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1. Introduction

When objects move in the environment with respect to the viewer. the
Images they cast upon the viewer’s retina undergo complex transformations.
The human visual system can interpret these transformations to recover the
three-dimensional (3-D) structure of the viewed objects and their motion in
space.

A substantial number of computational studies have investigated this ca-
pacity to recover structure from motion. The main two goals of these studies
have been (i) to determine the conditions under which the 3-D structure can
be recovered uniquely from the changing projection, and (ii) to develop meth-
ods for computing the 3-D structure and motion in space from the projected
transformations.

With respect to the uniqueness problem, the main conclusion from these
studies has been that for non-planar rigid objects in motion, the 3-D structure
and motion are determined uniquely by the projected transformation. Results
of this type have been established for both perspective and orthographic pro-
jections, and for different forms of input to the recovery process, including
discrete points in discrete views, discrete points and their velocities, and a
continuous velocity field.

The uniqueness results obtained in these studies depended criticially upon
the object being non-planar. Until recently, the problem of interpreting the
motion cast by planar surfaces has remained relatively unexplored. The prob-
lem has obvious practical implications, since many surfaces are planar or
nearly planar, and in these cases methods that assume non-planarity would
be incorrect or unreliable. As mentioned by Waxman & Ullman {1983) and
by Longuet-Higgins (1984), the analysis of motion relative to a planar surface
may be relevant to certain situations of night-landing of an aircraft, where
the main visual cues are roughly coplanar.

Hay (1966) was apparently the first to analyze mathematically the visual
interpretation of moving planes. Hay’s analysis assumed that the visual input
is given in the form of two discrete views obtained from a set of points in
motion.

The main result established by Hay was that the interpretation problem
in this case exhibits in general a two-fold ambiguity. In addition to the moving
plane that has actually cause the viewed transformation there is in general
one additional “confusable” plane. The second solution is entirely different
from the first in its spatial orientation and motion through space.

Similar results have been established by Tsai & Huang (1981), based on a
different method of analysis. They have also shown that when the translattion



in space 1n along the normal to the surface, the ambiguity disappears and the
solution becomes unmque.

A recent study by Longuet-Higgins (1984) has identified an additional
condition under which the two-fold ambiguity disappears. He also provided a
different method of analysis and a different algorithm for computing the 3-D

parameters.

The current paper extends the analysis of the planar velocity field (i.e.,
the velocity field induced by a moving planar surface) in four directions. First,
it uses a different form of input to the recovery process. Instead of discrete
points, it uses continuous flow parameters such as local vorticity, shear, and
their derivatives. The use of flow parametsrs in the analysis of the optical
velocity field was suggested originally by Koenderink & van Doorn (1975)
and by Longuet-Higgins & Prazdny (1980). An analysis based entirely on this
form of input has been developed recetly by Waxman & Ullman (1983). When
this method was applied to planar surfaces, it was found empirically that
there were 1n general two distinct 3-D solutions. The result was not proven
mathematically, however, and the possible existence of additional solutions
was not ruled out.

An analysis based on input in the form of flow parameters is of interest for
two reasons. First, as emphasized by Koendrink & van Doorn and by Longuet-
Higgins& Prazdny, the flow parameters are convenient in the sense that they
usually have a clear geometric interpretation, and some of them are invariant
with respect to the choice of a coordinate system. Second, in analogy with
the non-planar case, it is of interest to examine the interpretation problem
for different forms of input since the analysis of each case is usually different,
leading to a different recovery method with somewhat different properties.

The second direction in which the current paper extends previous inves-
tigations is the consideration of confusable non-planar solutions. Previous
studies have assumed that the moving surface is known to be planar, and ex-
amined the number of possible planar solutions. It is of interest, however, to
determine the ambiguity of the interpretation when the moving surface is not
known in advance to be planar. It is shown here that confusable non-planar
solutions can in general be ruled out. Third, the method of analysis is differ-
ent from previous studies, leading to a different family of possible algorithms.
Finally, the information available in the orthographic rather than perspec-
tive velocity field of planar surfaces is analyzed. Since under local analysis
perspective and orthorgraphic projections become almost indistinguishable,
this analysis indicates some limits on the information that can be extracted
reliably from a local analysis of the velocity field.
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2. The Velocity Field of a Moving Surface

The analysis of the planar velocity field will proceed in two steps. In the
first step the projected velocity field will be expressed in terms of the 3-D shape
and motion parameters of the inducing surface. The descriproin will {ollow
the derivation in Waxman & Ullman (1983). This step is straightforward,
and the resulting 2-D velocity field is obviously uniquely determined by the
3-D parameters. The second step (Sections 3,4,5) consists of inverting this
process: given the instantaneous flow field of a planar surface, the problem is
to recover the unknown 3-D parameters.

