Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Al Memo 898 April 1986
Discovery Systems |

Kenneth W. Haase Jr.

ABSTRACT

Cyrano is a thoughtful reimplementation of Lenat’s controversial Eurisko pro-
gram, designed to perform automated discovery and concept formation in a variety
of technical fields. The “thought” in the reimplementation has come from several
directions: an appeal to basic principles, which led to identifying constraints of mod-
ularity and consistency on the design of discovery sytems; an appeal to transparency,
which led to collapsing more and more of the control structure into the represen-
tation; and an appeal to accountablity, which led to the explicit specification of
dependencies in the concept formation process.

The process of reimplementing Lenat’s work has already revealed several in-
sights into the nature of Eurisko-like systems in general; these insights are in-
corporated into the design of Cyrano. Foremost among these new insights is the
characterization of Eurisko-like systems (which I call inquisitive systems) as search
processes which dynamically reconfigure their search space by the formation of new
concepts and representations. This insight reveals requirements for modularity and
“consistency” in the definition of new concepts and representations.

This report describe research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the Laboratory’s artificial intelligence re-
search has been provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research contract N00014-80-C-0505 and in part by
the Office of Naval Research under Office of Naval Research contract N00014-79-C-0260.



1 Introduction

Cyrano is a thoughtful reimplementation of Eurisko [Len83a] developed
over the last year at the MIT Al lab. Like Lenat’s controversial program,
Cyrano is designed to discover new concepts and representations in a variety
of technical domains. For example, from an initial definition of set theoretic
operations, the program synthesizes the concept of numbers and various op-
erations on numbers.

While the development of Cyrano is still in progress, early results have
produced insights into the design and performance of discovery systems in
general. Discovery is so fundamental a process that any success requires
fundamental explanations. Lenat and Brown in [LB83] propose that discovery
systems succeed due to a close connection between syntax and semantics in
their representation. I believe that this is only part of the story. In this article
I describe four additional insights into the nature and design of discovery
systems.

e In Section 2, I show how Eurisko-like systems may be viewed as
search processes which reconfigure their own search space. I
call these sorts of processes tnquisitive processes: processes which extend
— during search — the conceptual vocabulary in which their search is
cast. Inquisitive processes are contrasted with acquisitive processes which
acquire new descriptions by search or instantiation in a representational
space whose form is initially — and invariably — fixed. This view is a
significant extension of Lenat’s analysis in [Len76,Len82].

e In Section 3, I explain why concept formation in discovery systems
must be functionally modular. Since the progress of an inquisitive
process is driven by concepts formed (or provided) at earlier moments of
the procesgs, the inputs and outputs of each moment of the process must
be explicitly accessible to the preceding and succeeding moments of the
process. This requirement for explicitness demands that the formation
of new concepts be a module characterized by its explicit inputs and
outputs. To illustrate this requirement, several non-modular parts of
AM are detailed and criticized.

e In Section 4, I argue that the formation of new concepts must be
“consistent” as well as modular. Given that a concept formation



2

module has — on the basis of experimentation and empirical analysis
— produced an array of extended concepts, these generated concepts
must be amenable to further experimentation and extension by the same
module. Informally, the inputs and outputs of the module must “talk
about” the same sorts of things. Many of AM’s most powerful heuristics
were crippled by this lack of consistency.

e In Section 5, I describe why an inquisitive process must ultimately
be introspective. As the conceptual vocabulary of the process grows,
the empirical performance of its search and concept formation engine will
decline. The process must ultimately reflect on, modify, and extend this
engine if it is to proceed effectively past this point. This reflection is a
property the design of Cyrano shares with Eurisko.

Finally, in Section 6, I describe the integration of these insights into the design
of Cyrano. Among the highlights of this design are: a uniform representation
of concepts in a subsumption lattice of types; a general representation of em-
pirical regularities, structured around the confirmation process; and a control
structure based on the organization of tasks into experimentally determined
classes.

