N\

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 907 July, 1986

Toward a Requirements Apprentice:
On the Boundary Between Informal

and Formal Specifications
by
Charles Rich & Richard C. Waters

e

Abstract

Requirements acquisition is one of the most important and least well supported parts
of the software development process. The Requirements Apprentice (RA) will assist a
human analyst in the creation and modification of software requirements. Unlike current
requirements analysis tools, which assume a formal description language, the focus of the
RA is on the boundary between informal and formal specifications. The RA is intended
to support the earliest phases of creating a requirement, in which incompleteness,
ambiguity, and contradiction are inevitable features.

From an artificial intelligence perspective, the central problem the RA faces is one of
knowledge acquisition. It has to develop a coherent internal representation from an initial
set of disorganized statements. To do so, the RA will rely on a variety of techniques,
including dependency-dirccted reasoning, hybrid knowledge representation, and the reuse
of common forms (clichés).

The Requirements Apprentice is being developed in the context of the Programmer’s

- .. Apprentice project, whase overall goal is the creation of an intelligent assistant for all
 aspects of software development.

Adapted from a proposal to the National Science Foundation.
Copyright (c) Massachusetts Institute of Technology, 1986

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research has been
provided in part by International Business Machines and in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-85-K-0124.

The views and conclusions contained in this document are those of the authors, and should not be
interpreted as representing the policies, neither expressed nor implied, of International Business
Machines nor of the Department of Defense.

Requirements Apprentice 1

1. Introduction

‘The Programmer’s Apprentice project uses the domain of programming as a vehicle for
studying (and attempting o duplicate) human problem solving skills. Recognizing that it will be a
long time before it is possible to fully duplicate human abilities in this domain, the near-term goal
of the project is the development of a system, called the Programmer’s Apprentice, which provides
intelligent assistance in various phascs of the programming task.

Viewed at the highest level, software development is a process that begins with the desires of an
end user and ends with a program that can be executed on a machine. The first step of this process
is traditionally called requirements acquisition, while the last step is called implementation.
Figure 1 shows how the current and proposed demonstration systems in the Programmer]
Apprentice project support these activities.

USER ++++++++++tttddmmmecca e e {+++++++++++++{(z=z==z=====z==== MACHINE
Requirements New KBEmacs
Apprentice Demonstration

Figure 1: Spectrum of software development activities.

To date, most of the research in the Programmer‘s Apprentice project has focused on program
implementation. This has resulted in the creation of a working demonstration system called the
Knowledge-Based Editor in Emacs (KBEmacs) [62,63.64). The principal benefit of KBEmacs is
that it allows a programmer to construct a program rapidly and reliably by combining algorithmic
fragments stored in a library. An additional benefit of the knowledge-based editing approach (not
fully exploited in KBEmacs) is that it provides a basis for intelligent program modification and
maintenance. The principal limitations of KBEmacs are that it has a narrow view of the
programming process and weak reasoning abilities.

Currently, much of the effort in the Programmer’s Apprentice project is being directed toward
the construction of a new demonstration system which will have increased reasoning abilities and
which will therefore be able to assist in a greater portion of the programming process. In particular,
the new system will be able to detect many Kinds of design errors which KBEmacs cannot detect.
The new system will also be able to deduce implicit design decisions which follow from explicit
decisions made by the user.

- This proposal is to begin development of a Requirements Apprentice (RA), which wrll assist an
‘analyst in the creation and modification of software requirements. The RA will eventually link up
with the other parts of the Programmer’s Apprentice, which are growing "up" from the
implementation end of the spectrum. In the meantime, research on the RA establishes a second
beachhead from which to attack the problem of automating the programming process.
Requirements acquisition is an opportune place for such a beachhead because, like implementation
(and unlike the middle parts of the programming process), it is constrained by contact with a
real-world boundary.

Research on requirements acquisition is valuable for two reasons. From the perspective of
artificial intelligence, it is a good domain in which to pursue fundamental questions related to

Requirements Apprentice 2

knowledge acquisition. From the perspective of software cngineering, requirements acquisition is
perhaps the most crucial part of the software process. Studies (c.g. |7]) indicate that errors in
requirements arc more costly than any other kind of error. Furthermore. requirements acquisition
is not currently well supported by software tools.

The body of this proposal begins with a discussion of the requirements acquisition task. ‘This
discussion delincates the focus of rescarch on the RA. Section 3 defines the fundamental artificial
intclligence and software engincering research issues, namely: understanding the process by which
informal descriptions exolve into formal specifications and codifying the knowledge which is used
in sofiware requirements. Section 4 is a scenario which illustrates the capabilities of the RA.
Section 5 reviews the accomplishments of the Programmer's Apprentice project to date with
emphasis on those elements which contribute most directly to the RA, namely: hybrid knowledge
representation and reasoning, codification of programming knowledge, and principles for
implementing intelligent computer assistants.

2. Focusing the Research

It is useful to distinguish different phases in the requirements acquisition process. The earliest
phase usually takes the form of a "skull session”, whose goal is achieving a consensus among a
group of users about what they want. The requirements analyst’s main role in this phase relies on
his personal skills as a facilitator, perhaps with the aid of a team debriefing methodology, such as
WISDM [34] or JAD [9). The end product of this phase is typically an informal requirement.

Figure 2 (taken from [2]) shows an example of the informal requirement for a university library
database. This particular requirement was used as a benchmark for comparing a number of
different specification tools at the Second and Third Workshops on Software Specification and
Design [2,24]. It is also used in this proposal as a basis for the scenario in Section 4.

Most work on software requirements tools (e.g. {5,11,12,17,21,35]) focuses on what is usually
called the validation phase. The main goal of this part of the prooess is to increase confidence that a
given requirement actually corresponds to the end user’s desires. In current research approaches,
this is achieved by applying simulation, symbolic execution, and various kinds of analysis to a
formal sbeciﬁcation. This work does not, however, address the key question of how a formal
specification is constructed in the first place. For example, Kemmerer [21] begins by simply
exhibiting the translation of the informal requirement of Figure 2 into the formal specification
shown in Figure 3 (taken from [21]).

.- The focus of the RA is on bridging the gap between informal and formal specification. Thisis a
crucial area of lack in the current state of the art. For example, it was reported at the Second
Workshop on Software Specification and Design ([2], p. 107) that some of the greatest problems
stemmed from “the process of completing the system analysis work needed to translate the informal
specification into the appropriate input for the tools".

A second reason for focusing on the transition from informal to formal is that it brings up
fundamental issues in artificial intelligence (see Section 3). As elsewhere in the Programmer’s
Apprentice project, there is an opportunity here both to apply current artificial intelligence

Requirements Apprentice

Consider a university library database. There are two types of users: normal
borrowers and users with library staff status. The database transactions are:

(1) Check out a copy of a book.

(2) Retugn a copy of a book.

(3) Add a copy of a book to the library.

(4) Remove a copy of a book from the library.

(5) Remove all copies of a book from the library.

(6) Get a list of titles of books in the library by a particular author.

(7) Find out what books are currently checked out by a particular borrower.

(8) Find out what borrower last checked out a particular copy of a book.

These transactions have the following restrictions:

R1 - A copy of a book may be added or removed from the library only be
someone with library staff status.

R2 - Library staff status is also required to find out which borrower last
checked out a copy of a book.

R3 - A normal borrower may find out only what books he or she has checked
out. However, a user with library staff status may find out what
books are checked out by any borrower.

The requirements that the database must satisfy at all times are;
G1 - All copies in the library must be checked out or available for check out.
G2 - No copy of a book may be both checked out and available for check out.
G3 - A borrower may not have more than a given number of books checked out
at any one time. A .
- G4 - A borrower may not have more than one copy of the same book checked out
at one time,

Figure 2: Example of an informal requirement (copyright (c) IEEE 1985).

