faced with situations where incomplete information is specified. For example, in
the missionary and cannibal problem we >are presented with the task of moving two mutually
antagonistic groups of people across a river, given a small boat. With only this information it is not
possible to solve the problem; for example, the boat may not work correctly, due to a number of
possible failures, or there may be an alternate form of transportation available, such as a helicopter,
ferry, or windsurfer!. To qualify all the things that are not the case could require an infinite amount of
information and thus is infeasible for most problems. Nevertheless people are able to solve this and

similar types of problems, using only the information at hand.

To solve this problem people will jump to a number of conclusions. For example, most people
assume that the boat will provide a viable form of transportation across the river unless there is any
evidence to the contrary. Similarly, it is assumed that the boat is the only form of transportation since
there is no evidence of any other form of transportation available. The focus of McCarthy’s paper is a
formalization of a particular way in which people jump to conclusions, referred to as predicate
circumscription. According to McCarthy, predicate circumscription is a rule of conjecture that says
"the objects that can be shown to have a certain property P by reasoning from certain facts A are all
the objects that satisfy P". Thus by circumscribing the modes of transportation available, we believe
that the only way to get across the river is by boat. In his paper, McCarthy provides a first order

axiom, called the circumscription axiom, that provides a formal statement of the above intuition. In

1But then again, could you picture a missionary on a windsurfer?



addition he provides a tormal semantics of predicate circumscription in terms of model theory, which
he refers to as minimal entailment. Here we say that a sentence A minimally entails Q with respect to
a predicate P provided Q is true in all models of A that are minimal in P. Finally, McCarthy shows how
predicate circumscription subsumes an earlier form called domain circumscription which says that

"the 'known’ entities are all there are".

The notion of circumscription, the relationship between the circumscription axiom and minimal
entailment, and the relationship between predicate circumscription and domain circumscription are
all very difficult concepts to grasp. The primary objective of this paper is to explain these concepts

and discuss circumscription’s scope of applicability.

3. Konolige on Belief and Incompleteness

Gods are unfettered by such corporeal limitations as time and space; on the other hand, the rest of
us intelligent agents are unfortunate enough to have to put up with these and other limitations. The
study of logic from the viewpoint of philosophy and mathematics has been better suited for these
omnipotent gods than the intelligent agents explored in Al, in that it has no way of taking into account
the limitations of the physical world. Konolige identifies three types of incompleteness that resulit
from the physical limitations of intelligent agents: 1) resource limited incompleteness, 2) fundamental
logical incompleteness, and 3) relevance incompleteness. First, resource limited incompleteness
occurs when ". .. an agent has the inferential capabilities to derive some consequence of his beliefs
but simply does not have the computational resources to do so0.” Second, fundamental logical
incompleteness occurs when an agent has a logically incomplete or inconsistent inference
procedure.2 Third, relevance incompleteness occurs when an agent has available all the necessary
information to deduce the desired consequences, but restricts his set of knowledge in such a way that

the deduction is no longer possible.

The goal of Konolige’s work is to provide a formal logical framework for describing the above
limitations. In accomplishing this goal Konolige's formalism differs from traditional logic formalisms in
a number of ways. First, the notion of consequential closure is replaced with that of derivational
closure. In addition, the rules of deduction are not required to be logically complete or sound. Thus
the logic system is not guaranteed to deduce all logical consequences of what is known, but instead

is only guaranteed to deduce all consequences that are derivable from the set of deduction rules.3

2It is arguable whether or not even gods are always consistent, for example, see [GODS 77].

3The results of derivational closure may differ from that of consequential closure when the deduction rules are logically
incomplete or inconsistent. :



Second, Konolige provides a framework for modeling 1) the interactions of several agents, each with
possibly different limitations, and 2) the beliefs of agents about other agents (about other agents . . ).
This is accomplished by allowing each agent to be modeled by a separate logical system (called a
deduction structure), and then to provide a set of operators (the belief operator and the
circumscription operator“) that allow information sharing between agents. An agent is represented
by a deduction structure, consisting of 1) a set of deduction rules and 2) a set of initial beliefs in the
form of sentences. The belief operator applied to an agent (A) and a sentence (P) returns true if A
"believes" P. Thus if A has not deduced the truth of P or A has deduced P to be false, then the belief
operator returns false. This makes it possible for agents to examine the beliefs of other agents or their
own beliefs about other agents. The circumscription operator takes an agent (A), a set of sentences
(L) and a sentence (P), and returns true if A can derive P from L. This makes it possible to make

explicit statements about the derivation process.

Konolige’s formalism provides a means of modeling several forms of incompleteness that cannot be
modeled in standard first order system. This should make it possible to precisely define the semantics

of several aspects of conjectural reasoning that have not yet been formalized.

The two major weaknesses of Konolige’s paper are that 1) he provides little motivation for many of
the components of his formalism and 2) he provides very few examples of what analytical or
computational power is gained by using his formalism. It is thus very difficult to analyze Konolige's
formalism on computational grounds. Instead this paper focuses on the expressive power gained by
Konolige's formalism with respect to rules of conjecture similar to circumscription. See [Levesque

84] for a discussion of an alternative approach for dealing with logical incompleteness.

4. Jumping to Conclusions

Dealing with partial information is an everyday experience. People are frequently required to jump
to conclusions in order to deal with a particular situation. The following are just a few typical
examples.

1. The only people who said they would be gomg camping are John, Fred and Mary, so I'll
assume the rest are not going.

2. 1 know my keys are here somewhere since | left them here just an hour ago.

3. There can't have been a second 'Great Depression’ in 1954; otherwise, the history books
would be sure to have mentioned it.

4Konolige's circumscription operator is not to be confused with circumscription in McCarthy's sense since they have little or
no relation.



4. I'm sure snipes fly, they're birds aren’t they?
5. He probably got all his degrees from here, after all he's the president of MIT.
6. Until recently scientists were "sure" that Saturn had exactly three rings.

We see from the above that the assumptions people make take on many forms, several of which
have been investigated in Al under such names as failure by negation [Clark 78], the closed world
assumption [Reiter 78], circumscription [McCarthy 80a] [McCarthy 77], default reasoning [Reiter 80]
and THNOT [Sussman 70]. In the next few sections we embark upon the task of understanding the
meaning behind a number of these techniques and the relationship between them. The discussion
focuses primarily on the semantics of circumscription and its relationship to other techniques. The
notion of circumscription is a powerful one, but one that can be very difficult to grasp. It is clear that
McCarthy was only beginning to understand what circumscription was all about when he wrote about
it in "Circumscription--A Form of Non-Monotonic Reasoning” [McCarthy 80a], and there was a gap of
several years before other researchers understood it well enough to publish further papers on the
topic. It is very difficuit from McCarthy's paper to grasp the intuition behind the predicate
circumscription axiom, and then to draw an. exact link between this axiom and the missionary and
cannibal problem discussed in the first half of his paper. Thus, before analyzing the limitations of
circumscription or proposing any extensions to it, it is important to first develop an intuition behind
circumscription’s intended purpose. | begin by providing an informat discussion of the semantics of
predicate circumscription and then show how this semantics is reflected in the circumscription axiom.
A number of special cases are also considered, providing further insight into McCarthy’s approach.
In addition, a number of the examples listed above will be used throughout this paper as a means of

comparing circumscription with other forms of conjecture.

Informally, predicate circumscription says that the set of all objects satisfying a certain property P is
the smallest set of objects that is consistent with the known facts A.S For example, in the missionary
and cannibal problem circumscription can be used to jump to the conclusion that the only available
mode of transportation to cross the river is the boat. In this case P is the property "available modes of
transportation to cross the river” and A is the fact "there is a boat available". The set {boat} is then
the smallest set of "modes of transportation" that is consistent with the facts. Furthermore, by

circumscribing the "ways that the boat can fail,” we deduce that the boat is working correctly, since

5McCa\rthy describes Circumscription as ". . . the objects that can be shown to have a certain property P by reasoning from
certain facls A are all the objects {hat satisfy P." This statement does not convey the correct semantics of circumscription, and
instead sounds almost identical to Reiter's Closed World Assumption [Reiter 78] which says roughly that the only objects that
have a property P are those that logically follow from certain facts A. The difference belween circumscription and the closed
world assumption lies in the use of the phiase "logically consistent with", as opposed to “logically follows from”. The
distinction between these two techniques is discussed in detail in section 8.3.



the smallest set of ways the boat can fail that is consistent with A is the empty set.

One way of viewing predicate circumsgcription is as a special case of Occam’s Razor. Occam’s
Razor says roughly that faced with several possible explanations, take the simplest one that is
adequate. H we take "simplest” to mean the smallest and "adequate" to mean logically consistent
with the known facts, then predicate circumscription translates to "The set of all objects satisfying a
certain property P is the simplest one that is adequate.” Thus the formal statement of circumscription
(i.e., the circumscription axiom) provides a precise semantics for one interpretation of Occam’s
Razor. Having the semantics of these common sense rules of conjecture formalized is essential to

further analysis and is one of circumscription’s most important contributions.
P

5. The Semantics of Circumscription

Our informal definition of circumscription has a number of ambiguities. We say "the set of all
objects satisfying a certain property P is the smallest set of objects that are consistent with the known
facts A"; however, what is mean’t by the words "property” and "smallest"? The objective of this
section is to provide a more precise definition of each of these terms and predicate circumscription as

a whole.

The use of phrases like "the set of all objects” suggests that set theory is a convenient formalism for
capturing the semantics of circumscription. A "property" is taken to be a predicate on one or more
individuals. A predicate P can be viewed as a set of elements, called the extension of P, where the
elements of the extension of an n-place predicate are all n-tuples satisfying the predicate.6 For
example, if the predicate TRANSPORTATION is only true of boat, then the extension of TRANSPORTATION is
the set {boat}. As a second example the natural numbers is represented by an infinite set, NATNUM =
{0,1,2...}.

Given a theory in terms of a set of axioms A, containing one or more instances of the predicate P, it
is not always possible to determine a unique extension for P (i.e., our knowledge abcut P is
incomplete). For example, given the axiom "TRANSPORTATION(canoe) and TRANSPORTATION(sailboat)",
there is an infinite number of extensions that satisfy the predicate TRANSPORTATION, namely all sets
that include both canoe and sailboat as elements. We define A io be the set of all extensions of P
that satisfy the axioms A. Thus in the above example, taking P to be "TRANSPORTATION" and A to be

"TRANSPORTATION{canoe) and TRANSPORTATION(sailboat)" we get, A = {S | {canoe, saiiboat} C S}.

GFor ease of presentation we assume that all predicates are one place predicates and replesent a tuple <c> snmply as c; all
arguments given here, however, apply to n-place predicates.



Next we need to define the notion of "small”. An extension is said to be smaller than another if itis
a proper subset of the second.” Thus the extension {canoe, sailboat} is smaller than the extension
{canoe, sailboat, windsurfer}. An extension is said to be the "smallest" if it is minimal, that is, if there
is no extension that is a proper subset of it. More precisely, an extension E of a predicate P is said to
be minimal with respect to a set of axioms A just in case 1) E is an extension of P (i.e., E € AP) and 2)
there is no other extension of P that is smaller than E (i.e., +(3®)(® € Ap A ® C E)). Thus in the
above example (where A = {S | {canoe, sailboat} C S}), the minimal extension is {canoe, sailboat},
since none of its subsets are members of A,,. Itis not necessarily the case, given a set of axioms, that
a predicate has a unique minimal extension. That is, there is not necessarily a unique "smallest” set.
In many cases a predicate will have several minimal extensions, and in some cases there will be none

at all. Examples of both situations are provided below.