2 Inquisitive Exploration

The operation of a system like AM or Eurisko is often described as a
heuristic search through a space of operators and concepts; in this framework,
the power of the program arises from the effectiveness of the generating and
pruning heuristics for this search space. As with any search process, it is
critical that the representation of the search space expose the constraints of
the domain. In particular, the representation syntax and the represented
semantics must be closely coupled, ensuring that small syntactic variations
(steps in the search space) produce meaningful (or even interesting) semantic
definitions. I eall this coupling of syntax to semantics the “tightness” of the
representation.

But the search space of operators and concepts is described in terms of
the operators and concepts themselves, a representational vocabulary which
is being constantly extended by the ongoing search process. For each genera-
tion or cycle of the discovery process, the conceptual vocabulary of its search
is determined by concepts formed in the preceding generations. To succeed,



3

the concept formation mechanism must maintain the tightness of its represen-
tation over indefinitely many generations of discovery and abstraction. The
consistency of this concept formation process is at least as critical as any
semantic-syntactic tightness in the starting representation.

Tightness of representation — a property critical to any heuristic search
— is the principle to which Lenat and Brown [LB83] attribute the success of
AM and Eurisko. AM succeeded, they argue, because the language in which
AM represented its mathematical concepts was LISP, which was designed — at
its roots — from a mathematical basis. Small changes in the LISP definitions
of simple recursive functions produced simple and meaningflil changes in the
mathematical structures they defined or operated upon. While this analysis
is correct, it is incomplete; the credit for the success of AM (and the blame for
its eventual malaise) is at least as much due to its mechanisms for extending

its conceptual vocabulary and representational search space.

The novelty and power of inquisitive systems lies in this careful incre-
mental evolution of representations and definitions. The significance of AM is
not that it discovered multiplication, but that it defined numbers; not that it
generated the operation Divisors-Of, but that it defined primes and noticed
they were interesting. From AM’s initial configuration, the first definition of
multiplication was only one syntactic step away, and Divisors-Of only five.
An exhaustive search would have eventually found them. What led to these
discoveries and marked them as interesting were the concepts which AM de-
fined along its path to them. These generated concepts allowed AM to focus
sufficiently to make (and find interesting) its later discoveries and allowed us
(or particularly, Lenat) to relate AM’s derivations to recognized mathemat-
ical concepts. The semantically transparent and tight representation space
provided for mathematics by LISP is certainly important, but at least equally
important are the mechanisms which extend that space while preserving its
transparence and tightness.



Input
Eepresentation Representation

Concept Formation
. (Discovery) .

Figure 1. Discovery can be profitably viewed as a cycle of representational

extension; concepts formed in one cycle of discovery are used as terms in
the vocabulary given to the next.

3 Modularizing Concept Formation

The first step to tightness is transparence and the first step to trans-
parence is explicitness; this yields a constraint on the form of an inquisitive
process which we describe here as the modularity constraint. The insight
of this section is that the formation of new concepts must be a module with
clearly and explicitly defined inputs and outputs. The inputs are an exper-
imental vocabulary and a way of generating (or referencing) its empirical
behavior; the outputs are new concepts and representations (new vocabulary)
which capture or exploit certain empirical properties of the inputs (regulari-
ties, coincidences, etc). Because each cycle of an inquisitive process builds on
the representations (the results) of the cycles before it, the output of each cy-
cle must be accessible as input to the next. This requirement of the discovery
cycle is pictured in Figure . In order for the connection between output defi-
nitions and input representations to be realized, the output of the formation
process must be explicit.

An example of modular concept formation is the following heuristic from
AM, Eurisko, and Cyrano:

If Some (but not most) examples of an interesting class C
are also examples of an interesting class D, and D is not
already a specialization of C,

Then Define and study a specialization of C and D which is
the intersection of C' and D.



]

This heuristic catches one particular sort of empirical regularity: coinci-
dental overlap of classes. The class it produces is accessible, even to the same
heuristic, for further analysis and specialization. Further, the concepts it de-
fines actually enhance the explicitness of the representational search space by
separating off and declaring possibly interesting cases of predicate/property
intersection. Modular extensions like this maintain the transparency of the
search space from cycle to cycle in the inquisitive process.