2.1 Notation

Following Longuet-Higgins & Prazdny we will use a coordinate system
(X,Y,Z) moving with the observer relative to the scene. The origin of the
coordinate system is the vertex of the perspective projection from the scene
to the image, and the Z-axis is oriented along the instantaneous line of sight.
The Z-axis intercepts the viewed object at (0,0, Z). It is assumed that around
this point the object can be described by a twice-differentiable surface (not
necessarily planar) Z(X,Y). Image coordinates will be denoted by lower-case
letters (z,y) where z = 32,(—, y= % U,V,W will denote velocities in space in the
X,Y,Z directions, and u, v image velocities in the z,y directions. Subscripts
such as uz, u, will denote partial derivatives along the z and y direction.

2.2 The Instantaneous Velocity Field Around the Origin

The instantaneous motion of a rigid object can be described by six inde-
pendent parameters. We will denote them by M;, ¢ = 1,...6. M, M,, M3 are
the velocities along the XY, Z directions scaled by the distance Zy, M; =
U/Zo,My = V/Zy,Ms = W/Zy. My, Ms, Mg are the angular velocities
around the XY, Z axes. The shape parameters we will use are Ty, ..., T%,

the surface orientation at the origin 7 = (g—%)o, Ty = (%—f,))o, and the sur-

face curvature at the origin (scaled byZ,) Ts = Z()(gng)o, Ty = ZO(%)O’

Ts = Zo(giazy)o. T, are assumed below to be finite.

The image observables that will be used to recover the unknown 3-
D shape and motion parameters are the image velocity at the origin (0,0)
and its first and second derivatives in the z and y directions. Rather than

using these derivatives themselves, we will use linear combinations of them,
as suggested originally by Koenderink & van Doorn (1975) and by Longuet-
Higgins & Prazdny (1980).



We will use a set of 12 image observables denoted by Oy....,0y4. They

are defined as follows.

0, = u 07 = u,,
O, =v¢ Oy = Uy,
Oy = uy Oy = Uy
O4=vy Oty = vy
O: = %(“u* vy) 041 = w,
O@:%(uu~vx)£w 012 = wy

The first two observables evaluated at (0,0) are the image velocity at the
origin in the z and y directions. The next four can be thought of as describing
the deformation of a differential neighborhood around the origin. O3 and O,
are the rate-of-stretch along the z and y axes, Og measures the rate of decrease
in the angle between line elements oriented along the axes, and Og is the local
rate of rotation. O; — O1» are the spatial derivatives of these variables. By
evaluating explicitly the various derivatives it is straightforward to obtain the
mathematical relations between the observables Oy, ...,O;2 and the unknown
parameters M, ..., Mg Ty,...Ts (Waxman & Ullman 1983. See also a similar
derivation in Longuet-Higgins & Prazdny 1980). The resulting equations are:

(1)

01 - —Ml -'M5 07: *—2(M5+M3T1)+M1T3

02 = —Mg + M4 Og = M4 - M3T2 + M1T5

03 — M3 + M]T] Og - —M5 - M3T1 + M2T5

04 - M3 + M2T2 010 == 2(M4 - M3T2) + M2T4

05 — %(M2T1+M1T2) 011 - ';‘(—M4"|’M3T2+M2T3‘M1T5)
Og = —M;s + %(Mle - MiT,) Oy2 = %(—Ms - M3Ty — M\ Ty + M,Ts)

These relations can be used for the recovery of the 3-D shape and motion
parameters by solving for the M, and T, when the O; are given (measured
in the image). Longuet-Higgins & Prazdny (1980) have shown that for non-
planar patches a similar set of equations has at most three different solutions.
It was found in computer simulations (Waxman & Ullman 1983) that the
solution is usually unique, but an analytic uniqueness proof is still lacking.
We next turn to the planar case and show that eq. (1) then have in general
exactly two distinct sclutions.