At this point we are ready to define predicate circumscription. Given a set of axioms A that only
partially constrain a predicate P, predicate circumscription is a way of restricting the set of extensions
of P to consist of only the minimal extensions of P in A. We call the set of extensions resulting from the
circumscription of P in A the closure of P in A (denoted CIRC(A,P)}). CIRC(A,P) is then defined to be the

set of all elements S such that:

1.8€A,and
2. 730 (P EA)A (2 CSY)

Thus CIRC(A,P), is a precise definition for one interpretation of what it means to jump to the
conclusion that "the set of all objects satisfying a certain property P is the smallest set of objects

whiich are consistent with the known facts A."

Before going on to the predicate circumscription axiom it is useful to consider a couple more
examples of circumscription at the semantic level. The first example is a case where there are several
minimal extensions while in the second example there are no minimal extensions at all. Consider the
statement "someone left either a helicopter or a boat next to the shore", which we translate to the
axiom "TRANSPORTATION(helicopter) V TRANSPORTATION(boat)". In this case the predicate
TRANSPORTATION has  two minimal extensions, namely, {helicopter} and {boat}. Thus by
circumscribing "modes of transportation" we deduce that "either the only mode of transportation is
the helicopter or the only mode of transportation is the boat". This roughly achieves the effect of an
exclusive OR, since the set {helicepter, boat} is not minimal and thus excluded as a possibility by

circumscription.

7Su bset is denoted C, proper subset is denoted C, and element of is denoted €.
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Figure 5-1: Predicate Circumscription Example: No Minimal Extension

In the above example predicate circumscription does not provide a unique minimal extension for the
predicate. As a second example, consider the axiom A to be "For all integers n, P(n) implies
P(successor(n))". If we define Rn to be the set of all integers greater than or equal to n, then AP isa
set containing an extension R_ for every integer n (figure 5-1). if we now arbitrarily select an extension
Rn from AP, then the extension Rn .1 is a proper subset of R " Therefore, for every extension in Ap
there exists another extension in A, that is smaller, in other words there is no minimal extension of P
in A. As we can see from this example, there are cases where there is no extension of P that satisfies
circumscription; thqs it is sometimes the case that circmscribing a theory will make the theory

inconsistent.

6. The Predicate Circumscription Axiom

In the previous section | defined the result of circumscribing a predicate P with respect to a theory A

as the predicate CIRC{A,P), described extensionally as:
CIRC(AP) = {S|S € Ao A (30 (P € Ap) A(P C9))}

Where A is the set of all extensions of P that satisfy the axioms A.

To achieve the results of the cIRC operator in the proof theory of first order logic, for example, it is
necessary to augment the set of axioms of a theory A in such a way that all the extensions of P in A

are minimal. The predicate circumscription axiom is a means of achieving this effect. The goal of this



section is to show how the circumscription axiom together with the set of axioms A implies that P is

equivalent to CirC(A,P).

For the purpose of this discussion we take the circumscription axiom to be the following second

order sentence schema quantifying over all predicates ®.

Definition The circumscription of P in A is the sentence schema®

Vo (((d € Ap) A Vx.(P(x) D P(x))) D ¥x.(P(x) D d(x))). (1)

In the above definition the first conjunct in the antecedent, ® € AP, is a predicate on predicates
which is true exactly when every extension of @ in A is also an extension of P in A. % Thus the first

conjunct says that for each model of the theory the extension of P is an element of AP.

The second conjunct of the definition, ¥Yx.(P(x) D P(x)), says that P is true of an individual whenever
® is. Thus, in a particular model of the theory, every element of the extension of @ is also a member
of the extension of P, or equivalently @ is a subset of P (¢ C P). Similarly the antecedent of the
definition, Vx.(P(x) D ®(x))), is taken to mean P is more specific (P C ®). Making these substitutions

the circumscription axiom becomes:
VO.((P EA)N(PCP)D(PCP)

Another way of viewing this statement is that, for each model of the theory, any predicate ® that is

both a member of Apand a subset of P must be equivalent to P.
Vo.(((P € AP) AP CP)) I(P=d))

Or equivalently there exists no predicate ® which is an element of Apand which is a strict subset of

P.
—(3P.((P €AY AP CPY)) (2)

This is exactly the second part of the definition of cIrc, (where P is taken to be S in the definition).

Next, given the set of axioms A, the first half of the definition trivially follows since the extensions cf
P are necessarily a subset of the extensions of P. (Syntactically this is equivalent to replacing all

instances of P in A with itself, producing just A.) Thus for each model of the theory:
PEA, (3

Firally, from equations (2) and (3), and the definition of cIRC, we deduce that the set of extensions of

8Again‘ the circumscription axiom schenta is easily generalized to handle arbitrary n-place predicates by replacing x with an
n-tuple.

9The '%g,rm O CA

is constructed in a first order axiom by substituting all instances of P in A by & {ie. ¢ € AP =
)s(l».P.S(b A). .

P
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P, resulting from the set of axioms A plus the circumscription axiom, is the set of all minimal
extensions of P in A. Thus the circumscription axiom captures the semantics described in the

previous section.

7. Properties of the Circumscription Axiom

Given an axiom that captures the meaning of circumscription, what do we do with it? The objective
of this section is to answer this and similar questions. This section begins with a discussion of thé
general properties of circumscription and a number of ways it can be used to make deductions. The
discussion then turns to several ways that circumscription is used in the common sense world.

Finally, circumscription’s limitations are discussed, providing motivation for later sections.

One of the most important contributions of circumscription is that it provides a precise statement of
the semantics of an important form of conjectural reasoning. This statement of circumscription is
useful in analyzing both its computational properties and its expressive power. In this section we are
primarily interested in circumscription’s expressiveness; its computational properties are examined in
the second half of this paper. Two ways of using circumscription are examined below -- the first
consists of determining the set of all individuals that satisfy a circumscribed predicate, while the
second is a way of determining whether or not a circumscribed predicate is true of a particular

individual.

One of the appealing properties of circumscription is that it works within the framework of first order
logic, whose properties are fairly well understood, rather than creating a new logic that hasn’t yet
been characterized. To incorporate circumscription into a first order system, the circumscription
axiom is converted from a second order statement to a first order axiom schema, by removing the
quantification over ®, and instead viewing ¢ as a predicate parameter for which an arbitrary

expression can be substituted.
((® € Ap) A Vx(P(x) DP(x))) D Yx.(P(x) = P(x)). (4)

7.1. Determining the Individuals That Satisfy a Predicate

The need for circumscription arises from the need to reason based on incomplete information.
Basically, given an incomplete description of the set of individuals satisfying a particular property,
circumscription is an intuitively satistying assumption about how to complete this set. What the
circumscription axiom provides us with is a precise way of stating this assumption. Given a predicate
P and a set of axioms that we want to circumscribe over, one way the circumscription axiom is
typically used is to determine the set of all individuals that satisfy the predicate. To accomplish this,

one first constructs a predicate ¢ describing a set of individuals and then uses the circumscription
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axiom to show that & is equivalent to P, (where P is the circumscribed predicate we're interested in).
This, in turn, is accomplished by instantiating the circumscription axiom schema (equation 4) with a
specific A, P and &, and then showing that the antecedent of the axiom follows from what is known.
Thus the major steps in using circumscription are 1) selecting a predicate P to be circumscribed, 2)
selecting a set of axioms, A, to circumscribe over, 3) generating ¢, and 4) showing that the
antecedent of the instantiated axiom follows from what we know. For example, consider the
circumscription of P in A, where P is the predicate "TRANSPORTATION" and A is the sentence
"TRANSPORTATION(canoe) /A TRANSPORTATION(sailboat)". We then guess canoe and sailboat to be the
only modes of transportation and instantiate the circumscription axiom schema with ®(x) being the

expression "(x = canoe) V (x = sailboat)":
(({{canoe = canoe) V (canoe = sailboat)) A ((sailboat = canoe) V (sailboat = sailboat))) (5)
A VYx(((x = canoe) V (x = sailboat)) 2 TRANSPORTATION(X)))
2 Vx.{TRANSPORTATION(X) = ((x = canoe) V (x = sailboat))).

The first part of the antecedent in (5) is tautologically true while the second follows from A; thus,
from the consequent of (5), the minimal set of transportation modes is {canoe, sailboat}. In this
example, the circumscribed predicate is described by a unique minimal extension and thus is

completely determined.

If a predicate P has several minimal extensions, then the result of circumscribing P may still provide
useful information. For example, suppose that TRANSPORTATION is being circumscribed in the
sentence "(TRANSPORTATION(canoe) A TRANSPORTATION(sailboat)) V (TRANSPORTATION(canoe) A

TRANSPORTATION(kayak))" using the above technique we can show that:

V X.(TRANSPORTATION(X) = ((x = canoe) V (x = sailboat))) (6)
V Vx.(TRANSPORTATION(X) = ((x = canoe) V (x = kayak)))

Thus TRANSPORTAT.ION has two minimal extensions, {canoe, sailboat} and {canoe, kayak}. From this
we can deduce several things; for example, in either case there are only two modes of transportation
available, one being a canoe and both being water vehicles. Using McCarthy’s terminology, we say
that equation (6) minimaily entails each of these facts with respect to TRANSPORTATION, since each fact
holds in all minimal extensions of TRANSPORTATION. This differs from regular entailment, since a fact
may be true in all models A where P is minimal, and yet not be true in all models of A. For example,
there are exactly two modes of transportation in all minimal extensions of TRANSPORTATION in (6);
however, there are extensions of TRANSPORTATION in (6) where there are more than two modes of
transportation. The topic of minimal entailment arises again later in this paper during the discussion

of non-monotonic reasoning (section 11).

Also consider the case where P has no minimal extensions in A (an example of this was provided at
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the end of section 4). lf we use the second order statement of the circumscription axiom (equation
(1)) then there is no extension of P (and therefore no model) such that A and equation (1) both hold.
Thus A taken together with the circumscription axiom applied to P is inconsistent! Fortunately the
effect this has on the first order circumscription axiom schema is that there will be no instantiation of
& with P such that the consequent of the circumscription axiom can be deduced. Thus at worst the

circumscription axiom will provide no useful information.

7.2. Determining the Truth of a Predicate for a Single Individual

The above discussion described how the circumscription axiom is used to determine all the minimal
extensions of a predicate P. This is similar to the way circumscription is used in McCarthy’s paper. As
is discussed in later sections, finding an instantiation for ¢ that enumerates all minimal extension of P
can be computationally quite expensive. Searching through all possible instantiations of the
predicate ® is equivalent to searching through the space of all possible formulas. This section
proposes a second technique, not discussed in the literature, that uses the circumscription axiom to
determine if P is true or false of a particular individual, a, in all minimal extensions of P, while avoiding

the computational cost of the technique described above.