An example of non-modular concept formation is the CANONIZE op-
eration (or heuristic) of AM. The CANONIZE operation takes two related
two-place predicates (one is a generalization of the other over the same do-
main) and produces an automorphism of their domain which preserves the
algebraic structure they define over it. Precisely, given p: A x A = {T, F}
and a generalization r : Ax A = {T, F}; p(z,y) — r(z,y), CANONIZE finds
a function f : A => A such that r(z,y) «— p(f(z), f(y)). This function f
generates a “canonical representation” of A which preserves the equivalence
partition defined over A by r. In generating f, CANONIZE recognizes the
algebraic structure of A under r and exploits it, but the partition of A is never
explicitly and accessibly declared.

Partition by

Partition by
OBJECT-EQUAL

Figure 2. AM’s CANONIZE heuristic found a partition preserving map-
ping from the domain of SAME-SIZE to the domain of OBJECT-EQUAL.
This mapping transformed each element of SAME-SIZE lists into the
unique symbol T, producing OBJECT-EQUAL lists.

CANONIZE plays a critical role in AM’s progress, defining the canonicaliza-
tion of bags (multisets) under the SAME-SIZE relation (cardinality) relative
to LIST-EQUAL. Given a synthesized notion of SAME-SIZE (a generaliza-



6

tion of LIST-EQUAL), AM tried to find a mapping of lists into lists such
that lists of the same size would be mapped into lists that were equal. The
successful result of this attempt was a mapping (f) which took every element
of a list and replaced it with the single symbol T. BAGS-OF-Ts, the range of
this mapping (representing the equivalence partitions of SAME-SIZE), was
interesting because of where it came from and was later renamed Numbers by
Lenat. This one discovery, depicted in Figure , was the basis of AM’s forays
into number theory, where all of its more significant discoveries were made.

CANONIZE is an instance non-modular concept formation because AM
never explicitly constructed the partition of the set of bags, but merely ex-
ploited its structure to produce the canonicalization f. The recognition of p
and r as equivalence relations is never explicitly declared; if it had been, it
would be available for confirmation, identification, or exploitation by either
later phases of the inquisitive process or a human user interacting with the
program. These properties are buried inside the CANONIZE heuristic and
never see the light of accessibility by later phases of concept formation and
analysis.

In Cyrano, the recognition of structures like equivalence classes is noted
explicitly; the class of bags is specialized into the set of bags qua algebraic
group (i.e. the subset of bags over which same-size is an equivalence rela-
tion), and then this is specialized into its disjoint equivalence classes. These
equivalence classes then become the objects of new operations ‘raised’ from
the class the relation was originally defined over.

Equivalence partitions are only one of a broad class of structural prop-
erties which Cyrano looks for in its empirical observations; these broad em-
pirical classes are axes of concept formation which support the consistency
of the concept formation process. This consistency is demanded by the sec-

ond constraint on concept formation in an inquisitive process: the consistency
constrasnt.

4 Consistent Construction

The modularity requirement arises from the structure of inquisitive pro-
cesses in general: the “discovery cycle” which grinds experiment into represen-
tation must close on itself. A “semantic” version of the modularity constraint



7

is the consistency requirement placed on the inputs and outputs of a con-
cept formation module.

The experiments performed and the patterns looked for in concept for-
mation are determined by the “sensibility space” and the “interest space” of
the input representation. These are specified (of necessity) syntactically and,
as pointed out in [LB83], the success of the formation process (to which I will
append “at any moment or generation of the inquisitive process”) depends
critically on the tightness with which these syntactic specifications match the
actual space of sensible or interesting constructions.

The consistency constraint arises from this tightness requirement; the
concept formation process should preserve — in the new representational vo-
cabulary it generates — the tightness of the original syntactic specification.
Since this tightness arises from the representations recognized by the inputs,
the forms produced by the outputs of the formation module must be consistent
with the forms recognized and exploited by its inputs. This requirement is a
constraint placed on both the inputs and the outputs of a concept formation
module: informally, they must talk about the same sorts of things.

