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1. Introduction

As pointed out by Torre and Poggio (1984) many problems of early vision are ill-posed;
unique stable solutions can be recovered by several regularization techniques, in particular
by standard regularization due mainly to Tikhonov (1943, 1963). Providing that solutions
belong to suitable compact sets, these techniques can be successfully applied to a broad
class of problems (for a brief review see Poggio, Torre and Koch, 1985), such as surface
interpolation (Grimson 1981, 1982; Terzoupulos 1984), computation of visual motion (Horn
and Shunck 1981, Hildreth 1984), recovering shape from shading (Ikeuchi and Horn 1981),
lightness (Horn 1974) and edge detection (Torre and Poggio 1986).

According to standard regularization theory, stable solutions can be recovered quite
simply if they belong to a compact set. Otherwise standard regularization techniques have
to be applied. These methods search for a solution as close as possible to the data and
belonging to a compact set defined by a suitable stabilizing functional. In both cases, as we
will see in detail, the concept of compact set plays a key role. Very often, however, some
additional constraints on the shape of the possible solutions are available: for example the
solutions may belong to the set of positive functions, as in the case of lightness, or may be
bounded by the values of some known functions or may be piece-wise continuous or piece-
wise constant as in some instances of surface interpolation. More generally it can be said
that these constraints define a certain subset in a suitable functional space. Rutman and
Cabral (1974) have shown that combining regularization techniques and shape contraints

improves the correctness of the numerical solution in linear integral problems.

In this note, after a brief review of ill-posedness in functional spaces and in X", we show
which of these constraints can be embedded in the classic regularization theory, and how.
Two cases are considered in detail. In the first one, shape constraints, forcing the solution
to belong to a compact set, allow a straightforward regularization of the problem. In the

second, more general case, shape constraints define closed sets that can be incorporated into



the framework of classical regularization theory, where an appropriate stabilizing functional
constrains the solution to a compact set, providing a simple way in which some a prior:
knowledge can be taken into account. Some functional subsets corresponding to interesting

shape constraints are considered.

We also answer questions arising in the numerical solutions of regularized problems.
Since regularization with shape constraints is a problem of constrained minimization, we

discuss in some detail the relationship with mathematical programming.

Our main conclusion is that shape constraints can be applied in regularization theory
provided they define compact or at least closed subsets. The constraints involving disconti-
nuities do not fit into this schema while, for example, monotonicity, convexity and positivity

constraints do.

2. Overview: ill-posed problems in infinite and finite dimensional
spaces

In this section we review briefly the main problems involved in the ill-posedness of equations
in infinite and finite dimensional spaces. We introduce the concepts of normal solution and
quasi-solution and show the connection with uniqueness and existence of the solution to a
given problem. Relationships between ill-conditioned and ill-posed problems in the discrete

case are also examined.

2.1. Ill-posed problems in Hilbert spaces

Let us consider the problem of solving the equation

Az =y (2.1.1)
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for z, where z and y belong to X and Y, Hilbert spaces. The operator A, defined on
D(A) C X, maps D(A) onto R(A) C Y. In many applications it is required that the the
solution to (2.1.1) ¢) exists, 7¢) is unique and 3:¢) depends continuously on y. A problem,
whose solution satisfies 7), i7) and #4:) is said to be well-posed (Hadamard, 1923); otherwise
it is said to be #ll-posed. Notice that i7¢) may depend on the choice of the metric in X and
mY.

If A is linear, continuous, injective and R(A) = Y, the problem of solving (2.1.1) for
z is trivially well-posed: indeed, since A is a bijection between D(A) and Y, existence and

uniqueness of the solution are guaranteed. Moreover = depends continuously on y because,

when R(A) =Y, A~! is continuous (Riesz and Nagy, 1952).

If A is linear but not injective, the solution to the problem of (2.1.1) is no longer unique.
Uniqueness of the solution can be easily recovered, for instance, by introducing the concept
of normal solution. The normal solution z, to (2.1.1) is the solution orthogonal to the null
space of A, N(A). It is easy to see that z, is unique and that it can be characterized as
the minimum norm solution. If A is injective, the normal solution and the usual solution

coincide.