An obvious way of accomplishing the above task is to find all minimal extensions of P and then test
ithe truth of P(a) in each extension. This approach is undesirable since it essentially involves
determining the truth of P for every individual in the domain. A much more desirable way of
determining the truth of P(a) is to find an instantiation of ® that only constrains the truth of ® applied
to a, while leaving the truth of ® applied to all other individuals to be the same as that of P. This avoids
the work of unnecessarily determining the truth of P for all other individuals in the domain. For
example, P(a) can be shown to be false in all minimal extensions of P in A by instantiating ®(x} as "(x
# a) A P(x)" in the circumscription axiom (4), and then showing the antecedent of the axiom to be

true. Performing this substitution, the circumscription axiom schema simplifies greatly, becoming:
(((x = a) AP(x)) € Ap) 2 TP(a). (7)

Consider the previous example where P is TRANSPORTATION and A is "(TRANSPORTATION(canoe) A
TRANSPORTATION(sailboat)) V (TRANSPORTATION(canoe) /A TRANSPORTATION(kayak))". Circumscribing
P in A we might want to show that there are no helicopters available (i.e.,

“1TRANSPORTATION (helicopter)). Using (7), and instantiating the individual, a, as helicopter:
({{canoe # helicopter) A TRANSPORTATION(canoe)
A (sailboat # helicopter) /A TRANSPORTATION(sailboat))
V ((canoe # helicopter) A TRANSPORTATION(canoe)
A (kayak # helicopter) A TRANSPCRTATION(sailboat)))
- TITRANSPORTATION(helicopter).



13

In the above equation, all of the inequalities are true and the antecedent simplifies to A, therefore,
—ITRANSPORTATION(helicopter)  follows. We have thus determined the truth of
TRANSPORTATION(helicopter), while avoiding the expense of finding a "full instantiation” of & as was

performed in the tirst technique.

The above example demonstrates a way of showing that P(a) is false in all minimal extensions of P in
A. The second case involves showing that P(a) is true in the same situation. To deal with this case,
note that if a is a member of a minimal set describing P then it will also be a member of all supersets of
P. Furthermore, each extension of P is a superset of some minimal extension of P. Thus if P(a) is true
in all minimal extensions of P then it is also true in all extensions of P. Therefore, A minimally entails
P(a) with respect to P if A entails P(a). In other words, nothing is gained from circumscription in trying

to prove the truth of P(a)), and the circumscription axiom reduces to P(a) D P(a).

7.3. Applying Circumscription and Other Forms of Conjecture

When using circumscription, one must select both a predicate and a set of axioms to be
circumscribed over. The set of axioms selected depends on properties of both the domain and the
intelligent agents being modeled. If the intelligent agent is omnipotent, then it will use all the available
information, and thus circumscribe over everything that is known.'® On the other hand, if the agent is
resource limited, then a subset of the known facts are selected that are assumed fo be relevant to the

problem.

The problem of selecting a predicate, however, plagues both resource limited and omnipotent
agents alike. In the examples that have been considered thus far, the choice of a predicate to be
circumscribed has been obvious. There are, however, many cases in which the choice is not so
obvious. Consider the following blocks world example, where the domain consists of the 6 blocksia
through f, the predicates BLACK and WHITE, and the knowledge that every block is BLACK or WHITE (i.e.,
Vx.(BLACK(x) = —WHITE(x))). In addition it is given that blocks a and b are BLACK, while ¢ and d are
WHITE. If we wanted to determine what blocks were BLACK we could use circumscription to deduce
that the set of all BLACK blocks is {a,b}. It then follows that the remaining blocks {c,d,e,f} are WHITE.
On the other hand, by circumscribing the predicate wHITE it follows that {c,d} are WHITE, while

{a,b,e,f} are BLACK.

We see from this example that circumscription can inadvertently produce a number of undesirable
side effects. These side effects can become quite subtle in complex systems. One ramification of this

is that one must be careful in determining whether to circumscribe a predicate or its negation. It is

10This appears to be an implicit assumption in McCarthy's paper, based on the examples he provides.
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important that one makes a conscious decision about which of the two is being circumscribed. A
second ramification is that the result of multiple circumscriptions is order sensitive. This is a serious
logical problem; the ordering of predicates to be circumscribed is a resuit of the linearity of syntax
and has little semantic significance. The fact that successive circumscriptions are not "associative”

means that one must make arbitrary decisions about the order of the circumscribed predicates.

To deal with these issues one must consider the properties of the problem domain to which
circumscription is being applied. We now consider a number of ways that circumscription and similar
forms of conjectural reasoning have been used, including in database systems, common sense
reasoning and computer-aided insiruction. The relationship between circumscription and several
other rules of conjecture discussed below is the topic of later sections. In addition, a solution to the

problem of circumscription's ordering sensitivity is discussed in section 8.2.

A number of rules of conjecture, such as failure by negation [Clark 78] and the closed world
assumption [Reiter 78], arose out of work on database systems. One of the major issues in dealing
with large databases is the negative information problem. In general the amount of negative
information is often much too large to represent explicitly in the database. [Naqvi 85] For example, in
an airline flight reservation system it would be much too unwieldy to represent all the places that an
airline cannot fly to, as well as the places it can. Such a data base, which represents both positive
and negative information explicitly, is referred to as an open database. On the other hand, in a closed
database only positive information is represented explicitly, while the truth of negative facts is
deduced by defaull. More specifically, any fact that doesn't logically follow from the set of facts in the
database is false. Thus, in thé above example, there is no flight route between two cities unless one
can be deduced. Negation by failure and the closed world assumption are both techniques for
making this type of deduction. A closed database is a convention of communication that makes it
possible to represent information concisely. This convention appears in many areas, such as the

representation of circuit connections with a schematic or routes with a road map.11

As discussed above, circumscription plays a very similar role in the area of common sense
reasoning. For example, if I'm asked who is going camping, and | respond that John, Fred and Mary
are, then it is assumed by convention that they are the only people that are going. If this isn't the case
then | would qualify my answer with something like "to the best of my knowledge" or "the people |

know".

11One thing that is lost with such a convention is that it is no longer possible to represent a piece of knowledge being
unknown, since anything that cannot be shown to be true is assumed to be false. Thus the implicit representation of negative
facts presumes total knowledge aboeut the domain being represented.



An important difference between the use of these techniques in formal database systems versus
common sense domains is the certainty with which a negative fact is held. In a formal database
application, closure is an explicitly stated convention that is held with great certainty. Thus in these
applications it is very important that the integrity of the database is assured. On the other hand, in a
common sense domain the negative information is taken only as the most likely answer given what is
known thus far. For example, it was assumed until recently that Saturn had only three rings.
Furthermore, this fact often appeared in school texts without any qualification. Thus the discoveries
of the Voyager missions required a major revision of the public’s beliefs. This type of conjectural
reasoning occurs over and over again in science. Someone comes up with a hypothesis that is either
refuted or becomes stronger and stronger as the evidence collects. In computer science, the class of
NP-complete problems is an explicit attempt to accumulate evidence to support a belief that “P does

not equal NP".

The problem of measuring the certainty to which we hold a belief, is an interesting and difficult
problem. In problems of scientific investigation this certainty might be derived empirically. In other
more common sense domains our certainty might be based on other factors, such as our model of the
person we are communicating with. One approach, investigated by Collins and his colleagues
[Collins 75] is based on the importance of a particular fact. For example, given a question like "were
any U.S. Presidents women?", their system would reason that 1) it knows of no women presidents,
and 2) the fact is sufficiently important that the system would have heard of it if it was true, thus the
answer must be false. On the other hand, given a question like "was it a good year for raspberry
picking in Oakland County, Michigan?", the system would probably fail to answer on the basis of lack
of information (since the fact isn't important enough that the system would have any reason for
knowing it). Of course this research opens as many questions as it answers. For example, how dces
one determine whether or not a fact is important? Do people place different levels of importance on
facts? What is our confidence in a person telling us the relevant information for a problem? Many of
these questions are intimately wrapped up in our model of belief. Several attempts have been made
to forrnalize the notion of "belief" [Doyle 80], [Weyhrauch 80}, including Konolige’s article "Belief and

Incompleteness” [Konolige 84} discussed later in this paper.

Above | have discussed several uses of both circumscription and conjectural reasoning in general.
During this discussion a number of issues were raised that are as yet unsolved in the current
research. In addition, many of the above examples involving other forms of conjectural reasoning
cannot be performed using circumscription as it stands. Several of these limitations are discussed in
the next three sections, along with proposals for extending circumscription. The first section

discusses adding to circumscription the ability to focus in on particular portions of the domain to be
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circumscribed. The second talks about how to incorporate defaults into circumscription, and the

third discusses circumscribing over things other than predicates.

8. Relevance: Tuning the Scope of Predicate Circumscription

Roughly speaking, the predicate circumscription axiom provides a means of stating in first order
logic that the set of individuals in the domain that have a particular property is the smallest set that is
consistent with what is known. In some cases we would like to jump to certain conclusions about é
property without having it apply to all individuals in the domain. For example, we might want to say
that the only birds that don’t fly are those that are known, without making any commitment about
flying mammals or fish. On the other hand, often we would like to expand the scope of
circumscription so that it applies to several properties at once. Thus we need a way of specifying the
set of relevant individuals and properties that circumscription is being applied to. This is the topic of
the first two parts of this section. If we expand the scope of circumscription to encompass all
predicates and individuals in the theory we have something similar {but not equivalent) to the closed
world assumption. A comparison between circumscription and the closed world assumptior. is the

topic of the third part of this section.

8.1. Moving In - Focusing on the Relevant Individuals

In the above example we want to circumscribe the predicate FLIGHTLESS over the set of individuals
that are birds, without making commitments about any other type of individual. A straight forward
application of the circumscription axiom, however, results in circumscribing over all individuals in the
domain, clearly not what we desire. Instead we would like to specify a subset of the domain and
circumscribe over it, while leaving the rest of the domain untouched. The subset of the domain we're
interested in can be represented as a characteristic function C(x), which is simply a predicate on the
individuals of interest. Thus C(x) can be viewed as a subset of the individuals in the domain, just like

any other predicate.

To circumscribe a predicate P in A over only the individuals in C, we need to remove the individuals
in P we are not interested in and then minimize over the resulting set. To accomplish this we intersect

both P and ® with C, tc; remove the undesirables, and then use the definition of minimal, giving us:
=1(3D.((P € Ap) A((eNC)CEPNCY) (8)
The corresponding second order axiom is then:
Vo ({(P € Ap) A V(D) A C3)) D (Pix) A Cx))
D Yx.((P(x) A C(x)) == (d(x) A C(x)))).

which simplifies to:
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Y. (((d € Ap) A Yx((P(x) A C(x)) D P(x))) D Vx.((P(x) A C(x)) D d(x))). 9

Thus in the bird example, we can say "the only birds that are flightless are the ones we know about"
by letting P be FLIGHTLESS and C be BIRD. If, for example, we knew only that "a penguin is a flightless
bird,” (A = (BIRD(penguin) A FLIGHTLESS(penguin))) then by instantiating & in axiom (9) as:

d(x) = (BIRD(x) A (x = penguin)) V (TBIRD(X) A FLIGHTLESS(x))

® € A, is a tautology, and thus it follows that:
Vx.((BIRD(x) A FLIGHTLESS(x)) D (x = penguin))

In addition we can use axiom (9) to test whether or not a particular bird is flightless using the

technique developed earlier for predicate circumscription.