3. The two-fold ambiguity of planar surfaces

In the planar case the surface curvature parameters T3,74,7T5 in (1)



all vanish. The resulting equations are still coupled and non-linear. and the
number of distinet solutions is not immediately apparent. In this section it
15 shown that there are in general two distinct solutions. In addition to the
surface that gave rise to the velocity field there is in general one (and only
one) additional surface. engaged in a different motion. that can produce an
identical velocity field.

3.1 There are in general at least two distinct solutions

When T3 = T4 = Ts = 0 the last four equations in (1) are immediately
derivable from the preceding eight and can be ignored. If the resulting system
of eight equations has a solution, it also has a second solution, that is in general
different from the first. This claim is established by giving explicitly a second
solution in terms of the first. Let (M, ..., Ms, T, T2) be a solution to (1) (with
Ts = Ty = Ts = 0). A second solution (—]\21,...]\—46,71,72) can be derived
explicitly as follows:

zl = _MI/M3

Zz = —M2/M3

Ml == —T1M3

My = -T2 M; (2)
M3 - M3

A__j‘l = M4 '—M2 - M3T2
Ms = Ms + M, + MsT,
M@ - MG ‘+‘M1T2 - M2T1

This solution exists provided that Ms # 0. Ths case M3 = 0 is examined
in section 4 below. The two solutions are dual in the sense that either one
can be used in (2) to obtain the other. In the two solutions the directions of
the translation vector and the surface normal are interchanged. If v, n are the
translation vector and surface normal in the first solution, then the second v
points in the direction of n, and 7 in the direction of v.

We next turn to show that there are no more than two distinct solutions.
This will be done in two stages. Section 3.2, which is the main step in the
proof, shows that if two planar surfaces have identical velocity fields then
they have the same value of M3 (velocity along the line of sight). Section 3.3
establishes that there are at most two solutions that share the same value of

M;.

3.2 Two planes that induce the same velocity field have the same value of My




6

Let m and % be two planes engaged in motions (M. ... M) and (M, ... M)

respectively. that induce identical velocity fields (i.e.. identical observables
in (1)), We can assume that the two planes intersect. Otherwise. T
T1.Ty = Ty. which implies either (i)(M;.....Mq)= (M. ... M), or (i) all
of the translation components Afy My AL M AL Ay, vanish. This latter
case, corresponding to pure rotation, is uninteresting since no 3-D informa-
tion is conveyved by the changing image. Let £ be the intersection of 7 and 7.
This special line in space participates in two different motions and induces the
same (linear) velocity fields. Without loss of generality we can re-orient the
coordinate system so that the projection of £ coincides with the z axis. The
line £ can be described now by Z = ar + Z;. The main step in the proof is
to consider the intersection line £ instead of the two planes. This line has the
property that when it participates in motion (Mj, ..., Mg) or (M1, ..., M), it
induces identical velocity fields.

Consider the situation in which the planes no longer exist, only the single
line £ is moving in space. Let it move with the 3-D motion parameter (M; —
My, ..., Ms - MG). From the original coincidence between the velocity fields
of 7 and 7, and since £ lies on both planes, it follows that the velocity field
projected by £ now vanishes, i.e., it satisfies at the origin the equations:

v=0 u=0

v _ 8% _
dx 0 8x* T 0
du _

dx 0

We have transformed the problem of the moving planes into a problem
concerning a moving straight line. The question is: Under what conditions
the velocity field of a moving line, as expressed in eq. (3), vanishes? In the
re-oriented coordinate system let us denote

My ~M, =V, My-My=V, Ms—M3=V,
M4—M4:wz Ms—Msz’wy MG—MGsz
The five equations in (3) can be expressed in terms of the six motion pa-

rameters (V,,V,,V,, wy, w;). The derivation is somewhat lengthy, but straight-
forward. The resulting equations are:

Vz + Zowy =0
Vy - Zo’wz =0 (4)
V.,+aV, =0

aV, + Zowy, =0
aV, — Zow, =0



From which 1t follows that:

Voo 0V, 0wy, 0V, - Zow, aw, o owy

In terms of the original planes 7. 7, the implication of ¥, = 0 in that
Mgy = M. In the particular coordinates system in which € projects onto the
r-axis, 1t 1s also true that M, = M and My = M5,

3.3 The number of distinct solutions cannot exceed two

Since all the possible planar solutions share the same value of Ms, the
proof will be completed by showing that for a given M3 there are at most
two distinct solutions. We proceed along the following plan. If 7 is a planar
solution let £ be now the intersection line of 7 with the frontal plane Z = Zj.
We will call £ the “tilt line” of . If we re-orient the coordinate system so that £
runs along the z-axis, then in the new coordinate system Ty = 0. Fromeq. (1),
in this reoriented coordinate system O3 = M3. It can be observed from eq.(1)
that, if we exclude solutions in which T} = 0 and M; = 0 simultaneously,
the a fixed M3 and Ty = O determine the solution uniquely. We will show
that there are at most two orientations of the coordinate system for which
O3 = Mj. This will imply that (except for two special cases that will be
examined separately) there are at most two distinct tile lines and therefore at
most two distinct solutions. We will assume here Mj # 0, the case Mz = 0
i1s examined in section 4. It is convenient for the proof to assume that the
velocity field satisfies initially O3 = O4. This can be assumed without loss of
generality, since it is always possible to satisfy the assumption by re-orienting
the coordinate system (choosing new z, y coordinates) in the following manner.
Let us rotate the coordinate system along the line of sight by an angle 8 and
denote the eight observables in the new coordiante system by (Oj,...,0%).
We will determine an angle 8 such that following the rotation Og = Oy4. In
the rotated coordinate system:

O3 = O3c082B 4+ O4sin?f + 205 sinfcosf
O4 = O4c08?B + Ozsin?B — 205sinBcosf (5)
to obtain O3 = Oy, A must satisfy

(O3 — O4)cos2f + 20581028 = 0

assuming Ogs # O, f is determined by

tan2f = Q;%Tol (6)



There will always be a solution for3. (Not necessarily unique. The case
O = 0 will be exannned separately.) We can assume therefore that we have
mitially a coordinate system in which Oz = O4. We now rotate the coordinate
system by a new angle a. and denote again the observables before the rotation
be (O, ..., Op) and following the rotation by (Oy....,0,). We seek an angle
for which O4 = Ms. In general O;;, = Oscos’a + Oy sin*a + 205510 acos a.
But since O3 = Oy

04 = 03 + 205sin acos a (7)

assuming Og # 0

sin2a = MS(;—O‘L

There are four solutions for a in the range [0,27], a1, a2, a1 + 7,02 +
7. The solution «;,0; + 7 are equivalent, they give the same solution for
(My,.... Mg, T1,T2).

This establishes the claim for the general case. Two special cases that
were excluded from the proof can be analyzed in a similar manner. In the
first case there is a solution for which 77 = 0 and M; = 0 simultaneously. In
this case the velocity field will have a single direction along which O3 = M3.
M, M3, Ms, Ty are then determined uniquely, but there are two solutions for
M,, My, T, in (1). In the second case Os = O for every orientation of the
coordinate system. In this case there are two solutions, in one Ty = Ty = 0
(frontal plane) and in the other M; = M, = 0 (motion along the line of
sight). In all of these cases the velocity field admits at most two planar
interpretations.

4. Unique Solutions

In the previous section it was shown that the velocity field of a moving
plane is compatible, in general, with exactly one additional moving plane.

There are two special cases under which the two-fold ambiguity disap-
pears, and a degenerate case under which the surface orientation cannot be
recovered. The discussion of these cases will be brief, since one of these cases
is discussed in Ullman & Waxman (1983) and the other in Longuet-Higgins
(1984).

The degenerate case arises when M; = M, = M3 = 0. The motion in
this case is pure rotation. The motion parameters can be recovered, but the
surface orientation remains ambiguous.

One unambiguous case arises when there is no relative velocity along the
observer’s line of sight, 1.e. M3 = 0 (but M; and M, are not both zero). In this
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case the motion equations can be solved explicitly, and the solution is unique.