Requirements Apprentice 4

techniques to a software engincering problem and o use a software enginecring problem to drive
further research in artificial intelligence.

Another key aspect of the RA is that it will contain an extensive library of knowledge about the
particular domain of the requirement to be constructed. This is to be contrasted with. for example,
a tool for the symbolic exccution of a formal requirements language. Such a ool can do a lot t0
help identify problems with what is in a given requirement. However. it is not in a position to say
very much about what might be missing from the requirement. Having specific knowledge about
what should be in the sequircments associated with a particular domain makes it possible for a tool
like the RA to critique what is not in a requirement as well as what is in the requirement.

The current research with goals most similar to the RA is the KATE [13] system. Fickas has
proposed an interactive system which will provide assistance over the entire requirements
acquisition process. To make this feasible, Fickas intends to rely heavily on exploiting a particular
example domain (conference planning).

Interaction with the RA

Figure 4 shows the role of the RA in relation to other agents involved in the software process.
Note that the RA does not interact directly with an end user, but is an assistant to the requirements
analyst. The RA also serves as a bridge between the requirements analyst and the system designer.

End User <----- > Analyst <(----- > RA (-==-- > System Designer

Figure 4: Role of the RA.

The main benefit of excluding direct interaction with the end user is that it avoids having to
deal with the complexity of natural language input. Free-form natural language input would be
essential for interaction with a naive end user. An analyst, however, should have no trouble using a
more restrictive command language. Natural language understanding is a major research area in its
own right, which is, by and large, independent of the central issues in building the RA.

Output of the RA

In current practice, the end product of requirements acquisition is typically a single written
document which is produced by the analyst and used both by the end user (for validation) and by
the system designer (as the starting point for design). Using the RA, the essential end product of
the requirements acquisition process is a machine-manipulable representation of the requirement
inside the RA. In the long term, this internal representation will be accessed directly by other tools
and components of the Programmer’s Apprentice. In the short term, this information will be used
to answer queries and to generate various documents for the requirements analyst, the end user,
and the system designer. An advantage of the RA approach is that different organizations of the
information can be produced, tailored to the different needs of the end user, the analyst, and the
designer. Examples of the kinds of documents generated by the RA are shown in the scenario
below. '

Requirements Apprentice 5

Specification Library TRANSFORM Check_0Qut(U:User,B:Book) External
LEVEL Top__Level Effect
(if Available(B)
TYPE & Number__Books(U) < Book_ Limit
User, & v B1:Book (Checked_Out_To(U,B1) -+ ~Copy_0f(B,B1))
Book, then w Ul:User (N"Number_Books(U1) =
Book_Title, (iftUi=u
Book__Author, then Number_Books{U) +
Book__Collection = Set Of Book, else Number_Books(U1)))
Titles = Set Of Book_Title, & v B1:Book (-
Natural = T i:Integer (i=0) (if B1=B
then N"Checked_Out(B)
CONSTANT

& N"Responsible(B)=U

Title(Book): Book_ Title, & ~N"Never__ Out(B)
Author(Book): Book _Author, else NC'(Checked_Out(B1), Responsible(B1),
Library__Stafl(User):Boolean, Never_Qut(B1))))
Book__Limit:Natural, else NC“(Number_Books.Checked_Out..Responsible.Never_Out.))
Copy__Of(B1:Book,B2:Book):Boolean =
Author(B1) = Author(B2) TRANSFORM Return(B:Book) External
& Title(B1) = Title(B2) Effect
(if Checked_Qut(B)
VARIABLE then v B1:Book (N"Checked_Out(B1) =
Library:Book__Collection, (if B=Bt
Checked_ Out(Book):Boolean, then False
Responsible(Book): User, else Checked_Out(B1)))
Number_Books(User):Natural. & v Ul:User (N"Number_Books(U 1) =
Never_Out(Book):Boolean, (if U1=Responsible(B)
then Number_ Books(U1) -1
User__Result:User, ' else Number_Books(U1)))
Book__Result:Book__Collection, else NC'(Checked_Out,Number_Books))

Title__Result:Titles
TRANSFORM Add_A_ Book(U:User,B:Book) External

Available(B:Book):Boolean = (if Library_Staffi(U)
B e Library & ~Checked_0Out(B), & B £ Library
Checked_Out_To(U:User,B:Book):Boolean = then N'Library = Library v {Bj
Checked_Out(B) & v B1:Book (
& Responsible(B)=U N"Checked_Out(B1) =
(if B=B1
CRITERION) then False
v b:Book(b € Library - else Checked_Qut(B1))
(Checked_Out(b) & ~Available(b) & N"Never_Out(B1) =
| ~Checked_QOut(b) & Available(b))) (if B=B1
& v u:User(Number_Books(u) < Book_Limit) then True
& v u:User,b1,b2:Book(else Never_Out(B1)))
Checked_ Out_To(u,b1) else NC"(Library,Checked_Out,Responsible,Never_0ut))
& Checked_Out_To(u,b2)
& Copy_0f(b1,b2) TRANSFORM Remove_A_Book(U:User,B:Book) External
- b1=b2) Effect
INITIAL < (if Library_Staff(U)
Library = Empty & Available(B) '
& v u:User (Number_Books(u) = 0) then N"Library = Library ~~ {B|
& v b:Book (~Checked_0Out(b)) else NC*(Library))
TRANSFORM Last__Responsible(U:User,B:Book) External
Effect
(if Library_Stafl(U)
& B € Library

& ~Never__Out(B)
then N"User_Result = Responsible(B)

Figure 3: Formal Ina Jo! requirement else NC"(User_Result))

corresponding to Figure 2 TRANSFORM What_Checked_Out{Requester,Whom:User) External
Effect
. (if (Library_Staff(Requester) | Requester=Whom)
(copyright (c) 1EEE 1985). then « B1:Book (

Checked_Out__To(Whom,B1) & B1 € N"Book_Result
| ~Checked_Out_To(Whom,B1) & B1 £ N"Book_Result)
else NC"(Book_Resuit))

TRANSFORM Titles_By_Author{(By__Whom:Book_Author) External
Effect
1. Trademark of System Development Corporation, N"Title_Result = {T1:Book_Title (3 B1:Book (

a Burroughs Company. Author(B1)=By_Whom & Title(B1)=T1))

END Top__Level
END Library

Requirements Apprentice 6

The documents generated by the RA could take many forms. They could be textual, rendered
in a formal specification language. or diagrammatic. In the necar term, cffort will focus on the
producing more or less traditional texwal presentations of requirements. Since many software
projects are contractually obligated o provide documents of this form. automatically gencrating
(and re-gencerating) such documents will be a valuable ncar-term feature of the RA.

Itis important not to focus too carly in the development of the RA on designing a new formal
specification or diagrammatic language. As with natural language understanding. it is not because
these arcas are unimportant, but rather because they are largely orthogonal to many of the key
issues underlying the RA, and therefore can be temporarily side-stepped. Experience with other
parts of the Programmer's Apprentice has demonstrated the benefits of concentrating first on
designing an internal representation (see the Plan Calculus [49,51]) that is well suited for automated
reasoning and other manipulations.

It is useful, however, as a check on the semantic adequacy of an internal representation, to
demonstrate the ability to produce output in an existing language. (In the case of the Plan Calculus,
we demonstrated the production of source code in Lisp and Ada.) A research milestone will
therefore be to produce the formal specification shown in Figure 3 from an interaction similar to
the scenario in Section 4.

3. Fundamental Issues

Research on the RA brings up two fundamental issues in knowledge acquisition. The first issue
is informality and the process by which informal descriptions evolve into formal specifications. The
second issue is the role and specific content of prior knowledge of the common structures (clichés)
of a domain.