Next consider the limiting cases for the characteristic function C(x). If we take C to be the complete
domain of individuals (i.e., ¥x.C(x)}), then axiom (9) becomes logically equivalent to the predicate
circumscription axiom, just as we would expect. At the other extreme if we take C to be a single

individual, a, (i.e., C(x) = (x = a)) then axiom (9) becomes:
VO.(((PEA) A (®(a) D P(a))) D (P(a) D d(a))

which says "assume that P(a) is false as long as it is consistent with A". This is equivalent to the
negation by failure inference rule, which states that " . . . = P can be inferred if every possible proof
of P fails.” [Clark 78] Thus far we have described how to circumscribe over any subset of the
individuals in the domain. The next section describes how to circumscribe over any subset of the

predicates in the domain.

8.2. Moving Out - Focusing on the Relevant Properties

An obvious way of applying circumscription to multiple predicates is to instantiate the
circumscription axiom sequentially on each predicate. For example, to circumscribe predicates P
and Q over a set of axioms A, one would first instantiate equation (4) with P and A, and then
circumscribe Q over the resulting set of axioms. However, recall from the blocks world example
above that circumscription is order sensitive; circumscribing WHITE and then BLACK produces a
different result than circumscribing the predicates in the opposite order. In practice, when a person
decides to circumscribe their knowledge of the world for a particular problem, the circumscription is
applied over a set of properties. This is an important point: it is a set, not a sequence that we are
circumscribing over. Thus the ordering of these properties has no semantic import and should be
irrelevant to the circumscription. Instead the circumscription axiom must be augmented so that
several circumscriptions occur simultaneously, avoiding the problem of ordering sensitivity.

McCarthy suggests a generalization of the predicate circumscription axiom that does this. For the
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case where two predicates, P and Q, are being jointly circumscribed, the axiom becomes:
(Kb, € Ap o) A VX (D(x) D PN A Ve (¥ (x) D Q(x)) (10)
D (Vx.(P(x) = ¢(x)) A ¥Yx.(Q(x) = F(x))).

Viewing A, q 3s aset of pairs of extensions for P and Q respectively, then:
TID A (KD C AL o A KON #PIA(DPCP)A(FCQY) (11)

Thus equation (10) naturally extends the notion of minimality to encompass two predicates.12

Generalizing to any number of predicates, the axiom states that, for each model of the theory, there

which is distinct from <P,Q, . . .7, and whose elements are
o8

exists no tuple <® b, .. > in APO

subsets of the respective elements in <P,Q .

Returning to the circumscription of the two predicates P and Q, if P and Q are independent in A
then the result of circumscribing P and Q simultaneously is equivalent to that of circumscribing P and
Q separately (in either order). In the blocks world example of the previous section, if we remove the
constraint that "every block is BLACK or wHITE," it then follows from circumscribing BLACK and WHITE
together that {a,b} are BLAack, {c,d} are wHITE, and {e.f} are neither. This is equivalent to
circumscribing WHITE alone, followed by BLACK (and vice-versa). On the other hand, including the

constraint between BLACK and WHITE, the result of circumscribing the predicates together is:

<BLACK, WHITE> = <{a,b},{c.d.e,i}> V {ab,e} {c.d.f}>
V {a,b,e,f},{c,d}> V {ab,f},{cdep

This result includes both the results of circumscribing BLACK followed by wHITE and wHITE followed

by BLACK as subsets as well as results not found in either.

The technique described in this section allows us to expand the scope of circumscription to include
several predicates in the domain at once. Similarly, the technique of the previous section provides a
means of focusing on any subset of the individuals in the domain. Thus taken together, these two
techniques provide a powerful tool for selecting the relevant slice of the domain to be circumscribed.
These are only two of the ways that the predicate circumscription axiom can be constrained. Other
ways of constraining predicate circumscription are explored in later sections. In the previous section
we considered the limiting case where a predicate is circumscribed over a single individual. The next

secticn considers the other limiting case where the whole domain is circumscribed. .

1ZReﬁaH that the minimality condition for a single predicate P is equivalent to:

(Ab (P € AP) A (D CTP)A (b =+ P)))
13A second way of viewing the circumscription of P and Q in A is that the set of terms involving P or Q that are true in A, is
minimal.

i4 : . . . _ ' -
We say that P and G are independent in A if AP.Q = Ap X AQ ={ppipc AP) AfgC AQ)}.
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8.3. The Limiting Case: Predicate Circumscription and the Closed World Assumption

By extending circumscription to close over all predicates in A, we capture the intuition of the
conjecture that "the set of things we believe to be true is the minimal set that is consistent with what
we know" {where, in this case a "thing" is taken to be a term). This is very similar to Reiter’s closed
world assumption (CWA) [Reiter 78], which roughly states that "we only believe those things to be
true that follow from what we know". Although these statements might appear the same at first
glance, they have a subtle, but important, difference. This difference arises from the use of the
phrases "consistent with" in circumscription, versus "fol_lows from" in the CWA, and is best seen
through an example. Consider once again the missionary and cannibals problem where we are told
that either a boat or a helicopter is available. In this example the result of circumscribing
TRANSPORTATION was two minimal extensions, {helicopter} and {boat}. Next consider the application
of the CWA to the same example. It doesn’t logically follow from the statement
"TRANSPORTATION(helicopter) V TRANSPORTATION(boat)" that helicopter is an available mode of
transportation; neither does this follow for a boat. Thus, the result of applying the CWA is that there
are no available modes of transportation to cross the river, but this is clearly inconsistent with the

original statement that either a helicopter or a boat is available!

Let’'s examine this inconsistency more carefully for a moment. Another way of stating the CWA is
that a literal'® is assumed to be false as long as the assumption is consistent (i.e, if doesn’t follow that
the literal is true). Thus the CWA checks to make sure that each assumption taken separately is
consistent with the original data base. It does not, however, check to make sure that the assumptions
are mutually consistent, thus inconsistencies are allowed to slip by. Circumscription differs in that it
makes precisely this check by assuring that the predicates extensions be both minimal and

consistent.

Reiter recognizes this inconsistency, and avoids it by restricting the applicability of the CWA to horn
databases. A horn database consists of a set of clauses, each of which has at most one positive
literal. Each clause can be viewed as an implication where the consequent consists of the positive
literal and the antecedent consists of all the negative literals. For example, the following set of

clauses are horn: .
(TSNIPE(X) V BIRD(X))
A(TPFENGUIN(X) V BIRD(x))

and are equivalent to:
Vx.((SNIPE(X) V PENGUIN(x)) D BIRD(x))

15A positive literal is a term (a predicate applied to a tuple of individuals), while a negative literal is a negated term.
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A way ol applying the CWA, or "closing off the database” for a literal P(x) is suggested by
Ctark [Clark 78], which consists of 1) collecting all the clauses whose consequents contain P(x), 2)
converting the clause to the form: Vx.(A(x) D P(x)), and then 3) inverting the implication and
combining with the original clause to get Vx.(A(x) = P(x)). This is equivalen; to saying that the

sufficient conditions for the positive literal to be true are also the necessary ones.

Given the above restrictions, Reiter claims in [Reiter 82] that Clark’s completion axiom, just
described, is implied by predicate circumscription. In his paper, Reiter provides an example where
this is the case, and states this implication as a theorem; however, he neglects to provide any proof of
the theorem. Furthermore, this proof does not seem to appear in any of his other published works.
Reiter then implies at the end of the paper that, as a result of this theorem, predicate completion can
be used to generate an instantiation of ®(x) that is equivalent to CIRC(A,P). If true, this would be an
important result since it would remove the guess work involved in finding the minimal predicate.
However, this interpretation appears to false. Consider the following example, consisting of the

domain of integers and the single axiom: '€

Yn.((n=0V P(n - 1)) D P(n)) (12)

Figure 8-1: Upwardly Closed Rays That Include Zero

Semantically this axiom describes the set of all P’s, each of which is upwardly closed and includes
zero (figure 8-1). This axiom is in the desired form, Vx.A(x) D P(x), prescribed by Clark for predicate

completion, thus we infer that:
Yn.(P(n) D(h=0V P(n-1))) (13)

16This axiom is equivalent to the conjunction of the following two horn clauses:
Vn.({n = 0) D P(n))
Yn.{P(n - 1) D P(n))
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Figure 8-2: Rays That are Downwardly Closed Except at Zero

This is equivalent to a set of P’s, each of which is dowriwardly closed except at n =0 (figure 8-2). As
a result of predicate completion the conditions of (13) are combined with (12), providing two
extensions for P, the first containing exactly the natural numbers and the seccend containing the
integers (figure 8-3). The first case is a minimal extension of P, and is the same as the result of
applying circumscription. The second case, however, is clearly not minimal, since the integers is a
strict superset of the natural numbers. Thus using predicate completicn to perform the closed world
assumption does not necessarily result in constraining P’s extensions to be minimal. in other words,

the results of predicate circumscription and the closed world assumption are not equivalent.

This example provides a counter example to Reiter's interpretation of the theorem, that is, that
predicate completion can be used to find an instantiation of the predicate that is minimal for horn
databases. What Reiter's theorem is saying is something much weaker. That is, for horn databases,
the predicate resulting from predicate completion is true in all cases that the circumscribed predicate
is true. Thus predicate completion is not over restrictive with respect to circumscription. This is a
useful result since it tells us that, fike circumscription, the CWA will not result in an inconsistency
when applied to horn data bases (earlier we discussed how in the more general case the CWA can

produce inconsistencies). However, the theorem says nothing about predicate completion being
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under restrictive, that is, how close the predicate resulting from predicate completion is to being
minimal. In fact, what the above example shows is that in some cases the resulls of predicate
completion can be far from minimal! Thus it is not clear what benefit we have gained in using the
CWA over leaving the predicate completely alone. Certainly the uncircumscribed (or uncompleted)
predicate would also be guaranteed not to be over restrictive. Intuitively (and in practice) the CWA
appears to be quite useful as a circumscriptive device. However, it remains to be shown exactly how

restrictive the CWA really is.

Figure 8-3: Combination of the Upwardly and Downwardly Closed Rays

Another problem with the CWA is that, like circumscription, it is ambiguous whether or not a
predicate or its negation should be assumed. Recall that the CWA says that a positive literal is
assumed to be false unless it logically follows that it is true. On the other hand, the fact that we need
to make an assumption implies that it does not logically follow that the literal is false. Therefore, it is
logically consistent to assume either that the literal is false or true. The CWA always assumes that the
truth of a positive literal is false unless it follows that it is true. The default assumption for the truth of
a literal, thus, is built implicitly into how the literal is expressed. For example, when talking about
birds and flight we might select the predicate FLIES and list birds that can fly or select the predicate
FLIGHTLESS and list those birds that can’t. The selection of the particular predicate can have a
dramatic affect. For example, by selecting FLIES it is assumed that the only birds that can fly are those
that are mentioned, while selecting FLIGHTLESS assuimes that the ones mentioned are the only ones
that can’t fly. These types of decision are particularly important during conjectural reasoning, since
statements like "penguin’s can’t fly" can suddenly become the norm, rather than the exception. One
of the motivations for default reasoning is to make these assumptions explicit in the axioms. The next

section discusses a way of incorporating defaults into circumscription.

