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1. Introduction 1

1. Introduction

The problem of recoverying rigid body motion and surface structure uniquely from image
data has been the topic of many research papers in the area of machine vision {1-25]. Many
approaches based on matching feature points [5,11,21,22] tracking contours [9], and using
velocity flow field [1,3,4,10,12,18,19,23-25]|, texture (2|, or image intensity gradients [14-
17] have been proposed in the literature, but not many have addressed the important
issue of uniqueness.

Feature point matching schemes require the detection of local brightness patterns
that are likely to be found in consecutive images. A correspondence problem between
the elements in successive 2-D images is first established and then the 3-D motion and
spatial configuration of these isolated features is recovered. The minimum number of
points required to recover the 3-D motion uniquely depends on the number of image
frames. With 2 frames, in most cases, a minimum of 5 points results in a unique solution
from a set of nonlinear equations. Using 8 points, however, as in algorithms proposed
by Longuet-Higgins [11], Tsai and Huang [22], Buxton et al. (5], one only solves linear
equations. In any case, these methods require feature detection and matching that fail
to give reliable results when the object in view is smooth with no well-defined features.
Further, since these methods use information only from a small portion of the image,
they are noise sensitive. When nearby feature points are selected, these methods become
even more sensitive to small amounts of error in the data.

For smooth curved surfaces, Longuet-Higgins and Prazdny [10] suggested a method
that uses the optical flow and its first and second derivatives at a single point. They
reduced the problem to that of solving a cubic equation and concluded that, in general,
three solutions are feasible. Later, Waxman and Ullman [23| developed the method
proposed in [11] into an algorithm for recovering the structure and motion parameters
from a set of nonlinear equations. They had to treat many special cases, and uniqueness
results were shown through numerical examples. Waxman et al. {25] found a closed form
solution to the original formulation in [23]. Apparently however, in their formulation, they
are not able to resolve the two-fold ambiguities that arise in two special cases. When
the observer translates parallel to the line of sight they cannot recover the curvature
parameters. The result is a two-fold ambiguity similar to the one associated with planar
surfaces. Also when there is no (component of) motion in the direction of zero surface
gradient (labeled as structure motion coincidence in Waxman and Ullman [23]), they
cannot distinguish between the two possible solutions. In any case, these methods are
very noise sensitive since second order derivatives of errorful optical flow data are used.
More robust algorithms that use the information from the whole region of the image
plane have been suggested [1,3,4], but one still has to compute a dense flow field from a
sequence of images.

The flow field based approaches assume that a reasonable estimate of the optical flow
is available. In general, the computation of the local velocity field exploits a constraint
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equation between the local intensity changes and the two components of the optical flow.
This only gives the component of the flow in the direction of the intensity gradient.
To compute the full flow field, one needs additional constraints such as the heuristic
assumption that the flow field is locally smooth {7,8]. In many cases, this leads to optical
flow fields that are not consistent with the true velocity field. Since, in general, velocity
based approaches are not robust, i.e., the solution may change drastically with only a
small amount of noise in the data, one can argue that approaches that use an optical flow
field that is computed through heuristic assumptions are apt to fail.

In this paper, we present a method that uses the intensity values in a sequence of
images directly, in order to recover the motion parameters as well as the local structure
of the surface patches on the object. Since we do not compute the optical flow, we do
not need to make any heuristic assumptions. We assume that the surface is textured
or has surface markings, and that it is smooth so that we can approximate it in a local
region by a quadratic patch. We give a closed form solution for the motion and surface
parameters, and show that the solution is always unique.

In a paper in press, we have extended our methodology presented in this paper to
recover the motion of any smooth surface that can be presented by an nt? order Taylor
series expansion (with no restriction on n) uniquely. We show uniqueness and give closed
form solution for the motion and surface parameters.

2. Preliminaries

We first recall some details about perspective projection, rigid body motion, the motion
field and optical flow, and the brightness change constraint equation. This we do using
the tensor notation (summation over repeated indices) and the following convention. A
2-D vector v will be referred to by v;, and a 3-D vector w by {w;,ws}, where w; is the
component of w parallel to the image plane.

2.1. Perspective Projection

Let the center of projection be at the origin of a Cartesian coordinate system. Without
loss of generality we assume that the effective focal length is unity. The image is formed
on the plane z = 1. Therefore, the optical axis lies along the z-axis. Let {X1,Z } bea
point in the scene. Its projection in the image is {z;}, where:

2.2. Rigid Body Motion

In the case of the observer moving relative to a rigid environment with translational
velocity {t;,t3} and rotational velocity {w,,ws}, we find that the motion of a point in
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the environment relative to the observer is given by:

dX; dZ
dtl = —¢€ij(Zw; - Xjws) — ¢y, m

= Ei]‘Xi‘w]' — i3,

where ¢;;, the anti-symmetric permutation tensor, is given by:
{0 1
€5 = 1 0/

2.3. Image Motion Field and Optical Flow

The projection of the 3-D velocity field, induced by a rigid body motion, onto the image
plane is known as the image motion field. It is a purely geometric concept that is uniquely
defined when the surface and the observer motion are given. It can be determined by
differentiating the perspective projection relationship (X; = z,Z) with respect to time:

‘_i_ﬂ_l(dxi_ .f@)
i Z'dt Ta”

Substituting for dX;/dt and dZ/dt, and simplifying the results, we obtain:

dz;
dt

1

= —ek; (8 + Timp)w; + Tyews + —(zits — ),

where 6;; is the Kronecker delta symbol (it equals 1 when ¢ = j and zero otherwise). It is
important to remember that there is an inherent ambiguity here, since the same motion
field results when distance and the translational velocity are multiplied by an arbitrary
constant. This can be seen easily from the above equation since the same image plane
velocity is obtained if one multiplies both Z and {t;,¢3} by some constant. So we conclude
that the surface structure and the translation motion parameters can be recovered only
up to a scale factor.

The optical flow is the apparent motion of the brightness patterns. An optical flow
field is a vector field that shows how the brightness patterns at one instance of time can
be transformed into that at the next instance of time. It is something we hope to estimate
from an image sequence, but it is not uniquely defined. Additional assumptions must be
made to guarantee a unique result.