In the area of knowledge acquisition, the work most similar to the RA has veen concerned with
providing automated assistance for acquiring new rules for expert systems. Most systems, such as
Teiresias [10] and Seek [28], are limited to fairly simple well-formedness and consistency checking.
Other systems, such as KLAUS [18] and ROGET [6] provide for the acquisition of new concepts
and vocabulary. '

Informality

On the issue of informality, the RA continues in the tradition of the SAFE project [3]. Balzer,
Goldman and Wile were the first to argue that informality is an inevitable (and ultimately desirable)
feature of the specification process. They began by studying actual natural language software
specifications, cataloging the kinds of informality they found. At the end of the project, the SAFE
prototype system succeeded in automatically producing a formal specification (in the language
AP2) from a pre-parsed informal natural language specification for a number of examples.

The following is a list of general features that characterize informal communication between a
speaker (e.g. an end user) and hearer (e.g. an analyst). These features are based on the discussion
in [3] and an initial study of the informal requirement in Figure 2.

Requirements Apprentice 7

Abbreviation — Special terms (jargon) are used. The hearer is assumed to have a large
amount of specific knowledge which explains the terms.

Ambiguity — Statements can be interpreted in several different ways. The hearer has o
disambiguate these statcments based on the surrounding context.

Poor Ordering — Statements are presented in the order they occur to the speaker, rather
than in an order that would be convenient for the hearer. The hearer needs o hold
many questions in abeyance until later statements answer them.

Incompleteness— Aspects of the description are left out. The hearer has to fill in these
gaps by using his own knowledge or asking questions.

Contradiction — Statements which are true in the main are liable to be contradictory in
detail. This reflects the fact that the speaker has not thought things out completely.

Inaccuracy — For a variety of reasons, some of the statements are simply wrong.

These kinds of informality are not a matter of the speaker being lazy or incompetent.
Informality is an essential part of the human thought process. It is part of a powerful debugging
strategy for dealing with complexity, which shows up in many problem solving domains: Start with
an almost-right description and then incrementally modify it until it is acceptable [32]. Thus,
* having the RA deal with informality is not just a question of being user friendly — it is a
fundamental prerequisite.

One of the goals of research on the RA is to elaborate the initial characterization of informality
given above, and to develop strategies and heuristics for removing these features from informal
requirements.

The RA will differ from SAFE in several respects. First, the interface to the RA further
separates natural language understanding from the essential informality issues. Although
parentheses were added manually to the English input to avoid parsing difficulties, SAFE still
attempted to deal with a number of other natural language phenomena, such as pronouns, which
are better dealt with in other research.

Second, although the SAFE work points to the importance of domain knowledge in resolving
informality, it lacks the notion of clichés as a way of representing, organizing, and applying this
knowledge. Finally, SAFE is an automatic batch system, whereas the RA is an interactive assistant.

Clichés

/

Expert engineers rarely construct complex artifacts (automobiles, electronic circuits, or
requirements specifications) by starting from first principles. Rather, they bring to the task their
previous experience, in the form of knowledge of the commonly occurring structures (combinations
of the primitives) in the domain. The term cliché is used here to refer to these commonly occurring
structures. In normal usage, the word cliché has a pejorative sound that connotes overuse and a
lack of creativity. However, in the context of engineering problem solving, this kind of reuse is a
positive feature. :

Knowledge of the relevant clichés is essential for effective communication on any topic. There

Requirements Apprentice 8

is ample evidence that. in general. it is difficult. if not impossible. o acquire new knowledge unless
onc already has a large amount of relevant old knowledge. Imagine trying to communicate the
requirements for an inventory control system to a person who knows nothing about cither
information systems or inventories.

Notions similar to the cliché idca appear in software engincering in the work of Arango and
Freeman [1] (domain models). Harandi and Young [19] (design templates). and Lavi [22] (generic
models): and in artificial intelligence in the work of Minsky [25.26] (frames, concept germs),
Schank [30] (conceptual structures), and Chapman [38] (cognitive clichés).

Formally, a cliché consists of a set of roles embedded in an underlying matrix. The roles of a
cliché are the parts that vary from one use of the cliché to the next. The matrix of the cliché
contains both fixed elements of structure (parts that are present in every occurrence) and
constraints. Constraints are used both to check that the parts that fill the roles in a particular
occurrence are consistent, and also to compute parts to fill empty roles in a partially specified
occurrence.

Requirements Clichés

A major goal of research on the RA is the codification of clichés in the domain of software
requirements. This codification will include both clichés of broad applicability, like the three
examples discussed below, and more specific clichés in several application areas. Such a taxonomy
would be valuable even if it only existed as a textual handbook for use by a human analyst. An
important benefit of orienting the RA around the use of clichés is that domain-specific knowledge
can be provided as data, rather than built into the system. New domains can be covered by defining
new clichés.

The importance of domain-specific knowledge is a theme which the RA shares with the
PHI-NIX [4] and DRACO [27] projects. Neither of these projects, however, focuses on supporting
informality.

Three examples of requirements clichés used in the RA scenario in Section 4 are: repository,
information system, and tracking system. A repository is an entity in the physical world. The
repositdry'éliché has a number of roles including: the items which are stored in the repository, the
place where the items are stored, the szaff which manages the repository, and the users which utilize
the repository. The basic function of a repository is to ensure that items which enter the repository
will'be available for later removal.

.~ There are a variety of physical constraints which apply to repositories. For example, since each
item has a physical existence, it can only be in one place at a time and therefore must either be in
the repository or not.

There are several kinds of repositories. Simple repositories merely take in items and then give
them out. A more complex kind of repository supports the lending of items, which are expected to
be returned. Another dimension of variation concerns the items themselves. The items may be
unrelated or they may be grouped into classes. Example repositories include: storage warehouses
(simple repositories for unrelated items) grocery stores (simple repositories for items grouped in

Requirements Apprentice 9

classcs) and rental car agencies (fending repositories for items grouped in classes)

In contrast to the repository cliché. the information system cliché describes a class of programs
rather than a class of physical objects. ‘The intent of the information system cliché is to capture the
commonality between programs such as personnel systems, bibliographic data bases. and inventory
control systems,

‘The central role of an information system is the information schema. This is a meta-description
which specifies the logical characteristics of the data to be stored. Since information system is a
requirements clighé rather than an implementation cliché, these characteristics do not include how
the data is physically organized in storage. .

Other roles of an information system include: a set of transactions which can
create/modify/delete the data, a set of reports which display parts of the data, integrity constraints
on the data, a staff which manage the information system, and users which utilize the information
system. V

At a more detailed level. the information system cliché contains information about timing,
security, error checking, and the like. For example, it has information about how to restrict access
for different classes of users and how to check for and deal with errors in data entry.

A tracking system is a specialized kind of information system which keeps track of the state of a
physical object. The roles of a tracking system are the same as the roles of an information system,
with the addition of one new role: the rarget being tracked.

The target object is assumed to have a (possibly complex) state and to be subject to various
physical operations which can modify this state. The information in the tracking system describes
the state of the target object. The transactions modify this information to reflect changes in the
target’s state.

The main content of the tracking system cliché is a set of constraints which relate roles of the
information system part of the cliché to the target role. For example, the constraints can be used to
derive the information schema from a description of the possible states of the target. Similarly, an
appropriate set of transactions can be derived from the operations applicable to the target. In
addition, any physical constraints on the target become integrity constraints on the information
system. o '

There are several kinds of tracking systems. A tracking system may follow several targets
instead of just one. A tracking system may keep a history of past states of the target. A tracking

_system may operate based on direct observations of the state of the target or based on observations
of operations on the target. Finally, a tracking system may participate in controlling the operations
on the target, rather than merely observing them. Example tracking systems include: aircraft
tracking systems (which track multiple targets based on direct observations of their position) and
inventory control systems (which track a repository based on observations of operations which
modify its contents and often exercise some control over what can be given out to whom.)

