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Abstract

For precise robot control, endpoint compliance strategics utilize fcedback from a
force sensor located near the lool/workpicee interface.  Such endpoint force control
systems have been observed in the laboratory to be limited to unsatisfactory closed-loop
performance.  This paper discusses the particular dynamic properties of robot systems
which can lead to instability and limit performance. A series of lumped-parameter models
is developed in an effort to predict the closed-loop dynamics of a force-controlled single-
axis arm. The models include some effects of robot structural dynamics, sensor
compliance. and workpiecc dynamics. The qualitative analysis shows that the robot
dynamics contribute to force-controlled instability. Recommendations are made for
models to be used in control system design.
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Introduction

Certain robot tasks demand precise interaction between the manipulator and its
environment.  Among these are many of the operations required in the mechanical
assembly process.  Strategies for the exccution of such tasks involve controlling the
relationship between endpoint forces and displacements under the environmentally-
imposed constraints.  This endpoint compliance can be implemented in many different
schemes. Whitney [9] provides an overview of these.

Endpoint force control strategics depend upon force signals measured by a wrist
sensor. The sensor output is fed back to the controller to alter the system’s performance.
Many such closed-loop systems have been built using various force control algorithms, and
many stability problems have becn obscrved. A theorctical treatment of environmentally-
imposed constraints is provided by Mason [5], who also suggests a control methodology to
augment these "natural” constraints with an appropriate set of "artificial” constraints.
Raibert and Craig [6] developed a hybrid control architecture capable of implementing
Mason’s theory. Salisbury [8] showed that an end effector’s stiffness could be controlled in
Cartesian coordinates using an appropriately-formed joint stiffness matrix.

Active force control systems that have been implemented to test these strategies have
demonstrated dynamic stability problems. Historically, some instabilities have been caused
by digital sampling, and Whitney [9] discusses these conditions. Researchers have also
observed the effects of unmodeled (uncompensated) nonlinearities, such as friction or
backlash [4].  Raibert and Craig[6] implemented their hybrid controller and found
sustained oscillations present in the controlled system. Instabilities have been observed in
the operation of both of the force-controlled robots currently in usc at the MIT Artificial
Intelligence Laboratory. These robots include a PUMA arm and the new MIT Precision
Assembly Robot.  Both arms display performance differences when the workpiece
(environment) charactceristics arc changed.

Roberts [7] investigated the effect of wrist sensor stiffness on the closed-loop system
dynamics; he also included drive stiffness (transmission compliance) in his dynamic model.
Transmission compliance causes the joint actuators and wrist sensors to be noncolocated, a
condition discussed in detail by Gevarter [3].  Cannon [1] has investigated the similar
problem of the position control of a flexible arm with endpoint sensing. He has shown that
a high-order compensator is able to stabilize the system, but with limited bandwidth and
high sensitivity to paramcter changes.

Researchers have named many suspected causes of the instabilities observed in force-

controlled robot systems. Among these are: low digital sampling rate, filtering, workpiece
dynamics, environment stiffness, actuator bandwidth, sensor dynamics, arm flexibility,



impact forces upon tool/workpiece contact, and drive train backlash or friction. This paper
addresses the effects of arm, sensor, and workpicce dynamics.  Using conventional
modeling and analysis techniques, it is demonstrated that when the arm flexibility gives rise
to a vibratory mode within the desired closed-loop bandwidth, instability can occur. In
particular, a simple, onc-axis force control algorithm exhibits stable behavior when the
higher-order dynamics of the arm can be neglected, and it can be unstable if those effects
arc significant. This is believed to be the cause of the instabilities observed in the robots at
the MIT Al Laboratory.