Many of the heuristics in AM and Eurisko satisfy the consistency con-
straint. The class coincidence heuristic mentioned above, for instance, deals
with arbitrary classes and produces a class which refines already established
regularities and — at need — may be analyzed and further specialized by the
same or other heuristics. AM’s operation restriction heuristic also satisfies
the consistency constraint:

If The domain D of an interesting operation O has an interesting
specialization C,

Then Define and study O’ which is the operation O restricted
to Cs.

The new operation this defines can be analyzed by the same heuristics
which found the original O to be interesting and further extended on the basis
of this analysis. In one instance, AM used this heuristic to study addition
restricted to primes, leading to the proposal of Goldbach’s conjecture (that
any even number may be expressed as the sum of two primes).

On the other hand, AM’s CANONIZE heuristic — to criticize it once
more — violates the consistency constraint. We will recall that CANONIZE
recognizes an relative algebraic property of two relations over their common
domain and produces a canonicalization of the domain to itself which preserves



8

this property. But this description invests CANONIZE with more generality
than it deserves; CANONIZE actually recognized only a handful of partic-
ular equivalence partitions defined over the set of list structures by various
structural mutations such as element variance, permutation or deletion. In
this, CANONIZE violates the consistency constraint because its outputs —
the fixed points of simple structural mutations in a space defined by the two
predicates — are distinctly separate from the forms recognized by its inputs
(arbitrary structures). Put simply, structural canonicalization immediately
obsoletes itself.

A more general version of CANONIZE — modularly working off of gen-
erally recognized and explicitly declared equivalence partitions — could define
a canonicalization by selecting distinguished elements from each partition and
defining that as a canonical set. Or more generally, it could define the set of
equivalence partions as a class of its own with operations which are defined
in terms of operations on the objects partitioned. Such a version of CANON-
IZE would satisfy both the modularity and consistency constraints we have
formulated. We can imagine this more general (and more modular) version
of CANONIZE eventually examining (and finding structure in) synthesized
notions like vectors (lists of numbers) or dot-products, once it had defined
numbers. But AM’s clumsy and impoverished CANONIZE was impotent
once its objects moved beyond simple structures to numbers, a class it had
itself defined.

Lenat recognized that the primary reason for AM’s eventual malaise was
a particular violation of the consistency constraint: AM’s concepts outgrew
its heuristics. His solution, proposed in [Len76] and implemented in Eurisko
[Len83a], was to make the inquisitive process itself — heuristically defined —
a domain for discovery and evolution by meta-heuristics. Instead of making
consistency a constraint on the initial design of the concept formation engine,
consistency was to be dynamically maintained by a battery of evolutionary
meta-heuristics.

In Cyrano, we have instead chosen to implement the consistency con-
straint directly, having the program always operate with a vocabulary of
functions, operators, and classes. The concept formation module extends this
vocabulary by recognizing and acting on certain highly exploitable domain
independent regularities — called “concept germs” by Minsky [Min86] and



9

“cognitive cliches” by Chapman [Cha83] — to which are attached batteries of
reasoning, problem solving, and exploration/experimentation heuristics. The
outputs of the concept formation module are concepts and functions reflect-
ing these regularities and therefore exploitable — in virtue of their batteries
of attached heuristics — by the next cycle of the inquisitive process. By
choosing experiments based on these regularities and forming new concepts
around them, the consistency constraint is embedded in the concept formation
module of Cyrano.

In the final analysis, this principle also emerged from Eurisko’s develop-
ment, as Lenat’s meta-heuristics began to express the same sort of domain in-
dependent properties incorporated into Cyrano’s design. The meta-heuristics
presented in [Len83b] capture the same sort of domain independent properties
as concept germs or cognitive cliches. Lenat identifies these concept forma-
tion principles or heuristics as methods significantly more specific than weak
methods like “Generate and Test” but still far more general than domain spe-
cific methods like “Try the choke.” It is not surprising that these methods
emerged from Eurisko’s development; they are the result of designing around
the consistency constraint to find principles prevailing over many domains or
many generations of an inquisitive process.