Requirements Apprentice 10

4. Scenario

To make the proposed capabilitics of the RA more concrete. the following presents a scenario of
how the system will interact with a requirements analyst. The scenario is based on the library
database example published in [2] (reproduced in Figure 2 above). This example has the virtue of
being familiar enough to be casily understood by the general reader. It deals with a requircment for
a university library data basc system, which keeps track of who has borrowed which books. (This
scenario is based on a thesis proposal by Reubenstein [47]).

Before the scenaffo begins. it is important to set the scene by describing what the RA is
expected to know beforehand. We assume that the RA knows nothing about libraries per se. The
RA does, however, know a considerable amount about the general kinds of systems of which the
library data base is an instance. Specifically, the RA knows about repositories, information systems,
and tracking systems, as described in the previous section.

In a given situation, the RA could have either more or less relevant knowledge beforehand. The
level of knowledge in this scenario was chosen in order to illustrate a useful middle ground. On one
hand, if the RA knew significantly more than what is postulated above (e.g., if it had a cliché for a
library database), then the interaction between the analyst and the RA would look very much like
using an application generator. Although the RA would, of course, be very useful in this mode,
such a scenario would not do a good job of showing the way the RA is typically intended to be used.

On the other hand, if the RA were missing any of the clichés discussed above, then the analyst
would have to say too much. In particular, he would have to describe the missing clichés. Although
the RA would still be usable in this mode, it is unlikely that any tool which seeks to dramatically
improve the productivity and reliability of the requirements acquisition process can do so without a
rich store of prior knowledge.

Since the user interface to the RA has not been fully designed, the interactions in this scenario
are intended to illustrate the major features of this interface without being overly specific about
details. For instance, input typed by the analyst will be shown in simple English (after the prompt
">"). However, as discussed earlier, the RA will not support unrestricted natural language input. A
stylized- command language will . be provided which supports the necessary semantic ‘content
illustrated in the scenario, but not the same degree of syntactic flexibility.

Finally, note that several errors have intentionally been introduced into what the analyst says in
the seenario. The particular errors chosen may or may not appear plausible to particular readers.
However, large numbers of errors are made during the creation of a typical requirement (most of
which look pretty stupid in retrospect). The errors introduced here were chosen to illustrate the
capabilities of the RA to detect and help correct errors in general.

Beginning the Requirement

With the commands shown below, an analyst begins the process of using the RA to construct a
requirement. Note in the first command that new terms, such as the name LIBDB, are introduced
in quotes. The second command gives the overall structure of the desired system The third and
fourth commands define the terms /ibrary and copy of a book.

Requircments Apprentice 11

>Begin a requirement for a system called "LIBDB".
>LIBDB is a tracking system which tracks a "library".
>A library is a repository for "copies of books".
>A copy of a book has the properties:

title - a text string,

author - a person's name,

ISBN number - a unique alphanumeric key.

The net cffect of a sequence of commands such as the one above is to augment the information
contained in the. RA’s internal representation of the evolving requirement. This new information
comes from three fundamentally different sources: explicit statements, clichés, and inferences.

After the four commands above, almost all of what the RA knows comes from the combination
of the tracking system and repository clichés. In particular, an instance of the tracking system cliché
is built with a library (an instance of the repository cliché) in the target role. Since the state of a
repository is the collection of items it contains (in this case, copies of books), the constraints in the
tracking system cliché are used to derive an information schema that provides fields for the three
properties listed above for copies of books. Also based on the constraints in the tracking system
cliché, an expectation is created within the RA that a set of transactions for LIBDB will be defined
corresponding to the typical operations on a repository.

Note that the new terms LIBDB, library, and copy of a book are far from fully defined at this
point. They are both incomplete and ambiguous. They are incomplete because many roles remain
to be filled in. They are ambiguous because it is not yet clear which kind of tracking system LIBDB
is or which kind of repository a library is. Since incompleteness and ambiguity are inevitable
during the early stages of constructing a requirement, the RA refrains from complaining at this
point. It accepts information and performs inferences on a "catch as catch can" basis. However, if
requested, the RA can produce a list of currently unresolved issues (see Figure 5) and can guide the
analyst in finishing the requirement.

Textual Displays

. .Output from the RA comes in two forms. First there are direct statements to the analyst, for
example, describing a contradiction that has been discovered. The primary form of output,
however, is textual displays generated from parts of the RA’s internal representation of the evolving
requirement. One kind of display corresponds to viewing sections of a requirements document.
LOther displays consist of various outlines and summaries.

The default response of the RA to commands from the analyst is to create a textual display
which summarizes the major effect of the commands. The analyst can request the generation of
other kinds of displays.

The state of the RA’s default display after the four commands above is shown in Figure 5. The
top part of the display shows the table of contents of the requirement as a whole. The bottom part
of the display shows the purpose section which would be generated if a requirements document
were to be created at this point in the scenario. The bottom of the purpose section summarizes, at
an appropriately high level, the main points in the requirement which are currently unresolved.

Requirements Apprentice

Table of Contents

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview
2. General Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 General Constraints.
2.5 Assumptions and Dependencies
3. SpeC1f1c Requirements
3. Functional Requirements
3.1.1 Transactions
3.1.2 Reports

External Interface Requirements
Performance Requirements

Design Constraints

Attributes

3.6.1 Security

3.6.2 Error handling

wWWwwww
O bowmnN

1.1 Purpose

The LIBDB system is a tracking system which tracks a library. A

library is a repository for copies of books.
LIBDB records information about the title,
Transactions are supported for

the copies of books in the library.
tracking what happens to the repository.

author, and ISBN number of

Reports are provided for

obtaining information about the copies of books in the library.

Unresolved issues:
What kind of tracking system is LIBDB?
What kind of repository is a library?
_What transactions are supported?

- What reports are generated?

Figure 5: Textual Display Generated by the RA.

12

Requirements Apprentice 13

An important function of the displays is to focus attention, When the RA generates a display. it
naturally focuses the analyst’s attention on the information it contains. When the analyst requests a
display. the RA can usce the contexi of the display to disambiguate ensuing commands.

The structure of the requirement would vary based on the needs of the organization using the
RA. (Figure 5 conforms o the ANSI/IEEE requirements document Standard 830-1984 [20].) The
structure of the requircment also varics based on the top level clichés being used in the
requirement. (In Figure 5 the choice of detail sections such as 3.1.1 are dictated by the tracking
system cliché.) .

Although the first part of the purpose section in Figure 5 is shown in connected English
sentences, most of the output generated by the RA is expected to look more like the point-form
listing of unresolved issues. As in the case of understanding free-flowing English input, the
syntactic aspects of good English are not a key concern here. What is important is deciding what to
say, for example, choosing the appropriate level of detail (as in [33]). |

At one extreme, the RA could assume that the reader has a complete understanding of every
cliché. At the other extreme, the RA could describe every cliché used in full detail. The first
approach is unwarranted. The second approach would lead to a document which is too large and is
likely to be too redundant with what the reader does know. As illustrated here, the RA will attempt
to take a middle course, reminding the reader of the various clichés used, but not giving the
complete details of each cliché unless asked.

Defining Transactions

The next set of commands begin the definition of the transactions to be supported by LIBDB.
The analyst first directs the RA’s attention to the topic of transactions by moving to the transactions
subsection of the document. He then describes the check out transaction.

>Display the transactions subsection.
- >The "check out"” transaction tracks the removal of a copy of a book.

- .The key term in the second command is removal. Removal is one of the standard operations
supported by a repository, i.e., taking an item out of the repository and giving it to a user of the
repository. Constraints in the tracking system cliché have already generated the expectation of a
corresponding transaction. This command gives this transaction a name (check out) and triggers its
“inclusion in the requirement. Another consequence of this command is that the RA infers that
LIBDB is a tracking system based on observations of operations on the target, rather than on direct
observations of its state.

