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Abstract: The first processing stage in computational vision, also
called early vision, consists in decoding 2D lmages in terms of properties
of 3D surfaces. Early vision includes problems such as the recovery of mo-
tion and optical flow, shape from shading, surface interpolation ‘and edge
detection. These are inverse problems, which are often ill-posed or ill-
conditioned. We review here the relevant mathematical results on ill-posed
and ill-conditioned problems and introduce the formal aspects of regulariza-
tion theory in the linear and non-linear case. More general stochastic reg-
ularization methods are also introduced. Specific topics in early vision and
their regularization are then analyzed rigorously, characterizing existence,
uniqueness and stability of solutions.
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Introduction

Vision systems, either artificial or biological, are confronted with the
problem of inferring geometrical and physical properties of surfaces around
the viewer. The available data ~the images - consist of two dimensional ma-
trices of light intensity values measured by an eye or a camera. For tasks such
as navigation, maunipulation and visual recoguition. vision systems have to
recover 3D properties of surfaces from the 2D images. Typical 3D properties
are the distance between the surfaces and the viewer, their orientation, struec-
ture, texture, reflectance and motion parameters (from a temporal sequence
of images).

The visual skills that provide us with this kind of information have been
explored in animals and humans with physiological and behavioural tech-
niques. With the recent development of computer vision, these problems
have been formulated rigorously and given by now familiar names, such as
structure from stereo, structure from motion. structure from tecture. shape
from shading, edge detection, visual interpolation. computation of optical
flow. The computational modules that solve them constitute together the
core of early vision. and provide spatial and geometrical information about
the 3D world. The results of this first stage of processing are then used for
higher level tasks such as navigation in the environment, manipulation of
objects and of course object recognition and also reasoning about objects.
Unlike hlgh level vision, early vision is mostly considered as a bottom.- up set
of processes that do not rely upon specific high-level information about the
scene to be analysed. It is commonly argued on the basis of computational
and psychophysical considerations that these different modules of early vision
can be analysed independently of each other, at least to a first approxima-
tion. Their most natural implementation is in terms of distinct pieces of
hardware, whose outputs will be integrated at a later stage, possibly using
more “intelligent” procedures (another possibility is to use coupled Markov
Random Field models for the integration stage, see [68]).

Even a superficial analysis of these problems reveals their common in-
verse nature: they can be regarded as inverse optics since they attempt to
recover 3D properties of surfaces from the 2D images they generate. This
observation characterizes the field of early vision as the solution of problems
of inverse optics!!!

It is well known that inverse problems are very often ill-posed213] iy
the original sense of Hadamard!*/; that is, the solution may not exist or it is
not unique or does not depend continuously on data. These problems can
be formulated as discrete or continuous problems according to the type of
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the available data. In order to solve ill-posed problems a priori information
about generic properties of the solution must be used. Regularization theory
1s a set of techniques that have been developed for this reason. Standard
regularization exploits a priori knowledge by restricting the functional space

e

to which the “solution” belongs: the specific techniques use generalized in-
verses or variational formulations. An alternative possibility, that we call
stochastic regularization, is based on a Bayesian approach and optimal esti-
mation. All these reasons we introduced recently regularization techniques
into computer vision. B. Horn (see (69| for a comprehensive review of his
work) had approached several problems in vision from a similar point of
view, using minimization techniques for their solution, without an explicit

connection with regularization techniques.

The goal of this paper is to review the mathematical aspects of this
approach (for a less rigorous discussion, see [1]). It is organized in two
parts: Part One reviews the main mathematical results that characterize the
difference between well-posed and ill-posed problems ( Section 2) and between
well-conditioned and ill-conditioned problems (Section 4). The notions of
generalized inverses (Section 3) and of regularization methods (Section 5)
are then introduced. Section 6 contains some results related to inverse nom-
linear problems. Section 7 illustrates stochastic regularization.

Part Two shows that several variational principles recently introduced
in early vision can be formulated as regularized solutions to ill-posed inverse
problems. Four problems in early vision are studied in detail: edge detection
and numerical differentiation (Section 8), optical flow (Section 9), surface
interpolation (Section 10), and shape from shading (Section 11).



Part One

1. Outline

In this part of the paper we review some of the methods which have been
developed for the approximate solution of ill-posed problems. The linear
case is discussed in detail since a well-developed theory is available. We also
make some comments on non-linear problems.

In Section 2 we define the class of well-posed problems, stressing that
a well-posed problem is not necessarily robust against noise. A well-posed
problem, in order to have solutions that are robust against noise, must also
be well-conditioned (see Section 4). For ill-posed, linear, inverse problems,
well-posedness can be restored by generalized solutions if the range of the
operator (which has to be inverted) is closed (see Section 3). When the
range of the operator is not closed, or when the problem is seriously 1ill-
conditioned, regularization techniques have to be used (Section 5) in order
to avoid the instability of the solution against noise. Therefore, since images
are intrinsically noisy, these techniques represent the ideal tool for early
vision problems. Some results on inverse nonlinear problems are presented
in Section 6. A stochastic approach to inverse problems is introduced in
Section 7 and its connections with standard regularization are discussed.

2. Well-Posed and Ill-posed Problems

Hadamard!*!5] defined a mathematical problem to be well-posed when:

(a) for each data g in a given class of functions ¥ there exists a solution
u in a prescribed class X (ezistence);

(b) the solution « is unique in X (uniqueness);

(c) the dependence of « upon g is continuous, i.e., when the error on
the data g tends to zero, the induced error on the solution u tends also to
zero (continuity).

The requirement of continuity is related to the requirement of stability
or robustness of the solution (see, for instance, (6]). Continuity, however, is



a necessary but not suflicient condition for stability. A well-posed problem
can be ill-conditioned (see Section 4).

All the classical problems of mathematical physics, such as the Dirichlet
problem for elliptic equations. the forward problem for the heat equation, and
the Cauchy problem for hyperbolic equations, are well-posed in the sense of
Hadamard. Also, the “direct” problem in scattering (or imaging) theory,
namely the computation of the scattered radiation (image) from a known
constitution of the sources and of the targets, is well-posed.

"Inverse” problems usually are not well-posed. In most cases an “in-
verse” problem can be obtained from the “direct” one by exchanging the
role of solution and data. For instance, in the case of scattering theory,
the inverse problem counsists in the computation of the characteristics of the
targets from the knowledge of the sources and of the scattered radiation.

Consider a very simple example taken from classical optics. If the energy
distribution u is given in the object plane of an optical instrument and if the
characteristics of the instruments are known, it is possible to compute, by
solving the wave equation, the energy distribution ¢ in the image plane. In
the case of Fourier optics, one finds a linear relation between u and g:

9(1') :fl\—(*rwy)ll(g)dglﬁ (21)

the kernel K'(,y) being the impulse response (point spread function) of the
instrument. The direct problem (the computation of ¢ given u) is clearly
well-posed. The inverse problem (the computation of u given ¢) usually is
not.

Assume that K (r,y) = K(z—-y). where K () is a band-limited function.
Then there exist functions u which produce a zero image (think of a function
which has only Fourier components out of the band of the instrument) and
therefore uniqueness does not hold. Furthermore, if g(r) is the result of
an experiment and therefore is affected by noise, it is not necessarily band-
limited or it can have a band broader than that of the instrument. Under
these circumstarnces the solution of Equation (2.1) does not exist.

The need to investigate problems which are not well posed but are of
interest in applied science originated two interesting branches of mathemat-
ical analysis: the first is the theory of generalized inverses 73 which
is an extension of the theory of the Moore-Penrose inverse of a matrix;
the second is the regularization theory of ill-posed (or improperly posed)

3).[o}.[10],{11]

problems!2H . These days, the term ill-posed is used generally

(but not only) for those problems which do not satisfy the requirement of
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continuity. Examples of ill-posed problems are analytic continuation, the
Cauchy problem for elliptic equations, backsolving the heat equations, su-
perresolution, computer tomography, Fredholm integral equations of the first
kind, and as we will see, mmany problems in early vision.



3. Generalized Inverses

Most linear inverse problems can be formulated as follows: assume that
functional spaces X,Y (for instance, Hilbert spaces) are given and that a
linear, continuous operator L from X into Y is also given; then the problem
1s to find, for some prescribed ¢ € Y, a function « € X such that

g = Lu. (3.1)
In this formulation, the direct problem is Just the computation of g, given
t. Therefore, continuity of L is equivalent to well-posedness of the direct
problem. Notice that Equation (2.1) is a special case of Equation (3.1).

The problem (3.1) is well-posed if and only if the operator L is injective
(i.e.. the equation Lu = 0 has only the trivial solution u = 0 (uniqueness)),
and it is onto Y (existence). Then general theorems of functional analysis
(for instance, the “closed graph theorem”) assure that the inverse mapping
L~ is also continuous (continuity).

Assume now that the equation Lu = 0 has nontrivial solutions. The set
of these solutions is a closed subspace of X, which is called the null space
N(L) of L. This is the subspace of the “invisible objects”, since they produce
a zero image g. Assume also that the range R(L) of L, namely the set of the
g which are images of some u € X, is a closed subspace of ¥'. An example is
provided by the integral operator corresponding to the perfect low pass filter

+o0o : _
(Lu)(.r):/ Mu(y)dy. (3.2)

o mr-y)

In such a case, if we take X = Y = L2(-nc, +00), the null space is
the set of all the functions u whose Fourier transform is zero on the band
[-Q,Q], while the range of L is the set of the band-limited functions with
bandwidth Q, which is a closed subspace of L?(~o00,+>). Notice that L is
a projection operator, the so-called band-limiting operator.