The distinction between the motion field and the optical flow is an important one
that is rarely made. To recover motion, we need the motion field, but the best we can
do is to estimate an optical flow field from an image sequence. In extreme cases, the two
will be very different: consider, for example, a perfectly smooth and uniform rotating
billiard ball, or the motion of the shadows cast on a stationary object due to a moving
light source. Under favorable circumstances the optical flow is identical to the motion
field. Here, we assume that the motion flow field and the optical flow are the same.
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2.4. Brightness Change Constraint Equation

The brightness of the image of a particular patch of a surface depends on many factors.
It may for example vary with the orientation of the patch. In many cases, however, it
remains at least approximately constant as the surface moves in the environment. This
is a good assumption when the surface has strong texture or surface markings, and is
commonly used in work on optical flow. If we assume that the image brightness of a
patch is indeed constant, we have

i _,
da
or, using the chain rule:
OF dz; JFE _

9% o
oz, dt ot

where E;, = dE/dz;, and E; = 0E /8t are the spacial and temporal derivatives of the
the image brightness function. Substituting for dz,/dt we get:

1
E; — (6,‘[5 + :cixk)ekjEz,vw]- + I]’E,']'ELW3 + ’Z—(I,'Ez,vt;; - Ez.-ti) =0.

If we let d = 1/Z, and define:
Si = _Ez.‘) S3 = xiEz.‘a
V,' = 61']'(.’5]'53 - Sj), V3 = ~€ijS,‘$j,

then:
E¢ + Viw; + Vaws + d(S;t; + Sstz) = 0.

This is the brightness change constraint equation in the case of rigid body motion.

3. Surface Representation

In a small neighborhood, a smooth surface Z(X;) can be represented by its Taylor series
expansion about a reference point. Without loss of generality, let us consider a neigh-
borhood of the line of sight, denoted by I',, and choose the point of fixation, O, located
at a distance Z, from the viewer as the reference point. Clearly, the origin of the image
plane is the image of the point of fixation. Then we can write:

0z 1. 8*Z

2(X:) = 2.+ (g WX+ 5 5x5%)

aX, ‘,Xl‘Xj + o

If we neglect the higher order terms, we are left with a quadratic approximation to
the surface (see Figure 1a). While this representation is globally valid for quadratic
surfaces, it may only be locally valid for other smooth surfaces. We can express the series
expansion in terms of the image coordinates, z;, by employing the perspective projection
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Figure 1: (a) A Quadratic Approximation to the Surface Patch at P
(b) Image of a Surface Patch and Regions of Analyticity

relationship (X; = z;Z). We consider the series expansion of d = 1/Z instead, since
the brightness change equation is in terms of d. The surface is then represented by:
ad 1, 0%

d(z;) = —)oTi + = (5o TiZj + oo
(J:‘L) dn + (axi)ux‘l + 2(611_61.]‘)“11":] + ’

where it can be shown (see appendix 3) that:

(24 __1 0z %d 9°z
6:l:¢ 0

_Z(aXi)“’ (a:c,-azj)"z (m)(.-

Since the surface parameters and the translation motion can only be recovered up to a
scale factor, we can arbitrarily fix one of the coefficients in the above series expansion.
We choose to set d, = 1/Z, = 1. Therefore:

1
d(.’L‘,‘) =1+d;z; + idijxizj T+ ey
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where
od 9%*d
d1 (31'1' )n’ (¥ (8Iiaxj' )n

In this paper, we will assume that the above series expansion, up to second order terms,
is a good approximation to 1/Z in T',.

4. Essential Parameters for a Quadratic Patch

Let A, denote the image of the surface patch I',. We assume that the patch has texture
or surface markings. More precisely, we assume that in small regions in A, corresponding
to areas of texture, the intensity variation is smooth so that locally, we can approximate
the intensity function by a Taylor series expansion. Equivalently, the image intensity
function is assumed analytic in small areas that we refer to as regions of analyticity. A
region of analyticity is contained within its boundary of analyticity (a similar term has
been used by Waxman and Ullman [23] in a different context). This is illustrated in
Figure la, where each bounded area in the image represents a region of analyticity.

Now, consider the Taylor series expansion of the image intensity function, F, and its
temporal derivative, Ey, about a point p in an analytic region A,:

~ ~ ~ 1~ 1 ~
E=FE, 6 + E;6z; + - E; 5:1:,'613]‘ + éEijkézicS:cj&:ck + EZEijkwIi&xj&xk&xl + ...,

Mll—'

~ ~ 1~ ~
E, =T, + Tz, ET bzi6z; + T,,Mx,&x,&xk + 4T,~jk15z,~6zj6xk6z[ + .y

where

51:,' =I;— :cf.
If we define:

Cx = ~
E,=E,— Eizf + -E;jzfz ?— —-E,]kxp Pzh + —E,]kl:c :l:k:r:fJ ey

1
2

~ o~ 1~ 1~
E;,=E; - E,'j;t? + EE,'jkI?:ri - EE,‘]'H:I:;?I;;I? + ...

~ ~ 1~ ~ ~ ~
E,J = E,] - E,'jka + 5 ,'juzz.rf T ey Eijk = E,']'k - Eijklzf + .y Eijkl = E,']‘k[ T oeaeey
T, =T, ~ Tz’ + lf xpp—l :1: .Tp+—l—f“ PePrlrl —
o — +a 1Ly 2 ity 6 17k k 24 1klty Lty ey
T; = —f~':z:p+l~- 2’z —lf Pelzl +
1 = 4y 7ty T g igkZT; T 6 igklT; LT T ey

~ ~ 1~ ~ - ~
= T.. PP . PP — —
T,J = T,J - T,]k:l?k + §T1]k,:ckxl — ey Tz’jk = Tijk - J}jklzf + .. Tijkl = Tijkl — ey
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then for the neighborhood A,, we can express the Taylor series expansion of the intensity
function and its temporal derivative, about the origin as:

1 1 1
E=F + E;z; + EEU'.’Ei:r]‘ + éEijinIjl'k + aEn’klrin:L’kz[ + .y

E =T,

1 1 1
+ Tiz, + ETij.’Ein + éTijinxjxk + aﬂjszﬂj—’vk-"ﬁl + ...