If we relax the condition R(A) =Y other problems arise. The solution to (2.1.1) may
no longer exist since y may not belong to R(A). For example the data y may be affected by
an error 6y belonging to the orthogonal complement to the range of A, R(A)L. It is useful
then, to introduce the concept of quasi-solution (see, for example, Tikhonov and Arsenin,

1977). Let P be an operator that projects ¥ onto R(A), then Z, the solution to the equation

Az = Py (2.1.2)

is called a quasi-solution of (2.1.1). It is obvious that T exists if y € R(A) ® R(A)*. Notice
that if y € R(A), the quasi-solution and the solution to (2.1.1) coincide.

Therefore if A is linear, continuous and R(A) is closed, the problem of finding a normal

quasi-solution to the equation (2.1.1) is well-posed, since the normal quasi-solution always
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exists, is unique and depends continuously on y. (This last condition follows directly from
the continuity of the quasi-inverse A* of 4, At being defined as the operator that maps

y € R(A) ® R(A)? into the corresponding normal quasi-solution of (2.1.2).)

In many practical cases, however, R(A) is not closed (Kolmogorov and Fomine, 1980).
So even the quasi-solution may not exist and if it exists can be unstable. Consider, for

example, the Fredholm integral equation of the first kind

b
/K(t,s)x(s)ds =y(t) c<t<d (2.1.3)
The function

z(s) = z(s) + N sinws

is a solution to (2.1.3) with

b
§(t) = y(t) + N / K (%, ) sin(ws)ds.

In the usual Ly metric ||y — y|| — 0 as w — oo (for the Riemann Lebesgue theorem) while
|z — | ~ N. So with a suitable choice of N and w the error on the data can be made

arbitrarily small, while the distance between the solution can be arbitrarily large.



2.2. Ill-posed problems in R"

Let us consider the system of equations

Ax =Yy (2.2.1)

where A is a n X n matrix and x and y vectors belonging to ™. The problem of recovering
x given A and y is that of finding the inverse matrix A= of A. If the determinant of 4
is equal to zero, the problem has no solution and the system is called singular. If A is
diagonalizable and some eigenvalues are much smaller than the others, the system is said
to be ill-conditioned (Strang 1976), since small errors in the data y lead to unacceptable
indeterminacy in the components of the solution x. In such cases the ratio between the
largest and the smallest eigenvalue of A is taken as the ill-conditioning number, that is a
measure of how much the system is ill-conditioned. Notice that whether an ill-conditioning
number leads to negligible errors or not depends not only on the system but also on the

accuracy required.

Even in the case of huge ill-conditioning number, however, the problem of solving (2.2.1)
is not ill-posed in a classical sense, since for arbitrarily small errors in the data, the solution
is arbitrarily close to the exact solution. In practice, however,approximations involved in
numerical computations lead to meaningless solutions, because the error in the data is not

arbitrarily small.

Let us consider now, more closely, the problems that could arise in numerical compu-

tations: let A;, 2 = 1,...,n be the eigenvalues of A. It is easy to see that

will be the components of x, the solution of (2.2.1), after a suitable transformation of

coordinates. If even small errors affect the entries of A, when some )\; are sufficiently close to
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zero, the corresponding components x; of the solution can become arbitrarily large, leading
to an unbounded solution. As a matter of fact, the errors arising from numerical computer

approximations could be sufficient; therefore even numerical problems can be ill-posed.

3. Shape constraints in regularization

Ill-posed problems can be successfully turned into well-posed problems by means of very
general regularizing techniques. As it is well known (Tikhonov 1943, 1963), these techniques
rely on the assumption of some smoothness pro;l)erty of the possible solution. Sometimes,
however, additional and useful constraints are available; for example the solution function
may be necessarily non-negative or a monotonic function and so on. In this chapter, after
discussing the role of compactness in regularization, we show which of these constraints can

be embedded in the classical regularization theory and how.

3.1. Role of compactness in regularization

The role played by compactness (see Appendix A for its various definitions and properties) in
the solution of ill-posed problems was clarified by Tikhonov with the following fundamental

topological Lemma (Tikhonov and Arsenin, 1977):

Lemma 3.1.1 Suppose that the operator A maps a compact set F' C X onto theset U CY,
X and Y metric spaces. If A : F — U is continuous and one-to-one, then the inverse

mapping A|7;' is also continuous.