A way of restoring existence and uniqueness of the solution under the
conditions above is to redefine both the solution space X and the data space
Y. We take a new space X' which is the set of all the functions orthogonal
to N(L) (in the case of (3.2), X' is the space of the square integrable (-
bandlimited functions), and we take R(L) as the new data space Y’ (in the
case (3.2) again, the space of the square integrable Q-bandlimited functions).
Then for any g € Y’ there exists a unique v € X' such that g = Lu, (in the
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case of (3.2) the solution is trivial: « = g) and therefore the new problem is
well-posed.

The redefinition of the spaces X,Y outlined above usually is quite difhi-
cult (almost impossible) in practical problems. Therefore, it is useful to have
a method, based on the solution of variational problems, which produces the
same result. This is just the method of generalized inverses .

3.1. Least squares solutions or pseudosolutions

Counsider first the case in which L is injective but not onto (1.e., the exis-
tence condition is not satisfied). The set of functions u € X that solve the
variational problem

| Lu — g|ly- = minimum, (3.3)

where || - ;- denotes the norm of Y, are called the least squares solutions (or
pseudosolutions) of Problem (3.1). These solutions can be easily obtained
considering the first variation of the functional (3.3),

2Re(Lu — g, Lh)Y, (3.4)

where h is an arbitrary function of X and (-,-)Y the inner product of the
Hilbert space Y. Setting (3.4) equal to zero, we obtain the Euler equation

L*Lu = L*g, (3.5)
where L™ is the adjoint of the operator L (L* is a mapping from Y into X).
When R(L) is closed, Equation (3.5) always has solutions but the solution

is not unique when N(L) is nontrivial. Notice that the set of solutions of
Equation (3.5) coincides with the set of solutions of the equation

Lu = Py, (3.6)

where P is the projection onto R(L). Therefore, solving Equation (3.5)
is equivalent to taking Y' = R(L) or to projecting g onto Y'. When the
operator L is injective, the solution of (3.5) is unique and well-posedness has
been restored.

3.2. Normal pseudosolutions or generalized solutions

Cousider now the case in which L is not injective (i.e., the uniqueness condi-
tion is not satisfied and the problem is underconstrained). Then, one looks
for the solution of (3.5) which has minimal norm

Hu”x = minimum. (3.7)
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This solution is unique and is denoted by «*. «*

is usually called the gener-
alized solution (or normal pseudosolution) of Problem (3.1). u" is orthogonal

to V(L) and therefore this procedure is equivalent to taking X' = N(L)*

Since there exists a unique u™ for any ¢ € Y, a linear mapping L™ from
Y into X is defined by
ut = L+g. (3.8)

The operator L™ is the generalized inverse of L and it is continu-
ous. Therefore, the problem of computing the generalized solution of Equa-
tion (3.1) is well-posed if and only if R(L) is closed. The essential reason for
this result is that in this case the space Y can be decomposed as

Y = R(L)® R~(L), (3.9)

where & means direct sum and R (L) is the orthogonal complement of R(L).
This decomposition can be made if and only if R(L) is closed.

3.3. C-generalized solutions

In several inverse problems, the generalized solution is trivial or does not sat-
isfy some physical requirements such as smoothness. Examples are provided
in Section 9. Then an extension of the generalized solution goes as follows:
let p(u) be a norm or a seminorm on X (see Appendix A for the definition)
of the following style:

plu) = [ICul, (3.10)

where C is a linear operator from X into the Hilbert space Z (the constraint
space). The operator C may not be defined everywhere on .X. For instance,
suppose X is a space of square-integrable functions and C is a differential
operator. Therefore, in general, p(u) is defined on a subset of X, i.e. the
domain of C, denoted as D(C'). When the null space of C is trivial (contains
only the null element of X), then p(u) is a norm on D(C); otherwise, p(u)
1S a seminorm.

If there exists a unique least-squares solution which minimizes pu),
we denote it by uC and we call it a C-generalized solution. The mapping
g — uC defines a linear operator L+ from Y into X, which will be called
the C-generalized inverse of L. It is obvious that ug can have a nonzero
component onto N(L), the subspace of the “objects” which are “invisible”
under the action of the operator L. Therefore, this procedure is physically
plausible only when the constraint describes some physical property of the
solution of the problem.
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Necessary and sufficient conditions for the existence of u(t for any g have
been given in the case where R(L) is closed and C is a bounded operator
with R(C) also closed”!. However, the assumption of a bounded constraint
operator ' may not cover the interesting case of a differential operator.
Furthermore, when D((C) is a subset of X, it is obvious that u.(t does not
exist for any g € Y. If we denote by LD(C) the set of all the functions g ¢ ¥
such that g = Lu with u € D(C), then LD(C), in general, does not coincide
with R(L). Under these circumstances, if Pg ¢ LD(C), the intersection
between the set of the least squares solutions and D(C) is empty and u'(t
does not exist. In other words, the problem of determining the C-generalized
solution may be ill-posed even when R(L) is closed.

Sufficient conditions which assure the existence of “'2; for any g such

that Pg € LD(C) are (see Appendix B):

(1) The intersection of N(L) and N(C) contains only the null element of
X, i.e., the set of equations

Lu =0, Cu=0 (3.11)

has only the common trivial solution u = 0 (uniqueness condition);
(i1) The operator C': X — Z is closed with D(C) dense in X and R(C) = Z;

(iii) The set of functions u such that g = Lu and Cu = 0, i.e., the set LN(C),
is closed in Y.

The third condition is always satisfied in the case of seminorms defined
in terms of differential operators because in that case N(C) is a finite di-
mensional subspace of X and L is a continuous operator.

When the constraint operator C satisfies conditions (i) - (1i1) and fur-
thermore is bounded, ug exists for any g ¢ Y and the C-generalized inverse
Lg is bounded. These properties hold true, for instance, in the case of inter-
polation problems in reproducing kernel Hilbert spaces (see Appendix C).

3.4. Generalized solutions for problems with discrete data

We conclude this section by noticing that problems with discrete data can
be formulated as (3.1), g being now a n-dimensional vector in an Euclidean
space. In fact, ignoring the errors in the data. a linear inverse problem with

discrete data can be formulated as follows!12! :

Given a set {F;}7 ; of linear functionals defined on X and a set {g;}7"

=1

of numbers, find a function « € X such that

gi = Fi(u);t =1,...,n. (3.12)
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In particular, when the functionals F; are continuous on .Y by Riesz
Theorem (see Appendix A). there exist functions 'y, ¢';, ..., ¢",, such that

Fi(u) = (u, ¢)) x, (3.13)

where (-,-)x is the inner product of X .

For example, the problem discussed in Section 2 takes this form when
g(z) is measured in a finite set of points only, say r,,z,,...,r,, and X is an
L? space. In such a case we have

(Z’,'(;l‘) = I\’(I,‘,y). (3.14)
It is important to recognize also that interpolation problems take this form
when X is a reproducing kernel Hilbert space (see Appendix C).

This problem is a special case of the problem 3.1 if we consider the data
g: as the components of a vector ¢ in an N-dimensional Euclidean space Y
and if we define an operator L from X into ¥ by means of the relation

(Lu)i = (uy¥) yit =1,...,n. (3.15)
The operator L is not injective: N(L) is the infinite dimensional closed
subspace of all the functions u orthogonal to the subspace spanned by the
functions v';. On the other hand, the range of L, R(L), is closed: R(L) is just
Y when the functions i; are linearly independent, otherwise it is a subspace
with dimension n' < n.

Along the lines described above one can introduce generalized solutions
or C-generalized solutions for problems with discrete data. Their deter-
mination is always a well-posed problem in the strict mathematical sense.
However, numerical stability cannot be guaranteed (see the next section).

As a final remark, we point out that the problem of interpolation by
means of spline functions can be formulated as a problem of determining
a generalized or C-generalized solution in a suitable Hilbert space (see, for
instance, [12],[13]). A simple example is discussed in Appendix C.
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4. Well-conditioned and ill-conditioned problems

As already remarked in previous sections, continuous dependence of the so-
lution on the data does not yet mean that the solution is robust against
noise. Generalized solutions of inverse problems with discrete data can pro-
vide striking evidence of this fact. Therefore, it is necessary to investigate
more carefully error propagation from the data to the solution when solving
problem 3.1.

We assume, as in Section 3, that R(L) is closed, so that the generalized
inverse L™ is continuous. We denote by Ag a variation of the data g and by
Au™ the corresponding variation on the generalized solution u*. Then the
standard analysis of error propagation proceeds as follows:

From Equation 3.8, because of the linearity of LT, we get Au™ = LT Ay,
which implies
HAU+HX = 1L+HHAQHY7 (4.1)

where ||L™|| denotes the norm of the continuous (bounded) operator L+ (see

Appendix A). Analogously, from Equation 3.1, with u = u™, it follows that

lglly < ILY - flu™ (4.2)
Combining Equations 4.1 and 4.2 we obtain the inequality
Au™ Ag
3 lle oy pyypeyl2sly. (43)
et x lglly

It is important to point out that this inequality is precise in a certain sense.
When L is an V x M matrix or L corresponds to an inverse problem with
discrete data, then equality can hold. If L is an operator on infinite dimen-
sional spaces, then one can always prove that the Lh.s. of Equation 4.3 can
be arbitrarily close to the r.h.s.

The quantity
a=|[LIILT] =1 (4.4)
is called the condition number of the problem. When « is not far from 1, the

problem is said to be well-conditioned, while when « is large the problem is
said to be ill-conditioned.