From Eurisko’s eventual convergence with the consistency constraint, it
would appear that Lenat’s original reply to the AM’s consistency crisis —
having meta-heuristics dynamically maintain consistency — failed and was su-
perseded by embedding the consistency constraint in the domain independent
formation heuristics of the program. This is true insofar as the only metric
of consistency of represenation was the overall performance of the heuristics
using it. But such a blanket condemnation of Lenat’s solution is unfair. Even
when consistency has been built into the structure of the inquisitive process,
ensuring that it continues to run, meta-heuristics still play a pivotal role in
the inquisitive process, ensuring that it continues to succeed.

5 Inquisitive Introspection

The twin constraints of modularity and consistency maintain and con-
strain the evolving representational search space of an inquisitive process.

But this space is still enormous and ever growing; an inquisitive process must



ey

10

choose one path of representational experimentation from among many pos-
sibilities. If we don’t want this choice to be arbitrary, the inquisitive process
must become a heuristic search.

This characteristic of inquisitive processes has been an implicit bias in
previous sections, whose examples were taken from three heuristic discovery
programs: AM, Eurisko, and Cyrano. Taken alone, the constraints of mod-
ularity and consistency describe a representational space which — in theory
— could be enumeratively searched; but most of the nodes reached in such a
search would be — while syntactically plausible and apparently suitable for
further exploration — dead-ends of little or no utility to the program in the
future. Empirically, no examples or patterns will be found and the program’s
labors in the direction would be wasted.

We would like our heuristic search to avoid such short term dead-ends.
But the sorts of paths which are successful in any given domain or generation
of discovery (the paths we would like our heuristics to select) are particular
to that domain or generation; in order to maintain the effectiveness of its
search, the inquisitive process must modify — or appropriately extend — the
heuristic engine by which it proceeds along paths constrained by consistency.

This process of modification or extension could be managed by a spe-
cial separate process (working independently of the inquisitive process itself),
but it seems more sensible (and ultimately more powerful) to manage this
modification by turning the inquisitive process on itself. Eurisko and Cyrano
(AM was not introspective) work in this way, turning its own performance
into a domain for empirical experimentation and examination. In Cyrano,
the heuristics that drive the inquisitive process become operators in a space
of tasks and concepts, and these operations and tasks are analyzed, orga-
nized, modified, and specialized based on their empirical performance. The
new concepts and operations developed in this domain specify new heuristics,
specialized or synthesized for particular domains or new representations.

But in describing this introspection we intrude on the structure of the
inquisitive program itself, a matter of design and implementation rather than
of theoretical properties. Having so intruded, we shall complete our step and
begin a description of Cyrano’s particular implementation.



11

6 Cyrano: The Implementation

The principles above arose from a careful study of reports on AM and
Eurisko, scattered conversations with Lenat himself, some hours interacting
with Eurisko at Xerox PARC, and — most importantly — a prototypical
implementation of Cyrano which duplicated about half of AM’s reported per-
formance. This prototypical implementation duplicated most of the control
structure and representation of Eurisko and based on its development, the
principles above were formed and clarified. A program implementing these
principles — the latest version of Cyrano — is still under development, but
enough of its design has been specified to sketch its critical components and
new innovations.

Cyrano is implemented in Scheme and was developed under UNIX on
Hewlett-Packard Bobcat machines and on Symbolics 3600’s using a SCHEME
to Common LISP translator developed by the author. SCHEME was chosen
for reasons of elegance, simplicity, and transportability.

The implementation of Cyrano revolves around a subsumption lattice of
types and classes. All of Cyrano’s concepts are defined as nodes in this lat-
tice and Cyrano’s experiments and observations are all described by relations
embedded in or attached to the lattice. New concepts are well-formed exten-
sions to the lattice which then are amenable to further experimenation and
extension. Cyrano’s control structure is also organized around the lattice,
which places the program’s activities and projects in particular classes within
the lattice. This organization replaces the priority queues of AM and Eurisko
with myriad “focus classes” of related activities.

