Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.l. Memo 893 March, 1987
Issues in Model Based Troubleshooting

Walter Hamscher
Randall Davis

Abstract. To determine why something has stopped working, it’s helpful to know
how it was supposed to work in the first place. This simple fact underlies recent
work on a number of systems that do diagnosis from knowledge about the internal
structure and behavior of components of the malfunctioning device. Recently much
work has been done in this vein in many domains with an apparent diversity of tech-
niques. But the variety of domains and the variety of computational mechanisms
used to implement these systems tend to obscure two important facts. First, exist-
ing programs have similar mechanisms for generating and testing fault hypotheses.
Second, most of these systems have similar built-in assumptions about both the de-
vices being diagnosed and their failure modes; these assumptions in turn limit the
generality of the programs. The purpose of this paper is to identify the problems
and non-problems in model based troubleshooting. The non-problems are in gener-
ating and testing fault hypotheses about misbehaving components in simple static
devices; a small core of largely equivalent techniques covers the apparent profusion
of existing approaches. The problems occur with devices that aren’t static, aren’t
simple, and whose components fail in ways current programs don’t hypothesize and
hence can’t diagnose.

Acknowledgements. This report describes research done at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Technology. Support for the
laboratory’s artificial intelligence research on troubleshooting is provided in part
by the Digital Equipment Corporation, and in part by the Advanced Research
Projects Agency of the Department of Defense under Office of N aval Research con-
tract NO0014-85-K-0124.

(© Massachusetts Institute of Technology 1987

1 Introduction

Programs for doing automated diagnosis from structure and behavior strive for
generality of various kinds. One aspiration is to have programs able to diagnose
virtually any designed artifact in a particular technology. A more ambitious general-
ity is implied by the dream of building a general troubleshooter that could diagnose
(say) automobiles as well as analog circuits, simply by substituting different types
of components for each domain.

Our claim is that the dream is both closer and farther away than is commonly
appreciated. It is closer, because most existing programs use similar techniques and
the commonality suggests that a “domain-independent” troubleshooting methodol-
ogy is within reach. It is farther away, because these same programs have built-in
assumptions about their domains which must be made explicit before they can be
generalized. The difficult issues in this line of research do not arise in the methods
themselves, but rather from the simplifying assumptions implicitly built into them.

A number of programs reason from structure and function to diagnose devices
in a variety of domains, using what appears to be a variety of techniques, includ-
ing INTER [deKleer76], WATSON [Brown76], SOPHIE [Brown82], LOCALIZE [First82],
[Davis84)’s program, DART |Genesereth84], DS [Pan84], LOX [Scarl85!, and the
ATMS troubleshooter [deKleer87].

The variety of domains and computational mechanisms found in these pro-
grams tends to obscure important similarities. One set of similarities concerns
troubleshooting techniques. These similarities can be made clear by describing
them in terms of the generate-and-test paradigm, illustrating the ways different
programs use the same kinds of knowledge.

A second important set of similarities concerns the assumptions that differ-
ent programs make about the kinds of components and faults to be encountered.
Among these assumptions are that components have no hidden state and that the
given representation of interactions between components is complete and correct.
These assumptions are often built into programs for the sake of efficiency, resulting
in important limitations. These limitations in turn constitute an agenda of open
problems in automated diagnosis.

2 Diagnosis from Structure and Behavior

Given some observations of a misbehaving device, a description of its internal struc-
ture, and descriptions of the behavior of its components, we wish to find out which
components could have failed in such a way as to explain the misbehavior. A useful
way to decompose this task is to consider three separate tasks: (i) generating fault
hypotheses, (ii) checking those hypotheses for consistency, and (iii) discriminating
among the consistent hypotheses on the basis of further probes or tests. This section
discusses each in turn.

It is necessary to make some initial definitions and assumptions, each of which
will be reexamined later.

A component is a part of a device. Diagnosis programs diagnose devices to
find faulty components. System is used interchangeably with “device” to refer to
a larger collection of components, such as a computer system.

The structure of a device can be thought of as a graph, with the components
represented as nodes and connections between components represented as arcs.
Terminal is used to mean a point where a component can be connected to others.

A suspect is a component whose misbehavior could possibly explain one or
more symptoms. For the moment, let a fault hypothesis be a specific misbehavior
hypothesized for a suspect.

As an example, the structure of a digital device might be represented with the
logic chips as “components,” the wires as “connections,” and the the pins on the
chips as “terminals.” A different representation of the same device might have
the components represent boolean logic gates, the connections represent electrical
connectivity through metal wires and pins, and the terminals represent the signal
inputs and outputs of the gates.

From the point of view of a diagnosis program, these are two equally valid
representations of “structure” for the same device. Suspects generated from the
two representations will be different, because the components and their connections
are different, but the diagnosis methods to be discussed are flexible enough to deal
with these and other notions of “structure.”

2.1 Hypothesis Generation

The generate-and-test paradigm requires that the generator of candidate solutions
be complete, in the sense that every potentially valid solution will eventually be
proposed. Given a device description, a complete generator of fault hypotheses could
be trivially built by exhaustively enumerating all components, since all suspects are
components. But not all components are valid suspects; suspects should explain
the observed symptoms without implying symptoms that were not observed. It
is advantageous to incorporate this constraint into the generator, so that fewer

3

invalid suspects are proposed. There exist a number of progressively more elaborate
ways to use knowledge about the device’s structure and its components’ behavior
to generate a more constrained set of hypotheses while preserving the required
property of completeness. In this section we begin with an extremely simple version
of hypothesis generation and develop these elaborations one at a time.

A discrepancy is a disagreement between an observation of a device’s behav-
tor and its expected fault-free behavior. For example, the adder-multiplier circuit
shown below presented with zeroes on all inputs is expected to produce a zero on
output F. An observation of anything else at that terminal constitutes a discrep-
ancy. A program’s first task is to determine whether any discrepancies exist. This
can be done by simulating the device’s expected behavior given the inputs presented
and comparing the results to observations of the real device.

MULT-1 ——
ADD-1 F=0
B=0
C=0—% | MULT.2 Y =0
D=0
ADD-2 G=0
MULT-3 |—1 |
E=0 Z=0

Adder-Multiplier Example

Given these discrepancies, a simple, intuitively appealing way to find suspects
is to find all the components connected to a discrepancy via some path through the
connections. This makes sense because the suspect must be among the components
that could influence the expected value, and according to the model this influence
could only be exerted through the connections. Suspicion is “contagious,” in the
sense that a discrepancy observed at one of the terminals on a component implies
either that the component is malfunctioning, or that the component is normal but
some component connected to it is malfunctioning. Each of the other terminals of
the component yield further suspects and further discrepancies, etc. The problem
with this approach, however, is that in most cases following every connection means
that every component will be reached, so this is a poor strategy.