Unstable behavior often takes the form of a limit cycle where the robot is making and
breaking contact with the workpicccl. The discontinuous nature of this response makes the
system difficult to model using linear elements. However, for the purposes of controller
design, we will neglect the discontinuity and study linear system models.  Nonlincar
simulations suggest that if the lincarized system has sufficient damping, then neglecting the
discontinuity is justified. However, if the linearized system has unstable or highly
oscillatory closed-loop poles, then the discontinuity should be included in the model so that
limit cycles can be predicted in simulation. |

Rigid Body Robot Model

To begin with a simple case, let us consider the robot? to be a rigid body, with no
vibrational modes. Let us also consider the workpiece to be rigid, having no dynamics.
The sensor connects the two with some compliance, as shown in Figure 1.

We model the robot as a mass with a damper to ground. The mass m_ represents the
effective moving mass of the arm. The viscous damper b _is chosen to give the appropriate
rigid body mode to the unattached robot. The sensor has stiffness & s and damping bs. The
workpiece is shown as a "ground state”. The robot actuator is represented by the input
force /and the state variable x_ measures the position of the robot mass.

The open-loop dynamics of this simple system are described by the following transfer
function:
X0 1
Hs) — ms + (b, + b)s+ k,

In this paper, the terms workpiece and environment arc used interchangeably. 'The workpicee is the
component of the environment contacted by the end effector of the force-controlled robot systen.

2 . e .
I'hroughout the model development, the term robot refers to the arm itself. "The term robot systent refers
to the total system, compriscd of the robot. sensor, workpicce, and controller.
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Figure I: Rigid body robot model with compliant sensor and rigid workpiece.
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Figure 2: Block diagram for the controller of Figure 1.

Since this robot system is to be controlled to maintain a desired contact force, we must
recognize that the closed-loop system output variable is the force across the sensor, the
contact force F o

F =kx
c sr
We will now implement the simple proportional force control law:
F= kj(Fd —F) (kfz 0)

which states that the actuator force should be some nonnegative force feedback gain &k
times the difference between some desired contact force F P and the actual contact force.
This control law is embodied in the block diagram of Figure 2. The closed-loop transfer
{function then becomes

Fc(s) B k ik

FAS — ms" + (b, + b)s + k(1+k)

The control loop modifies the characteristic equation only in the stiffness term. The
force control for this simple case works like a position servo system. This could have been
predicted from the model in Figure 1 by noting that the contact force depends solely upon
the robot position x..




For completeness, let us look at the root locus plot for this system. Figure 3 shows
the positions in the s-plane of the roots of the closed-loop characteristic equation as the
force feedback gain & varies®. For k,=0, the roots are at the open-loop poles. The loci
show that as the gain is increased, the natural frequency increases, and the damping ratio
decreascs, but the system remains stable. In fact, kfczm be chosen to give the controlled
system dcsirable response characteristics.

Im s-plane

N

Figure 3: Root locus plot shape for the controller of Figure 1.

Include Workpiece Dynamics

The simple robot system of Figure 1 has been shown to be unconditionally stable (for
k.> 0). Force controlled systems, however, have been observed to exhibit variations in
dgnamic behavior depending upon the characteristics of the workpiece with which the
robot is in contact. It is with this phenomenon in mind that the robot system model is
augmented to include workpiece dynamics as shown in Figure 4.

3["01‘ this qualitative analysis, the model parameter values have been chosen only to plot root locus shapes
representative of robot systems. ‘They do not correspond to data taken from any specific robot.  IFor this
reason, the plots, do not contain numerical markings on the axcs,
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Figure 4: Rigid body robot model including workpiece dynamics.
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Figure 5: Block diagram for the controller of Figure 4.

This two-mass model includes the same robot and sensor models used above, with
the workpiece now represented by a mass m ., The workpicce is supported by a spring and
damper to ground with parameters & and b, respectively. The new state variable x
mcasures the position of the workpicce mass.

The open-loop transfer functions of this two degree-of-freedom system are:

X0 _ m s+ (b +b)s + (k +k)
F(s) <4M-order characteristic polynomial>
X)) bs+ k.