The second unambiguous case arises when A 7 O and the observer moves
direetly towards or away from the surface. If the original motion satisfies
My AL, Ty. Ay Ale = T then it can be seen from equation (2) that the

second solution coincides with the first. The latter condition is discussed in
Longuet-Higgins. (1984). He also suggested an additional condition that can
be used to resolve the ambiguity, by using an extended region of the plane
rather than the local velocity field.

In the previous section we have left out the case O3 = 0. Inspection
of the equations reveal that this case falls into one of the categories already
discussed. One case where O5 = 0 is obtained when M; = My, = Mz = 0,
the ambiguous case discussed above. A second case is when M; = M, = 0
(but M3 # 0) and Ty = T, = 0. In this case the motion is along the surface
normal, and the solution is unique. In all other cases there are two distinct
solutions.

4.1 Summary

The ambiguous and non-ambiguous solution can be summarized as fol-
lows.

1. In the pure rotation case the motion can be recovered but the surface
orientation remains ambiguous.

2. If there is no relative velocity along the line of sight (M3 = 0 but M1 M, #
0), or if the motion satisfied M;/M; = —Ty, Ms/M, = ~T, (motion
perpendicular to the plane), then the solution is unique.

3. In all other cases the local velocity field has a two-fold ambiguity. The
second solution can be derived in terms of the first by equation (2).

5. The exclusion of non-planar solutions

We have seen in the previous section that the velocity field of a moving
plane has in general one additional planar interpretation. That is, if the
moving surface is known to be a plane, there are in general two distinct
solutions. The possibility remains, however, that when nothing is known in
advance about the surface, there are additional non-planar interpretations.
In this section the question of non-planar ambiguities is considered. In other
words, the question i1s whether in addition to the two planar interpretations,
non-planar solutions are also possible.

Let 7 be a moving plane and let u denote the vector (M, ..., Mg) of its
motion parameters. Suppose that the twice-differentiable surface P is non-
planar around the origin and that it induces the same velocity field as =, and
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let p denote the motion parameters of P. It is shown that if the velocity
fields of 7 and 7 coincide in a neighborhood around the origin, then P is
in fact planar at the origin. That is, if 75, Ty, T are the surface curvature
parameters of /” at the origin then Ts = T4 = T = 0.

Without loss of generality we can assume that both surfaces pass through
the point (0,0, Z,). We can then distinguish between two cases.

Case 1: 7 1s tangent to P at (0,0, Zy). In this case 7 and P have the same
values for T, T,. From the original equation (1) it can be verified that the
only ambiguous configuration in this case is when M; and M, in (1) both
vanish. That is, the motion is directed along the line of sight. In all other
cases P must coincide at the origin with 7, and satisfy T3 = T4 = T5 = 0.

Case 2: 7 intersects P along some space-curve c. Let « be the projection of ¢
on the image plane. Assume first that near the origin 4 is not a straight line
segments. Longuet-Higgins (1984) has shown that given the image velocities
of four coplanar points (no three of which are colinear in the image), the 3-D
motion parameter can be recovered up to the two-fold ambiguity discussed in
the previous section.

The implication is that the motion p coincides either with u or with g,
the motion of the dual solution to u. In either case we obtain that planar and
non-planar surfaces with identical motion parameters produce an identical
velocity field. From the original equation (1) it can be verified that the only
ambiguous configuration in this case arises again when M; = My, = 0. If M;
also vanishes, (the pure rotation case), the situation is inherently ambiguous,
as discussed 1n the previous section. If M3 # 0 then = is in fact tangent to P,
as in the previous case.

The only remaining possibility is that near the origin « is a straight line
segment. In this case we can use the results of section 3.2. Without loss of
generality 7 can be assumed to lie along the z axis. Let M,,T; denote the
motion and shape parameters of 7, M,,T; of P. From 3.2, it follows that
Mz = —Mg,Ml = Hl,Ms = M;. In addition T3 = T; and Ty = T3 since
both are measured along ¢ which is straight line in space common to 7 and
P, and T3 = O since 7 is planar. T4, Ts can now be analyzed using eq. (1).
The equality of the observable Og in (1) implies MyTs = M,Ts, and since
Ts = 0, M,Ts = 0. Similarly Oy and O, together imply M;T4 = 0, and
also M;T4 = O since M; = M,. If M, # 0, T, = 0. From 010 together
with Og it now follows that M;Ts = M;Ts and therefore Ts = 0. The case
M; = 0 can be analyzed in a similar manner.