Intuition says that a better approach would be to identify the direction of causal-
ity in the device, and mark as suspects only those components that are “upstream”

4

of discrepancies. In the example above, a discrepancy observed at output F would
make suspects of only the three components upstream from F. Knowledge about
components’ direction of operation can thus constrain the suspects generated. Com-
ponents that have identifiable input terminals and output terminals are said to have
directionality. This notion is not applicable in every domain; analog electronic
components such as resistors, for example, are not usually thought of as having
inputs and outputs. Nevertheless, the technique is appropriate in many domains,
so we will pursue some of its elaborations.!

One way to elaborate is with a behavior model. This is information about a
component that can be used to predict its response given its inputs. This can then
be used to constrain hypothesis generation: when a discrepancy is observed at an
output, we need move upstream only from those inputs upon which the expected
output depended.

For example, suppose a digital OR gate is expected to get a 0 on input “A” and
a 1 on input “B,” yielding a 1 on the output. The output of 1 in this situation
depends only on B’s being 1. Hence, if the output is observed to be zero, only B
need be traced upstream.

B OR Gate _Q}Ll

OR gate

There are different ways to implement this approach to generating suspects. One
method is to record dependencies whenever an output prediction is made. In the
OR-gate example, the relevant dependency would be created and stored with the
original deduction that the output should have been 1. Dependency based hypothesis
generation schemes follow these dependency records upstream from discrepancies.
Each component visited while tracing these dependencies back to primary inputs is
a suspect. Davis’ program stores explicit dependencies for this purpose. Another
method traces inputs upstream by computing the logical consequences of observa-
tions. In this example, we know that “if an OR gate is normal and one of its inputs
is 1, then its output is 1.” Since this output is observed to be something other than
1, then either the OR gate is not normal, or neither input is 1. Hence, either the
OR gate is not normal, or the B input was not 1. Hence, either the OR gate is
not normal, or the component upstream of B is not normal, etc. DART exemplifies
this inference based method of computing suspects; LOX takes a similar viewpoint.
These various implementations of upstream tracing yield identical suspects.

!The technique is also worth studying because it is well grounded in intuition, some of the programs
being surveyed assume it, and it can be generalized easily,

)

The notion of conflicting assumptions provides a more general framework than
the intuitive notion of upstream tracing. In this view, each discrepancy repre-
sents a conflict between expectations and observations. Assumptions about the
correct behavior of components are recorded at simulation time and underly those
expectations. The existence of a discrepancy means that the set of assumptions is
inconsistent and hence at least one underlying assumption must be false, i.e. at least
one of the components assumed to be behaving correctly is actually misbehaving.

In domains for which components’ causal direction is the sole source of depen-
dencies, there is little distinction between the “upstream tracing” and “conflict-
oriented” views. The discrepancy at F in the adder-multiplier example yields the
suspects ADD-1, MULT-1, and MULT-2 under both approaches. However, the
conflict-oriented view facilitates dealing with components having no directionality,
since it requires no distinction between inputs and outputs, neither for the individ-
ual components nor the device as a whole. So long as all values are predicted with
all the relevant assumptions being recorded, the technique will generate a complete
set of suspects.

The figure below shows a trivial circuit with two resistors. Suppose the potentials
at nodes X and Z are known to be 10 volts and 0, respectively. The voltage at node
Y is measured to be 1 volt, instead of 5 as expected. This is a discrepancy, or more
accurately, it is a conflict between two assumptions, namely, that R1 and R2 both
have resistances of 1 ohm. At least one of these assumptions must be false, hence
both resistors are suspects.

X = 10v observed

R1
10

Y = 5v expected, 1v observed

R2
10

Z = Ov observed

Voltage Divider Example

This simple example also illustrates a characteristic of devices composed of non-
directional components, which is that any single prediction may depend on a large
portion of the components working properly. As a result, hypothesis generation will
be unavoidably indiscriminate.

Given this variety of hypothesis generation techniques, the proper method to
use in a program can be suggested in part by the class of devices the program is
expected to diagnose. We have seen three techniques of increasing generality:

1. Upstream tracing is adequate in domains with simple, directional components.
LOCALIZE is able to use this technique thanks to the trivial behavior of neural
pathways in its domain. IDS uses it as well, in a representation that shows
only the intended direction of information flow between components in an
otherwise nondirectional device, thereby risking an incomplete generator.

2. Various mechanisms can constrain upstream tracing by using components’
behaviors. DART, Davis’ program, and LOX work in domains with moderately
complex yet largely directional component behaviors, thus motivating the use
of dependency-based and inference-based schemes.

3. Hypothesis generation can be broadly viewed as the task of finding conflicting
assumptions. The domain of analog electronic circuits involves mainly non-
directional components, hence INTER, WATSON, SOPHIE take this conflict-
oriented view, as does INTER’s descendant, the ATMS troubleshooter.

2.2 Hypothesis Checking

Usually there are initial suspects that are locally consistent, but globally incon-
sistent. A suspect can be globally inconsistent either because it cannot explain
observed discrepancies or because its misbehavior would imply discrepancies that
were not observed. The purpose of hypothesis checking is to eliminate inconsistent
suspects using only the observations at hand, i.e. without performing any further
tests or internal probes of the device. As with hypothesis generation, there are
progressively more elaborate and powerful ways to use such observations. As be-
fore, let us begin with a simple technique for hypothesis checking and develop more
powerful elaborations of it one at a time.

One way to exonerate components is by using corroborations {deK]eer?G] -
observations that agree with expectations. Intuition tells us that if an output of
a component is normal, the component is functioning correctly and its inputs are
normal. If those inputs were normal, then its immediate predecessors are function-
ing correctly, etc. This intuition is rarely correct, however. It assumes that (i) the
input of a normal component can be determined solely from its output, that (i)

7

components only fail in such a way that misbehavior is detectable for every possible
input. Rarely are components so simple in their behavior that this method suffices;
LOCALIZE’s domain of neural pathways is an exception.