F(s) — <4M-order characteristic polynomial>
where
<4M-grder characteristic polynomial> =



. ) ! kel 12
[m s+ (b +b)s+ k] Im S+(b+b )s+(k+k )] — [bs+k]

The output variable is again the contact force FC, which is the force across the sensor, given
by

Fc - ks(xr - xw)‘

If we now implement the same simple force controller, the control law remains
unchanged.

F= kf(lfd —F) (kfz 0)
The block diagram for this control system is shown in Figure 5. Note that the feedforward
path includes the difference between the two open-loop transfer functions.

The root locus for this system is plotted in Figure 6 as the force feedback gain k,is
varied. There are four open-loop poles and two open-loop zeros. The plot then still has
two asymplotes, at +90°. The shape of this root locus plot tells us that even for high values
of gain, the system has stable roots. Therefore, while the characteristics of the workpiece
affect the dynamics of the robot system, they do not cause unstable behavior.

¢
.
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Figure 6: Root locus plot shape for the controller of Figure 4.



Include Robot Dynamics

Since the addition of the workpiece dynamics to the simple robot system model did
not result in the observed instability, we will augment our system with a more complex
robot model. If we wish 10 include both the rigid-body and first vibratory modes of the
arm, then the robot alone must be represented by two masses.

Figure 7 shows (he new system model. The total robot mass is now split between m,
and m,. The spring and damper with values kz and [)2 sct the frequency and damping of
the robot’s first mode, while the damper to ground, b, primarily governs the rigid-body
mode. The stiffness between the robot masses could be the drive train or transmission
stilfness, or it could be the structural stiffness of a link. The masses m, and m, would then
be chosen accordingly. The sensor and workpicce are modeled in the same manner as in
Figure 4. The three state variables x,, x,, and x, measurc the positions of the masses m,
myand m .

This three-mass model has the following open-loop transfer functions:

X [(s) B <ah-order numerator polynomial>

is) <6M-order characteristic polynomial>

X (s) B 3"-order numerator polynomial>

() — <6M-order characteristic polynomial>

X(s) <2"order numerator polynomial>

Hs) — <6M-order characteristic polynomial>
where

<4M-order numerator polynomial> =
[mzs*2+(b2+ b)s+(k,+ k)] [mws2 +(b+b s+ (kA k) — [bs+ ksj2

3'-order numerator polynomiald =
[m 2+ (b4 b )s+(k 4k l[bys+ k)]

2"-order numerator polynomial> =
[b,s+kJ[bgs+ ké]

<6M-order characteristic polynomial> =
[, 2+ (b, + b )s+ k J [m (b, +b)s+(k,+ k) Im S+(b A b )s+(k +k )]
= [mws2+(b +b, )5+ (k +k )Ib s+k2]2 [m152+(l) +b2)s+k2]{b s+ k )
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Figure 7:  Robot system model including robot first mode and workpiece dynamics.
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Figure 8: Block diagram for the controller of Figure 7.

The contact force is again the force across &

F o= kx,— x,)
and the simple force control law is
F=kJF,—F) (k2 0)

The block diagram for this controller, Figure 8, shows again that the feedforward path
takes the difference between two open-loop transfer functions. This time, however, both of
these transfer functions represent positions remote from the actuator force.

The root locus plot, Figure 9, shows a very interesting effect. The system is only
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conditionally stable. For low values of k,, the system is stable; for high values of kﬁ the
system is unstable; and for some critical value of the force feedback gain, the system is only
marginally stable. The +60° asymptotes result [rom the system’s having six open-loop
poles, but only three open-loop zeros.  Inspection of the open-loop transfer functions
confirms this: the numerator of the transfer function relating X 2(s) to /(s) is a third-order
polynomial in s.
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Figure 9: Root locus plot shape for the controller of Figure 7.