These components of Cyrano’s design remain essentially experimental;
they may be abandoned or changed as their actual performance or behaviour
is revealed. Most derive from experience with Eurisko and the prototypical
Cyrano: the reasoning behind each design decision is presented below.

6.1 The Type Lattice

All of Cyrano’s concepts are represented as “types” in a lattice of gen-
eralization and specialization. A fragment of this lattice is shown in Figure
. All of Cyrano’s discoveries about the properties of its representations are
described in this lattice and the program’s new definitions consist of additions



12

to the lattice. Many of Cyrano’s actions begin with classifying some object
in this lattice and using the resulting classification to determine some set of
actions. Some of the types in the lattice are the natural classes of various
domains; others are empirically collected sets of objects or types (which are

also objects); but most are analytic types which combine other types into new
definitions.

Figure 3. All of Cyrano’s concepts and meta-concepts are uniformly rep-
resented in a lattice of types.

Some of the types represented in the lattice are composite: they specify types
of tuples satisfying particular element or inter-element constraints. Functions
and relations, for instance, are represented as pairs of other objects and the
fact that a function has a particular LISP implementation is merely a heuristic
for finding examples of such object pairs. This generality is an attempt to
move Cyrano beyond completely specified domains into areas where examples
are not always effectively enumerable, such as the real world!

Types in the lattice are of two basic sorts: analytic and synthetic. An-
alytic types are types whose definition is solely in terms of other types; for
instance, the intersection or union of two established types or a constraint on
some component of a composite structure. Synthetic types are types whose
definition is provided by the “world”: for instance, enumerated sets, LISP
predicates, or user defined classes. One important sort of synthetic type is
the empirical class which I describe below; it defines and implements Cyrano’s
notion of regularities and experimentation.

New types are defined in a combinator language in terms of either existing
types or — in the case of some synthetic types — in terms of the behaviour



13

some external interface. The following are examples of type definitions:

;35 Defining a type by intersecting two existing types.

(define bachelors (type-intersection men unmarried))

;33 Defining a type by merging two existing types.

(define agents (type-union humans intelligent-programs))

;55 This defines a function call by saying that the image
;33 of the function CAR for function calls is function names.
(define function-calls
(image-constraint CAR function-names))
;33 This defines points in 3-space as a cross product of
;33 reals.

(define points (cross-product reals reals reals))

;35 This defines the class of LISP functions in a particular
;33 implementation; its uses the LISP predicate functionp.
(define functions (simple-type functionp))
;35 This defines chord triads which the user says are harmonious.
(define harmony
(type-intersection
(query-type "harmonious?")
(cross-product notes notes notes)))

Definitions like these describe both Cyrano’s initial domain and the con-
structed domains it develops over time; the program’s defining actions con-
struct new types and place these types — as objects — in appropriate classes
in the lattice. The central process in Cyrano generates examples for classes in
the lattice, in turn triggering the definition of new classes for which examples
must be found.

Each of the combinators above possesses a type-inference procedure for
computing — on creation — the types neccesarily above and below it in the
lattice. One of the properties of the lattice is that for any two given types, no
new subsumption relations will ever be established between them. Any newly
created type will have new subsumption relations, but those new relations will
never posit new relations between types already in the lattice.

It has been shown that type inference in a distributive lattice with com-

plementation is NP-complete[BL84]; my lattice implementation gets around



14

this intractability by weakening representing complementation to represent-
ing a limited form of disjointness. Complementation — information that any
object not in one class IS in another — allows the inference of certain sub-
sumption relations not otherwise computable from the lattice; this asymmetry
makes subsumption in complementary lattices an NP-complete problem. In-
formation about disjointness (as limited for Cyrano) only enables further in-
ferences about disjointness, a weaker inference. This weakening is sufficient to
make the type inference problem tractable, though still enabling many useful
inferences.

Using the lattice to represent all the program’s knowledge — both pro-
vided and defined — ensures that the modularity constraint is satisfied. Each
cycle of concept definition produces extensions to the lattice and places these
extensions in meta-classes in the lattice; all of this information is then avail-
able to the next phase of discovery.