9. Circumscription and Default Reasoning

The types of conjectural reasoning examined thus far say something roughly like "the objects that
can be shown to have a certain property P by reasoning from certain facts A are all the objects that

satisfy P". On the other hand, the notion of a default, P, is something I'ike "the objects that can be
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shown not to have a certain property P by reasoning from certain facts A are the only exceptions”.
Thus a default is a property that is true of a class of individuals. Default reasoning is prevalent in
many domains, such as knowledge representation, temporal reasoning, troubleshooting, qualitative
reasoning and so forth. In knowledge representation we use defaults to say something like "birds
usually can fly" and "elephants usually are gray, have four legs and a trunk.” In temporal reasoning
defaults are embodied in the persistence assumption, "things don’t change without a cause". To
perform default reasoning, one must provide a way of 1) stating a default property for a class of
individuals and 2) determine whether of not a particular individual satisfies a default. This section

builds on the results of previous sections to incorporate default reasoning into circumscription.

The notion of a default is analogous to circumscription. The difference is that default reasoning
tries to maximize the number of objects having a particular property, while circumscription tries to
minimize it. Thus default reasoning can be restated as the set of all objects satisfying a certain
property P is the largest set of objects that are consistent with the known facts A. That is, default
reasoning is a way of restricting the set of extensions of P to consist of only the maximal extensions of

P in A. An axiom for default reasoning, analogous to the predicate circumscription axiom is:
Vo.((¢ €A A VX.(P(x) D P(x)) D Yx.(P(x) = d(x))). (14)

Cr, semantically, there exists no predicate ® which is an element of Ap and which is a strict superset

of P ‘
T(3AP((P EA) A (PC D)) (15)

The similarity, between the above default axiom and the predicate circumscription axiom allows us
to take advantage of the techniques developed for circumscription in preceding sections. The default
axiom, as it is staterd above, however, is not yet adequate. Normally, a default is expressed about the
property of a particﬂlar class of individuals in the domain, such as the default value of a slot for a
particular frame [Bobrow 77], or the role filler of a concept [Brachman 85a). Thus we must be able to
restrict the application of a default to only those individuals that are subsumed by a particular

concept. Using the results of section 8.1 the default axiom schema is restated as:
Vo (¢ € Ap) A VX((P(x) A C(x)) D d(x))) D Vx.((P(x) A C(x)) D P(x))). (16)

Thus to state the default that "all birds fly" we specialize the above axiom schema with P as FLIES
and C as BIRD:
VO.(PEA ) A Vx.((FLES(x) A BIRD(x)) D ®(x)) an
D Yx.((P(x) A BIRD(X)) D FLIES(X))).
A nice property of the default axiom is that it allows us to specify different defaults for different
classes of individuals, thus we might say that birds fly by default while humans don’t. Furthermore, if

we state that a set of properties are mutually exclusive and collectively exhaustive, then a default can
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specify one of several slot fillers. For example we might want to say that all animals either swim, walk

or fly, and then specity the defaults of each class of animals to be one of the three.

Next we need a way of determining if an individual, a, satisfies a default property, P. To do this we
partially instantiate P with a, as described in section 7.2, except that we take ®(x) to be ((x = a) V

P(x)). This produces the following axiom schema:
(((x=a) V P(x)) € AP) A C(a)) D P(a) (18)

Thus for the above example this schema becomes:
(({{x=2a) V FLIES(x)) € A_ ) A BiID(a)) D FLIES(a)

FLIES

Thus to determine whether an individual, a, satisfies a particular property P, we partially instantiate

P with a in any schema for which 1) the class, C, subsumes a, and 2) the default is the propertyiP.

For example, to determine that a snipe flies, given that "a penguin is a bird that cannot fly", we

instantiate the above schema with a = snipe, and A = (BIRD(penguin) A TFLIES(penguin)):
( BIRD(penguin) A —((penguin = snipe) V FLIES(penguin))) A BIRD(snipe))
D FLIES(Snipe)

The first conjunct of the antecedent follows from what is known, thus, if a snipe is a bird then it can

fly.

This completes the description of how to specify and use defaults. The last few sections have
provided a number of extensions that greatly expand the scope of minimal reasoning to encompass
several cther forms of conjectural reasoning . In this section we have seen a number of these
extensions come together in an analogous form of maximal reasoning, thus providing a precise
semantics for default reasoning. Before continuing to another topic, it is worthwhile to consider for a

rnoment the appropriateness of applying default and other conjectural techniques.

9.1. Should Defaults be the Default?

Although default reasoning and other rules of conjecture are essential components of the reasoning
process, it is imporiant that one does not become overzealous with their application. Default
reasoning has been used liberally in a number of Al applications involving areas like knowledge

representation, temporal reasoning and search.

In several applications there has been a tendency to perform blanket applications of defauits. For
example, in the field of knowledge representation, Brachman [Brachman 85b] points out that if we
remove the definitional import of a taxonomy and instead interpret all properties to be default

properties, then it is no longer clear what the meaning of subsumption is. Our intuitions say that if



one concept is subsumed by another, then the subsumer places a set of necessary properties on the
subsumee. Yet if we allow any property to be defaulted indiscriminantly, then this necessary
condition no longer follows. In this case it is no longer clear what the semantics of a taxonomy is, and

thus the integrity of the representation collapses.

In the area of temporal reasoning there has been a tendency to assume everywhere that the value of
a quantity (position of a block, and so forth) doesn't change unless there is evidence to the contrary.
The application of this assumption often seems to produce the right result and thus has appeared
adequate. A serious problem, however, arises when one of these assumptions results in an
inconsistency. If every fact in the system is an assumption, then any piece of knowledge relating to
the inconsistency is suspect! Thus the system is presented with a vast number of alternatives to
consider. Instead, by constructing more robust temporal representations it is often possible to
deduce with complete confidence the duration of some event, while avoiding the cost of making (and

possibly later retracting) any assumptions.

The point here is not that one should not use defaults or other rules of conjecture, since they play
an essential role in many areas of reasoning. Instead it is a caution that one should be judicious

about their use.

10. Other Forms of Circumscription

Predicate circumscription places a minimality condition on the set of individuals that have some
property. It is useful to consider other places where a similar condition of minimality might be
desirable. This section briefly discusses two such areas: 1) domains and 2) individuals. A third form

of circumscription referred to as axiom circumscription is discussed in section 13.3.

In general the minimality condition used in circumscription consists of two parts. The first part is a
test for membership in the set of things that are being minimized over, while the second provides a
condition, based on an ordering relation for the set, that determines the elements of the set that are
minimal. In predicate circumscription the test is logical consistency, the elements are extensions of
predicates, and the ordering relation is subset. There are, however, several other ways in which one
might want to use mir{imality. in each of the following cases the elements of the set we are trying to

minimize, denoted A ., are sets and the ordering relation is proper subset. The minimality condition

oK’
for an element S is then summarized as follows:

1.8 € AOK and

2. (Ab.(® € AL ) A (@ C9))
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10.1. Domain Circumsc riptign

Earlier we said that the notion that predicate circumscription captures is that a closed predicate is
true of the smallest set of individuals which is consistent with what is known. Domain circumscription
says that the set of all individuals in the world is the smallest set that is consistent with what is known.
Thus predicate circumscription minimizes the set of individuals that have some property, while
domain circumscription minimizes the set of all individuals in the domain. For example, consider the
statement "Peter, Ramesh and Gerry are in the room." Applying predicate circumscription to the
predicate "in the room", we infer that these are the only people in the room. On the other hand, from

domain circumscription, we infer that these three people are the only individuals there are.

Domain circumscription is primarily useful in reasoning about universally quantified hypothetical
statements (or their equivalents) based on experience. For example, | might use domain
circumscription to say that, "it is my experience that all cats are friendly,” and then use this fact to
deduce that it is safe to pet a particular large black and yellow striped cat. (Note that this form of
reasoning is non-monotonic.) After a close encounter with the tiger, we will no doubt believe that the
statement "all cats are friendly” is false, and our beliefs about cats will have changed non-

monotonically.

To define the precise semantics of domain circumscription we let A be the set of all possible
domains that are consistent with what is known, and let ALL represent the minimal domain. The

semantics of domain circumscription is then:

1. ALL € Apand
2.7 (3P((P EAY A (D CAaw)))

To construct the corresponding axiom in predicate calculus we need predicates that describe the
sets: ALL and AD. To handle the first we take ALL to be a predicate that is true of all individuals in the
domain (Vx.ALL{x)). A domain, @, is consistent with what is known if it contains all the individuals
referred to by A. According to McCarthy, the domain consist of 1) all the constants mentioned in A, 2)
all the individuals resulting from the application of any function symbol, f, mentioned in A to one of the
constants of 1), and 3) those constants denoted by induction schemas (e.g., P(0) and P(n) D

P(succ(n))).

Finally. McCarthy [McCarthy 80a] describes a way of constructing a predicate formula, ® € Ap, that

is true just in case the domain @ satisfies the above three conditions.!” The resulting axiom is then:

17M(:Ca\rthy detines the predicate ¢ € A_ to be Axiom{d) A A'b. "Axiom{['} is the conjunction of sentences h(a) for each
constant a and sentences Yx.(h{x) 2 ¢{{x))." Thus, Axiom(h) covers conditions 1) and 2) above. A (called the relativization
of A with respect to 4) covers condition 3), ard is formed by replacing each universal quantifier "¥x." in A by "Vx.(h(x) D"
and each existential quantifier "3x.” in A by “"Ix.(d(x) A ".
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Vab.(((d CAL) A Vx.(D(x) D ALL(x)) D Vx.(ALL(x) = B(x))). (19)

10.2. Individual Circumscription

A second possible use of minimality we refer to as individual circumscription. Predicate
circumscription concerns itself with the minimal set of individuals that satisfy a predicate P. Similarly,
individual circumscription concerns itself with the minimal set of predicates that are true of an
individual 1. More precisely, individual circumscription states that the set of all predicates P that are

true of an individual I is the smallest set of predicates that are consistent with the known facts A.

One example of the utility of individual circumscription appears in the domain of hardware
troubleshooting. Suppose we want to determine that a certain component is working. By
circumscribing all the properties cof the components, we can say that the component works unless
one of these properties is a member of a class of failure properties. In addition, one might use a
technique similar (but not identical) to individual circumscription to circumscribe all instances of the
two place predicate CONNECTED(x,y) that mention a particular node, N. This provides us with the set of

all connections to N, and can be used, for example, when applying Kirchotf's Current Law to N.'8

Let AI be a set, each of whose elements is a set of predicates, such that each of the predicates
being true of the individual | is consistent with what is known. In addition, let PROPERTY-OF-I represent

the minimal set of predicates true of |, then the semantics of individual circumscription is:

1. PROPERTY-OF-1 € A and
2. 7@ (PEA) A (¢ C PROPERTY-OF-1)))

To construct the corresponding axiom in predicate calculus we need predicates that describe the
sets: PROPERTY-OF-| and A|. PROPERTY-OF-I is defined to be a predicate on predicates that satisfies the
second order axiom, "For all predicates P, PROPERTY-OF-I is true of P, iff P is true of
1"(i.e.,PROPERTY-OF-{P) = P(l)). Recall that A, is a set, each of whose elements is a set of predicates P,
such that P(l) follows from A (where A is a set of first order axioms). Taking ¢ to be a set of
predicates, then ¢ € AI can be constructed as a predicate formula consisting of the conjunction of
sentences, P(l) D ®(P), for each predicate P in the set of first order axioms A. That is, ¢ € AI if &
contains every predicate P mentioned in A that is true of |. Individual circumscription is then stated as

a second order axiom quantifying over all predicates P, and all predicates on predicates ¢, such that:
Yo (P € A) A VP.(®(P) D PROPERTY-OF-I(P))) D VP.(PROPERTY-OF-I(P) = ¢(P))). (20)

1BKirchoif‘s Current Law states that the sum of the currents into a node is zero, where there is a current associated with
each terminal connected to the node. Individual circumscription tells us all things connected to the node.
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In this section we have explored the application of the minimality condition developed for predicate
circumscription to two other aspects of conjectural reasoning. A third technique, axiom
circumscription, is explored later during the discussion about the ways that resource limited agents
focus on relevant information. Each of these techniques allow a set of facts to be circumscribed
along a different dimension: predicates, individuals, axioms and the domain itself. The next section

examines the claim that circumscription is a form of non-monotonic reasoning.