To provide some physical interpretation to this effect, note again that the input force
Fis applicd to m,, which moves with x,. The sensor is attached to the robot at m,, which
moves with x,. Here the controller attempts to regulate the contact force through the
my-byk , dynamic system. In the previous two examples, stability was achieved while the
controller regulated the contact force on the single robot mass.
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Exclude Workpiece Dynamics

To determine the influence of the workpiece dynamic characteristics on this system,
their effects are now removed [rom the model. Figure 10 shows the workpiece modeled
rigidly as a "wall". The robot model still includes both the rigid-body and first vibration
modes. The sensor consists of a spring and damper between the robot and the workpiece.
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Figure 10: Robot system model including robot first mode and rigid workpiece.
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Tigure 11: Block diagram for the controller of Figure 10.

This simpler two-mass model has only two state variables, x, and X5 which measure
the displacements of the two robot masses. The two open-loop transfer functions are:

X(s) )71232 + (b, +b)s + (ks+ k,)
F(s) " <new 4™-order characteristic polynomial>
X () b,s + k,

I1(s) <new 4P-order characteristic polynomial>

where
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<new 4M-order characteristic polynomial> =
[, 2+ (b,+b)s+ k) [mys+(b,+ b)s+(k,+ k)| = [bys+ k]

The contact force is given by

Fc = ksx2
and the control law will again be
F=k(F,~F) (k,20)

The block diagram for this controller, Figure 11, shows that no differences in open-loop
transfer functions are being taken,

The root locus plot shape is shown in Figure 12, Again, the system is conditionally
stable, as this time there is one open-loop zero and four poles. The instability is therefore
shown to be present regardless of the workpiece dynamics (which may have been suspect in
the above case of the model in Figure 7).
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Figure 12: Root locus plot shape for the controller of Figure 10.

Commparison of the two-mass model of Figure 4 with that of Figure 10 shows that the
models are basically the same (note the different subscripts), and the equations are
therefore of the same form. One controlled system is stable (Figure 6), however, while the
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other is not (Figurc 12). The difference is only in the placement of the scnsor. In the
former, the feedback comes from the spring between the masses. In the latter, the feedback
signal comes from the spring at the second mass to ground.

Conclusion

A series of lumped-parameter models has been developed in order to understand the
effects of robot and workpicce dynamics on the stability of simple force-controlled systems.

An instability has been shown to exist for robot models which include representation
of a first resonant mode for the arm. The mode modeled can be attributed to cither drive-
train or structural compliance (or both). The potential for instability is present because the
scnsor is then located at a point remote from the actuator. The controller attempts to
regulate contact force through a dynamic system. (Compare the systems of Figures 7 and’
10 with those of Figures 1 and 4.)

It must be noted, however, that there are many causes of force-controlled instabilities.
The effect presented in this paper, that of robot structural dynamics, is an important
problem in some systems. If the desired closed-loop bandwidth is low compared to the first
mode frequency of the arm, then the target performance may be achicvable. However, if
we require a machine capable of higher performance, we must also investigate other issues
carcfully. In particular, the workpiece dynamics, actuator limitations, and controller
implementation must be considered.

The effect of the workpiece dynamics is as yet unclear. Observation of force-
controlled robotic systems suggests that the workpiece, when coupled through the force
sensor, can significantly change the dynamics. Certainly if the workpiece were very
compliant and extremely light, there could be no force across the sensor, degenerating the
closed-loop system to the open-loop case, which of course is stable. In this paper we have
demonstrated the opposite extreme, that when the workpiece is modeled as a rigid wall, the
system can be unstable. The sensor and workpiece (environment) dynamics are therefore
important and should be modeled. Limited actuator bandwidth, filtering, and digital
controller implementation can also causc instability. These performance limitations must
also be included in the system model that is uscd for controller design.