The final conclusion is that T3 = T4, = T = 0 except for the case
M, = M, = 0 (motion along the line of sight).
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In conclusion. we can distingnish between two cases. If the relative mo-
tionn happens to be along the line of sight, then the local velocity field of a
plane 7 s also compatible with any non-planar surface with the same rela-
tive motion paramecters, and whose tangent plane coincides with 7. Unlike
the planar two-fold ambiguity. this ambiguity 1s local. and can be resolved by
Inspecting a larger region of the planc.

In the more general case. in which the motion component parallel to the
image plane does not vanish, non-planar solutions can be ruled out, and the
only remaining ambiguity is the two-fold planar ambiguity.

6. Algorithm

The proof in section 3 although not entirely constructive, leads to a possi-
ble algorithm for computing the planar solutions. The method will be outlined
briefly. A different algorithm has been suggested by Longuet-Higgins (1984).

We begin by rotating the coordinate system by an angle # to obtain
O3 = O4 (where O, are the observables in the rotated coordinated system).
From (6) we obtain

_ 04-0
tan26 = o
(Provided that Os # 0). We can therefore obtain a solution (non unique)
for sinf,cosf. It is a straightforward computation to then compute the ob-
servables (O, ...,0g) (Waxman & Ullman, 1983).

The planar motion equations (first eight equations in (1)) can be viewed
as eight linear equations in 12 unknown: M;,..., Mg, and X,,...,Xs, when
X1 = MiTh, X2 = MyTy, X3 = MiTy, Xy = MyTy, X5 = MTy, Xg =
M3T,. The eight equations are linearly independent. Furthermore, they can
be divided into four groups of two equations.

( ) appear only in equations (3,4).
(Ms, X3, X4) appear only in (5,6).

(My, M5, X5) appear only in (1,7).

( ) in (2,8).

mg, T1, Ty) + a(mg, T1, Tg)

m6,13,14) +ﬂ(m6,fg,f4) (8)
(m1,ms, z5) + v(M1,ms, Ts)

Mg,M4,X6 = (mg,M4,IG) + 5(m2,m4,56)

S
2
5
T
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the m,.m,.r,,z, (i = 1.....6) are determined by solving sets of two equa-
tions in three unknowns. The scalars o, /3, 4,6 remain to be determined. Since
Oy — Oy, it follows from (1) that ATy = MoTy, ie. X} = X, therefore
ry 4+ ary = ry — «ry and hence a is determined. Two possible values for

Jd.7. ¢ are obtained from the equations.

X1X~2 = 4\’3)&'4
]\/[31\7] - ]\41)(5
M3 Xy = My Xg

respectively. Finally we choose a value for (a, 8,7,6) to satisfy the fourth
independent relation M3 X; = M;X,. There will be at least one such set
of values for (o, 3,7, 6), and at most two. When one solution is known, the
second can be found immediately using equations (2).

7. The orthographic velocity field

Previous sections have established that the parameters of a moving plane
can be determined up to the two-fold ambiguity from an arbitrarily small
patch near the origin. When the viewed surface patch is small, perspective
effects become small, and the recovery process may become unreliable. Tt
therefore becomes of interest to analyze the case of orthographic projection
where perspective effects play no role. (In orthographic projection a space
point X,Y, Z, projects to an image point £ = X,y =Y .)

7.1 The orthographic velocity field of non-planar surfaces

Let S; be a non-planar surface moving in space. For the orthographic case
it can be assumed that S is fixed at the origin (O, O, Z;) since the translation
components are immediately recoverable. The rotation of S, can always be
decomposed into the sum of two components: a rotation with angular velocity
w (assumed to be non-zero) about an axis lying somewhere in the frontal
plane (z-rotation) and a component (z-rotation) about the line of sight Z
with angular velocity 6.

A second surface S is said to be a depth scaling of S; if:

1. For every point (z,y, z) on S, (z,y, kz) is a point on S, for some constant
k (k#0).

2. The rotations wy and wq are around the same axis, and w; = wy /k.

3. 61 = 02

For non-planar surfaces the following proposition can be established. If
S, 1s a possible rigid interpretation of a given orthographic velocity field, then



S» 1s another possible interpretation if and only if it is obtained from S, via
depth scaling.