11. Circumscription and Non-Monotonic Reasoning

McCarthy and others have described circumscription as a form of non-monotonic reasoning. In this
section we examine the notion of monotonicity and how it relates to circumscription. McCarthy

defines monotonicity as follows:

if a sentence q follows from a coliection A of sentences and A C B, then q follows from B. In the notation of proof theory: if
AlE=qand ACB, thenBF=q.

Thus, in a monotonic logic, if it follows from a set of sentences A that all cats are friendly, then this

will still follow if an arbitrary set of sentences are added to A.

Predicate circumscription, however, defines a notion of inference different from traditional logics
called circumscriptive inference (I——P). We write A l-—P q if the sentence q follows from the result of
circumscribing P in A. This implies that q is true in all models of A that are minimal in P. Unlike the
normal notion of inference, circumscriptive inference is non-monotonic. The reason for this is best
seen through an example. In the original missionary and cannibal problem we used circumscription
to determine that the boat was working, based on the fact that we had no evidence to the contrary.
However, if after carefully examining the boat we saw that it had a gaping hole, then we would no
longer believe that the boat was working. Thus, using circumscriptive inference, a statement that
follows from a collection of facts A no longer follows when that collection is expanded to a larger set

B -- in other words, circumscriptive inference is non-monotonic.

The argument for the non-monotonicity of circumscription can be somewhat deceptive. It is true
that the notion of circumscriptive inference as it is defined above is non-monotonic; however, does it
accurately reflect how circumscription is applied in first order logic (FOL)? The problem is that
circumscriptive inference manages to sweep a small but very important axiom under the rug, namely
the predicate circumscription axiom. If we let C/\,p denote the axiom that results in circumscribing P

in A, then we can rewrite circumscriptive inference in terms of regular inference as follows:
A}-—qu (A/\CA’P) Faq

That is, q follows from A and the instantiation of the circumscription axiom schema with A and P. If
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we then take B 1o be a superset of A and say that it is not the case that B }—P q. then this is equivalent
to saying that it is not true that (B A C, ) - q. Thus, although A is a subset of B, it is not the case
that (A A C, p) is a subset of (B A Cpp)-

to get B, then we must remove the old circumscription axiom CA p before circumscribing the resulting

B.P
That is, if we circumscribe A and then add more sentences

set. Thus, from this viewpoint the argument that circumscription is non-monotonic is invalid.'®

The reason this discussion is important is that it raises a more general issue, that of making
assumptions explicit. The reason that circumscription appeared non-monotonic is that we were
hiding away the axioms that distinguished circumscription in the first place. The problem with hiding
these assumptions is that when an inconsistency arises in the state of our world knowledge we are
not able to consider these assumptions as possible causes. In most cases it is exactly these
assumptions that have proven to be faulty. In these cases we want to be able to examine our

assumptions and make a conscious decision about what to do next.

12. Computing with Circumscription

One of the most significant contributions of circumscription is that it provides a precise
formalization of an interesting form of conjeciural reasoning. The importance of such a formalization
is that it allows us to explore both the expressiveness and the computational properties of a particular
aspect of common sense reasoning. The discussion thus far has been heavily weighted towards the
analysis of circumscription’s expressiveness. During this discussion we have seen how the notion of
predicate circumscription and the more general notion of minimality encompasses a broad class of
conjectural reasoning includihg negation by failure, default reasoning, and (according to Reiter) the
closed world assumption. In addition | have identified two common kinds of questions answered
using circumscription. The first consists of determining the set of all individuals that satisfy a
circumscribed predicate, while the second involves determining the truth of a circumscribed
predicate about a particular individual. Finally, we have seen how the notion of minimality used in

predicate circumscription can also be used to formalize other, similar types of reasoning.

During this discussion, however, | have essentially ignored the computational cost involved in using
circumscription. This section focuses on the cemputaticnal aspect of circumscription by examining
the ways in which circumscription is used and analyzing some of the computational costs involved.
To give this topic proper jusiice would require a much more extensive presentation than | have time to

give here; thus, | will concentrate on the major issues, pointing to other publications on more detailed

19No doubt the reason McCarthy calls circumscription a form of non-monotonic reasoning, rather than a non-monotonic
logic, is precisely the fact that, aithough it might be viewed as being non-monotonig, it works completely within the framework
of a monotonic first order logic.
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points. The interested reader is directed 1o [Non-Monotonic 84| for a collection of some of the most

recent work on this topic.

With few exceptions, intelligent agents in the real world are resource limited. Thus for
circumscription to be of practical use it must be elfectively computable. Before jumping into the
details of circumscription's computational properties it is useful to reexamine for a moment its

motivation.

The need for circumscription (and the other rules of conjecture discussed) arises from the need to
reason based on incomplete information. Given an incomplete description of the set of individuals
satistying a particular property, circumscription is an intuitively satisfying assumption about how to
complete this set based on a notion of "simplicity”. What the circumscription axiom provides us with
is a precise way of stating this assumption. Given a predicate P and a set of axioms that we want to
circumscribe over, the circumscription axiom is typically used to determine the set of all individuals
that satisfy the predicate. To accomplish this, one first constructs a predicate ¢ describing a set of
individuals and then uses the circumscription axiom to show that ® is equivalent to P, (where P is the
circumscribed predicate we're interested in). This, in turn, is accomplished by instantiating the
circumscription axiom schema with a specific A, P and ®, and then showing that the antecedent of
the axiom follows from what is known. Thus the major steps in using circumscription are 1) selecting
a predicate P to be circumscribed, 2) selecting a set of axioms, A, to circumscribe over, 3) generating

®, and 4) showing that the antecedent of the instantiated axiom follows from what we know.

The selection of a predicate to be circumscribed over is based on the particular domain being
worked in and the problem being solved. Often circumscription is invoked when trying to prove a
statement involving a predicate that has several possible extensions. In this case the predicate is

circumscribed with the goal of coming up with a unique extension.

In all of the examples provided by McCarthy the set of axioms that are circumscribed over is the set
of all the axioms known. This is not surprising; McCarthy’s paper focuses on dealing with incomplete
information. At no point are resource limitations or other forms of incompleteness considered; rather
it is assumed that the agents being modeled are logically complete. Thus it would only make sense
that an agent would use all the known information available. Of course, a physically limited agent may
not be able to consider all the information available to him, and thus must focus in on those axioms

that appear "relevant” to the problem. This topic is discussed in detail in section 13.2.

Potentially the largest computational bottle neck in using circumscription is the selection of the
predicate ®. Circumscription is a very powerful mechanism, as McCarthy demonstrates in one of his

examples where he shows that the induction axiom on the natural numbers is a special case of
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circumscription. However, this expressive power can make circumscription very expensive to
compute with in the general case. If, in searching for all minimal extensions of P, the circumscription
axiom is used as the test part of a random generate and test process, then the generation of
predicates ® is equivalent to generating all possible predicate expressions! A number of researchers
have recently studied the problem of selecting ¢ while restricting the class of axioms to which
circumscription is applicable. As discussed earlier, Reiter [Reiter 82] claims that, if the set of axioms
A is restricted to be horn in P, then the closed world assumption is implied by circumscription. If in
fact this is the case (a possible counter example to this claim appeared in section 8.3), then the
technique of predicate completion developed by Clark [Clark 78] can be used to construct a ® that is
guaranteed to be equivalent to P. In addition heuristic techniques for dealing with cases where A is
not horn in P have been recently discussed in [Naqvi 85]. The importance of this type of technique is
that they produce an instantiation for ® that is equivalent to P, while avoiding the costly generate and

test process described above.

For many of the cases where circumscription is applied there exists a unique minimal extension for
P. McAllester [McAllester ??] points out that the mu calculus provides a decision procedure for
determining whether or not a set of axioms has a unique minimal extension for P [Park 76). This

provides a characterization of an important class of axioms and warrants further investigation.

Once the circumscription axiom is instantiated, the remaining step is to show that the axiom’s
antecedent (i.e., (¢ € AP) A Vx.(P(x) D P(x))) logically follows from what is known. For resource
limited agents it is not possible, except in restricted domains, to deduce all logical consequences
from the facts at hand. Thus even in those cases where the antecedent follows, the agent may give up
before proving that it is true. This issue is raised in section 14 during the discussion of Konolige’s

work on resource limitations.

If, instead of trying to completely characterize P, circumscription is used to determine the truth of P
for a particular individual, then the technique proposed in section 7.2 is particularly useful, since it
avoids the need to search for an instantiation of ®. By using this technique the proof that P(a) is false
is equivalent to proving the axiom resulting from substituting every occurrence of P(x) in A with ((x #
a) A P(x)). This is miuch simpler than first going through the random generate and test process

described above to find an instantiation for <.

This section has examined a number of the major computational costs incurred when using
circumscription. At one point during the discussion | mentioned the fact that the selection of the set
of axioms, A, that are being circumscribed depends on the necessity of a resource limited agent to

focus his aitention. Focusing one’s attention involves making deductions based only on a small set of
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relevant facts, while ignoring any facts irrelevant to the problem. In order to formalize the notion of
"focusing one's altention” the logic formalism must provide a means of describing the truth
derivation process, that is, the derivability of a fact from a specific set of axioms. Konolige provides
such a formalism. The properties of this formalism and its applicability to various forms of conjectural

reasoning is the topic of the next section.

13. Relevance Incompleteness

McCarthy’s work on circumscription focuses on the problem of making decisions based on
incomplete knowledge of the world. In addition to this problem, intelligent agents in the "real” world
must cope with several other forms of incompleteness due to physical limitations. The focus of
Konolige's work [Konolige 84}, [Konolige 82] is on a formal system that can be used to model several
of these limitations. Konolige addresses three forms of incompleteness which he refers to as: 1)
relevance incompleteness, 2) resource limited incompleteness, and 3) fundamental logical
incompleteness. Relevance incompleteness occurs when an agent has available all the necessary
information to deduce the desired consequences, but restricts his set of knowledge in such a way that
the deduction is no longer possible. Resource limited incompleteness occurs when .. . an agent has
the inferential capabilities to derive some consequence of his beliefs but simply does not have the
computational resources to do so." Finally, fundamental logical incompleteness occurs when an
agent has a logically incomplete or inconsistent inference procedure. Relevance incompleteness is

explored below, while the other two forms of incompleteness are explored briefly in the next section.