By means of this Lemma, if the solution to equation (2.1.1) is known to belong to a
compact subset of X, say F', and if the perturbed data is known to belong to U, U = {y €
Y,y = Az}, then the problem of finding a solution to (2.1.1) is trivially well-posed with
respect to F' and U. In such a case the problem is said to be well-posed in the sense of

Tikhomnowv.
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Remark: The compactness requirement is a strong constraint on the set of possible solutions
to a given problem: it is possible to produce examples in which well-posedness is guaranteed

without any compactness requirement (Groetsch, 1984).

If some a priori constraints on the shape of the solution are known and if these con-
straints lead to the definition of a suitable compact set, the application of Lemma 3.1.1 is

straightforward. This is the theme of the next sections.

3.2. The selection method

A useful method of finding an approximate solution to equation (2.1.1) is the selection
method (Tikhonov and Arsenin, 1977). It consists in calculating the operator A for points
belonging to a given sample set, looking for the minimum of ||Az — y|| in a suitable norm.
Such a method is powerful from a computational point of view since the sample set can
be choosen so to depend only on a finite number n of parameters varying in finite limits.
Obviously the computed solution z,, and the exact solution z, (if z, exists) coincide if and

only if z; belongs to the sample set.

Suppose that increasing the number n of parameters (and therefore the dimension of
the subspace containing the sample set) ||Az, — y|| — 0. Let us assume, therefore that
|Az, — y|| = 0 as n — oco. It is easy to see that if the R(A) is not closed the approximate
solution ||z,|| — o0, hence z,, does not converge to z;. In order to guarantee the convergence
of z, to z{, compactness of the sample set is needed, so that Lemma 3.1.1 applies. If the
sample set is not compact but it is closed and bounded, the Lemma 3.1.1 is still valid,
though in a weaker sense. The solution z,,, in fact, is only weakly convergent 1 to the true
solution z;: it is also convergent in the usual sense if z; lies on the boundary of the sample

set (Bertero, 1982).

1The solution zn is said to be weakly convergent to z¢ if (zn,y) — (2¢,y) for n — coVy € X,
where (}) is a suitable dot product.



3.3. Regularization theory and shape constraints

When no compact set containing the possible solution of (2.1.1) can be found, a new ap-
proach is needed. A general and useful approach was also outlined by Tikhonov (1943, 1963)
and is called standard regularization theory. Let us briefly summarize the main points of

this theory.

The fundamental concept of the theory is that of a regularizing operator. Suppose that
the equation (2.1.1) allows * = z; as a solution when y = y;; then an operator R(y, a) is

called a regularizing operator for the equation (2.1.1) in a neighborhood of z = z; if:
1) 36; > 0 such that R(y,«) is defined Va > 0 and Vy € Y such that ||y — y.|| < 61;

ii) there exists a function @ = &(§) such that Ve > 0 36 < §; such that Vy

ly =yl 6= ||lze —zaf| S €

where x4 = R(y, a(6))

So the problem of finding a regularized solution to an ill-posed problem is shifted to
that of finding methods to construct a regularizing operator. Let us see in some detail one

of these methods.

Construction of reqularizing operators by minimization of a smoothing functional

It is possible to construct a regularizing operator for (2.1.1) by minimizing the following

functional with respect to x:

¥[e,y] = | Az - y]| + aQe] (3.3.1)

where § is a stabilizing functional. A functional © defined on O C D(A) everywhere dense

in D(A) is a stabilizing functional for the equation (2.1.1) if:



1) z; belongs to the domain of definition of Q;
i) Vd > 0, {z € O Q[z] £ d} is a compact subset of O.
Indeed the following theorem holds:

Theorem 3.3.1 Let A denote a continuous operator. For every y € Y and every a > 0, there

exists a T4 € O for which the functional ¥ attains its minimum.