The effect of the two commands above on the display is illustrated by Figure 6. Most of the
information in Figure 6 comes from the repository cliché via the constraints in the tracking system
cliché. The bottom of Figure 6 lists a number of issues which still need to be resolved.

Requirements Apprentice 14

3.1.1.1 Check Out

The "check out" transaction tracks the removal of a copy of a book from
the library.

INPUTS: identifier of a copy of a book (ISBN number).

OUTPUTS: none.

PRECONDITIONS: The input must be in the roster of copies of books which
are in the library.

EFFECT ON THE INFORMATION STORE: The input is removed from the roster of
copies of books which are in the l1brary

UNUSUAL EVENTS: If the input is not in the roster of copies of books which
are in the library, then the information system is inconsistent with the
state of the repository. A notation is made in the error log. The
1ncons1stency is alleviated by leaving the input out of the roster of
copies of books which are in the library.

USAGE RESTRICTIONS: none.

Unresolved issues:
Should historical record keeping be added?
Should checking of user validity be added?
Should checking of staff member validity be added?

Figure 6: Textual Display of the Check Out Transaction.

Fixing an Error

With the next set of commands, the analyst continues on the topic of transactions. Note the use
of the term inverse to define the return transaction. In the repository cliché, the operation of adding
an item into the repository is defined to be the inverse of removing an item. Therefore, the first
command below triggers the generation of a transaction that tracks the addition of a book.

>The "return" transaction is the inverse of check out.
>The "add" transaction tracks the addition of a copy of a book.

Potential problem:
The add transaction is exactly the same as the return transaction.

The oommand deﬁning the add transaction provokes an immediate complaint from the RA
(shown in italics), because it defines adding a copy of a book to be exactly the same as returning a
copy .of a book. This contradicts the RA’s expectation that new terms should not be synonymous
with' old terms unless explicitly declared to be so. The analyst does not have to deal with this
problem immediately — he could go on to other things leaving the problem pending. In this case,
however, he decides to deal with the problem right away.

In order to begin the process of tracking down the source of the problem, the analyst asks the
RA to present a trace of the chain of inference which led to the immediate manifestation of the
problem. Many of the issues involved in tracking down the ultimate source of a bug in a
requirement are similar to those of bug localization in programs [31,54). For example, filtering has
to be applied to restrict the set of all logically necessary premises to the likely candidates for
retraction in the current context. In the explanation below, the RA does not include the fact that

Requirements Apprentice 15

LIBDB is a tracking system. because this is not likely (o be retracted at this point.

>Explain the problem.

(1) The add transaction is exactly the same as the return transaction.
Because:
(2) The add transaction tracks the addition of a copy of a book.
(3) The return transaction tracks the addition of a copy of a book.
Because:
(4) The check out transaction tracks the removal of a copy of a book.
(5) The return transaction is the inverse of the check out transaction.

Studying this explanation, the analyst realizes that he made an error earlier in the definition of
check out. Checking out a book does not correspond to removing it from the repository, but rather
to borrowing it from the repository. With the commands below, the analyst corrects the error by
redefining the check out transaction.

>Retract (4).
>The check out transaction tracks the borrowing of a copy of a book.

Note: The return transaction now tracks the return of copy of a book
to a Tending repository.

Since statement (5) was not retracted, the return transaction is still the inverse of check out,
which implies that the return transaction now tracks the return of a copy of a book. In addition, the
RA has inferred that a library is a lending repository, which resolves an outstanding ambiguity.

Fixing a Conceptual Confusion

The scenario continues below with the definition of two transactions related to removing items
from the library.

>The "remove" transaction tracks the removal of a copy of a book.
>The "remove all" transaction tracks the removal of every copy of a book.

.-Potential problem: '
The term every suggests that copies of books are members of classes.
If this is not the case, then the remove all transaction is exactly
the same as the remove transaction.

~ The second command above brings to the surface a conceptual confusion which has been

- buried in the requirement thus far. By using the word every, the analyst suggests that the remove all

transaction corresponds to removing all instances of a class of items from the library. This is a

standard operation on repositories which contain classes of items rather than unrelated items.
However, the requirement thus far does not include a class/instance relationship for the library.

On seeing the RA’s response, the analyst (assumedly in consultation with the end user) thinks a

bit more about books and realizes that what were originally defined as the properties of a copy of a

book should really be properties of a class called book. A obpy of a book is then an instance of a

particular class of books. He informs the RA below of this conceptual change. Among other

Requirements Apprentice 16

things. this removes the last clement of ambiguity as to what kind of repository a library is.

>Book 1is a class with properties previously defined for copy of a book.
>Redefine a copy of a book to be an instance of a book.
>A copy of a book has the property:

copy number - a number unique within the class.

This conceptual reorganization is propagated by the RA throughout the recquirement. One
effect of the reorganization is to reveal that remove and remove all are indeed distinct transactions.
In addition, there are”a number of other changes. For example, the first input to the check out
transaction is changed from an ISBN number to a pair of an ISBN number and a copy number.

Defining a Report

The next section of the scenario illustrates a different mode of interaction between the analyst
and the RA, in which direct editimg of the textual display is used for input. Direct editing has two
advantages, both of which have been confirmed by experience with the similar interface to
KBEmacs [46,62]. First, it is an essential escape mechanism, which makes it possible for the analyst
to add information to the requirement that is beyond the RA's capability to understand. Second,
even when information can be provided through the use of RA commands, it is often more
convenient to provide it by direct editing.

>Display the reports subsection.
>Add a report called "books checked out to user".

In contrast to transactions, reports come in such a wide variety that the tracking system cliché
does not have very much specific information about any individual report. As a result, the effect of
the second command above is simply to insert a template of headings in a new subsection of the
reports display. The analyst defines the new report by directly editing the textual display, supplying
the information after each heading. The top part of Figure 7 shows the state of the display after the
analyst has finished editing it (underlining indicates sections typed by the analyst).

When the analyst has completed his editing, the RA analyzes the result. The success of the
analysis depends on the extent to which the RA has clichés which explain the terms used by the
analyst. When terms are understood, the text is converted to an internal representation. When
terms are not understood, the text is merely stored as is. In this case, the RA is assumed to
understand all the important terms in Figure 7. For example, it knows what a due date is and that
items lent from repositories often have due dates associated with them; it knows about sorting
things by date; and it knows that having no items to report is a standard unusual event associated
with reports. Given an understanding of these terms, the RA’s analysis reveals a number of issues
which still need to be resolved. These are summarized by the RA in the bottom part of Figure 7.

Requirements Apprentice 17

3.1.2.1 Books Checked Out To User

The report "books checked out to user" lists all of the books lent to a
given user,

INPUTS: identifier of a user.
PRECONDITIONS: input must be a valid user.

REPORTED ITEMS: set of C: copy of a book., such that C is checked out to
input.

REPORTED INFORMATION: title of C. author of C, copy number of C. due date
of C.

SORT ORDER:-by due date.

HEADING: "Books Checked Out To" input.

UNUSUAL EVENTS: If no items to report, print "No books borrowed".

USAGE RESTRICTIONS:

Unresolved issues:
How is user identifier validity checked?
What should be done if a user identifier is invalid?

Figure 7: Direct Editing of a Report Definition.

Following analysis, the RA also propagates the information it understands to other relevant
parts of the requirement. For example, the information schema for LIBDB is extended to include
due dates and a checked-out-to relation between copies of books and users. This in turn indicates
that the check out transaction must take a user identifier as a second input.

Finishing the Requirement

With the addition of a number of commands similar to the ones above, the analyst could enter
all of the information in the informal requirement in Figure 2. The analyst might then assert that
the requirement was finished. This would cause the RA to check the requirement for completeness
and to complain about a number of issues. For example, much more needs to be said about the
users and staff and how they are identified. The RA would also complain that there is no
transaction for entering a book into the library and therefore no way to initialize the system. Once
all .of these issues were resolved, the analyst could request that the RA produce a complete .
requirements document.