Each region of analyticity will give rise to an independent Taylor series expansion for
the intensity function and its temporal derivative. We will show that if the patch is
strongly textured such that higher order coefficients of the intensity function, as in the
above series expansions, exist and can be computed realiably, then we can compute the
appropriate parameters from the information in only one region of analyticity. For rea-
sons that become apparent, if we restrict ourselves to second order terms of the Taylor
series expansion, then we need at least two such regions to recover the surface and mo-
tion parameters. In most cases, the texture varies more rapidly than the surface, and
therefore, several such regions exist within each quadratic surface patch. This is a rea-
sonable assumption for most textured surfaces. Similar assumptions are generally used
to determine structure from motion. When several regions exist, then a least-squares
formulation can be implemented to exploit the information from every region.

The spatial image intensity gradient is given by:
1 1 1
Ez'- =FE; + Eija:j + EEijkzjzk + éEijklszkzl + -2—4-E,;jk1m.'rj.’rk1:11m + ... .
Using the expression for the image intensity derivatives in the definition of {S;, S3} and

{Vi,V3} we arrive at:

1 1 1
Sz' = _(Ei + E,'j.’l:j + EEijkIjzk + éEijklxjxkxl + EiEi]‘klijxk:Blzm + ),
1 1
S3 = E;z; + E'ijx,-zj + —2-E¢jka:,-a:ja:k + éEijlclinjIkl'l + .y

1
Vi = E,’jEj‘l-E,'jEjka + e,~,~Ekx]-xk + ifijEJ'klIkIl + GiJ'EH:L'J'.’EkI1+
1

1 1
EfijEjklmzkl'lxm + EfijEklijxkxlzm + ﬂfijEjklmnzkxlxmxn + sy

1 1
V3 = ——(eijE]':l:,' + EijEjinxk -+ EfijEjklinkzl + gei]-Ejklmzixkzlzm + )
Substituting for {S;, S3}, {V;,V3}, d, and E; in the brightness change constraint equation,
and ignoring higher order terms, we get:
1 1 1

p, t pT, + EPU'%IJ‘ + g Pk 1T Tk + 'Z”Zpijklxirjxkzl =0,
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where
p, =T, ~mE,,
p. =T, + m;E; + m;Ej,
pi; = Tij + myx Ex + 2mye Egy + my By,
Pk = Tijk + My Ex + 3my By + 3myg Eyj + miEgjis
Pijki = Tijer + 6m Ex + 6mepmi Ept + 4mmi Bkt + Mm Emigel
and

m; = €;wj — ¢,
my; = bit3 — e;wa — dity;, ™My = tadyg,
myk = (ejwy + djta)e; + (epswi + dits)bp; — tidij.

This is the Taylor series expansion of the brightness change constraint equation for the
motion of an observer with respect to a locally quadratic surface. We will term m;;,
myj, My;, and myj; the essential parameters (these are similar to the ones we defined in
an earlier paper [16] for the case of the motion of an observer with respect to a planar
surface, in agreement with Tsai and Huang [21]) since as we see later, these are essential
to recovering the motion and surface parameters uniquely. We will first compute these
parameters using the image intensity gradients in local neighborhoods, and then use them
to recover the unknowns ({t;,ts} ,{w;, w3}, and {d;,d;;}).

We should remind the reader that if we do not restrict ourselves to quadratic patches,
then the expressions for p;;, pijri, etc, will include the higher order terms of the surface
(dijk, dijki, etc). In a paper in press, we have extended the results presented here to
derive a unique solution in closed form for the general case of smooth surfaces that are
represented by an n'! order Taylor series expansion (with no restriction on n).

4.1. Constraint Set

For the brightness change constraint equation to be satisfied at every point in A, all of
the coefficients of its Taylor series expansion must vanish. That is,

N m]-EJ- =0,
T, + myE; + m;Ej; =0,
Tz‘j —+ miJ-kEk + (77l1‘kEkJ -+ mjlcEki) + mkEkz'j =0,

Tjk +mij Ex + (muji B +mur By + mug Eig) + (mug B + my; Evig + my Eyge) +miEpge = 0,
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Tijrr + (MijExt — Mg Eji + M Ege — My Ey ~ my By — my By~
(mmijEmlcl + mmikEm)l - 7nmzlEm]'k + mmjkEmil + mmlemik - mmklErmj"T‘
(MmiEmjkt + Mmj Emikt = Mk Emijt + MmiEmik) = MmEmiger = 0.

These are 15 linear constraint equations (note that the last 3 tensor equation only give us
3, 4, and 5 constraints because of the symmetry in the indeces) in terms of the 15 essential
parameters (two m,’s, three m,,’s, four m,;’s, and six m;;;’s). We will refer to them as a
constraint set. Each region of analyticity will give rise to a constraint set (as opposed to
a brightness constraint equation for each point in the image). Our strategy is to, first,
determine the 15 essential parameters from the image derivatives using a constraint set.
If several such regions exist within the quadratic patch, then a least-squares formulation
is used so that we can exploit the information from more areas of the image. We then
compute the motion and surface parameters from the essential parameters.

We remind the reader that there are only 11 surface and motion parameters to recover
({t: 3}, {w;, w3}, and {d;,d;;}), however, we are measuring 15 essential parameters. We
will show how the extra information will allow us to resolve the resulting ambiguities that
arise in some special cases.

5. Recovering the Extended Essential Parameters

Let p be a point in A,, and let:

1 1 1
E, =FE;, + Ei]~z]' + EEijkIjxlc + (—iEijklzjxkxl + -ézE,‘jk[mri.’ijkxlxm + ...

1 1 1
E; = T“ + TiI,‘ -+ -Z-TU‘.’E,':E]' + gﬂjkxixﬂ:k -+ E;fl}jklr,-x]-zkxl + .

represent the Taylor series expansion of the intensity derivatives in Ap, a region of ana-
lyticity in A, around the point p. Theoretically, the coefficients of these polynomials, up
to fifth order terms, can be determined using the intensity data in A, through a least-
square-errors fit if the patch is strongly textured. We will show, however, that this is not
necessary for determining a unique solution for the essential parameters.