It is obvious that these definitions are not as precise as that of well-
posedness. However, what is important in practice is the estimation of the
condition number since it provides insight into the numerical stability of the
problem. In the case where L is an N x M matrix, ||L|| is the square root of
the maximum eigenvalue of the M x M positive semi-definite and symmetric
matrix L*L (notice that the positive eigenvalues of this matrix coincide with
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the positive eigenvalues of the matrix LL* ) and ||[L*| is the inverse of the
square root of the minimum positive eigenvalue of the same matrix, i.e.,

. /)‘max 45
“= ’\min - ( .O)

More generally, if we indicate by o (L*L) the positive part of the spectrum
of the operator L* L, we have

max o (L*L)

a = \/m (46)

In order to provide an example of a well-posed problem which can be
extremely ill-conditioned, we consider the finite moment problem, i.e., the
problem of determining a function u(r), defined for example on [0,1], given
its moment up to the order N - 1:

1
In :/ " tu(r)de; n=1,..,N. (4.7)
0

If we take X = L?(0,1). then it is easy to recognize!!?] that the operator
LL* is just the Hilbert matrix
1

[HN(‘l)]nm = ::Tm——l-’

which is a classical example of an ill-conditioned matrix. From well-known

n,m=1,..,N, (4.8)

results it follows that the condition number for the generalized solution of
problem 4.7 is approximately given by a = erp(1.75N) and therefore it
grows exponentially with N. Already for moderate values of N, a takes
unacceptable values.
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5. Regularization Methods

When the range of L. R(L) is not closed, then the inverse L™! or the gen-
eralized inverse Lt is not defined everywhere on ¥ and it is not continuous.
Therefore, both the requirements of existence and continuity do not hold
true. This is the most difficult case and appropriate techniques are required.
An example of operators in this class is provided by compact operators (not
of finite rank) as shown in Appendix A. It is easy to see that an ill-posed
problem has a condition number a = co. Therefore, extremely ill-conditioned
problems behave in practice as ill-posed problems and have to be treated by
the same technique.

5.1. Tikhonov regularization

The most investigated approach to ill-posed problems is the reqularization
method of Tikhonov!!l. The key idea is to introduce a family of continuous
“approximations” of a noncontinuous operator. More precisely, a regular-
ization algorithm for the generalized solution of Equation (3.1) is given in
terms of a one-parameter family of continuous operators Ry, A > 0, from Y
into X, such that for any given g € R(L),

/{in%)R,\g =L"g. (5.1)

Therefore, when applied to noise-free data g, Ry provides an approximation
of ut which becomes better and better as A — 0. However, when R, is
applied to noisy data g. = g + n. and n, represents experimental errors or
noise, we have

Ryrg. = Rxg + Ryn., (5.2)
and the second term typically is divergent when A — 0. It follows that a
compromise between “approximation” (the first term) and “error propaga-
tion” (the second term) is required. This is the problem of the “optimal
choice” of the regularization parameter ).

One of the most studied regularization algorithms is obtained by mini-
mizing the functional
| Lu — g|)2Y + /\HCU,H22 = minimum, (5.3)

where C is a constraint operator, satisfying for instance the conditions stated
in Section 3. In the original paper of Tikhonov, it is given by

ICull® , = Z/cr(r)lu“"(w)izdu (5.4)
r=0



15

where the weights c,.(r) are strictly positive functions and «'"(z) indicates

the rt*-order derivative of u(e). If uy is the solution of (5.3), and if we put
ux = Ryg, (5.5)

then
Ry=(L*"L + XC*C)'L*, (5.6)

Notice that uy is unique when the Equations (3.11) have only the trivial
solution u = 0 and that when A - 0, g € R(L), Ry\g converges to LTg 3,

Three methods have been proposed for the choice of ) in Equation (5.6)
and in the case of noisy data g.:

(1) Among all u suchthat |Cuiz - E find u that minimizes | Lu—g.|y 190,
Using the method of Lagrange multipliers the solution of this problem
can be reduced to the solution of Equation (5.3), with \ arbitrary. and
to the search of the unique \ such that

|Curllz = E. (5.7)

(11) Among all u such that ||Lu — g./ly < &, with given ¢, find u that min-
imizes |Cul|z 1®1017] Again, the solution of the problem is equivalent
to finding the unique A such that

HL“/\‘gsHY =& (5.8)

This is also called Morozov’s discrepancy principle.

(i) Among all u such that ||Lu — g.||y < &, |Cullz < E, find a u of the
type (5.5). This is equivalent!!*/'[1%] to taking

=(¢/E)*. (5.9)

The first method consists of finding the function u that satisfies the
constraint |[Cu|lz < F and best approximates the data. The second method
conputes the function u that is sufficiently close to the data (¢ depends on the
estimate of the errors) and is most “regular”. In the third method, one looks
for a compromise between the degree of regularization and the closeness of
the solution to the data.

5.2. Regularization and filtering

The regularized solution (5.5), (5.6) takes a very simple form in the case
where L is compact and C = [ the identity operator in X. Then, using the
singular value decomposition of L (see Appendix A) we obtain
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2
B aj, 1 Oy
Uy = E ai +/\_ak (g,ll\.)y Up, (5.10)

and therefore the regularized solution is essentially a “filtered” version of the
non-regularized (generalized) solution of Equation (3.1),

1
ut = Z;(gal'k)lfuk- (5.11)
— o
This remark suggests that, in this case, one can define regularization algo-
rithms in terms of filter functions ®4(\):

1
= VBN =g v (5.12)
k

satisfying the conditions: (1')®x()) < 1; (ii")®x(N) — 1, for any k, when
A — 0; (iii')‘bk% bounded for any k and any A > 0. Such a procedure is
often used in the inversion of compact operators as well as in the inversion
of convolution operators(?!(see Section 8).

5.3. Smoothing and interpolation

As already remarked, regularization algorithms can be used also for ill--
ditioned problems. A well-known example is the smoothing of a function
whose values, specified on a finite set of points, are affected by errors(2%. It is
interesting to compare smoothing and interpolation by means of cubic splines
using the framework outlined above. Interpolation of a function u(r),r €
[0,1], is the problem of searching for a function which takes the prescribed
values

wle)=¢; 5 i=1,...,n (5.13)

and minimizes the seminorm!/!3!

1
p(u)r/ lu" (2)|*de. (5.14)
0

Therefore, the interpolation problem is equivalent to the computation of a
generalized solution. On the other hand, the smoothing problem is formu-
lated again as the minimization of the seminorm (5.14), but condition (5.13)
1s replaced by

Z"U(M)—giiz < gl (5.15)
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(for simplicity, we have assumed that the errors on the data have the same
variance). Therefore. the smoothing problem corresponds to method (i1) for
the choice of the regularization parameter.

5.4. Cross validation and generalized cross validation

We conclude this section with a short description of the cross validation
method?'"(22] | This is a method for the choice of the regularization parameter
and it has been applied to smoothing problems and also to the solution of
Fredholm integral equations of the first kind in the framework of the method
of collocation (or moment-discretization). However, it applies to any linear
inverse problem with discrete data, as formulated in Section 3.

The idea behind cross validation is to allow the data points themselves
to choose the value of the regularization parameter by requiring that a good
value of the parameter should predict missing data points. In this way, no a
prior: knowledge about the solution and/or the noise is required.

Let (Lu); be defined as in (3.15) and let uf\ be the minimizer of the
functional

FMu) = lz?:‘I(Lu —gil* + Afu? (5.16)
A ni#£k X
Then the cross validation function V,()) is defined by
- 1 (k] 2
Vo(A) = = L — 17
N = e - (5.17)

and the cross validation method consists in determining the value of \, say
A, which minimizes (5.17). The computation of the minimum is based on
the relation

Z|Luxk—gk1 (5.18)
‘11— A(A)F ‘

where u is the minimizer of the functlonal
- 1 - 2 2
Fyu = — Lu); - g, A ) .
N n,k§_1!( whi = gl + Allull (5.19)

and Axr(A) is the kk-th entry of the n x n matrix
A(N) = LL*(LL" + )\I)71, (5.20)

where LL* is the Gram matrix of the functions ¢ (see Equation 3.15).

It has been shown2* that, from the point of view of minimizing predic-
tive mean square error, the minimization of Vj(\) must be replaced by the
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minimization of the generalized cross-validation function defined by

1 o 1 .
VIA) = (=Trll = A (=T = A1), (5.21)
n n
where ||| denotes the Euclidean norm and T'r is the trace operation. An

important property of V() is the invariance with respect to permutations
of the data.
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6. Regularization of nonlinear problems

The case of nonlinear ill-posed problems is quite difficult and, for the mo-
ment, no general approach seems to exist.

If 4 is a nonlinear operator from a Hilbert space X into a Hilbert space
Y, we have the equation
g = A(u). (6.1)
Obviously, a solution of this equation exists if and only if g is in the range
of the operator A.

6.1. Linearization

The simplest way of treating Equation (6.1) is to try to linearize the problem.
This is the case of a differentiable operatori?4]. The nonlinear operator 4 has
a first derivative at the point u, if there exists a linear operator L, : X — Y
such that, for any v € X,

1.
}in&; Alu, + tu) - A(uo)] = L,u. (6.2)

The operator L, is called the first derivative of 4 at the point u, and one
usually writes

L, = A'(u,). (6.3)
An operator which is differentiable at the point w, is also continuous at that
point.

If an approximation u, of the solution of Equation (6.1) is known and
if the operator 4 is differentiable at u,, then Equation (6.1) can be approx-
imated by the linear equation

dg, = L,0u,, (6.4)
where dg, = g — 4(u,), Ouy = w — u,, and L, is the derivative of 4 at U,.
Obviously, the procedure is consistent if the solution du, of Equation (6.4)

“small” correction to the approximate solution u,.

is a

The procedure can be iterated. By means of the solution du, of Equa-
tion (6.4), one gets a new approximation, u, = u, + Ou,, of the true solution
«. Then one considers the linear equation 8¢, = L,Ju,, where L, = A'(uy),
091 = g — A(uy), and Ju; = u — u;. By solving this equation one gets a new
approximation u; = u; + Ou; and so on. It is easily recognized, by writing
Equation (6.1) in the form P(u) = 0 with P(u) = A(u)—g, that this method
is just an extension to functional equations of a method which, in the case
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of real equations, is known as Newton's method or the method of tangents.
Such an extension is also known as the Newton-Kantorovich method and it
is one of the few practical methods for the actual solution of a nonlinear
functional equation.