Observations on the Scenario

s

The scenario above illustrates that use of the RA can improve both productivity and the quality
of the requirement produced. These benefits stem from three essential features of the RA, which
act together synergistically: clichés, propagation of information, and contradiction detection.

Clichés directly improve productivity by allowing reuse of parts of requirements from project to
project. Propagation of information improves productivity by allowing the analyst to provide each
piece of information just once, at the point which is most convenient. The RA copies this
information to other places where it is relevant. ,

Contradiction detection improves the quality of the final requirement. This is facilitated by the
fact that most errors cause a number of contradictions — the RA only needs to be able to find one

Requirements Apprentice 18

of them 1o recognize that there is an crror. The usc of clichés contributes o contradiction detection
because of the large amount of predefined information. which is attached o them. Propagating
information further incrcases the number of opportunities to find contradictions.

Two important facilities that are not illustrated in the scenario above are an interface for the
analyst to usc to familiarize himsclf with the available clichés and a mechanism for defining new
clichés. The RA will have a "browsing™ facility which will allow an analyst to inspect the cliché
library. As in KBEmacs, a textual representation will be provided for clichés so that they can be
casily inspected and defined. However. it should be noted that defining a major cliché, such as
information system or repository, is a difficult task akin to writing the definitive paper on the
subject. The typical analyst is expected to define only simple clichés, leaving the definition of major
clichés to expert analysts who specialize in the construction of clichés.

5. Accomplishments to Date

Research on the RA will be pursued within the context of the Programmer's Apprentice project.
Accomplishments of the project to date include theoretical work and demonstration systems in the
areas of’

Representation of programming knowledge [48.49,52]

Automated reasoning techniques [43,51,53,55,56,57]
Knowledge-based program editing [62,63,64]

Principles for implementing intelligent computer assistants [39,46]
Automated program analysis [60,61,68] A
Program translation [41,42,65]

Debugging [45,54]

Documentation [40,44,59,67)

Program testing [37]

Program transformation [58]

Although many extensions will be necessary, this work provides an intellectual platform upon
which to build the RA. Three elements of the research to date that will contribute most directly
toward building the RA are: a hybrid knowledge representation and reasoning systemi (Cake),
codification of programming clichés, and principles for implementing intelligent computer
assistants.

}iybrid Knowledge Representation and Reasoning

Historically, there have been two major approaches to knowledge representation and reasoning.
One approach has emphasized the use of predicate calculus and general purpose theorem proving
techniques. The other approach, partly in reaction to the difficulty of general purpose theorem
proving, has emphasized special purpose representations and reasoning methods tailored to the
structure of particular problem domains.

Experience in the Programmer’s Apprentice project with reasoning about programs suggests

s

Requirements Apprentice 19

that both types of techniques are needed. Special purpose representations and associated
algorithms are essential in order to avoid the uncontrollable combinatorial explosions which often
oceur in predicate calculus based reasoning systems. On the other hand. predicate calculus
reasoning is very valuable when used. under strict control. as the "glue” between inferences made in
different special purpose representations. A hybrid knowledge representation and reasoning
system. called Cake [43.51.53] has been implemented. it supports several different kinds of special
purposc rcasoning layered on top of a simple, general purpose, predicate calculus based reasoning
system. Figure 8.shows the layers of the Cake system that are most relevant to the RA.

FRAMES
TYPES
ALGEBRA
EQUALITY
TRUTH MAINTENANCE

Figure 8: Layers of Cake.

The bottommost layer of Cake, truth maintenance, is essentially the boolean constraint
propagation network from RUP[23]. It provides three principal facilities. First, it acts as a
recording medium for dependencies, and thus supports retraction and explanation. (The
explanation in the scenario using Because is a presentation of dependency information.) Second, it
performs simple "one-step” deductions — specifically, unit propositional resolution. (This will
provide the propagation of information illustrated in the scenario.) Third, the truth maintenance
layer detects contradictions. Contradictions are represented explicitly in such a way that reasoning
can continue with other information not involved in the contradiction. (This allows the RA to let
the analyst postpone dealing with problems.)

The equality layer of Cake provides an incremental congruence closure facility, also taken from
RUP. Given any two terms, the equality layer will determine whether they can be proved equal by
substitution of equals using the set of currently true equalities between terms. (Reasoning about
equality between transactions is invoked several times in the scenario to detect potential problems.)
. 'The algebra layer of Cake is composed of special-purpose decision procedures for common
algebraic properties of operators, such as commutativity, associativity, transitivity, inverses, and so
on. These properties come up everywhere in formal modeling tasks. (In the scenario, the return
transaction is defined as the inverse of check out.)

" The types layer of Cake provides a full lattice of subtypes, with intersection, union and
complement types. The notion of types is a basic facility used in all knowledge representation and
formal specification systems. (At the end of the scenario, books are defined as types, of which a
copy of a book is an instance.)

Finally, the frames layer, which is built using facilities from many of the layers below, supports
the conventional frame notions of slots, instances, and inheritance. These facilities will be used in
the RA as the basis for representing clichés and organizing the cliché library.

In the area of the applying knowledge representation techniques to software requirements, an
important first step was the RML language of Greenspan [15). Knowledge representation and

Requirements Apprentice 20

requircments specification have a shared concern with modeling slices of the real world. Along
with Mylopoulos and Borgida [8.16), Greenspan has begun the task of bringing togcther these two
disciplines. The RA can be viewed as continuing this work into the inferencing. contradiction
detection, and other dynamic issues not yet addressed in RML.

Programming Clichés

Study of the form and content of programming clichés is at the heart of the Programmer’s
Apprentice project. Fhis aspect of the research has progressed in alternating cycles of codification
and formalization, beginning with Waters' identification [60,61] of common loop forms, followed by
Rich’s formalization [48] of several hundred clichés in the area of manipulating symbolic data
structures (sets, sequences, lists and graphs), and continuing with Wertheimer's codification [66] of
the programming clichés used to build deduction-based programs, such as production systems,
constraint propagation, GPS, and Prolog.

An important part of Rich’s work was the development of organizing principles for a library of
clichés using the notions of specialization, extension, and implementation. The KBEmacs
system [62] demonstrates how clichés are used in program construction. Zelinka [68] has developed
a system for automatically recognizing programming clichés, using graph parsing techniques -
developed by Brotsky [36].

Research on the Programmer’s Apprentice has resulted in considerable experience representing
and using clichés. Although requirements clichés are somewhat different in nature than
programming clichés (they have more constraints and less fixed structure), it appears that the same
principles [52] carry over. The formal representation must have enough expressive power to
capture the variety of possible clichés. The properties of combinations of clichés must be easy to
compute. There must be a sound semantic foundation to allow for formal verification of libraries of
clichés. The representation must not be too closely tied to the syntax of any particular
programming/specification language.

Intelliggnt Computer Assistants »

When it is not possible to construct a fully automatic system for a task, it is, nevertheless, often
possible to construct a system which can assist an expert in the task. In addition to yielding useful
systeths in the short run, the assistant approach can also provide important insights into how to
construct a fully automatic system.

+ Work on KBEmacs and related systems has lead to the development of a set of design principles
for intelligent computer assistants (see [39.46]). A computer assistant should be non-invasive: when
not providing help, it should not present the user with constant reminders of its presence. A
computer assistant should be non-prescriptive: it is up to the assistant to conform to the user’s
methods, not vice versa. A computer assistant should maintain partial state: the user may wish to
be working on several aspects of the project at once; the system should not force him to finish one
subproblem before beginning another. These principles are equally apphcable to the RA, and are
embodied in the scenario above.