As a matter of fact the choice of {2 can determine the uniqueness of the solution: for
example if D(A) is a Hilbert space and A is linear, if  is quadratic, sufficient condition
for the uniqueness of the regularized solution can be proved (Tikhonov and Arsenin, 1977).
In principle, the regularization problem is completely solved. Sometimes, however, some
additional constraints on the shape of the solution are available. Can we exploit them ?

Indeed, the following Lemma holds:

Lemma 3.3.2 Let X be a compact topological space. Then every closed subset of X is

compact.

Theorem 3.3.1 is based on the compactness of the subsets where Q is bounded and
therefore is still true even if the set of possible solutions is a closed subset of D(A). Therefore,
if the additional constraints lead to the definition of some closed subset of D(A), they can

be easily exploited in the framework of regularization theory.

Remark: these sets do not need to be compact. The regularizing scheme itself provides
compactness of the set in which the solution is actually searched; if the constraints define a

compact set, the Lemma 3.1.1 is sufficient to guarantee well-posedness of the problem.

3.4. Compact subsets of functional spaces

From the preceding sections, it turns out that given an ill-posed problem and some a prior:
constraints, it is important to determine whether such constraints define a compact subset

or at least a closed subset of a suitable functional space. Let us examine some examples of

subsets of L, and C°.
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The set of bounded non-decreasing (non-increasing) functions is a compact set in Lo.
The proof (see Taylor, 1965, for example) relies upon the fact that the number of disconti-

nuity points of a monotonic bounded function is at most enumerable.

The set of convex functions is compact. This result follows trivially from the compact-
ness of the set above, since each convex function is the integral of a suitable non-decreasing

function.

The set of bounded piece-wise constant functions is neither closed nor compact. It is
not compact since it is everywhere dense in L, (which is trivially not compact). It is not

closed since any continuous function is an accumulation point of this set.

It is not easy to find compact subsets of C°. The set of bounded non-negative functions,

for example, is not compact. Consider in C|0, 1]

T={z|z(t) £1, te0,1]}.

T is closed and bounded (obvious), but not compact. Indeed, let S = {z;};en be a sequence
of functions with z,(t) = t”. Any subsequence of S cannot converge in T, since in C[0, 1]
the convergence is uniform convergence while " — 0,if 0 <t < 1l,and t" = 1,if t = 1. So

T is not compact.

Remark: This counterexample shows that in C° even the sets of monotonic and convex

functions are not compact.

As a conclusion, the constraints of monotonicity and of convexity, defining compact
subsets, can be useful in regularization either via the selection method or via standard tech-
niques (since any compact set is closed, see Appendix A for detail). The positivity constraint
can be used only as a shape constraint in classical regularization theory and in a weaker
sense in the selection method, while piece-wise constant functions, though representing sig-
nificative a priori knowledge on the shape of the solution, cannot be embedded in either of

the frameworks.
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4. Connection with mathematical programming (MP)

Most of the problems faced in the framework of Hilbert spaces are in fact usually either
intrinsically discrete problems or problems allowing only numerical solution. In this chapter
the cases of the selection method and of the regularization with shape constraint, discussed
in the preceding sections, are analyzed in this respect as examples of mathematical pro-

gramming problems.

4.1. Selection method as a MP problem

As we have seen in the previous chapter, if the condition of section 3.1 applies, an ap-
proximate solution to the equation (2.1.1) can be found by means of the selection method.
In practice the problem has to be solved numerically: consider for example the Fredholm

integral equation of the first kind

/K(t,s)x(s)ds = y(1) c<t<d (4.1.1)

where z(s) belongs to a set F of decreasing uniformly bounded functions. F is compact (see
section 3.4), therefore if y(¢) € U = AF the problem is well-posed in the sense of Tikhonov.
In order to find an explicit solution we can replace the integral with a sum over a grid with
n nodes. Let x; (¢ = 1,...,n) be the value of the unknown vector x at the node z and
y; (7 =1,...,m) the components of the data vector y. The problem is to find a bounded

vector minimizing the functional

Ulx,y] = D) (Kjizi — ;)