A more powerful method for using corroborations to detect inconsistencies
is fault envisionment: insert a hypothesized misbehavior and simulate to see
whether it matches all observations (both discrepancies and corroboratijons). Note
that this requires a predefined set of possible misbehaviors for each component type.
For example, a resistor in an electrical circuit may be faulted by being “shorted”; the
resulting misbehavior is that its two terminals are forced to have the same voltage.
Any disagreement between the observed and predicted values rules out a hypothesis,
and suspects are exonerated by ruling out all their possible misbehaviors,

An advantage of generalizing the notion of a “behavior model” to include the
behavior of components when faulted is that dependent failures - failures that
occur when a failure in one component damages other components — can be hy-
pothesized and their effects predicted through fault envisionment [Pan84].

A disadvantage of fault envisionment is that the number of ways components in
the domain can fail grows quickly with their physical complexity. In IDS [Pan84],
for example, analog electronic components such as resistors and diodes can be as-
sumed to fail only by having shorts or open circuits between ‘two or more terminals.
This works fine for components with 2 terminals, but becomes unwieldy when non-
primitive components or primitive components with more terminals are considered:
an n-terminal component will have at least 2(2" — n — 1) such failure modes.

A more general approach than either of the preceding relies on the observation
that a consistent hypothesis must account for all discrepancies. If there is more than
one discrepancy, and only a single failure is assumed, the set of consistent suspects
can be computed simply by the intersection of the suspect sets that arise from each
discrepancy. Moreover, in addition to accounting for all discrepancies, a consistent
suspect must also account for all corroborations, i.e. there must exist an assignment
of values to its terminals such that all, and only, the observed discrepancies are
produced. Constraint suspension [Davis84] and similar techniques do this by, in
effect, attempting to infer what each suspects’ misbehavior would be if it were indeed
failing. The technique follows from the observation that the normal behavior of a
component imposes a constraint on the values at its terminals. If the component
is working correctly then that constraint is in force; otherwise the constraint is
suspended, we simply don’t know the relation between the component’s terminals.

Consider, for example, an adder, whose behavior can be captured in terms of
three rules: its output is the sum of its inputs; its first input is the difference of its
output and second input; and symmetrically its second input is the difference of its
output and first input. The latter two rules capture what we can infer about the
values that appear on the terminals, not the directionality of the device. The adder
imposes a constraint on the values that can appear at its terminals. One way to

implement a constraint is with rules, as in [SussmanBO}:

A. IF input-1is X and input-2 is Y, THEN the output is X+Y.
B. IF input-1 is X and the output is Z, THEN input-2 is Z-X.
C. IF input-2 is Y and the output is Z, THEN input-1 is X.

But if the adder is not known to be behaving correctly, any combination of
values might appear at its ports, i.e., the constraint is suspended.

A suspect is consistent only if it is consistent for all other components to be
behaving correctly. In constraint suspension, a suspect is checked for consistency
by suspending its constraint and enabling the constraints associated with all other
components in the device. When any contradiction arises, the suspect is ruled
out: it cannot explain all the observations. For consistent suspects, constraint
suspension also makes hypotheses more specific by computing how the suspect must,
have misbehaved. If no such misbehavior can be found, the suspect is inconsistent.
Hence the technique can rule out many potential misbehaviors of a suspect at once.

Consider an example from [Davis84]. The predicted outputs of this device were
F=12 and G=12, but instead F=10 was observed. By tracing dependencies the
suspects are found to be ADD-1, MULT-1, and MULT-2.

AS T o |20

ADD-1 b F=12 Expected
B=3 F=10 Observed
C=2—3 MULT-2 Y=6
D=2

ADD-2 G=12

MULT-3 }— |

E=3 Z=6

Second Adder-Multiplier Example

Because MULT-3 is not a suspect, 2=6; then, because ADD-2 is not a suspect,
Y=6. Each suspect can now be checked for consistency by assuming that the other
components are OK. To check whether ADD-1 is faulty, we reason as follows: since
MULT-1 is OK, X=6, since MULT-2 is OK, Y=6, hence the adder is misbehaving by
adding 6 and 6 to get 10. If MULT-1 is faulty, then ADD-1 and MULT-2 are not, hence
X=4 and the multiplier is misbehaving by multiplying 3 by 2 to get 4. Finally, if

9

MULT-2 is faulty, MULT-1 and ADD-1 are not, hence X=6 and Y=4: but the latter
is inconsistent with the earlier deduction that Y=6, therefore the suspect MULT-2
cannot explain the observations and is exonerated. The procedure not only rules
out all failures of MULT-2 at one stroke, but also produces useful information about
exactly how ADD-1 and MULT-1 are misbehaving if either of them is the true culprit.

LOX uses a similar procedure, but also interleaves the generation and checking of
suspects, occasionally allowing it to exonerate all the predecessors of an exonerated
suspect. The underlying intuition is that if the suspect can’t explain all the observed
discrepancies, then neither could its predecessors. This intuition is correct only in
the absence of reconvergent fan-out. The system diagnosed by LOX has enough
components (about 2000) and its structure is sufficiently free of reconvergent fan-
out that the check for this special case turns out to be advantageous. A similar
optimization is done by LOCALIZE with its 10,000 components organized into largely
fan-in-free structures. '

INTER and the ATMS troubleshooter perform a computation similar in some ways
to constraint suspension. As in constraint suspension, all observations propagate
their consequences uniformly throughout the device. Each discrepancy can result in
conflicts with the consequences of other observations. Hence there can arise several
overlapping sets of conflicting assumptions, i.e. several sets of components, each of
which must contain at least one faulty component. Each such conflict set may
be rediscovered several times, in contrast to constraint suspension, which in effect
stops after finding the first conflict. The figure below shows the conflicts that this
procedure discovers in the adder-multiplier example. The intersection of these sets
of conflicting assumptions is the set of consistent suspects, MULT-1 and ADD-1.

A=3 X=6

MULT-1 1

ADD-1 F=12 Expected
B=3 \ L —] F=10 Observed
C=2—14 MULT-2] *Y=6
D=2 J

ADD-2 G=12

MULT-3 —J |

Adder-Multiplier Example Conflict Sets

10

Saving conflict sets allows straightforward generalization to finding con-
sistent hypotheses about independent multiple faults by using set cover
instead of intersection, as is done through a variety of mechanisms in
iFirst82,Reggia83,Reiter85,deKleer87]. Any collection of components that contains
at least one element from each conflict - i.e. any set cover - would explain all the
discrepancies. By Occam’s razor, the preferred hypotheses are the minimal set
covers, i.e. those set covers having no subsets that cover all discrepancies. Note
that different set covers can be minimal and yet have different sizes; the notion of
minimality has to do with preventing the inclusion of extraneous suspects, not with
cardinality. Note also that constraint suspension as described above could be gen-
eralized to hypothesize and check hypotheses about multiple faults by suspending
n-tuples of constraints, but without an explicit requirement that all conflict sets be
covered, such a generator would be needlessly unconstrained.

