MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo No. 911 September, 1986

Boolean Classes

David McAllester
Ramin Zabih

Abstract. Object-oriented programming languages all involve the notions of class
and object. We extend the notion of class so that any Boolean combination of
classes is also a class. Boolean classes allow greater precision and conciseness in
naming the class of objects governed by a particular method. A class can be viewed
as a predicate which is either true or false of any given object. Unlike predicates
however classes have an inheritance hierarchy which is known at compile time.
Boolean classes extend the notion of class, making classes more like predicates,
while preserving the compile time computable inheritance hierarchy.

Acknowledgments. This paper describes research done at the Artificial Intelli-
gence Laboratory at the Massachusetts Institute of Technology, supported by the
Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-86-K-0180. Ramin Zabih is supported by a fel-
lowship from the Fannie and John Hertz Foundation. This is a revised version of a
paper to appear in the 1986 OOPSLA Conference Proceedings.

(© Massachusetts Institute of Technology 1986

Boolean Classes 1
1. Introduction

Object-oriented programming languages such as CommonLoops [1], SmallTalk
[2] and Flavors [3] all involve the notions of class and object. A given object can be
“in” a class C and thus “inherit” information attached to C. In this paper we view
classes as predicates; if an object z is in a class C then we say that C is true of r;ifz
is not in C then we say that C is false of z. In Flavors and in CommonLoops a class
C is true of = just in case the expression (typep = C) returns T. Unlike ordinary
lambda predicates, however, the classes of object-oriented programming languages
have a (compile time) computable inheritance relation. Given any two classes C
and C, there is a uniform way to determine if Cy inherits from Ca. Object-oriented
programs specify behavior in terms of classes. A behavioral specification, such
as how an object should respond to a message, is associated with (“governs”) a
particular class C. If C is true of an object z then the specifications associated with
C apply to z.

We wish to extend the notion of class so that any Boolean combination of classes
is also a class. Boolean classes allow greater precision and conciseness in naming
the class of objects governed by a particular specification. For example, consider
a battlefield video-game with the classes TARGET and PROJECTILE where targets
are things like tanks, ships and planes while projectiles are things like missiles,
torpedoes, or cannon shells. Suppose that the game also has the classes LAND-
OBJECT, AIR-OBJECT and SEA-OBJECT. Now consider a particular procedure for
displaying the explosion of a surface target, i.e. a target which is not an air object.
The class governed by the explosion display procedure can be written as

(:and TARGET (:not AIR-OBJECT))
The above class need not be mentioned in any user defined inheritance relationships.
Boolean classes (and the associated specifications) are automatically placed at the
appropriate location in the inheritance hierarchy.

1.1 Boolean Classes vs. Simple Multiple Inheritance

Boolean classes make it easier to specify and maintain inheritance hierarchies.
In a certain sense any object-oriented language with multiple inheritance can sim-
ulate Boolean classes; any inheritance hierarchy involving Boolean classes can be
expressed as a hierarchy among non-Boolean classes (see below). With Boolean
classes however the construction of this inheritance hierarchy can be largely auto-
mated and the hierarchy can be automatically updated in non-trivial ways when
new classes are introduced and when new inheritance relations are given by the
user.

Boolean classes can be simulated in any system with multiple inheritance by
manually installing the appropriate inheritance relations. For example consider the
Boolean class (:or C; C5). This class corresponds to the set of all things which are
either in class C; or in class C3. The Boolean class (:or C; C3) can be simulated
with a “primitive” class OR-C1-C2 where the user specifies that both C; and C;
inherit from the class OR-C1-C2. Once this is done any class which inherits from

Boolean Classes 2

either C; or Cp will necessarily inherit from OR-C1-C2. Similarly, consider the class
(:and C; C3) which corresponds to the set of all things which are in both the class
C; and the class Cz. This class can be simulated with a primitive class AND-C1-C2
where for each class Cs that inherits from both C; and C; the user specifies that
C3 also inherits from AND-C1-C2.

Note that simulating the class (:and C; C2) requires the user to know about all
classes that inherit from both €y and Cz. This is an unreasonable requirement for
large systems where different classes are constructed at different times by different
users. With genuine Boolean classes the inheritance relationships for the class
(:and C; C3) are constructed automatically by the system so the user need not
know all the classes that inherit from both C; and C.