Assuming these coefficients can be computed for at least one region of analyticity, Ap,
we can solve for the 15 essential parameters, by elimination, from the 15 linear equations
in the constraint set for region Ay:

T, + m]'E]‘ =0,
T; + mijE]' + m]'Eji =0,
Ti; + mijx Ex + (mu Eg; + mjeEr) + meErij = 0,

Ty + gj By + (myge Eig + muge By + mag; E) + (mug By + mug Ejge -+ mugByje) +miEgjx = 0,
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Tijki+ (i Exi + Mg Ejp + My Egp + mygEy ~ my By + M Eij)
+(m’mijEmkl + mmikEm.]l + mmilEmjk + mmjkEmil + mm]'lEmik =+ mmklEmij)
+(Mumi Emjki + Mmj Emiki + MmkEmajt + MmiEmige) + MmEmige = 0.

When several regions of analyticity exist on the surface patch, then a least-squares for-
mulation should be implemented to exploit the information from every region.

As we said above, it is not necessary to compute up to the fifth order terms of the
intensity function. We can get an approximate solution from:

T, + m;E; =0,
T; + mi; E; + m;E;; = 0,
T;; + myjkEx + (mix Ex; + mjxExi) + mgEgij = 0,
Tijk + i Ex + (mujpBii + mu Ej + muig Eg) + (mug By + mu; B + my;Eyx) = 0,
(74 Exy + mik Ejt + maEjg + Mg Ba + M By + MuEij)+
(Mmij Emkt + MmikEmjt + MmitEmjk + Mgk Emit + MmjtEmik + Mkt Emi;) = 0,

that is, using only up to the third order terms of the intensity function. Similarly we
may drop the third order terms and use the resulting equations to compute the essential
parameters. In essence, we are compromising the accuracy of the solution of the essential
parameters for two objectives. First, it is more practical to fit quadratic or cubic poly-
nomials to intensity function in a small neighborhood, and secondly, less computation is
required to do so.

We will show that in all but two cases, m;, m;;, and my;, are sufficient to derive
uniquly a closed form solution for the motion and surface parameters. For these two cases,
we have to resort to the constraints given by m;; to resolve the two-fold ambiguities in
the solution. In other words, we can use the equations for m;, m;;, and m;;; to compute
{w;, w3}, {t;,t3}, and {d;,d;;} uniquely except for two special cases. when these arise,
then we use the equations for m;; to resolve the resulting two-fold ambiguities.

Since the two special cases may occur rarely, we can consider a different strategy that
does not require the computation of m,;. Since m;; only appears in the last two tensor
equations, we consider only the following equations:

T' + m]vEJ' = Oa
T, +mi; E; + m;E;; = 0,

We can use these equations to compute the remaining essential parameters, however, we
only have 6 constraint equations, for each point p, in terms of the 12 unknown essential
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parameters. So we need at least two points. Using two points, we can solve for m, as
follows:
m; = —Gp'iT‘lf)a

where
G. = __1__ ( E22 _EZI)
" eE'ER\-Ef E} )’

and superscript p denotes the coefficients associated with point p. Using the solution for
m;, we can now solve the second tensor equation for m,;. The solution is given by:

mij = —Gpi(TF + Eb;my).
Finally, usiﬁg m, and m;; from above, the solution for m;;; can be expressed by:
My = —ka(Tf; + El’}m” + Elpimjl + mIElpij)'
It is now clear why we need to consider two points from two different regions of analyticity.
To be able to solve for the essential parameters, it is necessary and sufficient that:

e;; EIE} # 0.

If the two points are chosen from the same region, the coefficients of the Taylor series
expansion of the intensity function about each point will be the same, and therefore:

Ei]‘Eil E]2 =0.

It is appropriate to point out what information is necessary to recover the essential
parameters. It is necessary to compute the first order coefficients of the image function,
however, the higher order terms only provide more accurate estimates of the unknown
parameters. To show this, let us assume that only the first order terms are available.
Then, we can still determine the essential parameters from:

— — p _
m; = —GpTP,  mij=-GpT],  my =0.

The terms we neglected could be viewed as the correction terms that come from the higher
order information. We can still estimate the motion and surface parameters without
them, even though these estimates may not be very accurate. Similarly, we can get an
approximate solution for m,;; by neglecting the last term involving Ej;;. In this case, we
only have to compute up to the second order terms of the Taylor series expansions of the
intensity function and its temporal derivative in each region of analyticity. In practice,
this is desired not only from a computational consideration, but also with noisy images.
one cannot determine these coefficients accurately.

Image brightness values are corrupted with sensor noise and quantization. So it is not
advisable to base a method on measurements at just a few points. Instead we propose a
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least-square-errors formulation. We choose m,, m,;, and m,;; that minimize:

1
J = 5/ <(T“ + miE¢)2 + (Tl + mz]E] + m]'Eji)z-r
A

2
(Tij+misk Ex + (Mikbimj + m5k6mi) Eim + muElyj) )dA’

over the whole region 4,. For an extremum of J, we must have:

aJ aJ aJ
=0, =0, and
ami Bm,-j 8m1~jk

= 0.

After differentiating the expression for J with respect to the essential parameters, and

performing some algebraic manipulations, we arrive at:
Aigmg + Ajmip + AikimMiim = — A,
Bijgmi + Bijrmit + Bijkim™uim = — Bij,

Cijeimy + CijkimMum + Ciymyyi = —Cig.

where

A; =/ (T,E; + T\E; + 2T;;E; + Ti; Ey;)dA,
Az
Ak =/A(EiEk + EjEkj + 6xiEipgEpg)dA,

Aikl =/A(E1Eik +2E;Eq;)dA,  Ajkm =/ (ExEym)dA,

z

Bij '—’/A(Tz’EJ' + ZT,‘kEJ‘k)dA, Bijk =[4(Ek¢E]' + ZENEkil)dA,

z

Bij = /A(&z'kElEj + 26k Eyp Ejm + 2E 1, Ey;)dA,

z

Bijkim =/A(5kiEjz + 8i; Ejx) EmdA,

Ciji =/A(T¢jEk)dA, Ciski :/A(EkElij)dA,

z

Cijkim I/A(&'zEngk + 61 EmiEr)dA, Cy =/ (ExEi)dA,

z

These twelve linear equations can easily be solved for the optimum m;, m;;, and m;
by elimination. The derivation of the results is a tedious practice of elementary algebra
and is omitted here (note that the last tensor equation only gives 6 independent scalar
equations due to the symmetry in ¢ and 7).
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So in summary, we have shown how to compute the essential parameters from just
one point (using the fifth order terms of intensity function in the region of analyticity
containing the point), or two points (using third order terms of intensity function in the
region of analyticity containing the point). We also showed that approximate results may
be obtained if one uses just the lower order terms. When more points (or correspondingly
more regions of analyticity) are available, a least-squares formulation can be employed
that exploits the information from larger portions of the image plane.