The purpose of hypothesis checking is to exonerate suspects. We have seen
five techniques for performing this check. The ordering below reflects increasing
generality due to differing information requirements:

1. Directly exonerating components by reasoning from corroborations. This re-
quires that the components in the domain have exceedingly simple behavior.
LOCALIZE, INTER, and SOPHIE used this technique in certain cases.

2. Fault envisionment (used in SOPHIE and IDS) requires the use of built-in fault
models for each component, and compares the simulation results to all obser-
vations.

3. Covering of suspect sets derived only from discrepancies requires the same
information as hypothesis generation. It is used by DART and [Ginsberg84|’s
related framework for multiple faults.

4. Constraint suspension, implemented in different ways in Davis’ program and
LOX, relies on the ability to infer components’ inputs from their outputs.

5. Covering of suspect sets derived from conflicts involving both discrepancies
and corroborations (as implemented in the ATMS troubleshooter) has the same
information requirements as those of constraint suspension, but has important
advantages for diagnosing multiple faults.

2.3 Hypothesis Discrimination

It is unlikely that an initial set of observations will be sufficient to yield a unique
fault hypothesis. These competing hypotheses can be discriminated by probing
— examining previously unobserved terminals — or testing — changing the device’s
inputs and reexamining its outputs. We first consider probe selection, then explore
test generation.

11

2.3.1 Probe Selection

Assuming uniform cost for all probes, probes should be ordered in a way that
minimizes the expected number required. Probe selection is based on the insight
that each competing fault hypothesis may imply a different set of predictions about
the device’s response to its current inputs. Picking the best probe thus means
selecting that one whose set of outcomes and resulting candidates are expected to
minimize the number of probes that will come after it.

Probe interpretation - updating outstanding hypotheses given the results of a
probe - is an extension of hypothesis checking. When using fault envisionment,
the result of a probe is checked for consistency against the predicted value of that
quantity under each possible fault hypothesis. When using constraint suspension,
the result provides information that allows more constraints to apply, narrowing
the number of consistent candidates. For efficiency, each candidate should cache
sufficient information to reconstruct the consequences computed for it, i.e., the
consequences of believing that all components not appearing in the candidate are
normal. This suggests that an ATMS is an advantageous organization, since each
predicted value can be indexed with the collection of working components that
support it.

" Since probes are generally considered expensive, it is usually a good idea to spend
extra computation to select the most informative place to probe. We distinguish
here two basic approaches: structural approaches, which use mainly information
about device structure to select a probe point, and more elaborate decision-theoretic
approaches, which ignore device structure and instead use estimates of likelihood
for the various outstanding hypotheses and probe outcomes.

Structural approaches to probe selection are motivated by the insight that com-
peting suspects tend to lie in groups. As a result, if information about values on the
connections between suspects were known, the hypotheses could be discriminated
quickly. Consider the now familiar adder-multiplier example above. MULT-1 and
ADD-1 are suspects, and they could be discriminated if the intervening value at X
were known. Nothing needs to be known about the behavior of the components;
the fact that X is a good place to probe is plain from the structure.

A simple structural approach is to probe upstream from discrepant outputs
until a correct value is found; at that point the component with the just-observed
correct input will have an incorrect output, and hence is the faulty component.
Components with multiple unknown inputs are searched depth-first; the search is
terminated along any branch where the expected value is encountered. This is the
essence of the guided probe algorithm [Breuer76.

Additional power is available from the observation that probe results introduce
new discrepancies or corroborations at internal connections. Hence, each new probe
result can eliminate more candidates than the conservative guided-probe strategy

12

allows. Strategies to take advantage of this have been widely investigated.

INTER [deKleer76] achieved quick reductions in the number of candidates with
a heuristic resembling binary search. INTER stored with each predicted value the
set of assumptions that supported that value. In practice, each set of assumptions
amounted to a list of suspects. Expected values that were still unobserved were
then examined to see how many suspects contributed to their expected values. A
probe point was then selected whose list of contributing suspects is nearest in length
to half the number of outstanding suspects. The heuristic works well because the
single measurement has a good chance of further constraining multiple hypotheses,
indeed ruling some out completely.

Structural approaches to probe selection enjoy the advantage of simplicity: they
use only information already available for hypothesis checking and result in reason-
able strategies with a minimum of computational overhead.

A different approach to probe selection arises from the viewpoint that any given
set of hypotheses represents some quantifiable amount of information about the
broken device. Larger sets of hypotheses have more ambiguity and hence contain less
information. The objective of probe selection is to select the probe that maximizes
the expected information (hereafter, I). [deKleer87)’s program uses this approach,
which involves six elements:

1. An information evaluation function assigns a score to an the current set
of competing candidates. Roughly speaking, a good measure of the information
contained in a set of candidates should be inversely proportional to the number of
probes needed to narrow it to a single hypothesis.

2. A cost criterion can be used to weight the expected I and bias the selection
of probes toward those that are easier.

3. All the possible outcomes for each probe must be enumerated. The outcome
of a probe is the value observed in the device, and the possible outcomes are the
ones predicted by candidates. In the adder-multiplier example, the outcomes of a
probe at X are 4 (if MULT-1 is broken) and 6 (if ADD-1 is broken).

4. The consequences of each outcome from a given probe must be predicted.
Some outcomes will reduce the size of the hypothesis set. After making a probe
at X, for example, either MULT-1 or ADD-1 will have been exonerated. The value
of I that would be obtained after each outcome measures the desirability of that
outcome.

5. The probability of each candidate is needed. A simplistic approach under
the single-fault assumption is to let each outstanding hypothesis be equiprobable.
Another technique is to assign fault hypotheses their a priori probabilities. In
certain domains domains this can be quite powerful. In troubleshooting digital
hardware for example, RAM chips fail far more frequently than chips that contain
only a few gates, due largely to the RAMs’ greater complexity. Knowing this can

13

be helpful even if the actual failure rate estimates used are inexact.?

6. A probability must be assigned to each outcome. A simple approach is to
assign to each outcome the sum of the probabilities of the fault hypotheses with
which it is consistent. An important detail is that not every fault hypothesis implies
a value for each measurable signal, hence a single hypothesis may be consistent with
many outcomes. [deKleer87} deals with this by computing both lower and upper
bounds on outcomes’ probabilities.