1.2 Technical Difficulties

There are two technical difficulties involving Boolean classes: the uninstantiable
class problem and the modularity breakdown problem. The uninstantiable class
problem involves classes which are inherently uninstantiable. For example the class
(:or C; C;) cannot be directly instantiated; as we shall see, if z is created by
instantiating (:or C; C2) it is not appropriate for to be a member of C;. Neither is
it appropriate for £ to be a member of C;. We solve the uninstantiable class problem
by identifying those classes which are inherently uninstantiable and specifying that
any attempt to directly instantiate an uninstantiable class should signal an error.

The modularity breakdown problem occurs when a class written for one system
is inherited by a class in a totally unrelated system. For example consider the class
(:not C) which includes all objects which are not in class C. The class (:not C),
and any behavioral specification associated with it, will be inherited by a totally
unrelated class D. The modularity breakdown problem can be solved with simple
restrictions on inheritance specifications and on the classes which are allowed to
carry behavioral specifications.

This paper begins with a formal specification for Boolean classes. We then give
an algorithm for constructing inheritance relations and identifying uninstantiable
classes, and present a rigorous proof of the correctness of this procedure. We also
formally prove that the modularity breakdown problem is solved via certain simple
restrictions on the inheritance hierarchy and on the classes which are allowed to
carry behavioral specifications. We do not discuss the nature of behavioral spec-
ifications or the way that specifications are combined when several specifications
apply to the same object. '

2. Formal Specification

We assume that classes are named with class ezpressions where a class expres-
sion is either a class symbol or a Boolean combination of other class expressions.

Definition: A class expression is either a class symbol or an expression of the
form (:not E), (zor E,...E,) or (:and E;...E,) where E, E,, ... E, are

Booleah Classes 3

other class expressions. A literal is either a class symbol C or the negation of
a class symbol, i.e. (:not C).

We view classes as predicates: given a class C and an object z, if z is in the
class C then we say that C is true of z and if = is not in C' then we say that C
is false of z. Boolean class expressions are interpreted as predicates in the obvi-
ous way: the class expression (:not E) is true of an object z just in case E is
false of z; (zor E; E... .E;) is true of z just in case some E; is true of z, and
(:and E; E;...E,) is true of z just in case all of the classes E; are true of z.

In defining a set of classes a programmer provides a set of class expressions
and a specified inheritance hierarchy for those class expressions. In languages such
as Flavors and CommonLoops the inheritance hierarchy is specified by associating
each class with a list of “superior” or “included” classes. For theoretical generality
and conceptual simplicity we generalize inheritance specifications to allow for an
arbitrary set of implications of a certain form.

Definition: An inheritance specification is a finite set of implications of the
form (:implies C' E) where C is a class symbol and E is any class expression.

Intuitively an implication of the form (:implies C E) says that for any object z,
if C is true of z then E should be true of z, i.e. every instance of C should be an
instance of E, and thus that C inherits from E.

The standard specifications of inheritance relations can be easily translated into
implications of the above form. More specifically, to state that a class C inherits
from the “components” C;,C5...C,, one uses the implications

(:implies C Cy)
(:implies C C,)

(:implies C Cy) '

If a class C inherits from a class C’ then we say that C’ is a generalization of
C. Given an inheritance specification I and a class C we would like to construct
the set of generalizations of the class C, i.e. the set of all class symbols which
C inherits from.T In languages such as Flavors and CommonLoops the process of
computing all of the generalizations of a given class is basically a transitive closure
operation: one finds all immediate generalizations, the immediate generalizations
of those generalizations, and so on.

Unfortunately computing the set of generalizations of a class is more complex
when Boolean expressions are used in the inheritance specification. For example
consider the following inheritance specification:

(:implies C; (:or Cz C3))

TFor now we consider only those generalizations which are class symbols; Boolean gen-
eralizations will be discussed later.

Boolean Classes 4

(:implies 02 C4)

(:implies C3 C4)
Let = be an arbitrary object such that C; is true of z. The first implication says
that either Cy or Cj is true of z. In either case the above implications state that
C4 must be true of z. In short, if C; is true of an object then Cjy is true of that
object. Thus C, is a generalization of C.