The iterative algorithm can be put in the following form:

Unt+1 = Up + [A,(un”Al[g - fl(“n)]? (65)
and a simplified algorithin is given by
Unt1 = un + [4" (1)) Vg — A(un)]. (6.6)

Sufficient conditions for the convergence of both iterative algorithms have

(4] They include the continuity of the inverse of the derivative

been given
of the operator 4. In several inverse problems this condition is not satisfied.
It has been suggested(?S to use, at each step of the algorithm, a regularized
approximation of the inverse of the derivative of the operator 4. Convergence

results for such a modified algorithm are not yet available.

6.2. Generalized and regularized solutions

Extensions of regularization theory to ill-posed nonlinear problems have also
been proposed: the case of nonlinear integral equations has been investigated
by Tikhonov!?8! and an abstract approach is given by Morozov(?7],

We assume that 4 : X — Y is a continuously differentiable operator,
i.e., that 4 has a derivative at each point u € X and that this derivative is a
linear continuous operator. However, even in the case of such a simplifying
assumption. a well-developed theory of generalized inverses does not exist.
One can introduce least-squares solutions of Equation (6.1) by solving the
variational problem

A(u) — ¢ 'y = minimum, (6.7)
analogous to the problem (3.3). When a solution of such a problem exists
for any g € Y, one says that Equation (6.1) is strictly normally solvable.
A sufficient condition for strict normal solvability is that the range of 4 is

weakly closed in YV (28],

Notice that this condition may be stronger than the
condition of closure of the range which applies to the case of linear operators
(Section 3). Weakly closed sets are (strongly) closed, but the converse is not

always true.

If, for a given g, the set of least squares solutions is not empty, one could
try to select one of these solutions by means of another variational principle
as in Section 3.1; i.e., by minimizing a norm or seminorm such as (3.10).
In contrast to the case where the operator A is linear, the generalized or
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C-generalized solution defined in such a way may not exist and, even if it
does exist, is not necessarily unique. Such a lack of uniqueness applies also
to the case of regularized solutions (in which case, however, existence can be
easily assured).

The basic point in the definition of regularized solutions is again the
minimization of a functional similar to (5.3); i.e.,

Bx[u] = [[A(u) ~ gll§ + M|Cull%. (6.8)

The uniqueness of the minimum of ®,[u] usually is not proven (but see [26]

for a special case where uniqueness holds true). However, it is not difficult

to prove the existence of at least one local minimum. Here we give the proof

under conditions which are satisfied in the case of the problem of shape from
shading (Section 11).

Assume that the operator 4 : X — Y is continuous everywhere and
that the constraint operator C' : X — Z is linear and has a compact inverse
Cc1. (This condition is satisfied, for instance, by the differential operator
(5.4)). Then, for any A > 0, the functional (6.8) has at least one minimum
point uy. The proof goes as follows:

Let My be the lower bound of ®,[u| and let {u,} be a minimizing
sequence such that
M, < ‘I’,\[un} < My + 1/7‘1. (69)
It follows that:
My +1,1/
=) (6.10)

and therefore, the sequence {v, = Cu,} is bounded. Since C ! is compact,

[Cunllz = (5Brlua) " <

we can extract from {u, = C~'v,} a subsequence strongly convergent and
such that the corresponding subsequence of the v, is weakly convergent.
Without loss of generality, we can assume that these conditions are satisfied
by the sequence {u,} itself. Then, let u be the strong limit of {un} and vy
be the weak limit of vy,; it follows that uy = C ~lv,.

Since C'u,, weakly converges to C'uy, from the lower weak semicontinuity
of the norm we have

ICurllz < liminf ||Cuy) 2. (6.11)

On the other hand, from the strong convergence of u, to uy and from the
continuity of 4(u) we have

”A( lL,\) - g”Y = lim HA(un) - gHY’ (612)

and, by combining Equations (6.9), (6.11), and (6.12), we get
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My < ®uy] < liminf ®y[u,] = lim Drlu,] = M. (6.13)

It follows that

®luy] = My, (6.14)
and the existence of the minimum point is proven.

As stated above, in general nothing can be said about the uniqueness of
the minimum of the functional (6.8). However, if we assume that:

(a) for a given g, Equation (6.1) has a unique solution u in the domain of

C;

(b) in a neighborhood of u, the operator 4 has everywhere continuous first
and second derivative;

(c) the derivative of 4 at u, A'(u). is invertible;

then, by a rather easy generalization of the theorems contained in [26], one
can prove that if g. is noisy data, with i|g — gelly- = 2, and if in the func-
tional (6.8), with g replaced by g.. we choose the regularization parameter
Ain such a way that A = y¢?, where 7 is an arbitrary constant, then any
minimum point of such a functional converges to « when ¢ — 0; therefore,
for sufficiently small values of ¢, there exists only one minimum point.
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7. Stochastic route to regularization

When a priori knowledge of statistical properties of the signal and of the noise

1s available, a probabilistic version of regularization methods is possiblel29):(30],
(31]
L

Here we consider a Bayesian approach that has the advantage of showing
the connection between Markov Random Field models and standard regu-
larization as developed in this paper. In particular, we will be able to see in
which sense standard regularization is a special case of MRF models and is
itself equivalent to Wiener filtering.

The first step is to write Equation (3.1) in this form,
g = Lu + w, (7.1)

where w is a function representing the effect of the noise on the data. Notice
that in this representation no assumption is implicit about the structure of
the noise (additive noise, signal dependent noise, etc.).

The second step is to assume that there exist stochastic processes u, g, w,
related by N
9= Lu+w, (7.2)
and that the functions g, u, w appearing in Equation (7.1) are values of the
processes u, g, w, associated with a specific outcome of a given experiment
(we use here the nomenclature introduced in 132]).

For simplicity, we also assume that the processes u, g, w have zero mean.
This assumption is in fact not restrictive because, if it is not true, it is always
possible to introduce processes satisfying this condition just by subtracting
the means from the original ones. Thanks to the linearity of L, relation (7.2)
holds true also for the new processes.

When the mean is zero, the autocorrelation and the autocovariance of

a process u coincide. If the values of the zero mean process u are functions

of a variable ¢ (eventually multi-dimensional), the autocovariance function
of uis

Culr,2') = BE{u(r)u(z")}, (7.3)

where E indicates the expected value. Asin the previous sections, we assume

that the functions u, the values of the process u, belong to a Hilbert space X

(for instance, a space of square integrable functions) and that the functions

g,w, values of the processes g, w respectively, belong to the same (possibly

different from X ) Hilbert spa;e Y. The appropriate description of stochastic



24

processes with values in Hilbert spaces is given in terms of weak random

variables or cylinder set measures33/,

Then, the autocovariance function of the process u can be considered as
the kernel of an operator R, defined on the space X:

(Ry0)(z) = /Ci(x,;t')é(;v')d.v',t;& € X. (7.4)

The operator R, is called the covariance operator (or the covariance) for
the process u. It can also be defined for weak random variables with values
in an abstract Hilbert space X 33!

Coming back now to our basic equations (7.1), (7.2), the inverse problem
consists in estimating a value of u, given an observed value g of g and given
a priori probabilistic knowledge on the processes v and w.

We take a Bayesian approach and write the a posterior: probability
density as
P(u/g) = constP(u)P(g/u) (7.5)
where P(u) is the a priori probability density of process v and P(g/u) is the
conditional probability density of the data g given u.

We consider now the special case of u being a gaussian process (or
equivalently the linear transformation — such as a derivative - of a gaussian
process). In this case, the a priori probability distribution of u is

P(u) = const -exp[—%(u,R;lu) J. (7.6)
N ¢

-

Let us assume that the noise process w is additive, white and gaussian
with variance 0®. Then the a priori probability P(g/u) can be written as

)

-1

1
P(g/u) :const-exp[~ﬁHg—LuHi-]. (7.

=~

Depending on the optimality criterion there are now several ways of
obtaining the best estimate of « given the data g. A commonly used estimate
is the Mazimum A Posteriori (MAP) estimate

P(uyy st/ 9) = max{P(u/g)lu € X}. (7.8)
From Equations (7.5) - (7.7) we have
P(u/g) =
1 , ‘
const - e‘z'p[—~-‘)—a—2(||Lu —-gll} + o¥(u, R;l w)x )l (7.9)

If we put
R, =(C*C)7, (7.10)
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then from Equations (7.8) aud (7.9) we have

M(up pgt) = min{ M(u)lu € X}, (7.11)
where
M(u) = |[Lu - gl|3 + o*|Cull%. (7.12)

It follows that uy,.o; = Fog where F, is given by (5.6) with A = ¢2. If
we put R, = 0*I, where I is the identity operator in ¥ (R, is the covariance

operator of white noise), then Fyy can also be written in the following form:
F, = R,L*(LR,L* +R,) ', (7.13)
with R, given by Equation (7.10).

The operator F, is sometimes called Wiener filter (or Wiener-Kolmo-
goroff filter) and is quite similar to the operator (5.6)!31. In other words, the
regularizing operator (35.6) is equivalent to a Wiener filter in the case of white
noise, provided that the constraint operator C is related to the covariance
operator R, by the relation (7.10).

Most of our previous assumptions can be relaxed in a more general prob-
abilistic scheme based on the formalism of Markov Random Fields (MRF)
defined on finite lattices. In particular, the noise may not be additive, the
operator L may not be linear and P(u) does not need to be gaussian.