Using these six elements, it is straightforward to compute for each possible probe
a weighted expected value of I. The best probe to perform is the one that maximizes
the expected value of I, i.e., that on the average will achieve the greatest reduction
in the size of the hypothesis set relative to its cost.

The advantage of the decision-theoretic approach is one of generality: it provides
a way to use information about both a prior: failure rates and the relative difficulty
of different probes, and generalizes to multiple independent failure failures. Given
accurate prior probabilities it yields an optimal probing strategy on average.

2.3.2 Test Generation

Test generation attempts to find a set of inputs that will yield new symptoms with
different suspect sets. When this succeeds, we can gain new information that will
help constrain the location of the faulty component. We focus our attention on the
problem of test generation in the domain of digital circuits in the belief that the
principal observations generalize.

The goal of traditional test generation techniques is to produce tests with coy-
erage of many faults rather than diagnostic specificity. A test can be said to have
specificity if it indicates an error only when one of a very small number of com-
ponents is faulty. Achieving specificity in the presence of a number of competing
fault hypotheses is akin to the problem of choosing a good probe point: the idea
is to gather information whose results, positive or negative, will eliminate as many
hypotheses as possible.

Shown below is a simple test generation problem to illustrate the ideas.

“One pitfall is worth mentioning: the probability of failure of a component may depend on the
functional role it is playing in a device. In the electronics domain, for example, resistors tend to
short out more frequently when used to sink large currents, or when sudden voltage surges are a
threat. Failing to take account of such information in assigning failure probabilities to components
may negate some of the advantage gained.

14

-~

OR-1 F=1

o
H I
~
>
Z
o
_

OR-2 ——G =

C=0 NOT-1

Simple Test Generation Example

Suppose one fault hypothesis is that AND-1 is misbehaving by responding with a
0 when both its inputs are 1. To construct a test focusing on AND-1, it is necessary
to achieve 1’s on both its inputs, hence achieve a 0 at input C, and achieve a 1 on
either A or on B. Suppose we choose B=1. Now the 1 must be propagated from F
to G. Ensuring that the output of OR-2 is sensitive to F requires a 0 on B, requiring
backtracking to the previous choice of B=1, and assigning 1 to A instead. The
resulting test assigns A=1, B=0 and C=0, expecting G=1 if AND-1 is unfaulted.

This combination of local propagations and backtracking is the essence of tradi-
tional test generation methods [Breuer76]. Propagating the expected outputs of the
tested component to observable outputs is termed path sensitization; this involves
the achievement of enabling values along the way. Achieving of values at the inputs
of the tested component is termed line Justification and can be viewed as propaga-
tion of values upstream, with choices to be made and backtracking required when
conflicts arise. Such algorithms are exponential in the number of components (in-
deed, test generation for boolean circuits is N P-complete). Stated another way, test
generation is a conjunctive planning problem in which the different goals mutually
constrain one another.

Heuristic methods and dependency-directed backtracking have been applied
to test generation by a number of researchers, e.g. [Rutman72], [Breuer79], and
‘Genesereth84). 3

Not every test has diagnostic value. Ideally, the expected output will rely on
some, but not all, of the outstanding suspects. Just as in the probe selection
problem, ideally the value examined should depend on about half of the suspects,

*DART’s propositional representation of devices and the use of resolution residue obscures the
algorithm somewhat.

15

and depend on at least one of them to behave in the same way it was supposed to in
the original symptom case. Due to the difficulty of test generation, however, a test
with any diagnostic value is usually acceptable. DART, for example, keeps trying to
generate tests until it finds one that might possibly reduce the number of suspects,
and uses that.

A more direct approach to ensuring diagnostic value is to select exactly one
suspect as the focus of the test, and guide the procedure so that the test being
generated involves the fewest other suspects as possible, and ideally no others.
Note that it is impossible to always generate a test that relies on only one suspect.
Indeed, it may be suboptimal anyway in light of observations made earlier about
good probing strategies. This approach toward generating tests is illustrated in
:Shirley83} which uses a number of heuristics for avoiding or neutralizing the effects
of suspects other than the focus.

Using these heuristics, [Shirley83]’s program is usually able to produce tests that
rely on only a subset of the suspects, and hence have diagnostic value.

2.3.3 Summary

The purpose of both probe selection and test generation is to add new information
that allows consistency checking to exonerate additional candidates. Depending on
what is possible and cost-effective in the domain, either probing or testing may be
used to gain this additional information, the common theme being that the best
action can be selected on the basis of how it is expected to affect the remaining hy-
potheses. Different techniques make use of different information and yield different
results:

1. The guided probe technique can be used when possible failures are treated
as equally probable, and the cost of additional probes is proportional to their
distance from previous probes.

2. Probe selection based on comparing sets of assumptions underlying various
predictions can be used when failures are equally probable and probes have
equal cost.

3. Probe selection based on decision analysis subsumes a variety of strategies. It
can make use of all available quantitative information about relative failure
rates and probe costs, and can be generalized to deal correctly with multiple
faults.

4. Test generation via search requires information about ways to achieve desired
values on individual component outputs. The combinatorics of the problem
also requires that heuristic guidance be provided to focus search toward those
primary inputs most easily achieved.

16

5. Test generation can also benefit from heuristics that try to prevent the test of
a particular suspect from depending on the proper functioning of competing
suspects. Such tests are more likely to yield different suspect sets and hence
have discriminatory power.

17

3 Assumptions and Limitations

The effectiveness of model-based diagnosis is inextricably bound to the appropri-
ateness of the models it is provided. Models of structure and behavior, like all
representations, involve simplifying assumptions; in this case the assumptions af-
fect both the completeness of the hypothesis generator and the discriminatory power
of the hypothesis checker. In the following section we discuss these assumptions,
focusing on those that are fundamental in the sense that to abandon them would
result in uninformative or impractically expensive computations. We also present
some guidelines about useful assumptions to make - in effect, some general princi-
ples about constructing good models for troubleshooting.

3.1 The Completeness of the Hypothesis Generator

As noted earlier, a complete set of fault hypotheses can be generated trivially by
enumerating all components. But this or any other set of components is only com-
plete with respect to the model, not with respect to the real device. There are
two ways a hypothesis generator might be incomplete in this broader sense: (i) a
possible fault location is not represented among the components: or (ii) some real
interaction between components is not represented among the connections. Both
mistakes arise inevitably from built-in assumptions, often made because they are
realistic, but no less limiting.