J=11i=1
under the constraint that the components of x are decreasing. It is easy to show that this

constraint can be expressed as a positivity constraint on the values of the derivative of
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the function at each node. In the discrete case this reduces to the fact that suitable linear
combinations of the neighbor nodes have to be greater than zero. For example in the nearest

neighbor approximation we have

(—x—ir—lgm—‘l) >0 i=2..m—1. (4.1.2)
In these terms the problem is now a typical problem of quadratic programming (see
Appendix B for main definitions and results of mathematical programming problems). In-

deed in the general case the only problem concerns the explicit form of the constraints. It

must be possible to write them as follows (see Appendix B):

gi(x) <0 ¢=1,...c (4.1.3)

where g; are scalar functions (they need to be linear or at most quadratic to define a
quadratic programming problem). Notice that (4.1.2) can be immediately rewritten like
(4.1.3). Rutman and Cabral (1974) have shown that performing a suitable transformation,
the constraint of monotonicity, convexity, unimodality and selective non-negativity can all
be written in the form (4.1.2). In this case, as shown before, only the monotonicity and the
convexity constraint can be properly used. As we will see in the next section, however, all

of them are shape constraints that can be useful in regularization.

4.2. Regularization with shape constraint as an MP problem

Let us illustrate this section by means of the same example of the previous one. Again the
problem is to solve the Fredholm integral equation of the first kind (4.1.1). This time since
either the set F' is not compact or y does not belong to U = AF, standard regularization
techniques of the kind described in section 3.3 are needed. Suppose moreover that some
further information is available and that they correspond to constraints on the soluiton

defining closed subsets of the domain of the operator. If these constraints can be written in
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the form (4.1.2) the problem of minimizing the discrete functional corresponding to (3.3.1)

subject to such constraints is again a typical stable problem of quadratic programming.

Remark: A generic mathematical programming problem, even if quadratic or linear, is not
necessarily stable. As a matter of fact the well-posedness relies on the strong assumption
that the functional to minimize is a stabilizing functional. If this is not the case, the problem

has to be regularized following standard techniques (Tikhonov and Arsenin, 1977).

Remark: While any regularized problem of the type described in section 3.3 gives rise
to a well-posed mathematical problem, the application of Kuhn-Tucker theory and of the
gradient method are subject essentially to the fulfillment of some convexity properties of
the functions involved (see Appendix B) and therefore they are guaranteed only in the case

of linear operators and a quadratic stabilizing functional.

5. Conclusion

In this note we analysed the role played by shape constraints in ill-posed problems. The
key concept has been that of compact set. If the shape constraints lead to the definition of
a compact set, regularization is straightforward. Indeed the shape constraint itself provides
sufficient conditions for the continuity of the dependence of the solution on the data. If
the shape constraints define at least a closed set, then they can be an useful addition to
standard regularization approaches. While a suitable functional provides stability on the
data, shape constraints allow to recover a solution closer to the correct one, by taking into

account significative additional ¢ prior: knowledge on the shape of the solution.

In both cases constraints that do not define at least a closed set cannot be embedded
in the regularizing step. In particular this implies that the ¢ prior: knowledge concerning
piece-wise constant or piece-wise continuous functions, though in principle significant for

many early vision problems (the reconstruction of the 3D structure of a scene and the
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recovery of the albedo for example) cannot be used within any classical regularizing schema.
This is an additional argument that motivates the use of Markov Random Fields models for
exploiting a priori information about discontinuities and their properties (see Marroquin
et al. 1985). A different regularizing approach that can exploit constraints of this type,
considering discrete and quantized formulations, will be discussed in a forthcoming paper

(Poggio and Verri).

Finally, the discrete problem that has to be faced solving an ill-posed problem has
been analysed as a mathematical programming problem: in the interesting case of linear
operators it becomes a standard stable problem of quadratic programming. In particular,
all the results of convex programming regarding local and global convergence of the gradient

method algorithm are guaranteed to apply.
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Appendix A: Compact sets in topological and metric spaces

As we have seen before the concept of compact set is fundamental in the regulariza-
tion of ill-posed problems. Unfortunately, there exist different definitions of compact set.
Disregarding historical problems, here is a summary of the main definitions and properties

concerning compact sets that we adopted in this note.