Note that iff 87 - ¢, » 0, then 57 and Sy have different instantaneous
axes of rotation in space. The orthographic velocity field therefore does not
determine uniquely the rotation axis in space.

Since our concern here is primarily with planar surfaces. the proof will
be omitted. it can be found in (Ullman 1983).

7.2 The orthographic velocity field of planar surfaces

In the planar case the twofold ambiguity of planar surfaces is combined
with the inherent depth-scaling ambiguity of orthographic projection. As a
result the orthographic projection of a planar surface admits two interpreta-
tions, each defined up to depth scaling.

For simplicity of the analysis we can assume that in the planar velocity
field all the velocity vectors are parallel to the z axis. (If the inducing object’s
Z-rotation is #, then by rotating the observed velocity field by —@ all the
velocity vectors will become parallel. Their direction can be taken as the
z-axis.)

The velocity field u(z,y) v(z,y) now has the form:

u(z,y) = az + By
v(z,y) =0 (10)

If (wz,wy,w,) is the angular velocity vector of the rotating surface (as-
sumed to be non-zero) then:
wyz — wyy = az + Py
w,x ~ wgz =0 (11)

One solution to these equations arises when w, = 0. This implies w, = 0
(if z is not identically zero), and z = w%l(az + By). This solution corresponds
to a plane rotating about the vertical axis.

If w, # 0 then w, # 0 also and z = %‘z This solution is also a plane,
with a tilt line along the z axis.

These two possible interpretations cannot be resolved on the basis of the
instantaneous velocity field. How much additional information is required
to guarantee a unique solution? For non-planar objects, it can be shown
(Ullman 1983) that one additional view is sufficient to remove the depth-
scaling ambiguity. For planar objects, the problem is open.

The orthographic velocity field is thus inherently more ambiguous than
the perspective one. Instead of two solutions there are two families of solu-
tions, each determined up to depth scaling.
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The additional ambiguity of the orthographic velocity field implies that
under local analysis {i.e. using a small surface patch) the 3-D recovery process
15 not entirely =table. Aspects of the 3-1D structure that are invariant under
depth scaling are expected to be more stable than others. For planar sur-
faces these mvariants include the orientation of the tilt line and the rotation
component around the line of sight. Parameters that are not invariant under

depth scaling such as surface slant are expected to be less robust.

8. Suminary

1. The velocity field of a planar surface exhibits in general a two-fold am-
biguity. In addition to the moving plane that has actually induced the
viewed transformation there is one additional, and in general entirely
different, planar solution.

2. There are special cases in which the interpretation of the local velocity
field becomes unique. These cases are (i) M3 = 0 (but M; M, # 0),
and (i1) motion directed towards or away from the surface. A degenerate
case arises for pure rotation. In this case the motion parameters can be
determined, but the 3-D structure remains undetermined.

3. Additional non-planar solutions are in general excluded. The exception
1s the case of motion directed parallel to the surface normal.

4. The two planar solutions can be computed from the eight kinematic ob-
servables, using the algorithm in section 6.

5. If one of the two planar solutions is known, the dual solution can be
expressed in terms of the first using eq. 2.

6. In the orthographic case there are, instead of two solutions, two families
of solutions, each determined up to depth-scaling. It is expected that
for the perspective case only 3-D parameters that are invariant under
depth-scaling would be robust under local analysis.

The results explored in this paper are theoretical in nature. They set
some limits on the performance of any motion perceiving device. It is un-
known, however, to what degree the human visual system can approach these
theoretical limits. It may be of interest, therefore, to test psychophysically
some of the implications of the above analysis. For example:

—Can subjects interpret the velocity field of planar surfaces? (i.e., make
some reliable judgements of relative motion parameters and surface orienta-



tion). Results in (Gibson ¢t. al. 1959) indicate that under some condition
this is possible. although the accuracy is probably not very high.

Can they interpret, at least 1o some degree, the planar velocity fields
under brief presentation? If they do. how do they handle the inherent twofold
ambiguity”

-Can observers interpret orthographic velocity fields? Can they recover,

for example, the tilt of one or both planar solutions?

Answers to these questions may give us a better insight into the process-
ing employed by the human visual system in the recovery of structure from
motion.
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