An inheritance specification I can be viewed as a set of formulas of propositional
logic where each formula is true of all objects. To compute the set of generalizations
of a class C one must examine the logical consequences of the formulas in I.

Definition: Let C be a class symbol and let E be a class expression. We
say that E is a generalization of C under an inheritance specification I (or
that C inherits from E under I) if the expression (:implies C E) is a logical
consequence of the conjunction of all the implications in I.

The above definition treats the inheritance specification I as a formula of Boolean
logic (the conjunction of all the implications in I). It is natural to ask whether
any Boolean formula could be used as an inheritance specification. The answer is
no; to avoid the modularity breakdown problem we have intentionally restricted
the inheritance hierarchy to be a set of implications of a certain form. However the
restrictions on the inheritance hierarchy are extremely weak; most Boolean formulas
can be faithfully translated into a legal inheritance hierarchy and there is a simple
semantic characterization of those formulas which can be translated into a legal
inheritance specification.

The semantic characterization of the formulas which can be translated into
inheritance specifications involves the notion of a “lost” object. We say that an
object z is lost if every class symbol is false of . Note that if I is a legal inheritance
specification and z is a lost object then r satisfies every implication in I; z satisfies
an implication of the form (:implies C E) because the antecedent C is false of z.
Since lost objects satisfy every implication in any inheritance specification, every
inheritance specification has a model and thus every inheritance specification is
logically consistent (one can never derive a contradiction from the formulas in an
inheritance specification.) It turns out that any Boolean formula which is satisfied
by lost objects can be translated into a legal inheritance specification.

Lemma I. Let B be any Boolean expression. If B is true of lost objects
then there is an inheritance specification I such that the conjunction of all
implications in I is logically equivalent to B.

Proof: Suppose that B is true of lost objects and let E be the conjunctive
normal form of B. The expression E is a conjunction of disjunctions of liter-
als where every disjunction of literals. Note that each disjunction in £ must
contain at least one negative literal because a disjunction which contains only
positive literals is false on lost objects and if E contained such a disjunction
then E would be false on lost objects violating the assumption that B is true

Boolean Classes 5

of lost objects. Since every disjunction in E contains a negative literal, ev-
ery disjunction can be written as (:or (:not C) L;...L,) which is logically
equivalent to the implication (:implies C (:or Ly ...Ly)). (Actually the dis-
junctive clause might contain only the single literal (:not C) in which case it
is equivalent to the implication (:implies C (:not C)).) Thus E is equivalent
to a conjunction of implications of the desired form.

The requirement that lost objects satisfy inheritance specifications plays an impor-
tant role in the solution of the modularity breakdown problem.

2.1 Making Instances of a Class

In most object-oriented programming languages objects are created by “instan-
tiating” classes. If the object z was created by instantiating some class symbol C
then we will call z an instantiation of C. In this section we only consider instan-
tiations of class symbols. We do not allow a class expression E to be instantiated
directly. Instead, one can construct the inheritance specification (:implies C E)
for some new class symbol C and then one can instantiate C.

Class expressions introduce some subtleties in instantiation. In most object-
oriented languages, if = is an instantiation of a class C and E is any other class then
E is true of z just in case C inherits from E. Unfortunately this principle does not
hold when E can be a Boolean class expression. In particular it is possible for C
to inherit from neither E nor (:not E) but clearly either E or (:not E) must be
true of z. If z is an instantiation of C we must be careful to specify exactly which
classes are true of z. It suffices to specify the class symbols which contain z; to
determine if a Boolean expression E is true of z it suffices to know whether or not
each class symbol in E is true of z.

Specification: Let C be a class symbol, I be an inheritance specification, and
let = be an instantiation of C. For any class symbol C' we specify that C’ is
true of z just in case C’ is a generalization of C under I.

Now consider the case where C' does not inherit from either the class symbol
C’ or (:not C’). If z is an instantiation of C' then the above specification requires
that C' is false of z. This implies that (:not C') is true of z even though (:not C’)
is not a generalization of C.

2.2 Uninstantiable Classes

This section formally defines the notion of an uninstantiable class. A proce-
dure for identifying uninstantiable classes is given in a later section. A class is
uninstantiable if instantiations of that class would be “pathological”. Any attempt
to instantiate an uninstantiable class should generate an error.