Let X be a topological space. An open covering of § C X is a family I" of open sets in
X such that S C Uiel‘ i

S C X is compact if, for every open covering I" of S, there exists a finite subfamily of

T’ that also covers S.

Remark: A closed set is not necessarily compact (consider the real line). A compact set is
not necessarily closed. Compact sets are always closed in Hausdorff spaces (a topological
space is a Hausdorff space if for each pair of distinct points z; and z3, there exist two

disjoint neighborhoods containing them).

In topological spaces the following Lemma holds:

Lemma A.1 If T C X is compact, then for every infinite S C T, S'NT # §. (S’ is the set

of accumulation points of S).

Notice that the converse of Lemma A.1 is not true in general. Now let X be a metric

space (and henceforth a topological Hausdorff space) then we have:
Lemma A.2 If T C X and for every infinite S C T, S'NT # @, then T is compact.

Remark: Combining Lemma A.1 and A.2 the usual definition of compactness in metric
spaces can be obtained: a set S C X, X a metric space, is compact if for every sequence of

points in .S there is a subsequence converging to a point of S.

Furthermore, in metric spaces the concept of boundedness can be defined, so that the

following Lemma can be proved:

Lemma A.31f S C X is compact then S is closed and bounded.
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The converse of Lemma A.3 is not true in general (see section 3.4 for a counterexample).

Remark: In R™ the converse of Lemma A.3 holds. Indeed in R”, for the Borel theorem, any

bounded set has an accumulation point: so, if it is closed, it is also compact.

It follows that discretization makes a problem well-posed (but ill-conditioned possibly).
Appendix B: Mathematical programming: Definitions and main results

In Vision, when a regularized problem has to be solved, numerical methods, based on
discretizing the original continuous formulation, are usually needed. These numerical meth-
ods always lead to classical problems of mathematical programming. As may be expected in
these cases Tikhonov regularization theory and mathematical programming theorems pre-
dict the same results in terms of existence and uniqueness of the solution (see sections 4.1
and 4.2). Here we review, for the sake of completeness, the main definitions and results of

mathematical programming theory (for more details see Anow et al., 1958, for example).

Let us consider the problem of finding a minimum for a given functional ¢ = ¢(z) on
aset G ={z/ gi(z) £0i=1,..,m} where z = (z,...,2,) € L C R" and g; are scalar
functions. If the functions ¢ and g¢; (¢ = 1,...,m) are linear, the problem is called a linear
programming problem, otherwise non-linear. In both cases it is a mathem;ztica.l programming

problem.

Typically the problem of finding conditional extrema of a given functional is solved
by means of the Lagrange multipliers theory. Classical theorems on Lagrange multipliers
provide only necessary conditions for the existence of such multipliers: Kuhn-Tucker theory,
in turn, fills the gap, providing sufficient conditions for their existence (obviously closely
related to the existence of extrema of functionals). This theory, therefore, is useful in
most of the mathematical programming problems. Let us review briefly the main results of

Kuhn-Tucker theory.

Kuhn-Tucker theory
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Let us call the conditional problem stated above P.1 and associate with it the following

Lagrangian form

®(z,w) = ¢(z) + Z w;gi(z)

where w = (wy, ..., Wy, ) with w; € R, i = 1,...,m. It is easy to see that if the pair (z', w')
is a saddle point for the above Lagrangian form 2’ is a solution of P.1. Let us call P.2 the

problem of finding a saddle point for the Lagrangian form ®, thus the following Lemma

holds:

Lemma B.1 Given P.1 and P.2, if the pair (z',w') is a solution to P.2 then z' is a solution

to P.1.

To prove the converse of Lemma B.1, i.e. to show the equivalence between P.1 and P.2,

some constraints on the functions ¢ and g;, ¢ = 1,...,m are needed; more precisely:

Theorem B.2 (Kuhn-Tucker) Let o(z) and ¢;(z), ¢t = 1,...,m be convexon Z = {z / z; >
0, ¢ =1,...,n}. If there exists z° € Z such that ¢;(z°) < 0, ¢ = 1,...,m, then z' is a solution

to P.1 if and only if 3 w' such that the pair (z', w') is a solution to P.2.