In most cases, it will be enough to compute up to second order terms of the Taylor
series expansion of the image function, however, as explained earlier, we have to resort
to the information provided by the higher order terms to resolve the resulting two-fold
ambiguities in the solution for two special cases.

6. Recovering the Motion and Surface Parameters

The essential parameters were defined in terms of some nonlinear functions of the motion
and surface parameters, {t;,t3}, {w;, w3}, and {d;,d;;}:

m; = €;;W; — i,
my; = b;its — €5;W3 — d,;tj, ﬁt,‘j = t3d¢j.
mik = (eywr + dsta)bes + (ewi + dits)bg; — tedy;.

We will show that the equations for m;, m;;, m;;z can be used to recover the motion
and surface parameters uniquely in all but two cases. When there is no component of
motion parallel to the image plane d;; (these are related to the curvature of the surface
around the fixation point) cannot be recovered, and therefore, we have to contend with
a two-fold ambiguity similar to the one associated with planar surfaces in motion, and
when there is no motion in the direction of zero surface gradient, there is yet another
two-fold ambiguity. It is in these cases that the equations for m,; come to rescue. As a
result, we are able to recover the motion and surface parameters uniquely in every case.
So we will not use the equations for m;; until the very end. We choose this strategy since
to compute m;;, as we showed earlier, we need good estimates of the higher order terms
in the Taylor series expansion of the image intensity function. In practice, these terms
cannot be computed reliably from noisy images.

It is possible to solve the above non-linear equations for the motion and surface
parameters in several ways. Curiously, they all reduce to solving a cubic equation in
terms of t;/t2 (or t3/t;) that was first derived by Longuet-Higgins and Prazdny [| in
their work using optical flow (however, they never tried to solve it analytically, and so
concluded that, in general, three solutions are possible). Once the cubic equation is
solved, the unknown parameters can be determined easily.

It was brought to our attention that Waxman et al. (25] had derived the same results
from optical flow data using the formulation originally proposed in Waxman and Ullman
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23, and by exploiting 12 observables that are actually linear combinations of our 12
essential parameters m,, m,;, and m,;i), that are computed from the optical flow and its
first and second derivatives. Unfortunately, their formulation. using the 12 observables,
does not allow them to resolve the resulting two-fold ambiguities in the two special cases.
Here, we present a procedure that uses the image coordinate transformation that
Longuet-Higgins and Prazdny suggested. Before we proceed, we will redefine m;;; by
subtracting twice the expression for m; from the old definition of m;;;. The new equations
will be given by:
m; = €;w; — g,
m,’]' = 5,’jt3 — € W3 — ditj, 7711']' = tgdi]‘.
Mmijk = (tj + djt3)5]m' + (t.,' + dit3)5kj — tkd,i]'.
An image coordinate transformation can be written as:
' cosd —sind
=z, = . 3
Ti 7T <sm0 cos @ ) i
We will explain how 8 is chosen later. Let m;, m:.j, and mi-j , denote the extended essential

parameters in the new coordinate system. Then:
m; = Qumy = Qy(ejw; — ty),
m:'j = 00 QmMim = Qi Qjm (6imts = €mws — ditm),
Mk = QitQym UknMimn = Qi Qjim Qien ((tm + dmt3)bn; + () + dit3)bnm — tnd,m).
These can be written in the form:

! Coany! . !
m, = Cﬂu)]‘ ti’

!t __ ”I .. I_ ! 4!
my; = ity — €Wy dz-t]»,
!

M = Gi(t] + djts) + 8kj(t; + dits) — tidyy,

where,
w; = Qqwy, 6= Qyty,  d=0d;, d; = 2%0jmdin.
Since the rotation to the new coordinate system is about the z-axis, it is clear that t3 = t5,
and w3y = w;';.
Let us write the equations for the transformed extended essential parameters in the

component form:

r _ ! [ | [ !
m; = —wy, — my, = w; — Uty

[ 4! ! 41 ! Y ! 4!
myy = t3 — dyi] Mgy = t3 — dyty

! _ r [ ! _ [ Y}
My, = —wy — dit; My, = w3 — dyt)

miy = 2(t) + dity) — thd}, myyy = 2(ty + dyts) — thdy,
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! - 1y ! - [
my, = —tady Magy = —11dsg

! — 4! 1 41 r ! Y ! 41 t
Mg =ty + dyty — t1d}, Mgy = 1) + djty — tad),

The new coordinate system is chosen such that the zj-axis (or alternatively, z}-axis,
due to symmetry in the above equations) is aligned with the component of the translation
in the image plane so that ] = O (if we align the zj-axis with ¢,, then t;, = 0). Note that
6 is not known, since ¢, is unknown. We will show how to compute ¢ analytically.

Setting t] = 0, we arrive at:

my = —w} my = wy —th

my =ty myy = t3 — dyt}

mi, = —wy — djt} my; = wy

myy = 2d;t} Mygy = 2(ty + dyts) — tydy,
My = —tady, Mag =0

Mg = £y + dits Mye = dity — tyd},.

We use the constraint m},, = O to solve for §. Writing this in terms of the original
parameters, we obtain:
m’221 = Qo NomQinMmimn = 0.

After substituting for €);;’s, collecting terms and simplifying, we arrive at:
—myptan® 0 + (m111 — 2my32) tan? 4 — (mao22 — 2my21) tan 8 + mag =0,
or in terms of the motion and surface parameters,
tady tan® @ + (2tedy2 — tidyy) tan® @ + (tadgg — 2t1dy2) tan @ — tydze = 0,
which can be factored into the following form:
(tz2tan b — t;)(dn tan? 6 + 2d;5 tan 6 + da) = 0.