Requirements Apprentice ’ 21

The intelligent computer assistant approach taken in the RA is consistent with the approach
recommended in the Knowledge-Based Software Assistant report [14]. In particular, the RA s
based on the view that cven if the software process cannot be totally automated at this time, it
should be totally machine-mediated. 'The RA also assumes an evolutionary view of the software
lifccycle. Some of the short term goals of the requirements facet of the Software Assistant are
currently being worked on at Sanders Associates [29). The RA begins 1o address the longer term
goals laid out in the report.

w

References

[1] G. Arango and P. Freeman. "Modeling Knowledge for Software Development”, Proc. of
Third Int. Workshop on Software Specification and Design, London, UK, August, 1985, pp.
63-66.

[2] R. Babb, et al, "Workshop on Models and Languages for Software Specification and
Design", /EEE Computer Magazine, Vol. 18, No. 3, March, 1985, pp. 103-108.

[3] R. Balzer. N. Goldman and D. Wile, "Informality in Program Specifications", /EEE Trans.
on Sofitware Eng., Vol. SE-4, No. 2. pp. 94-103, March, 1978.

[4] D.R. Barstow. "Domain-Specific Automatic Programming”. [EEE Trans. on Software Eng.,
Vol. 11, No. 11, pp. 1321-1336, Nov. 1985.

[5] T. Bell, D. Bixler, M. Dyer, "An Extendable Approach to Computer-Aided Software
Requirements Engineering", IEEE Trans. on Software Eng., Vol. 3, No. 1, January, 1977,
pp. 49-59.

[6] J.S. Bennett, "A Knowledge-Based System for Acquiring the Conceptual Structure of a
Diagnostic Expert System", Journal of Automated Reasoning, Vol. 1, No. 1, 1985.

[7] B.W. Boehm, "Verifying and Validating Software Requirements and Design
Specifications”, /EEE Software Magazine, January 1984, pp. 75-88

[8] A. Borgida, S. Greenspan, J. Mylopoulos, "Knowledge Representation as the Basis for
Requirements Specifications”, IEEE Computer Magazine, pp. 82-90, April 1985.

- [9] A. Crawford, "Joint Application Design: A New Way to Design Systems", in Guide
International Proceedings, Guide International Corporation, 1982
- [10] R. Davis, "Applications of Meta-Level Knowledge to the Construction, Maintenance, and

- Use of Large Knowledge Bases”, (Ph.D. Thesis), STAN-CS-76-564, Comp. Sci. Dept.
Stanford U., 1976.

[11] A. Davis, T. Miller, E. Rhode, B. Taylor, "RLP: An Automated Tool for the Processmg of

p Requirements”, COMPSAC 79, Nov., 1979, pp. 289-299.

[12] M.S. Feather and P.E. London, "Implementing Specification Freedoms", Science of
Computer Programming 2, pp. 91-131, 1982,

[13] S. Fickas, D. Laursen, J. Laursen, "A Knowledge-Based Software Specification
Environment", Workshop on Knowledge- Based Design, Rutgers Univ., 1984.

[14] C. Green, D. Luckam, R. Balzer, T. Cheatham, C. Rich, "Report on a Knowledge-Based
Software Assistant", Rome Air Development Center, Technical Report RADC- TR 83-195,

August, 1983.

Requirements Apprentice 22

[15] S.J. Greenspan, "Requirements Modeling: A Knowledge Representation Approach to
Software Requirements Definition™, (Ph.D. Thesis). CSRG-155, Dept. of Comp. Sci. U. of
‘Toronto, March, 1984.

[t6] S.J. Greenspan, Alexander Borgida, and John Mylopoulos, "A Requirements Modeling
Language and its Logic", Information Systems, Vol. 11, No. 1. Pergammon Press, 1986. pp.
9-23.

[17] J.V. Guttag, 1.J. Horning. J.M. Wing. "The l.arch Family of Specification Languages”,
[ELE Software Magazine, September, 1985.

{18] N. Haas, G.G. Hendrix. "An Approach to Acquiring and Applying Knowledge", Proc. of
First National Conf. on Artificial Intelligence, Stanford Univ., 1980, pp. 235-239, August,
1980.

[19] M.T. Harandi and F.H. Young, "Template Based Specification and Design", Proc. of Third
Int. Workshop on Software Specification and Design, London, UK, August, 1985, pp. 94-97.

[20] IEEE Guide to Software Requirements Specifications, ANSI/IEEE Std 830-1984, July,
1984.

[21] R.A. Kemmerer, "Testing Formal Specifications to Detect Design Errors”, IEEE Trans. on
Software Eng., Vol. 11, No. 1, January, 1985.

[22] J.Z. Lavi, "Improving the Embedded Computer Systems Software Process Using a Generic
Model", Proc. of Third Int. Workshop on Software Specification and Design, London, UK,
August, 1985, pp. 127-129.

[23] D.A. McAllester, "Reasoning Utility Package User’s Manual", MIT/AIM-667, April, 1982,

[24] A. Mili, Proc. of Third Int. Workshop on Software Specification and Design, London, UK,
August, 1985. _

[25] M.L. Minsky, "A Framework for Representing Knowledge", in The Psychology of Computer
Vision, P.H. Winston (ed.), McGraw Hill, 1975.

[26] M.L. Minsky, Society of Mind, to appear.

[27} J.M. Neighbors, “The Draco Approach to Constructing Software from Reusable
Components”, IEEE Trans. on Software Eng., Vol. 10, No. 5, Sept. 1984, pp. 564-574.

[28] P.G. Politakis, "Using Empirical Analysis To Refine Expert System Knowledge Bases",
(Ph.D. Thesis), CBM-TR-130, Lab. for Comp. Sci. Res., Rutgers U., 1982.

[29] Sanders Associates, "Knowledge Based Requirements Assistant: Interim Technical Report”,
1986. '

[30] R. Schank, "A Conceptual Dependency Representation for a Computer-Oriented |

. Semantics", Stanford AIM-83, 1969.
[31] E.Y. Shapiro, Algorithmic Program Debugging, MIT Press, 1983.
[32] G.J. Sussman, "The Virtuous Nature of Bugs", Proc. of Conf. on Artificial Intelligence and
" the Simulation of Behavior, U. of Sussex, July 1974..

[33] W. Swartout, "The GIST Behavior Explainer”, Proc. of the Third National Conference on
Artificial Intelligence, Washington, DC, August, 1983, pp. 402-407.

[34] Western Institute of Software Engineering, "Using the WISDM Team Method to Define
System Requirements"”, 1986.

[35] P. Zave, "Executable Requirements for Embedded Systems", 5th Int. Conf. on Software
Eng., San Diego, Cal., March, 1981, San Diego, CA, March, 1981.

Requirements Apprentice 23

Programmer’s Apprentice Publications

[36] D. Brotsky. "An Algorithm for Parsing Flow Graphs”. (M.S. Thesis), MIT/A1/TR-704,
March, 1984.

[37] D. Chapman, "A Program Testing Assistant”. Comm. of the ACM, Vol. 25, No. 9,
September, 1982, pp. 625-634.

[38] D. Chapman, "Cognitive Cliches". MIT/Al/WP-286. April. 1986.

[39] E.C. Ciccarelli, "Presentation Based User Interfaces”. (Ph.DD. Thesis), MIT/AI/TR-794,
August, 1984.

[40] D.S. Cyphers, "Automated Program Explanation”, MIT/Al/WP-237, August 1982.

[41] R. Duffey, I, "Formalizing the Expertise of the Assembler Language Programmer”, (M.S.
proposal). MIT/Al/WP-203, September, 1980.

[42] G. Faust, "Semiautomatic Translation of COBOL into HIBOL", (M.S. Thesis),
MIT/LCS/TR-256, March, 1981,

[43] Y.A. Feldman and C. Rich, "Reasoning with Simplifying Assumptions: A Methodology and
Example”, Proc. of the Fifth National Conference on Artificial Intelligence, Philadelphia, PA,
August, 1986.