3.1.1 Components Represent the Possible Fault Locations

Fault hypotheses generated by the methodology described above take the the form
of specifying one or more components that might be misbehaving. Hence, to choose
which parts of a device get represented as components is to choose which fault
hypotheses can be generated. Consider for example a circuit board, which can fail
because a piece of metal etch is cracked. If the program is to diagnose that fault
correctly, then the metal etch itself should be represented as a component, otherwise
the program will fail to generate the hypothesis.

The process of elaborating the model to include more and more fault locations
need not be endless. Pragmatic limits on the level of detail that needs to be included
arise from the environment in which the automated troubleshooter operates. The
following two principles apply in general:

¢ The level of detail that a model includes should be limited by the possible
repairs. For example, there is little point in distinguishing the individual
transistors on a chip as separate components, since chips aren’t usually re-
paired.

18

® The level of detail should be limited by the distinguishability of the effects of
the faults. For example, if two wires run in parallel for some distance, and
all that the troubleshooter can do is measure voltages at one end, then shorts
between the wires at all points along that distance are indistinguishable in
their effects and can be represented as a single possible short.

Even given a representation that is complete in this respect, however, the repre-
sentation of device structure as a graph, with the components represented as nodes
and connections between components represented as arcs, still reflects a bias about
the kinds of faults that will be represented. The representation doesn’t lend it-
self to representing faults that arise from the presence of things that shouldn’t be
present. For example, boards can fail because a spurious solder splash introduces a
connection between functionally separate signals (a “bridge fault”). Naively extend-
ing the representation of structure to diagnose such faults would result in adding
pseudo-components to represent the absence of solder — or, conversely, the pres-
ence of gaps — between every pair of wires. While possible in principle, the idea is
counterintuitive and combinatorially explosive.

Fortunately, it isn’t necessary to represent all such fault locations explicitly; it
is only necessary that the hypothesis generator propose them. The fault locations
can be represented implicitly in the graph, and created as needed by the hypothesis
generator from another representation. The intended presence of gaps between
wires, for example, can be derived from a representation of the physical layout of
the board, as in [Davis84].

3.1.2 Connections Represent Interactions

Similar remarks apply to the connections that appear in the representation of device
structure and behavior. Just as the notion of “component” can be generalized to
the notion of “potential fault location,” connections can be used to represent any
kind of interaction. Because hypothesis generation marks as suspects only those
components reachable by following connections, any missing interaction between
components means a possible loss of generator completeness, too.

For example, representing the behavior of components as having a single direc-
tion of cause and effect is a useful abstraction for design purposes. Most digital
devices can be viewed this way and this abstraction is useful in diagnosis because
it reduces the number of suspects generated from each discrepancy. But it can be
violated when components fail. Components can in fact influence their inputs, e.g. a
faulty gate can ground its inputs. Diagnosing such faults correctly requires a model
of the device that takes into account the fact that gates interact not only through
voltage, but also through current. More striking, in any device there are many
electromagnetic and thermal couplings between components that can profoundly

19

influence their behavior, and yet are virtually never represented explicitly. For ex-
ample, high frequency signals on adjacent wires can interfere with each other, but
electrical schematics don’t normally show this interaction. nor the shielding that is
used to reduce it.

Idéally, the pragmatics of the tools available to the troubleshooting program
could be used to dictate the limits to the level of elaboration needed, as discussed
earlier. However, this appears to be more difficult to do for interactions than for
components. For example, it would appear that interactions that can’t measurably
influence behavior can be ignored. But “measurable influence” can be cumulative;
for example, while it is safe to assume that any given pair of gates on a chip
don’t interact through their power connections, all the gates on the chip together
may draw enough current to cause fluctuations in the power supply voltage. Such
phenomena are notoriously difficult to anticipate in engineering models. Since the
problem is one of modeling, model-based diagnosis inherits it.

3.1.3 Controlling Hypothesis Generation

A model that included all the connections through which components might possibly
interact would leave hypothesis generation underconstrained. Assume for a moment
that we were willing to temporarily sacrifice some completeness in the generator,
in return for the ability to generate fault hypotheses in a more constrained way.
Those models that provide the most constraint on hypothesis generation can be
characterized as follows:

® Models with sparse and unidirectional connections constrain hypothesis gen-
eration. When there is an identifiable direction of information flow in the
device, a model that assumes that the direction of flow is preserved in the
malfunctioning device will generate fewer suspects than a model in which the
information flow is not assumed to be preserved.

This principle appears implicitly in most of the programs surveyed. LOX and
LOCALIZE in particular diagnose systems with hundreds or thousands of components
successfully largely because the systems involved can be modeled as having rela-
tively sparse and mainly unidirectional connections. These programs build in the
assumption that whatever the underlying malfunction is, the intended directionality
will be preserved.

Another way of controlling hypothesis generation is to use a hierarchic device
model, as in [Davis84] and [Genesereth84]. The program can generate and check
suspects among components at higher levels before examining their subcomponents.
Hierarchy is especially useful when it is strict and a single failure is assumed, since
all the subcomponents of an exonerated component are exonerated as well:

20

* A model should be hierarchically organized, with strict decomposition of com-
ponents where possible.

A generalization of this idea is to start with a description of structure and
behavior adequate only to represent the most important faults. Faults that occur
“outside” that model will typically result in what appears to be intermittent or
multiple faults. For example, a digital gate that pulls down all its input signals
can appear to be caused by multiple faults in the gates that are supposed to drive
those signals; a bridge between wire X and wire Y can make both X and Y appear
intermittently grounded. When the only consistent explanation of a particular set of
symptoms seems to be multiple independent “normal” faults, an alternative, simpler
explanation can be sought in a second model adequate for representing more unusual
faults. Second and succeeding models can represent different fault categories among
their components and connections. This is done in Davis’ program with two models:
the initial hierarchic model represents only wires, boolean gates, and compositions
thereof; a second model includes physical layout information, from which possible
bridge faults can be hypothesized.

This approach leaves some issues unresolved. With a variety of different models
appropriate to different fault categories, it is unclear in what order the program
should try the models. One possibility is to try those that include the most g priori
probable fault categories. Another would be to try those that are simpler, perhaps
as measured by a count of components and connections. Ideally, the program should
choose an appropriate model based on the particular symptoms at hand, though
the relevant criteria for such a choice is unclear, Nevertheless, a useful principle
remains:

¢ Layered models can be used to ensure that the simplest hypotheses are ex-
plored first, while retaining completeness overall, as each successive layer in-
cludes additional faults.