The solutions of the above equation are given by:

3] _d12 = V d%Z - d11d22

tanf = —,
ts din

The cubic equation is trivially satisfied for two special cases: d;; = 0, that is, the surface
is planar, or t; = 0. If the coefficients of the cubic equation do not vanish, we are

guaranteed that:
i, 75 0, and d,’j # 0.

For now, we assume these conditions are satisfied.
Note that only the first solution, tand = t;/t3, corresponds to the correct transfor-
mation. Let us look at the other two solutions, i.e., the solutions of:

dyy tan® 6 + 2dys tan 8 + dyy = 0.
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Remember that:
9%z

di. = —(—Z
Y (BX,-BX] o

and therefore,
(d11 tan 6° + 2dy2 tan @ + dzz) = —viH,jvj,

where
v; = (tanf 1),

9*z 8z
axX? 0X10X,
vl 8%z 8*Z

0X,10X> ax?

As shown in appendix 1, if the surface has a positive gaussian curvature at O, that is O
is an elliptical parabolotd point, then H;; is either positive or negative definite, and so:

d1) tan? 6 + 2d;otan @ + dgp = —v,-Hijvj # 0.

Therefore, the solution for the transformation angle 6 is unique . If the gaussian curvature
at O is zero but d;; # 0, or if O is a parabolic cylinder point, the above quadratic equation
has two identical solutions given by:

d d
tanf = ——=2 = - 22,
dn dis
Finally if the surface has a negative gaussian curvature at O (hyperbolic paraboloid point),

then the quadratic equation has two distinct real solutions that are:

—diz £ /d};, — diidys

dn

So the solution for the transformation angle is not unique when point O is either a
cylindrical paraboloid or a hyperbolic paraboloid point. We will show that, in most
cases, it is possible to single out the correct solution, § = tan~!¢;/ts, using the extra

tanf =

constraint equations.

Once we solve for the transformation angle(s), we can determine the transformed
parameters, m,, mij, and m;jk, and determine the motion and surface parameters from:

my = —wj my = w) — t}

myy = t; myy = t3 — dyty

miy = —w; — dit} my = wy

myy, = 2d)t} Mgy = 2(ty + dyty) — thdy,
myp = —thydy, Mg = 0

I

! ! ! 41 [ - ! 41 [
Mg =ty + dyty Mg = dity — thd),.
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If t3 = t4 = m}; =0, the solution is given by:

| ! ! [ ! I _ !
Wy = My + Myy Wy = —My w3 = My,
r o ! r _ ! —_
t, = ty = myq; to=m;; =0
! I !
. . my,+m . m
d =1 d = Mt My, & = -T2
1 m 2 m
121 121
! ! ! !
dyy = -T2 = 4. — M2 = 2Mip
n= o 127 T 22 = .
121 121 121

If t3 = ty = m), # 0, we determine wj, w3, and t; as before:

' ' o "t
wy = —my, y W3 = My, ty3 = my,.

Substituting for these into the remaining equations, we obtain:
m'2 = wi - t'2,

P 1,0
Mgy = my; — daty,

! TN
= —mgy; — dyity,

!
myg

!

' !
myy = 2mydy,

Mgy = 2(ty + my,dy) — thdsy,
mig = —tadyy,

mig =ty +myds,

Mg, = mydy — tady,.

We can solve for d} from:

d = min
' om!
11
Now expressing dj, in terms of t, we get:
! !
d = T~ ty
2 m! ’
11

This simplifies into:
2 ! ] ) [} ] __
ty — mygty + my(my; — my,) =0.

The two possible solution for t, are given by:

1
! !
= 5<mm £ \/mig, — 4mly (mly = mbs) ),
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or in terms of the motion and surface parameters:
t'2 = t'z, and d;tg.

We now proceed to determine the solution for the remaining parameters in terms of the
solutions given for t5:
w) = my + to,

! ! ! / !
ro_ M P M ™y g _ _Mgyp — 2Myy

11 — R 12 — [ ’ 22 !
t) 2t th

Now consider the extra equation we have not used yet, i.e.,
' " ]

In most cases, of the two possible solutions of t;, given earlier, only the corect one satisfies
this constraint equation. So the correct solution for ¢} (that will be unique) is chosen
and used to determine the other parameters. Similarly, in most cases, this equality will
not hold for the wrong transformation angle 8. So the above constraint can be used to
determine the correct solution for t; (from the dual set) and the proper transformation
angle (if the cubic equation we derived earlier has multiple solutions).

In the special case when d} = 0, we have:
' ' —0
My + My = L.

So the extra equation becomes independent of ty, and cannot be used to determine the
correct solution of t,. However, the constraint equations:

~1 gt

come to rescue here. Of the two solutions for t; that result in:

! ! ! )
1 _ _ Mg ) 2Mygy — My d. = Tz~ 2myy
11 tl2 ? 12 2t,2 ’ 22 tl *

only one is consistant with the solution obtained from:

~ | ~ ~

d. = M op My ¢ Moo
11 — T 12 — ) 22 7 T 4
my myy my

We again emphasize that the constraints from m,; are only used for removing the ambi-
guities, and not to compute the unknown parameters for the reasons given earlier.

If &, = 0, the ambiguity is resolved without the need for the constraints from m;;.
This is because the dual solution for t, (dyts) will be zero, and we can discard it since we
assumed that t} # 0 (t. # 0 and ¢} = 0 imply that t; # 0) .
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Now we consider the case when the coefficients of the cubic equation vanish. Then,
either t; = 0, or d;; = 0. Again, we use the constraints:

~I !
m = t3d1],

to distinguish between the two cases, and determine the solution.