The life of a typical individual is cluttered with an incredible number of inconsequential facts, far too
many to cope with as a single body of knowledge when solving any sizable problem. The treasured
piece of knowledge about the song on the second track of the flip side of a Supertramp album, which
was so helpful during last night's trivial pursuit game, is not going to do one bit of good during the
next morning’s calculus exam. Thus one must be able to determine what information is relevant for a
particular situation. For example in the missionary and cannibal problem, cne immediately
determines that knowledge about boais, rivers and transportation is relevant, while last night’s dinner
and the mating patterns of overweight penguins are not. Thus to solve the missionary and cannibal
problem we "circumscribe” a collection of facts that appear useful, considering ail others to be
irrelevant to the problem at hand. Konolige provides a formalization of this idea which he refers to as

circumscriptive ignorance.



13.1. Circumscriptive Ignorance

Predicate circumscription is used to draw a circle around a set of facts that are believed to be true,
considering anything outside of the circle to be false. Similarly using circumscriptive ignorance, a
circle is drawn around a set of facts such that any facts outside of the circle are considered to be
irrelevant to the problem. Thus, if the desired result cannot be deduced from the set of circumscribed
facts, then it is assumed that the result is not deducible from any larger set. More precisely, let B be a
set of axioms that are known ("believed") and let A be a subset of B that are considered to be
relevant. By circumscribing the relevant facts A when deducing P we say that, if P does not follow
from A then P does not follow from B. For example, circumscriptive ignorance might be used to say
_something like, "At night, if | can't find a missing needle under the street light, then 1 can’t find it at
all," or "If he can't figure out the riddle with all the clues he's been given then he is just not going to

be able to figure it out.”

To formalize circumscriptive ignorance we must be able to make an explicit statement about the
derivability of a fact P. Furthermore, it is necessary to be able to specify a particular set of facts that P
is being derived from. To accomplish this- Konolige introduces what he refers to as the
circumscription operator. The operator ! will use in this discussion (dencted by angle brackets) is a
simplified version of Konolige’s operator, which ignores for the moment the issues of 1) resource
limitations, and 2) modeling the beliefs of multiple agents. The issue of resource limitations is
addressed in the next section. The intended meaning of the circumscriptive atom, <I'>P, is that the
sentence P follows from the set of sentences T, that is I' = P. Similarly, —(<I">P) means that P does
not follow from I'. lt is important to note that the circumscriptive atom, <I">P, is only semi-decidable
using the axiomatization of first order predicate calculus. Thus proving —(<[>P) requires that P is not
derivable from T, an undecidable question. In reference [Konolige 82}, the circumscription operator
is incorporated into a propositional modal logic based on Sato’s K4 [Sato 76], a logic that has been
proven to be decidable. Taking B to be a base set of axioms representing what we know, and A to be

the set of axioms that are being circumscribed over, then circumscriptive ignorance is expressed as:
<B>A D (AP = <B>P)

In the forward direction this says that, given that the relevant set of facts A is a subset of what we
know (A foliows from B), then if the desired fact P follows from A, then P also follows from what we
know. This is certainly true for any monotonic logic, since anything that follows from a set of axioms
also follows from a superset of those axioms. The reverse direction is more interesting and says that
(again given that A follows from B) 'if P cannot be inferred from A, then P cannot be inferred from what
we know. This statement differs from the formalization provided by Konolige in that it requires A to be

a subset o_f what is known "<B>A D ... ". Without this restriction it is possible to select a set of facts
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A that are disjoint from what we know. The interpretation of circumscriptive ignorance then would be,
"if P cannot be inferred from a set of facts, which we possibly don't know about, then P cannol be

inferred from what we know". This, however, is not the desired semantics.

The notion of circumscriptive ignorance is very similar to that of failure by negation [Clark 78].
Failure by negation says that it P cannot be inferred from what is known then P is false. Using
Konolige’s circumscription operator in a manner analogous to circumscriptive ignorance, we can
restrict the proof of the truth of P to a subset of what we know. Failure by negation then says that if P
cannot be inferred from A (a subset of what we know) then P is false. Thus, the difference between
the two techniques is that failure by negation makes the stronger conclusion that P is false, while
circumscriptive ignorance says that P cannot be inferred. Negation by failure can also be used (as it
is in the closed world assumption) to say that the only facts that are true are those that follow from the
facts A. By analogy, circumscriptive ignorance can be used to say that those facts that are derivable

from A are all that can be derived.

The ability, provided by the circumscription operator, to make explicit statements about the truth
derivation process played an essential role in formalizing circumscriptive ignorance. The
circumscription operator also allows us to formalize several other forms of conjectural reasoning not
possible in standard first order logic. Two such rules of conjecture are the topics of the next two

sections.

13.2. The Relevant Axioms: Restricting the Scope of A in Circumscription
In section 8 we examined ways of focusing the circumscription axiom on the relevant set of
predicates and individuals in the domain. In this section we examine a way of focusing on the

relevant set of axioms to which circumscription is applied.

As was mentioned in section 12, when predicate circumscription is being applied by an
"omnipotent" agent, the selection of A, the facts that are being circumscribed is the set of all things
that the agent knows about. In other words, the agent will want to use all of the available information
to reason with. On the other hand, a resource limited agent, often cannot afford the cost of wading
through all the information available. In addition there may be some additicnal cost incurred in
acquiring the knowledge, such as searching through reference libraries or performing experiments.
Thus, in these situations the agent must restrict the set of axioms, A, to those that he considers

relevant, based on properties of the particular problem.

Examining the predicate circumscription axiom of equation (1) we note that, although it is possible

to select any set of axioms to be circumscribed over, it is not possible'to restrict the set of axioms
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used to prove the antecedent of_ the circumscription axiom. Thus, we are restricting the set of axioms
A used to test the consistency of the circumscribed predicate P, thereby reducing our confidence that
P is correct. Yet at the same time we are still burdened with the cost of considering all of our
knowledge in proving that our "guess” for P is minimal (that is, & = P). In other words we get the
worst of both worlds: a weakening in logical completeness, without any gain in computational

efficiency.

Recall that the reason for restricting the set of facts A to a subset of what is known is to reduce the
computational burden of using circumscription in the first place. Thus we would like to assume that
the facts A are the only facts relevant to the problem and completely ignore everything else we know
in applying predicate circumscription. Konolige provides us with exactly the right framework to
accomplish this. To achieve the desired result Konolige's circumscription operator is used to restrict
the deduction of the antecedent of the circumscription axiom so that it is true only if it follows from the
relevant axioms A. This produces an axiom that combines McCarthy’s predicate circumscription and

Konolige's circumscriptive ignorance:
VO.(KAS((D € Ap) A Vx.(D(x) D P(x))) D Vx.(P(x) D P(x))). 21)

Thus the above axiom changes the meaning of predicate circumscription from "it follows from what

we know that P is minimal in A," to "it follows from A that P is minimal in A"

13.3. Axiom Circumscription - Communicating ldeas Effectively

In earlier sections | have discussed three types of circumscription: 1) Predicate circumscription,
which minimizes the set of individuals that have some property, 2) Domain circumscription, which
minimizes the set of individuals in the domain and 3) Individual circumscription, which minimizes the
set of properties that a particular individual has. Using Konolige’s circumscription operator | now
introduce a fourth type of circumscription, related to the notion of a minimal set of axioms used to
deduce a particular fact. Due to an agent’s physical limitations, there is a computational cost
incurred when an intelligent agent makes a set of deductions. If this agent interacts with other
intelligent agents, then there is an additional cost due to the finite bandwidth of the communication
channel. The tradeoff between these iwo costs is discussed in section 14. In this section | assume
that the cost of making deductions is negligible, and instead focus on the problem of minimizing the

communication cost.

One problem in communicating an idea is that there is a huge amount of negative information that, if
stated explicitly, will be very expensive to communicate. This issue is of great concern to researchers

studying database systems [Gallaire 78], and was the topic of section 7.3.
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A second problem involves the cost in communicating a sufficient amount of information such that
the desired meaning is conveyed. To minimize communication costs, while conveying a particular set
of ideas, we would like to transmit the minimum amount of information necessary to infer the ideas.
(i.e., we would like to eliminate irrelevant information). Notice in the previous sentence that the magic
words, minimize and irrelevant appear once again. To formalize the idea of minimizing transmitted
information, | draw both from the ideas of McCarthy on circumscription and the ideas of Konolige on

relevance. | will refer to the formalization of this type of conjecture as axiom circumscription.

Let P be a set of ideas that we would like to convey and let A be the set of facts that we
communicate in trying to convey P Then our goal is to provide a formal statement of the idea: "The set
‘of facts A, used to communicate the idea P is minimal.” To formalize this statement | need to define 1)
what it means for "facts A to communicate the idea P" and 2) what it means to be minimal. | will take
the statement "the facts A communicate the idea P" to mean that the sentence P can be inferred from
A, or using Konolige's notation <A>P. Next | use the notion of minimality discussed in section 10, i.e.,
Sis minimal in A, if:

1.S€A0Kand

2. (3Ad.((¢ € AOK) A (@ "is strictly smaller than" S)))

AOK is taken to be the set of all axioms that 1) follow from what is known, and 2) can be used to
derive 8. Thus the condition for the set of axioms @ being an element of A, is stated as "¢ A LD>S."
in addition, a set of axioms B is smaller than a second set ', if B follows from I (i.e., <I">B), and B is
strictly smaller than T if, in addition, it is not the case that I" follows from B (i.e., <I'>B A —<B>T).
Finally, we can construct an axiom, similar to that of predicate circumscription, that captures this

semantics (where ¢ is quantifying over all sentences):
VO.(D A <PXS A KAD) D (A = D). (22)

The axiom above states that any set of known axioms & that can be used to deduce S and that
follows from A is equivalent to A. Adding the restriction that A is a known set of axioms such that §
can be deduced from A (i.e., AACADS), then A is the minimal set of known axioms that S can be

deduced from.

One thing this axiom doesn't take into account is the fact that the agent being communicated with
already has some knowledge of his own. We would like to avoid restating all of his world knowledge
when communicating our idea. Taking B to be the knowledge of this second agent, then axiom

circumscription becomes:%°

20A better statement of the axiom circumscription axiom would include the use of Konolige's beiief operator to explicitly

describe the knowledge of the two communicating agents.
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A A<AAB>S (23)
Vd.((D A <DPAB>S AAABYD) D (A = d)).

where the first equation says that S follows from A taken together with B, and the second equation
says that A is the minimal set of axioms satisfying this condition. Axiom circumscription conveys the
idea that a set of sentences A is logically compact, that is, there is no set of sentences (not logicaily
equivalent to A) that convey only a subset of the ideas that A conveys and yet convey the desired set
of ideas S. This idea occurs over and over again in real life. For example, when writing a paper, the
author will iterate through several drafts in the pursuit of a-document that states clearly and concisely
the desired meaning. If this author fails to achieve this goal, and the ideas are sufficiently significant,

then other authors (or students taking area exams), will pick up the task.

Ot course, there is still much that this axiom doesn’t capture. For example, the natural numbers can
be defined using an induction schema or by explicit enumeration of an infinite number of individuals.
It is clear that the induction schema is a more concise description, yet the twe are logically equivalent,
and thus would be considered equivalent from the viewpoint of axiom circumscription. Thus
conciseness must take into account the cost in physically transmitting an idea, which is more closely

linked to the syntax of the sentences used to capture the idea than the meaning of these sentences.