Definition: We say that an object z violates an inheritance implication (:im-
plies C E) if C is true of z but E is false of z. Now let I be any inheritance

Boolean Classes 6

specification and let C be any class symbol. We say that C is uninstantiable
under I if an instantiation z of C would violate some implication in 1.

It is easy to see how uninstantiable classes arise. For example suppose that I
includes both the implications

(:implies C; C2)

and
(:implies Cy (:not C3))

Clearly any instantiation of C;would violate one of these implications.

A more interesting example, mentioned in the introduction, involves an inher-
itance specification containing the following single implication:

(:implies C; (:or Cz C3))

Under this inheritance specification neither C; nor C3 is a generalization of C}.
Both C, and C5 would be false of an instantiation z of C;. Thus an instantiation
of C; would violate the above inheritance specification which says if C; is true of z
then either Cy or C3 must be true of z.

2.3 Inheriting Methods and Instance Variables

We allow information to be attached to any class expression. For exam-
ple we might define a method that handles messages sent to objects in the class
(:or C; C;). Similarly one might declare that objects in a given class, such as
(:and C; (:not C3)), should all have a certain instance variable. In general we
will simply speak of “information” that is inherited by objects in a given class. We
assume that there is a finite set of tnformation bearing class expressions, i.e. class
expressions which either have method definitions or instance variables associated
with them.

Let C be a class symbol which is instantiable relative to an inheritance spec-
ification I. If z is an instantiation of C then the above specifications determine
the set of information bearing class expressions which are true of z. The same set
of information bearing classes applies to all instantiations of C so it is possible to
build a “method table” for the class C which summarizes all the information which
applies to instantiations of C (we are not concerned here with how information gets
combined).

To solve the modularity breakdown problem we place a simple restriction on
the class expressions that are allowed to carry information. Recall that an object =
is called lost if every class symbol C is false of z.

Specification: All information bearing class expressions must be false of lost
objects, i.e. lost objects do not inherit any information.

For example the class (:not AIR-OBJECT) should not carry information because
this class is true of lost objects. If the class (:not AIR-OBJECT) carried information

Boolean Classes 7

then that information would be inherited by classes in totally unrelated systems;
one would be faced with modularity breakdown.

Any attempt to associate information with a class expression that is true of
lost objects should generate an error. The following lemma establishes that the
above condition on information bearing classes together with the definition of a
legal inheritance specification solves the modularity breakdown problem.

Lemma II. Let I be an inheritance specification and let D be a set of infor-
mation bearing class expressions. If C is a class symbol which does not appear
in either I or D and if z is an instantiation of C then all information bearing
class expressions in D are false of z, i.e. = does not inherit any information
from D.

Proof: First we prove that C is the only class symbol that is is true of z. It is
sufficient to show that for every other class symbol C’, C’ is not a generalization
of C. To show that C’ is not a generalization of C we must show that there
exists a propositional model of inheritance specification I which makes C true
and C' false. Let y be an object such that C is true of y but no other class
symbol is true of y. In particular every antecedent of every implication in I is
false of y so y is a model of I which makes C true and C’ false.

Now since C is the only class symbol which is true of an instantiation z of C,
and since C does not appear in any information bearing class expression, an
information bearing class expression E is true of z just in case E is true of
lost objects. But since no information bearing class is true of lost objects, no
information bearing class is true of z.

3. Implementation

Unfortunately it can be difficult to compute the set of generalizations of a
given class under a given inheritance specification; the algorithm presented here
has an exponential worst case running time and we cannot expect to find a non-
exponential procedure. However the procedure presented here is exponential in the
number of “complex” implications in the inheritance hierarchy and in practice only
a very small fraction of the implications are complex. Furthermore the procedure is
modular: the time required to find all generalizations of a given class is not effected
by the presence of unrelated classes and inheritance specifications. Thus we expect
that the exponential worst case behavior will not be a problem in practice. First
we show that the problem of determining whether one class inherits from another
is co-NP complete and thus we cannot expect to find a non-exponential algorithm.