MRF models have been formulated for several problems in early vi-
sion. Under simplifying assumptions they reduce to the discrete equiva-
lent of standard regularization. Though they are computationally expensive
they may represent a powerful extension of the methods described in this

paper[m].[ss],[se} .
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Part Two

The initial stage of machine vision, now called early vision, consists of
distinct but interrelated problems like “edge detection,” “computation of
optical flow,” “structure from motion,” “structure from stereo matching,”
etc. From a theoretical point of view, these problems can be considered as
independent, at least to a first approximation. The integration of various
outputs is performed at a higher stage, where geometrical reasoning and
much ¢ prior: information will be used. These different modules may reflect
processing occurring in our brain, where simultaneously we compute different
information from images: we can extract rapid changes in image brightness
(edge detection): we can recover the shape of an object from its shading
(shape from shading); we can understand the motion of objects from the
changing images (computation of optical flow); we recover the 3D structure
of a scene from a pair of images (structure from stereo); and we are able to
have a dense description of 3D surfaces from sparse features (visual surface
interpolation).

Several of these problems have been recently solved with variational
techniques, in particular by Horn, Grimson and Hildreth. We will show that
many of these results and several new ones - in particular existence and
uniqueness of solutions - are direct consequences of mathematical results
presented in Part One.

Part Two is divided in four sections, each dealing with a main topic of
early vision. Section 8 presents the ill-posed nature of numerical differenti-
ation. In Section 9 we show how recently obtained mathematical results on
optical flow [B71[381.(391.(45] 5o straightforward consequences of regularization
theory. Section 10 discusses a recent approach to surface interpolation. il-
lustrating how variational principles(3)H0LL42] 431044 o) he viewed as
regularized solutions to discrete ill-posed problems. Section 11 reviews recent
variational approaches to shape from shading, in the framework of regular-
ization theory.
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8. Edge detection and numerical differentiation

Recently standard regularization techniques have been applied to a classical
problem of early vision — edge detection. Edge detection, intended as the
process that attempts to detect and localize changes of intensity in the image
(this definition does not encompass all the meanings of edge detection) is a
problem of numerical differentiation!*®!. As we will see in the next section,
differentiation is a common operation in early vision and is not restricted to
edge detection. Differentiation is ill-posed because the solution does not de-
pend continuously on the data. The intuitive reason for the ill-posed nature
can be seen by considering a function f(r) perturbed by a very small (in
L; norm) “noise” term esin Qz. f(z) and f(z) + esin Qz can be arbitrarily
close for very small €, but their derivatives may be very different if € is large
enough. This simply means that differentiation “amplifies” high-frequency
noise. Differentiation can also be seen as the recovery of the solution u to

the inverse problem g = Lu where
T

L:X Y (Lu)(z) = / u(y)dy. (8.1)

Thus u is the derivative of the data g. The operator (8.1) is not bounded in
L*(—00,00), and the range of L is not closed. Therefore, the inverse problem
is ill-posed .

8.1. Regularization of differentiation

As shown in Section 3, it is possible to restore well-posedness by redefining
the solution space X and the data space Y. Let us redefine the solution
space X as the subset X' of square integrable functions f(z) in (—oo, +00)
such that

+ oo 1 N
/: (1+ p) |F(w)|” dw (8.2)

0

exists, where F'(w) is the Fourier transform of f(z). The new data space
Y’ is simply the range of L. It is easy now to see that the inverse problem
L: X' - Y’ when the operator L is defined as in Equation 8.1 is well-posed.

Differentiation can be transformed into a well-posed problem by using
Tikhonov’s regularizing operators. For equations of the convolution type,
such as (2.1) with A(z,y) = K(z —y), the regularizing operators correspond
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to convolving g(«r) with a filter f(z, ) (where \ > 0 is the regularization pa-
rameter) whose Fourier transform F(w, ) satisfies the following conditions:

(i) 0< F(w,A) <1 for A 0 and all w;

(1) F(w, ) is an even function with respect to w and & Ly(—oc, +00);

(i) F(w,A)jw belongs to Ly(—o0,+o) for any A > 0;
(iv) limy, . F(w,/\) = 1.

This regularizing filter is equivalent to a smooth low pass filter. Three
main types of filtering have been used in edge detection. We will list their
main properties below.

8.2. Band-limited filters

Band-limited filters are an obvious choice for regularizing differentiation,
since the simplest way of avoiding harmful noise is to filter out high frequen-
cies that are amplified by differentiation. Linear and circular prolate func-
tions constitute an interesting class of band-limited filters/*"'[48] and have
already been used in edge detection[*?! . These filters satisfy all conditions
of Tikhonov needed to regularize differentiation, if we take the inverse of the
band-width as the regularization parameter.

8.3. Support-limited filters

All real filters have a finite extension and are support-limited. A class of
support-limited filters that has been used in edge detection(5? is the so-
called difference of boxes (DOB). These filters are Haar functions *Y which
form a basis for square integrable functions on a bounded interval. However,
these filters do not satisfy Condition (iii) above, and therefore cannot be
used to regularize differentiation. This conclusion derives from the fact that
the Haar functions are discontinuous. As a consequence, the limit of their
Fourier transform for w going to infinity tends to zero as w~!.

It is possible, however, to introduce smooth support-limited filters whose
Fourier transform tends to 0 as desired as w — oc. If the function f(z, \) has,

for instance, continuous derivative up to order p and the (p+1 )th derivative is

w]ﬁ(p“). Furthermore, if f (z, \)

integrable, then ‘F (w, )\)( tends to zero as
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is C>, then F (w, \) tends to zero more rapidly than any inverse power of
w. An example is provided by the function

1 e
FleA) = {CA exp (=) lael = A (8.3)
Ov {;l’] > /\

where C is a constant such that F’(O, A) = 1. Therefore, the best support-
limited filter for edge detection and numerical differentiation is not the DOB
but the filter (8.3), which is often used in digital signal processing when
aliasing needs to be reduced.

8.4. Filters with minimal uncertainty

The Gaussian function minimizes the product of spread in the space and

1 . . PR
B2 and can be viewed as a filter with minimal un-

in the frequency domain
certainty. Filtering with a Gaussian function regularizes differentiation, be-
cause the Gaussian function f(z, ) = exp(—x?/\?) satisfies all conditions of
Tikhonov. Moreover, filtering with a Gaussian transforms a continuous and

bounded function into an entire function.

8.5. Interpolation and approximation

Numerical differentiation can also be regularized in a different way. It is
possible to interpolate or approximate the data with an analytic function
and subsequently compute the analytical derivative of the interpolating or
approximating function.

For instance in 1D the “image” model is y; = f(x;) + ¢, where y, is the
data and €; represent errors in the measurements. We want to estimate f'
from an interpolating or approximating function f. We can choose a regu-
larizing functional ||Cf||* = J (f"(z))*dx, where f" is the second derivative
of f. This choice corresponds to a constraint of smoothness on the intensity
profile. Its physical justification is that the (noiseless) image is indeed very
smooth because of the imaging process: the image is a bandlimited func-
tion and therefore has bounded derivatives. We can decide that the data
are noiseless and therefore we want to interpolate the data. This procedure
is equivalent to interpolating the data with cubic splines and differentiation
can be safely obtained by the analytical differentiation of the interpolating
spline. If the data are noisy and we want to take errors in the measurements
into account, we can look for an approximating function minimizing

>l “f(zi))2+)\/(f"(x))2dm. (8.4)

l
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In [52] it was shown (a) that the solution f(x) can be obtained by
convolving the data y; (assumed on a regular grid and satisfying appropriate
boundary conditions) with a convolution filter R, and (b) that the filter R
is a cubic spline with a shape very close to a Gaussian and a size controlled
by the regularization parameter \. Differentiation can then be accomplished
by convolution of the data with the appropriate derivative of this filter. The
optimal value of A can be determined for instance by cross validation!21+22]

and other techniques. This corresponds to finding the optimal scale of the
filter(46],

These results can be directly extended to two dimensions. The resulting
filters, which are spline filters for discrete data and Butterworth-like filters
for continuous data (they are eventually indistinguishable in practice) are
very similar to the derivatives-of-a-gaussian extensively used in recent years

[461,[53].[54].[55]  1f the regularizing functional ||Cf]| is

//(Vzgradf)zdr dy, (8.5)

where V2 indicates the Laplacian and gradf(«c, y) the gradient of f(r,y), it
has been shown!®? that the solution f(.y) can be obtained by convolving
the data g(z,y) with the filter

1 ~ J(](u).’.’)
R‘ I, = = N 6 wd * 8.6
(2, 9) 2/; JYRCINEE Rt (8.6)
where J, is the zero order Bessel function and - = V&2 +y2 If the

regularizating functional is

//(vzf(‘vay))zdr dy, (8.7)

the filter becomes

1 7 Jy(w?)

<

Therefore numerical differentiation can be regularized in a number of
ways which are all consequences of the results presented in Part One. There
are two main possibilities: filtering the data with appropriate derivatives of
Tikhonov filters; or interpolating (or approximating) the discrete data with
splines and then performing an analytical derivation. These two regularizing
procedures are equivalent.
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9. Computation of optical flow

A major aim of early vision is the segmentation of the visible scene in regions
corresponding to distinct rigid objects. Motion is an important source of
information for this goal. The imaging device projects the 3D velocity field
of viewed objects into the image as a 2D field. When a moving scene is
viewed by a caulera it is possible to recover directly the optical flow. The
optical flow®®! is commonly defined as the distribution of apparent velocities
of movement of brightness patterns in an image. Optical low and the 2D
motion field are related and their relationship has been carefully analysed in
45].