In addition, in the above scenario, the author’s goal included clarity, as well as conciseness. Many
advanced graduate mathematics texts have been written that are concise and convey the desired
meaning, and yet are incredibly difficult for most people to read. For example, we might say that a
concise statement of the majority of electronics is the set of Maxwell’s equations. The problem here
is that the above axioms do not account for the cost of the agent on the receiving end being able to
derive the desired meaning from the set of sentences that have been communicated. Fixing thvis
problem does not simply involve changing a few terms in the above axiomatization. The reason is that
first order logic provides no means of modeling the cost of an inference, thus it is impossible to
formalize the notion of minimizing the computation involved in "understanding” the idea being
communicated. The problem of modeling forms of resource limited reasoning simiiar to this is the

topic of the next section.

14. Resource Limited Incompleteness

Suppose for a moment that you are a freshman and it is your first day of classes. As you sit in a
large lecture hall for your first class, your math professor walks in, writes a few fundamental axioms
on the black board, and then a moment later announces that he has finished teaching you the course

material for that semester and class is dismissed. Much to your surprise (and delight) the professor
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also announces that the final exam has been canceled since he is sure that everyone in attendance

now has a firm grasp of the material and its consequences.

This scenario seems preposterous to most of us, yet the actions of the professor are consistent with
a model of reasoning based on first order logic. The problem with this model is that it does not take
into consideration any of the many types of limitations of physical agents. In this section | summarize
Konolige's efforts at avoiding this mistake in his formalism, focusing primarily on its relevance to
circumscriptive reasoning. (A full account of this topic is beyond the scope of this paper as fit would

appear that this author is somewhat resource limited).

Our friend the professor suffers a number of problems similar to those of more traditional logic
systems. The reason that he wrote only a few lines on the blackboard is that he assumed one could
easily deduce all logical consequences of what he wrote, that is he assumed that the students were
logically complete. Furthermore, he assumed that everyone in the classroom could perform these
deductions instantaneously. Finally, there was no need to test the students since it was assumed that
their inference rules were logically sound. It is clear to most of us that humans do not think this way.
Thus when trying to provide a formal theory modeling physically limited agents it is important that the
theory takes into account these limitations. Konolige identifies two forms of incompleteness related
to this discussion. The first is referred to as resource limited incompleteness and occurs when . ..
an agent has the inferential capabilities to derive some consequence of his beliefs but simply does not
have the computational resources to do s0." The second limitation he refers to as fundamental logical
incompleteness, which occurs when an agent has a logically incomplete or inconsistent inference

procedure.

Al has taken basically two approaches to the praoblem of dealing with resource limitations. The first
approach involves weakening the expressive power of the language used to model a portion of the
agent’s reasoning process. An example of this is Krypton [Brachman 83], a 'knowledge
representation system developed by Brachman and Levesque. One of the results of this research
effort was to characterize a number of restricted definitional languages. During this research it
became quite apparent that performing inference with even seemingly simple languages was
computationally intractable (e.g., np-complete). [Brachman 84] However, the languages that have
proven to be effectively computable (and even those that haven't) have not been sufficiently

expressive tor most domains.

A second approach taken by Al has been to weaken the inference power of a system while leaving
the expressive power of the language intact. A simple example of this are chess programs with some

number of levels of look ahead. A second example is the THNOT operator in micro-planner [Sussman
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70] which roughly said: Try to prove A. If you fail. assume not A is proved. This is very similar to failure
by negation, except that the test for failure has been weakened from, "does not logically follow,"” to
"cannot be proven by micro-planner.” The problem with THNOT is that there exists no statement of

what it means for micro-planner to prove something, other than reading the code itself.

The approach taken by Konolige is not really an approach at all, but a framework in which to explore
either of the two approaches discussed above. Konolige provides a formal syntactic system with the
goal of being able to describe precisely a wide class of systems like micro-planner, and thus be able
to make statements about their logical and computational characteristics. The contribution of
Konolige’s formalism is that it allows one to make explicit statements about logical incompleteness

and belief.

14.1. Consequential vs Derivational Closure

To account for logical incompleteness, Konolige replaces consequential closure with the weaker
constraint of derivational closure. Konolige points out that logical consequence is a semantic notion
which states that A is a logical consequence of B if B holds in all models of A. On the other hand,
derivational consequence is a syntactic notion about the ability to derive a fact from another fact and
a set of syntactic rules. In Konoclige's formalism an agent is modeled by a deduction structure
consisting of a set of sentences representing the agents base beliefs, and a set of deduction rules that
operate on these base beliefs to construct other beliefs. For an agent to be derivationally closed
means that any sentence derivable from the initial set of beliefs using the deduction rules is also a

member of the agent’s beliefs.

The motivation for relaxing the constraint of consequential closure is clear: physically limited
agents cannot deduce all logical consequences of everything they know. The motivation for
derivational closure is less clear. Konolige states that "the chief motivation for requiring derivational
closure is that it simplifies the technical task of formalizing the deduction model." It is rather
unfortunate that Konolige provides no compelling examples of how this new form of closure simplifies

the formalization process, and thus must be taken on faith.

One thing that derivational closure does provide is the ability to model a wide class of systems. In
those cases where the set of rules are shown to be logically complete, the notions of consequential
closure and derivational closure are equivalent, and all the problems of decidability are inherited. At
the other end of the spectrum, if a system is provided with no deduction rules then the system
becomes regular syntactic, that is,” an ageint believes a fact only if it is a member of its base beliefs.

This provides an appropriate model for a simple database query systern based on syntactic retrieval.
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14.2. Derivational Closure and the Formalization of Conjecture

As discussed in the previous section, Konolige provides an operator, the circumscription operator,
that makes it possible to talk about the derivation process explicitly. The effect that derivational
closure has on this operator is that the operator no longer refers to logical consequence, but instead
makes statements about derivability from a base set of rules. Thus something may be a logical
consequence of something else and yet not be derivable. Furthermore, if the inference rules are not
sound, then it may be possible to derive something that is not a logical consequence of what is

known.

it is important for several of the rules of conjecture discussed earlier to be able to make explicit
statements about the derivation process. For example, we can describe THNOT using the same
statement as the one used to describe negation by failure. That is, letting B represent what we know,

both rules are equivalently stated as:
—KB>P D P,

These two techniques are then distinguished by the set of rules used to model the agent. For
example, using a set of axioms that are logically complete provides us with a formalization of failure
by negation, while constructing a set of axioms that describe micro-planner provides a formalization

of THNOT.

The interpretation of the circumscription operator to mean derivability as opposed to logical
consequence also places a more realistic interpretation on axiom circumscription. Recall that axiom
circumscription said roughly that the set of sentences A we want to use to communicate an idea P to
an agent with knowledge B, is the minimal set of sentences that P logically follows from. This
statement, however, did not take into consideration the derivability of P.Thus based on this
statement, the scenario where the professor conveyed the knowledge of a math course by stating a

few fundamental axioms would be perfectly reasonable.

On the other hand, using the circumscription operator to refer to derivation, as opposed to logical
consequence, axiom circumscription acquires the more desirable interpretation that A is the minimal
set of sentences used to derive P by the agent being communicated to. if the agent being talked to is
a child then the infor.mation communicated to him will be sufficiently close to P that the child is
required to make very few deductions in determining P. On the other hand, if the conversation is
technical and the agent being communicated to is well versed in the field, then it may be adequate for

A to be a single phrase.

The primary effect that the weakening of consequential closure has on predicate circumscription is

that it no longer guarantees that we will be able to show that a predicate ® is equivalent to the minimal
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extensions of P in A. The reason for this is that, even though the antecedent of the circumscription
axiom may follow from what is known (and thus the equivalence stated in the axiom's consequence),
it is not necessarily the case that the antecedent will be derived. In this case the promise of
Konolige’s formalism is that it will provide a framework in which to characterize those cases when
circumscription can be confidently applied, given a particular model of resource limitations. Under
consequential closure the minimality condition used in predicate circumscription is based on the set
of predicates consistent with what follows from A. Under derivational closure the minimality condition
can instead be based on the set of predicates consistent with what is derivable from A. Thus
Konolige's formalism provides us with a final dimension along which we can focus the

circumscription axiom, that is, the proof derivation process.

This also suggests an iterative, heuristic technique for computing the circumscription of P, given
that the logic is derivationally closed. The technique essentially starts with an initial guess for the
circumscribed P and then goes through a relaxation process to find a minimal predicate. A
reasonable guess for P might be constructed using a technique like Clark’s predicate completion
discussed earlier. In some cases, where the data base is not horn in P, Clark’s technique will produce
an extension of P that is inconsistent with what can be derived. If this occurs then, using information
gained from the inconsistency, the extension of P is expanded to include one more individual and the
deduction rules are used to test for consistency. This process is continued until the set becomes
consistent with what is known, at which point a minimal extension has been founded. This process is
repeated with each possible augmentation of the initial guess to find all minimal extensions of P.2! On
the other hand, if the initial guess starts out being consistent, then the process moves in the other
direction by reducing extensions until an inconsistency is found. Given the fact that the deduction
rulez may not be logically complete, the agent may not be able to recognize an inconsistency when it
occurs. Thus using this heuristic may produce an extension for P that is smaller than the actual

minimal extension.

15. Conclusion

In this paper | have discussed a number of ideas related to the problem of modeling the
incompleteness of intelligent agents in the physical world. During this discussion | have focused on
the work of McCarthy on formalizing rules of conjecture for dealing with incomplete information, and
the work of Konolige on modeling resource limited reasoning. McCarthy uses the notion of minimality

to capture the intuition that "the set of things that have a particular property is the smallest set that is

21 . .. - R R .
It is also necessary to have some means, of determining how many minimal extensions P has. As discussed earlier, the
mu calculus [Park 76] may provide such a technique for determining when P has a single extension.
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consistent with what is known." This intuition is captured by a formal rule of conjecture, predicate
circumscription, which is expressed as an axiom of first order logic. This formalism is particularly
desirable in that it works within the framework of an existing logical system that is well understood.
On the other hand, to model resource limited reasoning Konolige must modify the formalism of
traditional logics. This modification takes on two forms: 1) the relaxation of the constraint that the
logic be consequentially closed, and 2) the addition of a set of modal operators for making explicit
statements about belief and the proof derivation process. The expressive power of this new logical
system is demonstrated by formalizing the notion of circumscriptive ignorance -- if something is not

derivable from a set of relevant facts then it is not derivable.

In this paper | have analyzed the semantics of McCarthy's predicate circumscription, Konolige's
circumscriptive ignorance, and several related formalisms, such as negation by failure, the closed
world assumption, default reasoning and THNOT. In addition | have extended circumscription along
several dimensions. First, the predicate circumscription axiom was modified to allow the ability to
focus on a particular set of relevant predicates, individuals, and axioms to be circumscribed over.
This is accomplished by, a) restricting the set of individuals that are being circumscribed over, b)
expanding the number of predicates circumscribed and ¢) restricting the set of axioms used in
performing the circumscription. Second, the notion of maximality (the inverse of minimality used in
predicate circumscription) was used to formalize default reasoning. Third, the concepts of minimality
and relevance were used to describe several novel forms of conjectural reasoning. Finally, predicate
circumscription, as well as several other rules of conjecture, were extended, using Konolige’'s
circumscription operator, to account for resource limitations. This provides a synthesis between the

formalisms of McCarthy and Konolige applied to conjectural reasoning.
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