3.1 Determining Inheritance is Co-NP Complete
It is easy to show that determining whether or not a class symbol C inherits

from another class C’ under a specification I is co-NP complete. More specifically
one can reduce the problem of showing that a set of disjunctive clauses is unsatisfi-

Boolean Classes 8

able to the problem of determining whether the implication (:implies C C’) follows
from an inheritance specification I. Given a set B of disjunctive clauses let C, c’
and C" be symbols not occurring in B and let I be the inheritance specification
containing the implication (:implies C (:or C” C')) together with all implications
of the form (:implies C” E) where E is a clause in B. We will show that C’
follows from I and C just in case B is unsatisfiable. If B is unsatisfiable then I
implies (:not C") and thus I and C imply C’. On the other hand if B is satisfiable
then consider a model of B in which C" is true, C is true, and C’ is false. This
model satisfies all implications in I while making C true and C' false. Thus if B is
satisfiable then C’ does not follow from I and C.

3.2 Computing Inheritance

The system of Boolean classes described here has not yet been implemented.
However there is a relatively simple algorithm for determining whether a class is
instantiable and for determining the set of information bearing classes that are
generalizations of a given instantiable class. The first step in this algorithm is to
convert the inheritance specification I into canonical form.

Definition: An inheritance specification I is said to be in conjunctive normal
form if every implication in I has the form (:implies C (:or L; L, ...)) where
each L; is a literal.

We allow the disjunction in the consequent of an implication to contain only a
single literal, in which case the implication can be written as (:implies C L). Any
inheritance specification I can be converted to an expression in conjunctive normal
form. To see this recall that an inheritance specification I consists of implications
of the form (:implies C E) where C is a class symbol and E is a class expression.
The class expression E can be written in conjunctive normal form, i.e. E can be
written as:

(:and (:or Ly ... Li,n) (tor L2 ...L34) o)

The implication (:implies C E) can then be written as a set of implications of the
form
(:implies C (tor Lj,; ... Ljz»))

Of course converting an expression to conjunctive normal form requires an
exponential amount of work in general. However it seems unlikely that this would
be a problem in practice; the Boolean expressions involved should usually be given
in conjunctive normal form anyway.

Given an inheritance specification I we are now interested in determining which
class symbols are instantiable, and for each instantiable symbol C we are interested
in determining the set of class symbols which generalize C. To do this we assume
that the inheritance specification I has been converted to conjunctive normal form.
Implications of the form (:implies C L) will be called simple while implications
of the form (:implies C (:or L; L;...L,)) (for n > 1) will be called complez.

Boolean Classes 9

Current object-oriented programming languages only allow for simple inheritance
implications and these are indeed the easiest to process.

Definition: Let T be any set of literals and let I be an inheritance specification
in conjunctive normal form. The simple closure of T with respect to I is the
least set of literals T’ containing T such that if C is a class symbol in T’ and
(:implies C L) is a simple implication in I, then L is in 7.

To compute the simple closure of a set of literals T it is sufficient to compute
the transitive closure of the directed graph given by the simple implications in I.
The details of this computation are left to the reader. Now let C' be a class symbol.
Clearly every literal in the simple closure of the singleton set {C} is provable from
C and I. However, since I may contain complex implications there may be symbols
which follow from C and I but which are not in the simple closure of {C'}. To find
all symbols which follow from C we must enumerate models of C. A symbol c’
follows from C just in case C' is true in every model M of I such that C is true in
M.

A model of propositional formulas (expressions) is usually taken to be a truth
function which maps each symbol to either true or false. However, rather than
introduce truth functions on class symbols, we will represent a model by a set M
of class symbols; members of M are considered to be true while class symbols not
in M are taken to be false.

Definition: Let M be a set of class symbols. We say that a literal L is true
under M if either L is a symbol in M or L is of the form (:not C) where
C is not in M. Let I be an inheritance specification in conjunctive normal
form. The set M is called a model of I if for every implication of the form
(:implies C (:or Ly Ly...L,)), if C is in M then one of the literals L, is true
in M.

A symbol C inherits from a symbol C’ just in case the implication (:implies C C’)
is provable from I. But (:implies C C’) is provable from I just in case every
model of I which contains C also contains C’. More specifically, the intersection
of all models of I which contain C yields the set of all class symbols which are
generalizations of C. The following procedure enumerates models I which contain

C.

The procedure takes one explicit argument T which is a set of literals. The
procedure also makes use of the inheritance specification I. We will show that a
class symbol C' is a generalizations of C' under I just in case C’ is a member of
every model returned by the following function when applied to the singleton set

{C}.
Function: All-Models(T) takes a set of literals and produces a set of models.