6.2 Empirical Classes

An inquisitive process proceeds by a cycle of recognition and definition:
empirical regularities noticed in one domain vocabulary are used to define
terms in the domain vocabulary of the next cycle. The recognition of regulari-
ties is one key component of any inquisitive process. In Cyrano, all regularities
are represented by subsumption relations in the lattice of concepts.

In particular, Cyrano defines an empirical class as a class of classes whose
members accidentally (i.e. not by definition) satisfy some empirical property.
An empirical class K is determined by two functions: a test function Kr..:
and a confirmation function Kconfirm. These functions translate an individ-
ual class into a test class and a confirmation class. A regularity K is true of a
class c if all instances of Kr1.,:(c) are also instances of Kconfirm(c) (e.g. for
all known examples: Kre,t(c) C Kconfirm(c)). Figure illustrates a view of
confirmation classes as overlapping sets.

The simplest empirical classes have a constant

Kconfirm =C
and

K T“t(x) =T.
These classes encode the simple regularity that some set is contained in a
particular constant set. “All X’s are red” or “R is a reflexive relation” are



15

instances of such classes. More complicated empirical classes generate test
and confirmation classes which combine instances of the class they are testing.
For instance, the regularity “F preserves R” has a test class of “pairs of F's
whose inputs are related by R” and a confirmation class of “pairs of F's whose
outputs are related by R.”

Test

Counterexamples Space

Some
Universe

Confirmation

Space

Figure 4 . Empirical classes describe empirical regularities by potential
accidental subsumption/subset relations in the lattice.

Membership in an empirical class K is determined by defining a class of ex-
amples Kreet(c) A Kconfirm(c) and a class of counterexamples Kr.,:(c) A
“Kconfirm(c). Each of these has classification daemons which — when a
counterexample or some quota of positive erexamples is discovered — assert
the membership of the class being tested in either the appropriate empirical
class or its complement. The representation of all empirical regularities in this
manner is an attempt to satisfy the consistency constraint; any defined con-
cept is likely to be amenable to this level of raw empirical analysis. It depends
only on definitions of sets and tuples, rather than on arbitrary properties of
mutatable list structures.

Of course, setting up a test situation is only part of the confirmation
process; it is also neccesary to generate the examples which will fall into the
situation. When a test situation is created, a task is created for generating

examples of Kr.,:(c). The scheduling of these tasks, again using the type
lattice, is introduced below.



16

Cyrano’s control structure has two components: a set of classification
daemons and a set of active projects. A classification daemon is a procedure
run on new examples of particular types; a project is an activity divided into

quanta of action.

Classification daemons work as follows. Whenever a new potentially in-
teresting object is found or generated, its terminal types (the most specific
types it satisfies) are collected. The lattice is then climbed — in the gen-
eralization direction — from this set, and at each type along its ascent the
classification daemons of that type are applied to the object. This process is

called classtfication and is Cyrano’s fundamental action.

When a new definition is generated by Cyrano, the definer gives it some
set of properties and classifies it. This classification triggers daemons which
— based on the properties of the definition — propose hypotheses in terms
of empirical classes. These hypotheses set up the confirmation machinery
described in the previous section, which then waits for confirming or discon-
firming examples. When a hypothesis is confirmed or disconfirmed, it is given
the appropriate empricial property (added to the appropriate class) and clas-
sified again. This classification may produce either new hypotheses or new
definitions, which will once more turn the crank of analysis and definition.

Cyrano’s discovery activities divide classification daemons into two in-
terleaved control phases: recognition and extension. In recognition, empirical
regularities in an input vocabulary are recognized; in extension, new rep-
resentations are defined based on these noted regularities. Recognition and
extension are further divisible into two control stages each: recognition begins
by the hypothesis of possible regularities and continues to the confirmation of
these regularities through analysis by empirical classes; extension begins by
definition of primitive concepts and proceeds to their elaboration by pragmatic
example-generation information, or the definition of associated operations and
functions. These phases, while conceptually distinct, are interleaved into the
classification process. Classifying a definition produces hypotheses which set
up confirmation machinery; classifying a definition with some noticed empiri-
cal property produces new definitions which captialize on that property. Clas-
sification of examples and counterexamples drives the confirmation machinery
set up by previous classifications of definitions; classification of new definitions
produces auxiliary definitions which elaborate simple constructions.