In this section we discuss two different approaches to the computation
of optical flow. Horn and Schunck®® derived equations relating the change
in image brightness E(r,y,t) at a point {z,y} and time ¢ to the motion
of brightness pattern. Their key assumption is that the brightness of a
particular point in the moving pattern is constant, so that the total derivative

of E(r,y,t)is zero:

dE
Tlt—(.l‘,y.f) = 0. (9.1)

Then, from local measurements of the partial derivatives of E(r,y,t) with re-
spect to space coordinates and time, it is possible to estimate the component
of the velocity field parallel to the gradient of E(r,y,t). The normal com-
ponent is not determined and it must be recovered (see [45! for an analysis
of the validity of the underlying assumptions).

Hildreth37:38] suggested computing the optical flow not over the entire
image but only along 1-D contours. In real images, these 1-D contours are
edges corresponding to sharp changes in image brightness (see Section 8).
Hildreth37138! ohserved that it was possible to obtain the normal vectors
along the contour by a simple inspection of the extracted edges: if E(z,y,t)
1s again the image brightness, then the normal component v+ of the local
velocity vector V" at the points of the contour I' is given by

d

L ) o2
1~ = —V*‘FE 2
‘ ot r (9.2)
where V? is the Laplacian. A better estimate of v L, however, is
2
Lo 00E , (9.3)
gt In?* r

where 9% /0n? is the second derivative along the direction of the gradient!46]

In this section we will discuss the ill-posed nature of the recovery of
optical flow as proposed by these authors.
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9.1. Optical flow along a contour

We first consider the problem of determining the two-dimensional optical flow
along a contour I' in the image assuming that local motion measurements
along the contour provide only the component of the velocity in the direction
perpendicular to the contour. The component of velocity tangential to the
contour is invisible to local detectors that examine a restricted region of the
contour. The local velocity vector 1’1(3) is decomposed into a perpendicular
and a tangential component to the curve

V(s) = v (s)f+v5(s)A. (9.4)
Here s is the arclength and #, 7 are unit vectors respectively tangent and
normal to the contour I'

- cos 6 . —sin d
t*(si119> n._( cos 8 )’ (9:3)

where 8 is the angle between ¢ and the unit vector of the r-axis. They depend
also on s but we omit this dependence for simplicity of notation.

The component v*(s) and the vectors #,17 are given by direct measure-
ments and therefore are the data of the problem. We will denote by g(s) the
measured values of v*(s) and by §(s) the corresponding velocity field

g(s) = g(s)n. (9.6)
Then the problem can be formulated as the inversion of a projection operator
in the space X =Y = L*T') & L*(T') (L*(T') denotes the space of square
integrable functions defined over I'). The norm of a velocity field V € X is
defined by

'ﬁ&:/ﬁgﬁmm:
r .
/lvT(s>12"s+f!vi(s)|2ds. (9.7)
r r
The projection operator is
LV(s) = vi(s)A, (9.8)
and the set of the solutions of the equation
LV =g, (9.9)
with g defined by Equation (9.6), is the set of the velocity fields V given by
V’(s) = ()t + g(s)n, (9.10)

where g(s) is the given data function and y'(s) is an arbitrary function in
L?(T'). The generalized solution, or solution of minimal norm, exists for any
data function g(s), but it is trivial since it is given by

Vt=g (9.11)
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In other words, the generalized solution restores well-posedness, but it gives
a solution which does not have any physical relevance. Therefore, one has to
look for suitable C-generalized solutions corresponding to physically accept-
able velocity fields.

9.2. A C-generalized solution for the optical flow along a
contour

A seminorm introduced by Hildreth gives a very useful constraint for the
recovery of the optical flow. Put Z = X = L*T') ® L*(I') and introduce the
operator

cCvV =V (9.12)
where the dot means derivation with respect to s. Then the C-generalized
solution is the velocity field of the form (9.10) which minimizes the functional

L2 s .
ICVIly ~/V-Vds. (9.13)
r

It is easy to show that existence and uniqueness of the C-generalized
solution can be derived from the general result given in Section 3.3.

First, consider the question of uniqueness. We know that the C-gener-
alized solution is unique if and only if the intersection of N(C) and N(L) is
the null element (Condition (i) of Section 3.3). Now N(C) is the set of the
constant velocity fields (or translations), say V = 4. Furthermore, N(L) is
the set of the velocity fields orthogonal everywhere to 7, i.e., v- 7 = 0. This
condition can be satisfied by @ # 0 only if 7 is constant; that is, ounly if T is
a straight line. Therefore if I' is not a straight line, the intersection of N (C)
and V(L) is always the null element, and uniqueness is restored by the use
of the C-generalized solution (9.13).

The existence of the solution follows from the fact that the operator
(9.12) satisties Conditions (ii) and (iii) of Section 3.3. Condition (11) is a
rather general property of differential operators (see Appendix B for com-
ments), and Condition (iii) is also verified hecause N(C) is a two-dimensional
subspace of X = L*(T') ¢ L*(T'). Therefore, we can conclude that the C-
generalized solution exists whenever ¢ ¢ LD(C).

In order to see more precisely the meaning of the last condition, assuie
that the contour I' consists of a finite number of regular arcs, so that the
tangent is continuous on I' with the exception of a finite number of points,
81,825 ..., 8p, where the tangent has both right and left limit. Then a solution
V(s) of the form (9.10) is in the domain of the constraint operator C if
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¥(s)t and g(s)n are differentiable on each regular arc and furthermore they
satisfy suitable conditions at the discontinuity points s, in order to assure
the continuity of V(s). We can derive these conditions from the equations

Vi(si)=V.(s;); i=1,...,n, (9.14)
where + and — denote respectively right and left limit. It follows that
Yi(si) = (sin ;)7 [gi(s;) cos ¢; — 9-(s:)]
V- (s0) = (sin i) 7 g4 (50) — g-(s:) cos 8], (9.15)

where sing = t_ -7, = —f, - 7i_,cos ¢ = Ty i =1, -t_ (£, is the right
limit of the tangent, etc.). Therefore, if g(s) admits a right and left limit at
the points s;, it is possible to derive from Equation (9.15) the right and left
limit of ¢'. All these conditions characterize the subset D(C) which contains
the unique solution which minimizes the seminorm (9.13). Of course, if g is
not differentiable on the regular arcs or does not have left and right limits at
the discontinuity points, the C-generalized solution does not exist. It follows
that the problem is ill-posed.

Before discussing this point, we want to point out that, if the data
g are not affected by noise, the C-generalized solution coincides with the
true solution in two important cases!3738]: the first is a translation of an
arbitrary contour and the second is an arbitrary motion of a rigid polygon.
These results can be derived from the Euler equation for the C-generalized
solution.

Assume that the regular arcs have a differentiable curvature. From the
following relations, which are true on each regular arc

£=0n , 1n=—6f (9.16)
where 6 is Just the curvature, one can derive from Equation (9.10)

V(s) = [$(s) - B(s)g(s )+ [9(s) + 8(s)yp(s)] (9.17)

and therefore, when ¥ satisfies the conditions (9.15)

oV - / {a()[2 + 16(s)g(s)] s +

/{MZ ‘+10 s)l +260(s)g(s)¥(s) — Yg(s)¥(s)}ds  (9.18)

This is a functional of ¢, which is an arbitrary function except for bheing
differentiable and satisfying conditions (9.15). Then, by annihilating the first
variation of this functional, it follows that, on each regular arc, the function
¢» which minimizes the functional is solution of the differential equation

—d(s) +16(s)*e(s) + 26(s)(s) + 6(s)g(s) = 0. (9.19)
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In the case of a closed contour, the C-generalized solution is given by
the unique solution of Equation (9.19) satisfying the conditions (9.15). If
the contour is regular everywhere, then one has to add boundary conditions
such as

¥(0) =¢(1) , (0) = (D). (9.20)
When the contour is open, one needs boundary conditions at the end points
of the coutour. These can be obtained directly, through a partial integration,
from the annihilation of the first variation of (9.18)

£(0) = 6(0)g(0) , (1) = B(1)g(l). (9.21)
However, these conditions are correct only in the case of a pure translation.

In the general case it is necessary to measure the tangential velocity of the
end points and take

e(0)=v"(0) , ¥()=rv(), (9.22)

where v ' (0) and v T(1) are the measured values.

If the motion of the contouris a pure translation and ¢ = {ai,a;} is the
constant velocity field, the noise-free data are given by

g(s) = —a;sin® + a, cos b. (9.24)
Then, if we put

¥(s) =a;cos @ + a,siné, (9.25)
taking into account that ¢ = ég, g = —6, it is easy to verify that

satisfies Equation (9.19). In the case of an open contour, also the boundary
conditions (9.21) are satisfied (the boundary conditions (9.15) are obvious
since the velocity field is continuous).

In the case of a rigid polygon, since an arbitrary rigid motion counsists
of a translation plus a rotation, on each segment of the polygon both the
normal and tangent velocity are linear functions of the arclength s. But, on
a segment of a straight line, Equation (9.19) becomes 12:(3) = 0 and therefore
Y(s) is a linear function of s. The boundary conditions (9.20) (plus the
boundary condition (9.22) in the case of an open polygon) give the correct
values of the constants provided that also in this case the measured values
are noise-free.

As we already remarked. the difficulty of this approach is that the prob-
lem of determining such a C-generalized solution is ill-posed. For this rea-
son, in the case of noisy data, one has to look for a regularized approxima-
tion of the C-generalized solution, which can be obtained by minimizing the
functional(371:(38]

2[V] = LV - g% + MICVA. (9.26)
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If we denote by Vi the minimum of the functional (9.26) and if we put

Va = ¢a(s)t + oa(s)n (9.27)

then it is easy to show that, on each regular arc, ¥y and ¢, must be solutions
of the system of differential equations

—a(s )+°0 )¢A(S)+|H( Izd’,\(s)+5(s)m(s):0 (9.28q)
—A[dals) + 20(s)ea(s) + 18(s)] Ba(s) + B(s)¢ ()] + oals) = g(s) (9.28b)

plus boundary condltlom similar to those discussed in the previous case
(continuity of 1)‘ at the discontinuity points, etc). The determination of
the parameter A can be performed using one of the methods discussed in
Section 5.