1. [Initialization] Let T’ be the simple closure of T with respect to I.

Boolean Classes 10

2. [Detect inconsistency] If T” is inconsistent, i.e. if there is some symbol C in
T' such that (:not C) is also in T, then return the empty set (there are no
models of T).

3. [Choose complex implication] Let
(:implies C (:or Ly L;...Ly))
be a complex implication in I such that C is in T’ but none of the literals

Li,Ls,...Ly are in T'. If there is no such implication in I then return {M}
where M is the set of class symbols in T".

4. [Recurse| If there is such an implication in I then return

U All-models(T' U {L;})
1<1<n

Note that if there are no complex implications in I then All-models({C})
is either empty or contains exactly one model which is derived by computing the
simple closure T’ of the singleton set {C'}.

The above procedure can be made more efficient in several ways. The search for
a complex implication in step 3 can be optimized to avoid searching all implications
in I. Also, the set of literals T used in this procedure can be represented with a
hash table so that membership tests take unit time on average. The details of these
optimizations are left to the reader. It is important to note, however, that this
computation is only exponential in the number of complex implications of the form
specified in step 3. All that remains is to show that this algorithm produces all the
possible models.

Lemma III. Every element of All-Models({C?}) is a model of I which con-
tains C. Furthermore every model of I which contains C also contains (as a
subset) some element of All-Models({C}).

The above lemma implies that the intersection of the models in All-Mod-
els({C}) is equal to the intersection of all models of I which contain C. In other
words this intersection is the set of generalizations of C under I. The proof of this
lemma. is presented in the appendix.

If the above procedure returns the empty set when applied to the singleton set
{C} then there are no models of I which contain C and thus I implies (:not C) so
C is not instantiable. If the procedure returns a set of models then the intersection
of those models is the set of class symbols which are generalizations of C. Given
the set of symbols which are generalizations of C one can can consider a hypothet-
ical instantiation y of C. This hypothetical instantiation will satisfy every simple
implication in I, but there might be some complex implication which is violated by
y. If some implication is violated by y then C is uninstantiable. On the other hand
if every implication in I is satisfied by y then C is instantiable and we can compute
the set of information bearing class expressions that are true of the hypothetical
instantiation y.

Boolean Classes 11

4. Possible Extensions

For any predicate C one would like to be able to specify the behavior of func-
tions and methods when applied to objects that satisfy the predicate C. This can
be done in two different ways: one can write explicit conditionals in the code for
methods and functions or, for certain predicates, one can represent the predicate
C as a class and define methods for that class. Boolean classes expand the set of
predicates which can be represented as classes. It might be possible to extend the
class vocabulary even further so that other predicates can be represented as classes.
For example one might want to define the class of ships whose current momentum is
greater than 1000, or the class of missiles that are within ten miles of their targets.

Predicates can be divided into three groups. First there are instance ignoring
predicates. A predicate C is instance ignoring if the truth of C' on an object z
depends only on the class of z (the class that = is an instantiation of) and not
on any particular properties of the instance z. All boolean class expressions are
instance ignoring. Second there are instance sensitive time invariant predicates. A
predicate C is time invariant if the truth of C on an object = does not change over
time. Third, there are time varying predicates. A predicate C is time varying if
the truth of C on an object = changes over time. It is progressively more difficult to
extend the class vocabulary to these three types of predicates, because inheritance
information is available respectively at compile time, at object creation time and at
run time.

As an example of an instance sensitive predicate that is time invariant consider
a class COUPLING-CAPACITOR that contains those capacitor objects whose capaci-
tance is above a given threshold. We assume that the capacitance of a capacitor
is given at object creation time and never changes. Whenever a capacitor object is
created one could determine whether or not it is an instance of COUPLING-CAPACI-
TOR.

Time varying predicates are quite common and one could imagine specifying
methods in terms of classes defined by time varying predicates. It should be possible
to implement time varying classes by automatically converting the behavioral speci-
fications associated with classes into run-time conditionals in the code for methods.