3.2 The Discriminatory Power of the Hypothesis Checker

The job of the hypothesis checker is to determine whether fault hypotheses are
consistent with all the observations of the device. The discriminatory power of the
checker is determined by its effectiveness in distinguishing between consistent and
inconsistent hypotheses. There are three reasons why current diagnosis programs
fail to detect inconsistencies and thereby fail to yield unique diagnoses: (i) the
computational machinery is weak because it is usually based on local, component-
centered propagations (ii) some constraints present in the world are not represented
effectively in the device model (iii) the device is modeled in such a way that the
problem is inherently underconstrained.

21

3.2.1 Detecting Global Inconsistencies via Local Propagation

In its most general form, checking the consistency of a fault hypothesis is a con-
straint satisfaction problem - we wish to find out whether or not there exists an
assignment of values to all the terminals in a device such that they are consistent
with the observations and with each other. For efficiency reasons, most of the
programs surveyed here rely on local propagation to solve this problem and hence
make inferences about one value at a time. A characteristic of all such approaches
is that they cannot always compute all the consequences of the observations; as a
result, contradictions may go undetected, resulting in the inappropriate survival of
inconsistent hypotheses.

This incompleteness typically occurs when a collection of constraints, each in-
volving n values needs n — 1 of those values assigned before it can deduce the last.
Such simultaneities occur in rings of constraints when each constraint has only n — 2
of its values assigned. One possible effect of the simultaneity is that even though
there is only one consistent set of assignments for the group, this goes undetected.
Simultaneities are common in non-directional domains and arise in directional do-
mains in structures with reconvergent fanout.

Simultaneities are amenable to a variety of techniques, including (i) relaxation,
as in the Gauss-Seidel method for solving linear systems, (ii) enumeration over finite
sets of possible assignments, (iii) propagation of symbolic expressions deKleer80],
or (iv) addition of additional constraints, perhaps encapsulating several compo-
nents (“slices” [Sussman80|). Relaxation techniques are appropriate in continuous
domains. The second technique can be viewed as adding the capabilities and at-
tendant control problems of a full first-order theorem prover with equality. Sim-
ilarly, the third may involve an algebraic manipulator of considerable complexity
(e.g.MACSYMA). The technique of adding explicit nonlocal constraints, in contrast,
requires no additional propagation machinery, although it complements (i)-(iii).
Encapsulating groups of components with nonlocal constraints places the burden of
deadlock avoidance on the device model instead. This suggests another guideline
for a good model:

e Organizations of components that are likely to cause local propagation simul-
taneities, e.g. structures with reconvergent fanout, should be encapsulated to
break impasses wherever possible.

3.2.2 Hierarchy, Abstraction, and Constraint

The most straightforward way to use nonlocal constraints is to organize components
into a hierarchy, so that each component in the hierarchy has its own constraints.
These constraints may make use of behavioral abstractions not available at lower

22

levels of structural detail. One common source of such a hierarchic description with
its accompanying behavioral abstractions is the device’s design description.

The gates shown below, for example, are designed to function as a full-adder.
The full-adder’s composite behavior description is almost as simple as those of its
individual gates: the output, viewed as a 2-bit integer. is the sum of the inputs,
viewed as 1-bit integers. The vocabulary of integers, as opposed to bits, simplifies
reasoning about the constraints on this group of gates. For example, the full-adder
constraint can include a rule such as “if both outputs are 1, then all three inputs
are 1.” This relationship would be difficult for a purely local constraint propagator
to discover from the gate level description. Other techniques for discovering such
relationships, such as constructing the truth table of the device, are combinatorially
impractical. The essential step is in choosing a vocabulary in which the behavior
becomes simple to express, but that choice appears difficult to automate.

A
XOR-1—+%
B P XOR-2 SUM
AND-1
OR-1 ——CO
AND-2
C

Full-Adder Structure

This example illustrates a particularly important way that a design hierarchy
can add useful constraints: abstraction can make it easier to infer component inputs
from their outputs. This helps all approaches to hypothesis checking (constraint-
based or otherwise) to detect inconsistencies. While “inversion” of behavior is
straightforward for simple components, components with many terminals or with
internal state are more challenging. If as a consequence of behavioral complexity
the knowledge is incomplete, i.e., constraints that invert behavior are missing, not
all contradictions will be discovered. Another characteristic of a good model, then,
is:

¢ Hierarchic decomposition should facilitate making inferences about compo-
nents’ inputs from their outputs.

23

3.2.3 Hidden State

Devices whose components have time-dependent behavior can in principle be mod-
eled and diagnosed no differently from static devices. If behavior is described by
rules, for example, the rule language can be extended to include delayed responses
and other kinds of dependence on prior states. Hypothesis generation and checking
for such devices follows the familiar outlines, but a fundamental difficulty arises
when components have “hidden” state. In a memory chip with 1024 1-bit words,
1023 are hidden in the sense that the state can only be examined one word at a time.
The presence of hidden state typically results in inherently underconstrained prob-
lems: competing hypotheses cannot be discriminated because of ambiguity about
the device’s internal state.

Hamscher84] presents one example of this phenomenon in the digital domain.
To check whether a particular component could have misbehaved in a way that
not only explains all the observed discrepancies, but that is also nonintermittent,
requires inferring what its inputs and outputs must have been at every time step.
If the inputs to a suspect depend upon its behavior at a previous time, and it is not
possible to observe its intermediate state, it is impossible to rule out the suspect; the
problem is inherently underconstrained. The figure below illustrates this abstractly.

Observable output from A at time t — 1

|

A at timet — 1

! .
(state component) Time
|

A at time ¢

|

Observable output from A at time ¢

Unobserved State

If A is a suspect, but we know only its inputs at time ¢ — 1 and its output at
time ¢, checking whether A is a consistent suspect requires inferring its output at
t — 1 and inputs at ¢t. To do this, however, requires knowing A’s behavior, which
is unknown because it is a suspect. The problem is analogous to solving a system
of n linear equations in n + 1 unknowns; it is inherently underconstrained. As
noted, the only way to solve this is to add additional observations, preferably of the

24

intermediate state between ¢t — 1 and ¢. Similar remarks apply to domains in which
components’ states change continuously rather than discretely.*

The inherent ambiguity of collections of components with hidden state suggests
that for pragmatic reasons, levels of detail at which the distinct components are
visible should be suppressed. For example, a group of components that can’t be
discriminated among using the observation tools available to the diagnosis program
should be abstracted into a single component with simple behavior. In principle, it is
possible to describe any device at such a behaviorally and temporally abstract level
that delay can be ignored, feedback loops encapsulated into primitive components,
and hidden state abstracted away. While a completely state-free model may discard
too much detail, the following guideline still offers useful assistance:

¢ A good model minimizes hidden state.