In practice, the most economical method for the computation of V)
is perhaps the conjugate gradient method. Regularizing properties of this
method(®®B7) can also be used in order to avoid the minimization of (9.26).

In the previous treatment we have neglected the errors in the determi-
nation of the contour which imply an approximate knowledge of the operator
L (Equation (9.8)). However, if the equation LV = g + 0g, where 87 is the
error on the data, is replaced by the equation (L + 8L)V = g+ 0§, where 0L
is the error on the operator, it appears that the two equations are equivalent
in the sense that only the error on § is different in the two cases (in one case
it is 8¢ and in the other case it is 9§ — (BL)I;;) This point of view assumes
that the errors in the determination of the contour have been included in the
errors on the data.

9.3. Two-dimensional optical flow

As we already recalled at the beginning of this section, Horn and Schunck/(3®!
attempted to recover the optical flow in the entire image and not just on
a one-dimensional contour. Their basic equation is Equation (9.1), which,
written explicitly, provides the relationship

VE-V = ,E (9.29)
where VE = {0:E,0,E} is the gradient of the brightness distribution in
the image, V is the velocity field (optical flow), and §,F is the partial time
derivative of the bughtness Therefore, a measurement of VE and 6,E gives
the component of V' parallel to VE.

We assume that the brightness distribution E(z,y,t) is defined in a
bounded region 2 whose boundary 99 is a contour with an everywhere con-
tinuous tangent. Furthermore, we will also assume, for simplicity, that VE



37

is never zero in {2 and that the level lines of E(r, y,t) have everywhere differ-
entiable tangent and normal. We denote by ¢ and 1 the tangent and normal
to the level line at the point {x.y}

.= 0,E - 0. E ,
_ -1 y = ~1 (U=
t = |VE| (~(9,E> , n=|VE| (ayE>' (9.30)
Then the velocity field 17'(.1', y) can be everywhere represented as follows
17'(;r,y) =v (e, )+ ot (e, y)n. (9.31)

The problem can again be formulated as the inversion of a projection oper-
ator: taking X =Y = L%(Q) & L*(Q) and
(LV)(2y) = vz, y)ii. (9.32)
The data will be given by
9(z,y) = g(z, y)n, (9.33)
where g(x,y) is thg measured value of —atE/le’EI. Then the set of solutions
of the equation LV = g is the set of velocity fields
V(e y) = ¢(z,y)f + g(e,y)ii (9.34)
where ¢ is an arbitary function in L?(Q). The generalized solution V'* is
trivial also in this case, since V* = g.

9.4. A C-generalized solution for the two-dimensional optical
flow

As in the case of the optical flow along a contour, it is necessary to look
for C-generalized solutions. The method suggested in [39]Horn and Schunck
(1981) can be formulated in this framework.

Introduce the constraint space Z = X @& X and define an operator
C:X— Zas .
- 0,V
V=|{.5 .35
C (ayv ) , (9.35)

with the associated seminorm

vy = f{BIV-OIV'JrayI?-ayV}. (9.36)
Q

Written in terms of the cartesian components of V" this is Just the integral
of the quantity called the measure of the departure from smoothness in the

velocity fow(3?].

First consider the question of uniqueness. The null space N(C) is the
set of the constant velocity fields, say V' = d, while the null space V(L) is the
set of the velocity fields which are orthogonal everywhere to 7, ie., V.7 =0.
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The intersection is the set of constant velocity fields such that @- 7 = 0 and
this condition cannot be satisfied by @ #£ 0 if the level lines are not parallel
straight lines everywhere.

It is easy to verify that conditions (i) - (iii) of Section 3.2. are satis-
fied and the existence of the solution is guaranteed. It may be interesting
however to write the Euler equation for the C-generalized solution. After
some lengthy but elementary computations, using the orthogonality rela-
tions 71- 0,8 =70 -9y = 0, t- Ot =1 - Oyt =0, 8,1 - 0,f = Oyni - Byt = 0 we
obtain

- . — 2 . - .
171y = [ {1907 + (1077 + 0,7 417} deay+
9]
/ {;wz (1087 4 10,87) [ + 2 (- 0,8) D, + (i1- 0,7) By9] v+
Q

+2g [(£ 0:1) Opv + (£ 0y7) By ¢] }d.vdy. (9.37)

In order to find the Euler equation of the functional (9.37) one has to consider
a variation of ¥,% — ¢ + h and put equal to zero the term of first order
in h. Then, using the divergence theorem in order to eliminate the partial
derivatives of h, transforming the fourth term in Equation (9.37) by means
of the identities ¢ - 8,7 = —7 - 8,¢, ¢ - Oyn = —7i - 8yt, and using the fact
that h is arbitrary, one finds that the unique function ¥ which minimizes the
functional (9.37) is the unique solution of the boundary value problem:

Ve + (10,4 + [0,¢]" )+
+2[(7 - 0,) Brg + (i - 9yt) Byg] + (7 - Af) g = 0 (9.38)
o . ot
5 o = <n . 8_1/> g 39’ (9.39)
where v is the normal to 9Q. Notice that this boundary value problem is
Just the extension in the 2-D case of the problem (9.19) with the boundary

conditions (9.21). The boundary condition (9.39) can be replaced by the
value of ¢ if the tangent velocity can be measured on 9.

It is also easy in the present case to verify that if the motion is a pure
translation (i.e., a constant velocity field), and if the data function is noise-
free, then the C-generalized solution coincides with the exact velocity field.

It is also obvious that in such a case the C-generalized solution is ill-
posed and that one must introduce regularized approximations. These can
be obtained by minimizing the analogue of the functional (9.26), and this is
precisely the method used in [39)].
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10. Surface reconstruction

Most algorithms able to recover depth from pairs of stereo images provide
sparse depth values; that is, depth is obtained ounly for special points in
the viewed scene. Since a global description of the 3D structure of the
viewed scene is desirable, it is useful to consider the problem of recovering

a mathematical representation of a visible surface f(x,y) from the sparse
datal4ohl41],

10.1. Surface interpolation

The original data are a finite set of depth values z; = fleiy), i =1.....n
(which are assumed to be exact: that is, noise-free) and the problem is the
recovery of a smooth function f(r,y) interpolating z; at (&;,y;) = ¢, con-
tained in . Grimson!*% 41 proposed to find f such that it minimizes the
seminorm

ICfII? = / ,:(227]:)24—2(%;): + (g;_{)z dedy. (10.1)

Uniqueness of solution is guaranteed by the existence of at least four nomn-
coplanar points z; = f(x,,y;) 40hH1]

This procedure can be seen as an application of generalized inverses in
the case of discrete data (see Section 3.4): in this case, uniqueness of the
solution is guaranteed when the intersection of the null space of C,(N(C))
and the null space of L(V(L)) is empty, where L is the operator defined in
Section 3.4.

The null space N(C) is composed of the set of functions fle,y) = ar +
by + ¢ with a, b, ¢ constants. These functions consist of all planar surfaces
defined in Q. The null space N(L) has been defined in Section 3.4 and
consists of the set of functions such that flziyyi) = 0 for i = 1,... n.
Therefore, it is easy to see that when : ~ 4 and the points t; = (x;,y,)
are distinct, the intersection of N(C) and N(L) is empty. In other words,

uniqueness is guaranteed if there are at least four non-coplanar points, as
required in [40], [41].

10.2. Surface approximation with noisy data

It is also useful to consider the case in which the data are noisy; that is, when
the original data are ¢; = f(t;) + ¢;, i = 1,...,N and ¢; is additive noise.
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In this case, it is reasonable to look for a solution close to the original data
gi, but also smooth{391-[401.0411.[42],[43].[44]  yis approach can be seen as an
application of regularization theory. In Part ne we have already shown that
interpolation is an ill-posed problem which can be solved by the use of a gen-
eralized inverse. We will present now an approach to interpolation directly
originating from regularization theory®*/:5%] which clarifies the relationship
between splines, regularization theory, and gives a different framework to the
results on visual interpolation!401:[41].[42],[43].[44] [45]

We can consider the case in which we want to estimate a smooth function
f(t),t € Q C R?, given a finite number of observations of linear functionals
of f. In the case of spatial interpolation, our functionals are:

gi=Fi(f)+e;=fti)+e; i=1,...,n, (10.2)

where ¢, is additive noise. A regularized estimate fn.A is obtained by solving
the minimization problem

n 2
Z(f(n) 0] ATulf) (10.3)
i=1
in which J,,() is a seminorm in H,, (H,, is a reproducing kernel Hilbert
space of functions defined in Q) defined by

// Z (6;);;{” U)zd:ndy, (10.4)

(here m indexes the highest square integrable derivative) and X controls the
tradeoff between the degree of approximation of the solution to the data and
the smoothness of solution. The value of A can be computed by the method
of generalized cross-validation!?!122] If i, = 2 we have the functional (10.1).
The solution of this minimization problem is one of the “thin plate splines,”
so called because J,(f) is the bending energy of a thin plate.

In [58] it was shown that a unique solution exists for any A > 0 provided:
(1) m > 1;

(2) no= M = ("5

(3) the “design” ¢,,...,¢, is unisolvent, that is if {6,}7_, is a basis for the
M dimensional space of polynomials of total degree m — 1 or less, then
N g (t) =0 =1,... ,n) implies that the o, = 0.