The potential benefits and pitfalls of extending the class vocabulary to more
general kinds of predicates are not yet clear; we have not investigated the uninstan-
tiable class problem or the modularity breakdown problem for instance sensitive or
time varying classes. It seems likely that any implementation of instance sensitive or
time varying classes would involve in-line conditional tests in the code for methods.
Thus it is not clear that there is any advantage in representing these predicates as
classes as opposed to using these predicate in traditional in-line conditionals.

4.1 Acknowledgments

Richard Zippel helped persuade us to explore alternative ways of thinking about

Boolean Classes 12

object-oriented programming. Alan Bawden provided useful comments and insight.
The S-1 Project at Lawrence Livermore National Laboratory and Schlumberger
Palo Alto Research provided facilities that aided in preparing this paper.

5. Appendix: The Proof of Lemma Il
Consider the following procedure given in fhe third section of this paper.
Function: All-Models(T) takes a set of literals and produces a set of models.
1. [Initialization] Let T’ be the simple closure of T' with respect to I.

2. [Detect inconsistency] If T” is inconsistent, i.e. if there is some symbol C in
T’ such that (:not C) is also in T, then return the empty set (there are no
models of T).

3. [Choose complex implication] Let us assume that
(:implies C (tor Ly Ly...Ly,))
is a complex implication in I such that C is in T’ but none of the literals

Li,La,...Ly are in T. If there is no such implication in I then return {M}
where M is the set of class symbols in T".

4. [Recurse| If there is such an implication in I then return

U All-models(T’ U {L:})
1<i<n

Note that a recursive call in step 4 can return the empty set in which case
that recursive call does not contribute any models and has no effect on the result.
A recursive call returns the empty set if the set of literals passed to that call is
inconsistent with the inheritance specification I.

We wish to prove the following lemma:
Lemma III.
(a) Every element of All-Models({C}) is a model of I which contains C.

(b) Every model of I which contains C also contains (as a subset) some element
of All-Models({C}).

To prove part (a) let M be a model, M € All-Models({C}) Clearly M contains
C. To show that M is a model of I note that M must have been returned at step
3 of some invocation of the procedure. At step 3 of the procedure there exists a
consistent set of literals 7" such that M is the set of class symbols in T’ and for every
(simple or complex) implication in I of the form (:implies C' (zor Ly Ly...Ly)),
if ¢’ is in T' then some L; is in T'. To show that M is a model of I consider an
implication of the form (:implies C’ (:or L; Ly...L,)). We must show that if

Boolean Classes 13

C' is in M then some L; is true in M. If C' is in M then C’ is in T'. But this
implies that T’ contains some L;. Now if L; is a positive literal then it is also
contained in M and we are done. On the other hand if L; is a negative literal of
the form (:not C"') then since T” is consistent C"' is not in T’ and thus not in M
so (:not C") is true in M.

Now we must prove that every model of I which contains C also contains (as
a subset) some element of All-Models({C}). This is proven via a more general
induction hypothesis on the function All-Models.

Definition: Let T be any set of literals and let I be any inheritance specifica-
tion in conjunctive normal form. A model M of T' (relative to I) is a model of
I such that every literal in T is true in M.

Note that a model M of a set of literals T can contain class symbols which
do not appear in T. In the extreme case M might be infinite while T is finite.
We will show that, in general, every model of I and T contains (as a subset) some
member of All-Models(T). In particular this implies that every model of I and
{C} (i.e. every model of I which contains C) contains (as a subset) some member
of All-Models({C}).

To prove the general induction hypothesis we first note that the function All-
Models must always terminate because the number of literals increases in every
recursive call and if the number of literals in T becomes larger than the number
of class symbols appearing in I then T must be inconsistent and the procedure
terminates.

Now we assume that the induction hypothesis holds for recursive calls and we
show that it must then hold for the top level call. First note that if T/ is the simple
closure of T every model of T (relative to I) is also a model of T'. Thus if T’ is
inconsistent then there are no models of T and the lemma holds. Furthermore,
every model of T is also a model of 7' and therefore must contain (as a subset)
all of the positive literals in 7'. Now suppose the procedure exits in step 3 by
returning the positive literals in T”. Since every model of T’ must contain (as
a subset) the positive literals in T’ the lemma holds. Finally suppose that the
procedure returns the union computed in step 4. Let M be any model of and T
and let (:implies C (:or L; L;...L,)) be the implication found in step 3. Since
T’ contains C, the model M must also contain C. Furthermore, since by definition
M is a model of I, some literal L; must be true in M. This implies that M is
a model of T U {L;} (relative to I) for some L; in the implication. But we have
assumed that the induction hypothesis holds for recursive calls and so M contains
(as a subset) some member M’ of All-Models(T' U {L;}). But M’ is a member of
the union computed at step 4 so the lemma holds.