*Having components with hidden state also increases the computational cost of generating dis-
criminating tests. Achieving a particular set of inputs at an embedded component, for example,
might require finding a complex input sequence that sets the states of certain components without
disturbing others.

4 Conclusion

Existing programs for automated diagnosis of devices from first principles have
much in common despite apparent differences of domain and mechanism. They have
similar procedures to generate and check fault hypotheses, and similar limitations
due to their representations of the devices they must diagnose. The first similarity
suggests that domain-independent diagnosis from first principles is within reach.
The second indicates that there remains a substantial agenda of open problems.

Fault hypotheses are typically generated by examining a trace of the expected
behavior of the device. Hypotheses are then checked for consistency either by
explicit simulation or by attempting to deduce a specific component misbehavior
by reasoning from external observations back to the embedded component.

The effectiveness of both phases depends crucially on the device models. For
example, the completeness of the generator depends on the level of detail of the
components; the number of hypotheses generated for each discrepancy depends on
the type and density of component connectivity; the power of the reasoning machin-
ery that rules out inconsistent hypotheses depends in part on whether inferences
about components’ inputs can be made from their inputs.

Substantial problems remain to be addressed. Most of the programs work on
“toy” examples, and there is evidence to suggest that scaling up to deal with com-
plex and highly connected devices may be difficult, both from the standpoint of
computational complexity and from the standpoint of knowledge engineering. Gen-
eral principles for constructing good models exist, but they remain few, sketchy, and
in some cases contradictory because of the difficulty of reconciling the underlying
goals of ensuring completeness while utilizing the constraints that the troubleshoot-
ing domain provides.

Acknowledgements

Discussions through various media with Meyer Billmers (DEC), Michael First
(Columbia), Michael Genesereth (Stanford), Harold Haig (MIT), Tom Knight (Sym-
bolics), Willie Lim (MIT), Jeff Pan (Schlumberger), Ramesh Patil (MIT), Charles
Rich (MIT), Mark Shirley (MIT), Howard Shrobe (Symbolics), Reid Simmons
(MIT), Ethan Scarl (MITRE), Peter Szolovits (MIT), Daniel Weld (MIT), Brian
Williams (MIT), Rail Valdés-Péres (CMU), Jeffrey Van Baalen (MIT), and Peng
Wu (MIT) were helpful. Discussions with Johan deKleer (Xerox PARC) were es-
pecially helpful. Acknowledgement does not imply agreement with opinions stated
herein.

26

References

[Breuer76]

[Breuer79]

[Brown76]

[Brown82]

[Davis84]

[deKleer76]

[deKleer80]

[deKleer87]

[First82]

[Genesereth84]

[Ginsberg84]

Breuer, M. and A. Friedman. Diagnosis and Reliable Design of
Drgital Systems, pp. 147-149. Computer Science Press, 1976.

Breuer, M. A. New Concepts in Automated Testing of Digital Cir-
cuits. In Computer Aided Design of Digital Electronic Circuits and
Systems, pp. 57-80. North-Holland Publishing Company, Brussels
and Luxembourg, 1979.

Brown, A. L. Qualitative Knowledge, Causal Reasoning, and the Lo-
calization of Failures. Technical Report AI-TR-362, MIT Artificial
Intelligence Laboratory, 1976.

Brown, J.S., R.R. Burton, and J. de Kleer. Pedagogical, Natural
Language, and Knowledge Engineering Techniques in SOPHIE I, 11,
and III, in: D. Sleeman and J.S. Brown (Eds.), Intelligent Tutoring
Systems, (Academic Press, New York, 1982) 227-282.

Davis, R. Diagnostic Reasoning Based on Structure and Behavior.
Artificial Intelligence 24(3):347-410, December, 1984.

de Kleer, J. Local Methods for Localizing Faults in Electronic Cir-
cuits. Memo 394 (out of print), MIT Artificial Intelligence Labora-
tory, 1976.

de Kleer, J., and G. J. Sussman. Propagation of Constraints Ap-
plied to Circuit Synthesis. International Journal of Circuit Theory
8(2):127-144, April, 1980.

de Kleer, J., and B. C. Williams. Diagnosing Multiple Faults. To
appear in Artificial Intelligence, 1987.

First, M. B., B. J. Weimer, S. McLinden, and R. A. Miller. LOCAL-
IZE: Computer-Assisted Localization of Peripheral Nervous System
Lesions. Computers and Biomedical Research 15(6):525-543, De-
cember, 1982.

Genesereth, M. R. The Use of Design Descriptions in Automated
Diagnosis. Artificial Intelligence 24(3):411-436, December, 1984.

Ginsberg, M. L. Counterfactuals. Stanford Knowledge Systems
Laboratory Report KSL-84-43, Department of Computer Science,
Stanford University.

[Hamscher84]

[Pan84|

[Reggia83]

[Reiter85)

[Rutman72]

[Scarl85]

[Shirley83]

[Sussman80]

27

Hamscher, W. C., and R. Davis. Candidate Generation for Devices
with State: An Inherently Undercongtrained Problem. In Proceed-
ings of AAAI-84, Austin, TX, pages'142-147. AAAI, August, 1984.

Pan, J. Qualitative Reasoning with Deep-level Mechanism Models
for Diagnoses of Mechanism Failures. In Proceedings of CAIA-84,
Denver, Colorado, pages 295-301. IEEE, December 1984.

Reggia, J. A., D. S. Nau, and P. Wang. A New Inference Method for
Frame-Based Expert Systems. In Proceedings of AAAI-83, Wash-
ington, DC, pages 333-337.

Reiter, R. A Theory of Diagnosis from First Principles. Department
of Computeg Science, University of Toronto, and the Canadian In-
stitute for Advanced Research, December 1985. -

Rutman, R. A. Fault-Detection Test Generation For Sequential
Logic by Heuristic Tree Search. IEEE Computer Research Paper
R-72-187, 1972.

Scarl, E., J. R. Jamieson, and C. 1. Delaune. A Fault Detection
and Isolation Method Applied to Liquid Oxygen Loading for the
Space Shuttle. In Proceedings of IJCAI-85. Los Angeles, CA, pages
414-416. IJCAI, August 1985.

Shirley, M. H., and Randall Davis. Generating Distinguishing Tests
based on Hierarchical Models and Symptom Information. In IEEE
International Conference on Computer Design, 1983.

Sussman, G. J., and G. L. Steele. Constraints: A Language for
Expressing Almost-Hierarchical Descriptions. Artificial Intelligence
14(1):1-40, January, 1980.