We have not addressed in this paper the cffects of the discontinuity at the workpiece
contact, the associated impact forces which occur, axis friction, or joint backlash.
Nonlinear simulations suggest, however, that these effccts can, under some conditions, lead
to limit cycles in the otherwise stable linear systems, but they cannot stabilize the unstable
linear systems. The stability bounds derived using the lincar models should be used to set
upper limits on the controller gains, which should then be decreased if limit cycles are
observed under operating conditions.
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The modcling and analysis tcchniques presented are tools to aid in control system
design. For their accurate use, however, the models must sufficiently describe the actual
hardware. A topic of on-going research is the comparison of these model predictions with
experimental results. In particular, it is not clear how all the model parameters should be
chosen in order to assure agrecment between the analytical model and the experimental
hardware.

References

(1] Cannon, R.H. and Schmitz, E.
Initial Experiments on the End-Point Control of a Flexible One-Link Robot.
The [nternational Journal of Robotics Research , Fall 1984, Vol. 3, No. 3, pp 62-75.

[2] Eppinger, S.D., and Scering, W.P.
On Dynamic Modecls of Robot Force Control.
In Proceedings of International Conference on Robotics and Automation. 1EEE,
April 1986.

[31  Gevarter, W.B.
Basic Relations for Control of Flexible Vehicles.
AlAA Journal , April 1970, Vol. 8, No. 4, pp 666-672.

[4] Luh, Y.H.S., Fisher, W.D., and Paul, R.P.C.
Joint Torque Control by a Dircct Feedback for Industrial Robots.
IEEE Transactions on Automatic Control , February 1983, Vol. AC-28, No. 2.

[5] Mason, M.T.
Compliance and Force Control For Computer Controlled Manipulators.
In Transactions on Systems, Man, and Cybernetics. 1EEE, June 1981, Vol. SMC-11,
No. 6, pp 418-432.

[6] Raibert, M.H. and Craig, J.J.
Hybrid Position/Force Control of Manipulators.
In Journal of Dynamic Systems, Measurement and Control. ASME, June 1981, Vol.
103, No. 2.

(7] Roberts, R.K., Paul, R.P., and Hillberry, B.M.
The Effect of Wrist Force Sensor Stiffness on the Control of Robot Manipulators.
In Proceedings of International Conference on Robotics and Automation. 1EEE,
March 1985.



NuE |
* Historical Perspective and State of the Artin mm Oonunl.

.15 |

~ Salisbury, J.K. )
- Active Stiffness Control ofa Mampulamm Cam pordinates
In Proceedings of 19' Conference on Decision. m# birol.

1980.
Whitney, DB.
- mwn IEEE,

In Proceedings of IntematM Cmm' 0
Marchl%ﬁ R




Tius blank page was inserted to preserve pagination.




CS-TR Scanning Project _
Document Control Form Date: [0/ 3% | 9s

Report# __ Alrn- 410

Each of the following should be identified by a checkmark:
Originating Department:

W Artificial Intellegence Laboratory (Al)
[J Laboratory for Computer Science (LCS)

Document Type:

[ Technical Report (TR) X Technical Memo (TM)
O other:

Document Information  Number of pages: _§ (lg-f‘mﬁcss)

= Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
jZL Single-sided or O Single-sided or
O Double-sided M Double-sided
Print type:
] Typewriter [ oOffset Press ]Z[ Laser Print
[C] inkletPrinter [] Unknown [ other:

Check each if included with document:

0 DOD Form O Funding Agent Form O coverPage
O spine O Printers Notes O Photo negatives
O Other:
Page Data:
Blank Pageswy page numben:

Photographs/Tonal Material ey page numben

Other (wow descriptionpege numben:
Description : Page Number:

TragE MAC: ,‘(( D) %W)AVD T TLe CRGE I ]S’J

<

(6§ ) Seanceciinl, TRGTS (7

Scanning Agent Signoff: _
Date Received: [9/J¢ /35 Date Scanned: _I/ /& /%S Date Retumed: _[/_ 1119

A
, |
Scanning Agent Signature: /)V‘N’//ﬂ*}\) 9’\) ! 417’{‘*

Rev /94 DSALCS Document Control Form cstiform.ved




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94