References

1. D. Bobrow; K. Kahn; M. Stefik; and G. Kiczales “Common Loops” Xerox

i

Palo Alto Research Center (1985)

e 2. Daniel H. H. Ingalls. “The Smalltalk-76 Progran
Implementation® Procesdings of the Prine
Symposium (1976)

3. Daniel L. Weinreb; and David A. Moon mmm* MIT Artifi-
cial Inteﬂm Laboratory (1981)

Tius blank page was inserted to preserve pagination.

CS-TR Scanning Project

Document Control Form Date: 0/ 3% /85

Report# __ AN 'm - 91

Each of the following should be identified by a checkmark:
Originating Department:

)ZL Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

)z(Technical Report MR)] Technical Memo (TM)
O other:

Document Information Number of pages: |¢ (a-meces

Not to include DOD forms, printer intstructions, etc... inal pages only.
Intended to be printed as :

O Single-sided or

Originals are:
jﬂ Single-sided or

O Double-sided X Double-sided

Print type:
[Typewriter] Offset Press jzﬁ'-‘“”"“
[C] inketPrinter [] Unknown [other:

Check each if included with document:

)Z]; DOD Form (o‘L) O Funding Agent Form O cover Page
O spine O Printers Notes [0 Photo negatives
0O Other:

Page Data:

Blank Pagesey pege numben:

Photographs/Tonal Material ey pege numben:

Other (o sescriptionvpage numben:
Description : Page Number: .
Tmege @i (1= (57 wnveep TTLEPAGE -4
(1e-9)) Scruenilnd DOD (o, TRETS (7).

Scanning Agent Signoff:

Date Received: [0/J6/ 9S Date Scanned: J// € /95 Date Returned: /1 118

Scanning Agent Signature: %WM (}/Vl &’ﬂ‘?@

Rev 994 DSALCS Document Control Form cstiform.ved

UNCLASSIFIED

SECURITY CLASSIFICATION OF TxIS PAGE (When Daete Entered)

READ INSTRUCTIONS
T REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
— .
4. TITLE (end Subtitle) S. TYPE OF REPORYT & PERIOD COVERED
Boolean Classes ‘§‘& ~ . AI Memo
: 6. RERFORMING ORG. REPORT NUMSER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)
David McAllester
Ramin Zabih N00014-85-K-0124
9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Artificial Inteligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME ANP ADDRESS 12. REPORT DATE
Advanced Research Projects Agency Sept

1400 Wilson Blvd. 13, NUMBER OF PAGES
Arlington, VA 22209 : . 14

14, MONITORING AGENCY NAME & ADDRESS(!! dilferent from Contrelling Olfice) 18. SECURITY CLASS. rof this repert)
Office of Naval Research

Information Systems

Arlington, VA 22217 T¥a DECLASHIFICATION GOWNGRADING
SCHEDULE

{16. OISTRIBUTION STATEMENT (of this Report)

Distribution is unlimited. ~

17. DISTRIBUTION STATEMENT (of tWe adetract entered in Bleck 20, 1 diftorent frem Repert)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side I neceseary and idontity by bleck number)

Class Hierarchy, Data Types, Inheritance, Object-Oriented Programming,
Propositional Inference

20. ABSTRACT (Continue en reverse slide It y and ¢ ty by Meck mambeor)

(On Reverse Side)

DD , :2:"73 1473 EoiTion OF 1 NOV 88 13 OBSOLETE UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE ("hen Deta Bnterec

Abstract. Object-oriented programming languages all involve the notions of class
and object. We extend the notion of class so that any Boolean combination of
classes is also a class. Boolean classes allow greater precision and conciseness in
naming the class of objects governed by a particular method. A clase can be viewed
as a predicate which is either true or false of any given object. Unlike predicates
however classes have an inheritance hierarchy which is known at compile time.
Boolean classes extend the notion of class, making classes more like predicates,
while preserving the compile time computable inheritance hierarchy.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