In the case of C! functions the celebrated Kuhn- Tucker conditions can be introduced.
They guarantee necessary conditions for the existence of a solution to a saddle point problem.
Under convexity assumptions the Kuhn-Tucker conditions become sufficient, henceforth
guaranteeing the existence of a solution to the associated mathematical problem. (If ¢
is strictly convex it also turns out that the solution is unique). In obvious notation they

are:

Z w;%(z', w')=0

j=1 J

0o
— <0, y=1,...
8w]-—— ?] Y ’m
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Let us now review briefly the gradient method, which is one of the most useful methods

for finding saddle points of a given function. It consists essentially in finding the solution of

the following system S of differential equations

dz; )
pral 0 if
dzi _ 6<I>
dt - Bz,-
dw; )
':j—i— - 0 lf
dwj _ 8@
dt awj

0%
— >0 and z; =0
0z;
otherwise; t=1,...,n
?—?— <0 and w; =0
6’11)]'
otherwise; J=1..m

where t is a parameter. Now if the pair (z’', w') is a saddle point for ®(z, w) it follows that

9%

0z; (z" W,) 20

1=1,...,n
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o .
@IS0 i=lm
J

In particular if g%(z',w') > 0 then 2! =0 and if C,;9#{’1,(z',w') < 0 then w} = 0. Without
loss of generality (just for notational convenience) suppose in the sequel that for : = 1, ..., p,
(p < n) %(z',w’ =0, while fori =p+1,...,n g%(z',w') > 0 and that for j = 1,..., ¢,

(¢ <m) %(z',w’) =0, whileforj=q+1,....m %(z',w') < 0.
The following theorem, now, guarantees local convergence of the gradient method.

Theorem B.3 Let ®(z,w) have a saddle point (z', w') under the constraint z € Z where
Z={z/22>20i=1,.,n} and w € W where W = {w / w; > 0,5 = 1,...,m} and
let @ be analytic in some neighborhood of (z', w'). Suppose further that the matrix of the
second derivative of @ in the first p components of z defines a positively defined form and
that z; >0, ¢ =1,...,pand w; > 0, j = 1,...,¢. Then for any pair (z",w") in a sufficiently

small neighborhood of (z', w'):

i) there is a unique solution z = z(¢,z", w") and w = w(¢,2"”, w") to the system S such
that:

i) limy_ o0 2(t, 2", ") = 2’ and

#44) in any limit point w° of the function w = (¢,2", w") as t — oo, the pair (z', w°) is

saddle point of ®(z, w).

Remark: The classical theorems of existence and uniqueness of the solution for differential
system of equation cannot be used, since no assumption is actually made on the continuity

of the derivatives of the variables.

Before stating the theorem on global stability of the gradient method the following

definition is needed:

zi(t), « = 1,...,n and w;(t) § = 1,...,m, solution of the system S are a regular solution if

when 2;(t,) = 0, ¢ = 1,...,n and w;(t,) = 0, j = 1,...,m with v € N for some sequence



{t,} such that ¢, > 0 and lim, . ¢, = 0, there is some # > 0 such that % =0,:=1,...,n

and %‘_‘;i—_—(), j=1,..,mfor0<t<i

Theorem B.4 Let ®(z, w) be a strictly convex, continuous and twice differentiable function
inz € Z and w € W. Let the system S have a regular solution with respect to any
pair (2", w'") where 2" € Z and w" € W. Then there is a unique regular solution of the
system S with any initial position. Furthermore if ® has a saddle point in (z', w') under the
constraints z € Z and w € W, 2’ is uniquely determined and any solution of S converges

to z'.

Remark: Actually by introducing suitable strictly increasing functions p;, j = 1,...,m of one
variable such that p;(0) =0, j = 1,...,m, the condition of strict convexity in theorem B.4
can be relaxed to convexity if one applies the gradient method to the modified Lagrangian

form:

P,(z, W) = p(z) + E w;pjlg;(z)]-

J=
In conclusion Theorem B.4 guarantees global convergence of the gradient method for
convex programming (including therefore the important case of quadratic programming);
the modified Lagrangian form above allows the successful extension of the gradient method

to the broad class of linear programming problems.
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