If 771’ = 0, then d’ = 0 since we assumed that t5 # O (the case tj = 0 was treated
earlier). The remammg parameters can be determined using the method we proposed in
[16], however, the two-fold ambiguity of planar surfaces is what we have to contend with.

fr%ij # 0, then we know that dij # 0, and therefore, t! = 0. In this case, the solution
is given by:

Pt 1 " S |
wy = my Wy = —my W3 = Myy) = —Myy
[ ) | A ! !
! / [ !
d =1 d =_"u _ _™p d = -2z _ Mooz
0~ 1 — 2 = 2 1 2 — 2 = Tom!
my, Mgy myn Moo
~ | ﬁl'
dyy = "‘U‘ 'L 12 = = = T
mu m22 mu mzz myy - Mgz

This is the only case we actually need m;; to estimate the surface parameters di;

So in summary, we proceed as follows:

(1) We determine the solution(s) for the transformation angle from:
—my12 tan3 6 + (m111 - 2m122) tan2 6 — (2m121 — m222) tan 8§ + mg9; = 0.

If all of the coefficients of the above equation vanish, then either di; = d;]- =0, or
t; =t. = 0. We use the constraint equations:

4

m = tad” N

to distinguish between the two cases. If m mIJ = 0, we conclude that d;j = 0 and

therefore, the surface is planar. We can use our method for planar surfaces (see

[16]) to compute the unknown parameters. we have to contend with the well-
known two-fold ambiguity of planar surfaces. If m - # 0, then the solution is

given by:

! !/ ! ! ' / I !

w, =m, Wy = —1my W3 = Mgy = —Myy

[ A [ ! ! - [

t, = ty, =0 t—mll—m22
! !

d =1 d =-"un _ ™ d = 222 222

0 1 2 [] 2 [ 2 2 2m
myy Moy mn 22

~ ~f ~ ~ )
drllzﬂ,uzln_u lnzﬂllz:_u 122__12 _22

[} !
myy Moy my Moo my mzz
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When the coefficients of the cubic do not vanish. we conclude that:
t; =t #0, and  d,; =d,; #0.

For each solution of #, we compute the extended essential parameters in the rotated
coordinate frame.

(2) We determine the solution for t} from t} = m{,. If t; = 0, then the solution for
the motion and surface parameters is unique and is given by:

ro_ ! ! Y ro_ !
W) = My + Mg wy = —My w3 = My,
! f 1 [ ! —
t, =0 ty = myg t3=m;; =0
! ] [
my21 myoy
!’ 1] ! 2 !
d. = -"Tuz 1o _TMy22 1 _Maag — 2Mygy
1= T 127 T 22 = -
121 121 121

If t} # 0, we first find the two solutions for ¢}, from:

1
ty = 5( 121 \/m’m — 4mi, (my; - m'zz))-

If one of the solutions is zero, we discard it (resolvable ambiguous case), and

proceed with the correct solution. If both solutions are nonzero, we pick the
correct one that satisfies:

! ! Y
myq + moy = _dlt2’
If this constraint is trivially satisfied, that is:
! !
myq + m21 = 0,

we conclude that d] = 0. Of the two solutions given by:

! ! ! ! !/ ! __ !
w) =my it wy = —my wz = My,
[ | Y ) f 41 r !
t;, =0 t, = ty, and dyt; ts = my,
! ! [
dy=1 d = Tan L
0 15 ot 2 7
myy myy
d. = _myyp d'. = _2miyy —myyy ) Mggy = 2myg
1= Y 12 7 2 22 = 7
2 ty ty

we select the one that is consistent with the solution obtained from:

~f g
ml'j = t3d1‘]‘,
that is,
~ 1 ~ 1 ~ f
d. = mMyy d. = myg g Moy
11 — [ 12 — r 22 — [N
my my, my
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(3) In most cases, the multiple ambiguity in the transformation angle, if it exists, can
be resolved by the extra constraint equation:

' '
m, + my; = 0.

In general, this constraint will be satisfied only for the correct rotation. We restate
that these ambiguities occur only when the gaussian curvature at O is non-positive
(the fixation point is either a parabolic cylinder or a hyperbolic paraboloid point).
For surfaces with positive gaussian curvature at O, the solution for the transfor-
mation angle is always unique. If we have not resolved the angle ambiguity yet,
we, once again, turn to:

il = thd,
since these constraints should only be satisfied for the correct transformation.
It is very unlikely that the incorrect transformation satisfisfies all of the above

constraints.

(4) We then compute the motion and surface parameters in the original coordinate
frame using the transformation equations given by:

w = M), t=Qut;, d=0d;, dim=Qand;.

7. Summary

In this paper, we have investigated the problem of recovering the motion of an observer
relative to a stationary environment directly from the time-varying imagery. We assume
that, in a small neighborhood, the surface of the scene can be approximated by a quadratic
patch. We first compute 15 intermediate parameters termed essential parameters from
a set of linear constraint equations in terms of the image intensity derivatives. We then
solve for the observer motion parameters and the local structure of the scene (slope and
curvature parameters) in closed form.

We have shown that the solution is unique in every case. The previous results of
Longuet-Higgins and Prazdny [10], or that of Waxman et al. [23,25] fall short of showing
uniqueness for every case. Furthermore, they use the optical flow data. So far, no method
for computing a correct optical flow is proposed in the literature than can be reliably used
for the optical flow based methods.

In a paper in press [17], we consider smooth textured surfaces with continuous n'
order derivatives (no restriction on n). We show that the problem of recovering the motion
and the coefficients of the surface can be decoupled into two problems: (1) determining
the motion and the first and second order parameters of the surface through the procedure
presented in this paper, and (2) using the solution from the first problem to solve for the
higher order coefficients from a set of linear constraints. This suggests that including the
higher order terms of the surface is not necessary for recovering the motion parameters.

h
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Appendix 1:

Earlier, we presented a procedure of recovering the motion of an observer relative to a
locally quadratic patch. It is based on solving a set of nonlinear equations in a transformed
image coordinate frame. To compute the transformation angle, we need to solve the
following cubic equation:

(tatan 8 — t1)(dn tan? 0 + 2djptan @ + dgz) = 0.

Only one of the solutions of this equation, tanf = t;/t, corresponds to the proper

rotation. The other two solutions:
—d1z = \/d?, — diidp

b
diy

if they exist, are directly related to the local properties of the surface, namely the gaussian
curvature of the surface, at 0 (fixation point). Note that we are only interested in the
real solutions of the above quadratic solution, and these may not exist. Here, we will

tan 8 =

investigate these in more details.
As before, let v; = (tand 1), and let:

A 3*z
ax? 0X10X;
Hy==di=| g4 9*z

0X10X: 98X}

represent the Hessian of the surface at O. The sign of the guassian curvature of the
surface at this point is that of |H1~j |, where:

|Hy;| = diidaz — db,.