17

Despite this complexity of actions and triggers, classification daemons
are a more or less passive mechanism, reacting to some source of examples
streaming in from the world. Cyrano applied to analyzing a mass of scien-
tific data might function precisely in this mode. On the other hand, in many
domains (perhaps eventually in all) Cyrano may have to seek or generate ex-
amples. For this purpose, AM and Eurisko’s notion of tasks has been partially
appropriated.

Eurisko’s tasks were organized into several separate agendas and ordered
by a universal priority within each agenda. At any moment, Eurisko worked
on a single agenda, selecting and executing the highest priority task on the
agenda. Cyrano abandons Eurisko’s priority mechanism, choosing instead to
enrich the agenda structure. At any point, Cyrano is working on a class of
tasks — its focus class — which are related in some way. When focussing on a
class of tasks, Cyrano executes all the tasks in the class, either in some order
or at random. Over time, Cyrano observes the empirical properties of these
classes, defining new classes of tasks to which the focus may eventually shift.

Task execution occurs in three stages: triage, execution, and post mortem.
In triage, the classifier runs on the task description, and daemons construct
an “implementation” for the task. This implementation is then used in an
ezecution of the task. After the task completes, it is classified again as a post
mortem perhaps triggering changes in focus or new defintions of task types.
Task execution may be thought of as a generator for examples of actions, as
well as a mechanism for acting.

Unlike AM and Eurisko’s tasks, Cyrano’s tasks are never completed in
one shot. Instead, they describe ongoing processes divided into quantized
actions. The one shot actions of Eurisko are replaced by simple procedure
calls, generally from the execution of a classification daemon.

Currently, Cyrano’s tasks are only example generation tasks; in the future
they will become the backbone of evolving problem solvers for the domains
Cyrano is learning in.



18

7 Conclusion

In conclusion, I will restate the insights into discovery systems put forth

in this paper:

e Eurisko-like systems may be viewed as search processes which

reconfigure their own search space.

¢ Concept formation in discovery systems must be functionally

modular.

e The formation of new concepts must be “consistent” as well as
modular.

¢ An inquisitive process must ultimately be introspective.

The implementation described here is in active progress, and the results in six

months will offer new insights on the mechanisms described in the last section.
In the same way that the prototpyical implementation of Cyrano produced
the insights above, I look forward to the next phase of implementation as
fertile ground for newer insights.

8 References

[BL84]

[Cha83]
[LB83]

[Len76]

[Len82]

[Len83a]

Ronald J. Brachman and Hector J. Levesque. The Tractability of
Subsumption in Frame-Based Description Languages. In AAAI-84,
American Association for Artificial Intelligence, 1984.

David Chapman. Nasve Problem Solving and Nasve Mathematics.
Working Paper 249, MIT Artificial Intelligence Laboratory, 1983.
Douglas B. Lenat and Jon S. Brown. Why AM and Eurisko Appear
to Work. Artificial Intelligence, 23, 1983.

Douglas B. Lenat. AM: An Artificial Intelligence Approach to Dis-
covery in Mathematics as Heuristic Search. PhD thesis, Stanford
University, 1976.

Douglas B. Lenat. AM: Discovery in Mathematics as Heuristic
Search. In Douglas B. Lenat and Randall Davis, editors, Knowledge
Based Systems in Artificsal Intelligence, McGraw-Hill Book Com-
pany, 1982. Several appendices of examples were trimmed from the
original version of the thesis in this book version.

Douglas B. Lenat. Eurisko: A program which learns new heuristics
and domain concepts. Artificial Intelligence, 21, 1983.



19

[Len83b] Douglas B. Lenat. Theory Formation by Heuristic Search. Artificial
Intelligence, 21, 1983.

[Min86] Marvin Minsky. The Society of Mind. Simon and Schuster, 1986.
Forthcoming.