[44] C. Frank, "A Step Towards Automatic Documentation”, MIT/Al/WP-213, December,
1980.

[45] S.M. Levitin, "Toward a Richer Language for Describing Soﬂware Errors”, (B.S. Thesis),-
MIT/A1/WP-2170, June, 1985.

[46] K.M. Pitman, "Interfacing to the Programmer’s Apprentice”, MIT/Al/WP-244, February,
1983.

[47] H.B. Reubenstein, "A Requl.ements Analyst’'s Apprentice: A Proposal”, Ph.D, Thesis
Proposal, MIT Dept. of Elec. Eng. and Computer Sci., 1986 (in preparation).

[48] C. Rich, "Inspection Methods in Programming", MIT/Al/TR-604, (Ph.D. thesis), June,
1981.

[49] C. Rich, "A Formal Representation for Plans in the Programmer’s Apprentice", Proc. of 7th
Int. Joint Conf. on Artificial Intelligence, Vancouver, Canada, August, 1981, pp. 1044-1052.

[50] C. Rich and R.C. Waters, "Abstraction, Inspection and Debugging in Programming”,
MIT/AIM-634, June, 1981. _

~[51].C. Rich, "Knowledge Representation Languages and Predicate Calculus: How to Have Your -«
Cake and Eat It Too", Proc. of Second National Conf. on Artificial Intelligence, Plttsburgh
PA, August, 1982.
[52] C. Rich and R.C. Waters, "Formalizing Reusable Software Components”, Proceedmgs of the
/ ITT Workshop on Reusability in Programming, Newport, R1, September, 1983..

[53] C. Rich, "The Layered Architecture of a System for Reasoning about Programs", Proc. of
the 9th Int. Joint Conf. on Artificial Intelligence, Los Angeles, CA, August, 1985, pp.
540-546.

[54] D. Shapiro, "Sniffer: a System that Understands Bugs", (M.S. Thesis), MIT/AIM-638, June,
1981.

[55] H.E. Shrobe, "Explicit Control of Reasoning in the Programmer’s Apprentice”, Proc. of 4th
Int. Conf. on Automated Deduction, February, 1979,

[56] H.E. Shrobe, "Dependency Directed Reasoning for Complex Program Understanding”,
(Ph.D. Thesis), MIT/AI/TR-503, April, 1979,

Reguirements Apprentice 24

[57] H.E. Shrobe "Common-Scnse Reasoning About Side Effects to Complex Data Structures”,
Proc. of 6th Int. Joint Conf. on Artificial Intelligence. T'okyo. Japan, August, 1979.

[58] B.K. Steele. "An Accountable Source-lo-Source Transformation System”, (M.S. Thesis),
MIT/A1/TR-636. June 1981,

[59] E.K. Turrisi, "Chapter and Verse Program Description”, MIT/Al/WP-256, (B.S. Thesis),
June, 1984,

[60] R.C. Waters. "Automatic Analysis of the Logical Structure of Programs”. MIT/AI/TR-492,
(Ph.D. Thesis), December, 1978.

[61] R.C. Waters, "A Method for Analyzing Loop Programs”, /EEE Trans. on Software Eng.,
Vol. SE-5, No. 3, May 1979, pp. 237-247.

[62] R.C. Waters, "The Programmer’'s Apprentice: A Session with KBEmacs", /EEE Trans. on
Software Eng., Vol. 11, No. 11, pp. 1296-1320, November, 1985.

[63] R.C. Waters, "KBEmacs: A Step Toward the Programmer’s Apprentice”, MIT/Al/T R-753,
May, 1985

[64] R.C. Waters, "K BEmacs: Where's the AI?", A/ Magazine, Vol. 7, No. 1, Spring 1986.

[65} R.C. Waters, "Program Translation via Abstraction and Reimplementation”, /EEE Trans.
on Software Eng., to appear.

[66] J. Wertheimer, "A Library of Programming Knowledge for Implementing Rule Systems”,
(M.S. Thesis), Elec. Eng. and Comp. Sci. Dept., Mass. Inst. of Tech., 1986. to appear

[67] L.M. Zelinka, "An Empirical Study of Program Modification Histories", MIT/Al/WP-240,
February, 1983.

[68] L.M. Zelinka, " Automated Program Recognition”, MIT/AI/TR-904, (M.S. Thesis), August,

1986.

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project _
Document Control Form Date: /07 3¢ /95

Report# A\M- 907

Each of the following should be identified by a checkmark:
Originating Department:

73(Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

[J Technical Report (TR) E{ Technical Memo (TM)
O other:

Document Information Number of pages: 25(3 "M@S)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
IZ(Single-sided or [0 Single-sided or
O Double-sided X Double-sided
Print type:
[0 Typewriter [0 offset Press Laser Print
[inikdetPrinter [[] Unknown [J other.

Check each if included with document:

ﬁDOD Form (L) O Funding Agent Form O cover Page
J spine O Printers Notes O Photo negatives
O oOther:

Page Data:

Blank Pagesy page numben:

Photographs/Tonal Material ey pege numben.

Other (o descripiontpege numben;
Description : Page Number:

Lmace mae: (1-95) undspTrree EAcE, [~
(26-21) Seancomrral, 000, TRETS ()

Scanning Agent Signoff: q _
Date Received: _/0/J6/ 95 Date Scanned: _I|, 1 €7 9€ Date Retuned: N (1,9

\) N H
Scanning Agent Signature: QV”(M N '@0/(04

Rev /94 DSALCS Document Control Form cstiform.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ
REPORT DOCUMENTATION PAGE BEFORE COMPLETINOEORM
1. REPORT NUMBER 2. GOVTY ACCESSION NO.l| 3. RECIPIENT'S CATALOG NUMBER
A.I. Memo 907 AD-A|p 23|
4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Towards a Requirements Apprentice:

A.T. Memo
On the Boundary Between Informal and T ©
Formal Specifications §. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Charles Rich & Richard C. Waters N00014-85-K-0124
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency July, 1986
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209) 25

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 8. SECURITY CL ASS. (of thie report)
Office of Naval Research

. UNCLASSIFIED
Information Systems

Arlington, VA 22217 (1T} 25&{-35{'{""‘”’°°""°'"°"‘°

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tNe abetract entered in Block 20, {{ dilterent frem Repert)

18. SUPPLEMENTARY NOTES

None

18. KEY WORDS (Continue on reverse side 11 necessary and | ity by block ber)
Programmer's Apprentice Cliches
Knowledge Acquisition Informality
Requirements Specification

20. ABSTRACT (Continue on reverse elde if 'y and identity by beck ber)

Requirements acquisition is one of the most important and least
well supported parts of the software development process. The
Requirements Apprentice(RA) will assist a human analyst in the
creation and modification of software requirements. Unlike currenﬁ
requirements analysis tools, which assume a formal description
language, the focus of the RA is on the boundary between informal

and formal specifications. The RA is intended to support the
(continuedl

DD , 55", 1473 eoimion oF 1 wov €8 1s oBsoLETE UNCLASSIFIED

S/N 0:02-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bnterec

ABSTRACT CONTINUED

earliest phases of creating a requirement, in which incompleteness,
ambiguity, and contradiction are inevitable features.

From an artificial intelligence persoective, the central problem
the RA faces is one of knowledge acquisition. It has to develop a
coherent internal representation from an initial set of disorganized
statements. To do so, the RA will rely on a variety of techniques,
including dependency-directed reasoning, hybrid knowledge representa-
tion, and the reuse of common forms (cliches).

The Requirements Apprentice is being developed in the context of
the Programmer's Apprentice project, whose overall goal is the
creation of an intelligent assistant for all aspects of software
development.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