If lH,-j‘ > 0, that is, the surface has a positive guassian curvature at O (see Figure
2a), then it is clear that the two solutions of 6:

—di2 + \/d}; — dirdas

dn

are complex. The fixation point O, in this case, is referred to as a eliptic paraboloid point
in the literature.

tanf =

Now consider the case when Hj; is singular, that is ‘Hijl = 0, but d;; # 0. In this
case, the guassian curvature, at O is zero (see Figure 2b). In this case (O is a parabolic
cylinder point), the two real solutions of § become identical, given by:

di2 dog

tanf = —— = ——.
dn di2
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Parabolic Cylinder

Convex Surface

Eliptic
Paraboloid
Point
Concave Surface

(a) Positive Gaussian Curvature at P (c) Negative Gaussian Curvature at P

Figure 2: Examples of Surfaces with Positive, Zero, and Negative Gaussian Curvature

Finally consider the case when the surface has a negative gaussian curvature, that is
JH,-ji < 0 at O (see Figure 2c). The point of fixation O is referred to as a hyperbolic
paraboloid or a saddle point. In this case, both solutions of § are real, and given by:

—dy2 £ \/dfg — dy1da2

di

tanf =
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Appendix 2:

In this appendix, we present the results of section 2 in the vector form for those readers
that are not familiar with the tensor notation.

2.1. Perspective Projection

Let x denote the perspective projection of the point X onto the image plane (plane z = 1).
Then:

2.2. Rigid Body Motion

Let t and w denote the translational and rotational velocities of the observer relative to
the scene, then:

d—xz—wxX—t.
dt

2.3. Image Motion Field and Optical Flow
The projection of the 3-D velocity field, induced by a rigid body motion, onto the image
is known as the image motion field, and is given by:
dx d 1
dt dtX-i
For convenience, we introduce the notation x; and X for the time derivatives of x and
X, respectively. We then have

X.

1 1 .
Xt o %

Xt =

which can also be written in the compact form:

1 5
X = (—x_—i)—z(z X (Xt X X)),
since a x (b x ¢) = (c-a)b — (a-b)c. Note that X = (X - £)x, and therefore,
1.
Xt = Xi(z X (Xt XX)).

Finally, substituting for X;, we obtain:

Xt = —(i X (% X (X X w— Xl'it)))'

2.4. Brightness Change Constraint Equation

The brightness of the image of a particular patch of a surface depends on many factors.
It may for example vary with the orientation of the patch relative to the viewer or the
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light source. In many cases, however, it remains at least approximately constant as the
surface moves in the environment. If we assume that the image brightness of a patch
remains constant, we have:

£ _,
dt
or
8E dx 9E _

ox d e Y
is the image brightness gradient. It is convenient to use the notation Ex for this quantity
and E; for the time derivative of the brightness. Then we can write the brightness change
equation in the simple form
Ey -xt+ Ey =0.

Substituting for x; we get

Et—Ex'<2X(XX(XXh}—ﬁ ))):0.

If can be eaasily verified that if we define s = (Ex x ) x X, and v = —s8 X X, then the

above equation can be written in the simple form:

1 s-t=0
X-z o

This is the brightness change constraint equation in the case of rigid body motion.

Ei+v -w+

Appendix 3:
We defined d = 1/Z. Therefore:
ad 1 92 d%d 1 9*Z 2 072, ,07

E; - _—Z-EEI-—{, 6:::,-6xj - _ﬁaziaxj * _Z_3(81:,)(_6?J)

Evaluating these expressions at the origin:

ad 1 92 d%d 1, 8*Z 2 0z, 907
(az.)u_
1

‘"Z?(a—x‘;)(., ‘(axiaxj)" = ’z_g(axiazj)" + Z3(5;i)..(;9}:)u-

(4]

We now use the perspective projection equation X; = z,Z2:

97 _ 3Z Xn _ 9Z (
dr; O0Xm 0r; OXm

0z
5'imZ + Im'a:)

Therefore:
YA oz o0z . _,

= 1-—
oz, aXi( Tmax.)
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Now:
3z 8 , 827 8z. 8z , 9z YA 8 8z
dz,0z; 0z, (53, ) (bimZ = m ) + gy (Omag ~bmay, I’"a_a:j(azi))’
or,
8'Z 8 87 oX, 0z. 8z . az 8z 8?7
= b; maa 25 0im g T Oym3 ma A )
520z, ~ 9%, \axy,) oz, OmE T Emgr ) ¥ oy, By T limag, T 5z.97,)
This simplifies to:
87 827 82 0z 07 . 8z . 8z  9°Z
- mZ+2n o) (6 2 o -
92,0z, ~ 9XnaX, mitT oz, 62 +I“ax,)+axm( ™oz, T oz *"onz,)

After substituting for Z/dz;, we arrive at:

3z *z . ; 0z 07z a7 0z 3z

— 7 _ Sl St ¥ bim + Ly —— |,
92,07, - 9XmdXn miint g%, (201~ 2k g5 )™ (bim ax, ox%;) T azia,
where,
< 8z 0z _
Zim = bim Z + Ing—)—(z(l - xkﬁ_k) 1
Solving for 82Z/8z,z;, we obtain:
2z 8Z ._i5 3 3z 9Z . _, az z 9z
9z;9z; (-zg5,) ZimZingx 5%, T 20~ =5y,) (5"”0—)@ o ax) aX
Evaluating (8Z/9z;), and (8% Z/dz;8z,), at the origin results in:
oz oz 0%z ., 0'Z , 0z, 907
((91:,-)" - "(3X¢“’ (aIifrJ’)" - n(aXian)“+2Zu(axi)u(axj)"'

Finally, substituting for (#Z/dz;), and (8?Z/dz,;8z;), into the equations for (8d/dz;),
and (8%d/8z,0z;), we arrive at:

24y 1oz, (P, 02,
6:c¢ ? Z" 3X1 " 8.’131‘3.’1:]' " Bch’)XJ v
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