—sp=1

If m = 2, then we need at least three points which do not lie on the
same straight line (to satisfy the requirement of a unisolvent design), which
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is the same requirement as found in [40] and [41]. Moreover, the solution has

an explicit representation/®®! as:
Frma(t) =Y Enml(tit)) + > duoy(t), (10.5)
j=1 v=1
where
E,(s,t) =0,ls — t|*log|s — t|
with

s={(x1,y1) t=(r2,y2) {s—f|:\/(.1:1~(v2)2+(y1—y2)2
and '
0, = 1/22"'-17r[(m - 1)!J2. (10.7)

The coefficients ¢ = (¢y,...,¢,) and d = (dy,...,d,) are determined by
the solution of the algebraic linear system:

(K +p)C+Td=g
T'C =0 (10.8)
where A is the n x n matrix with Aj; = E,(tj,tx),p=n)\Tis the n x m
matrix with T),; = ¢,(¢;) and ¢ = (g1,...,9,).

10.3. Surface interpolation on a regular grid

While surface interpolation from sparse data requires an arbitrary grid of
knots, other problems of machine vision require the approximation of a 3D
surface through points given on a rectangular grid. For example, when a
smooth function f interpolating intensity values on the regular grid of a
CCD camera is regularized, it is possible to use doubly cubic splines or a
tensor product of splines, giving an interpolating function that minimizes

// (8 f /02 0y?) dedy. (10.9)

In this case different kinds of doubly cubic splines can be used, according to
the available data!®®!. The algorithms are then convolution algorithms (see

section 8.4).
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11. Shape from shading

It is a common experience to notice our ability to recover the shape of an
object from its shading. Convexity or concavity of viewed objects are easily
understood by looking at the profile of radiating light. Here we have another
classical problem of early vision, “shape from shading,” which has stimulated
elegant mathematical approaches. The problem of shape from shading was
initally formulated in [61] and [62] as the solution of five ordinary differential
equations called the characteristic strip equations. Of considerable use in
this problem has been the reflectance map R(p, q) (631164 which specifies the
radiance of a surface patch as a function of its orientation, determined by
the pair (p,q). If z(r,y) is the surface of the object, p and q are defined as

0z 0z
P= 5 and ¢ = oy (11.1)
and the unit normal 7 to the surface is
S S S (11.2)
T Virpee DY

The reflectance map can be computed from the bidirectional reflectance-
distribution function and the light source arrangement/(®3].

Formally, given an image E(r,y) and a reflectance map R(p,q), the
shape from shading problem may be regarded as the recovery of a smooth
surface :(z,y) satisfying the image irradiance equation
0z 0z
9z’ by

over some domain (2 of the image. Since there are two unknown functions

E(e,9) = R(3=.5) = R(p.0) (11.3)

(p and ¢) and only one equation the solution is not unique and the prob-
lem is underconstrained (and ill-posed). Uniqueness of the solution can be
recovered by the use of photometric stereo, which takes multiple images of
the same scene from the same position with different illumination(®3!. In this
approach, several equations of the type of Equation (11.3) are available, with
different reflectance maps since the illumination source is different. Three
different light sources can be used to obtain a unique solution.

If only one source of illumination is available, uniqueness can be restored
by variational techniques similar to those previously seen. Assuming that the
object has a Lambertian surface and is illuminated by a planar wave of light
(and the unit vector s = (sy,s,s3) points to the light source), then the
Lambertian reflectance map becomes

R(p,q) =n-s. (11.4)
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If, instead of using the pair {p, ¢}, the new variables {f, g} are introduced

D)
<p
f=

)
S i (11.5)
1+ 1+p2+¢? 1+ 1+ p? + ¢?
the reflectance map becomes
4—(f*+ g%
R(f.g) = 719,
4+ (f? + ¢?)
' 4f 4g ) .
- - — 1) 11.6
(4—(f2+92) eyt (11.6)

The problem of shape from shading can be formulated either using the un-
known 7 or the pair {p.q} or {f,g}.

11.1. The variational approach to shape from shading

When the unknown 7 is used, the variational approach is to find r(r,y) such
that it minimizes

- a2 :
/ (E(r,y) — 7 -35) dedy + /\/(ni +n2)dz dy, (11.7)
Q Q
with the constraint | 7i|| = 1. In this case, the variational problem is quadratic
in the unknown 77, but the constraint |/7Z|| = 1 is unusual.

When the pair {f, g} is used, we seek functions f and g minimizing:
/ I(E(x,y) — R(f,9)*dzdy + )\/ (F2+fi+6i+gl)dedy, (11.8)
Q Q

with R(f,g) given by Equation (11.6). The variational problem is not
quadratic in the unknown { f, g} and the results of nonlinear inverse problems
have to be used.

11.2. Regularization of shape from shading

We give an application of the result stated in Section 6 by formulating the
problem in terms of the pair {p,q}. We define the space X as the direct sum
L*(Q) & L*(Q), i.e., u is a pair {p, ¢} of square integrable functions:

lal% = /ﬂp‘%r,y)d(cdy+L«12(.c,y)d.rds/. (11.9)

Let the space ¥ be also a space of square integrable functions (we now call
g(z,y) the image E(z,y)), and from (11.2), (11.4) we define a nonlinear

operator 4 : X — Y as follows:

(Au)(z,y) = 2 L1~ 9% (11.10)

V1+tpr+g?
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Because 1 and s are unit vectors, it is obvious that (Au)(wy)] = 1 for any
{z,y} € Q. It follows that the domain of 4 is X and that the range of 4 is
contained in the set of g(x,y) such that [g(x,y)| < 1 in Q. Furthermore, it
is not difficult to prove that the operator 4 is continuous everywhere, i.e., if
w 1s any element of X and if {u,} is a sequence convergent to u, then 4u,
converges to du. Indeed, using the inequalities

s3-ps1—gsa| SV1+pP+ @2, V1 +p2 + g2 > 1, (11.11)
it follows that

Aw = Aun| = s1llp = pal + [s2llg = gal + [VI+p* +¢2 — /11 pZ + 2.
(11.12)

Then, using the inequality (g¢; +...+4g,)? < n(gf + ...+ ¢*) (with n = 2,3),
we get

du = Al < (p=pal + g q.?). (11.13)

By integrating over {2 we get the continuity of the operator A.

Finally, we consider the constraint operator C defined by

[Cully = / [Colp? +¢*) + C1(p2 + P% + ¢ + ¢3)]dedy (11.14)
Q

where C, could take the value C, = 0 and give the stabilizer used by Ikeuchi
and Horn.

We can seek a solution to the problem of shape from shading by mini-
mizing the functional

[ tawe9) — ote,)2dedy + NCul?, (11.15)
Q

where the first term in Equation (11.15) is Equation (11.10) and the con-
straint operator C is defined in Equation (11.14). Because the operator 4
is continuous and the constraint operator has a compact inverse, the results
presented in Section 6 indicate the existence of at least a local minimum of
the functional (11.15). Furthermore, if ¢ € R(A4), the u,\ converges to an
exact solution when \ — 0.
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12. Discussion

The review of early vision presented in Part Two shows that certain regular-
1ization techniques can be useful for a correct and sound “solution” of many
vision problems. The key idea of all regularization techniques is to introduce
a prior: knowledge — or constraints — which have to satisfy the solution.
Therefore we will have different solutions according to the assumptions we
have made, that is our a priori knowledge about the world.

Physical plausibility of the solution is the most important criterion in se-
lecting a good solution. The decision regarding the choice of the appropriate
stabilizing functional cannot be made judiciously from purely mathemati-
cal considerations. A physical analysis of the problem and of its generic
constraints plays the main role. Standard regularization theory provides
a framework within which one has to seek constraints that are rooted in
the physics of the visual world. Standard regularization, however, offers a
restricted universe of possible constraints since only certain a PrioTi assump-
tions can be translated into the language of Tikhonov stabilizers.

In our example of the computation of motion, the constraint of smooth-
ness is justified by the observation that the projection of three-dimensional
objects in motion onto the image plane tends, in a probabilistic sense, to yield
smoother velocity fields 371, In the case of edge detection the constraint of
a small norm for the derivative of image intensity is directly justified by the
bandlimiting properties of the optics. In the case of motion, however, and
more dramatically in the case of surface reconstruction, the constraint of
smoothness is not always correct. This suggests — as we will discuss later —
that more general stabilizing functionals are needed to deal with the general
problem of discontinuities.

A method for checking physical plausibility of a variational principle is
to use the Euler-Lagrange equation associated with the variational problem.
In the computation of optical flow, the following sufficient and necessary
condition has been obtained [#¢] (see also Section 9) for the solution of the
variational principle Equation (9.26), to be the correct physical solution:

: A%
0s?

where f is the tangent vector to the contour and V is the true velocity

—0, (12.1)

fleld. The equation is satisfied by a uniform translation or expansion and by
rotation only if the contour is polygonal. Therefore, the smoothness principle
will give correct results when (a) motion can be approximated locally by pure
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translation, rotation or expansion, or (b) objects have images consisting of
connected straight lines. In other situations, the smoothness principle will
not yield the correct velocity field, but may yield one that is qualitatively
similar and close to human perception37:38] In the corresponding case for
edge detection (intended as numerical differentiation), the solution is correct
if and only if the intensity profile is a polynomial spline of appropriate degree.

From a more biological point of view, a careful comparison of the vari-
ous “regularization " solutions with human perception promises to be a very
interesting area of research, as suggested by Hildreth’s work on the compu-
tation of motion. For some classes of motions and contours, the solution
of Equations (9.19) and (9.22) is not the physically correct velocity field.
In these cases, however, the human visual system also appears to derive a
similar, incorrect velocity field(37)(38],

It may be useful to remember again that Tikhonov stabilizers do not rep-
resent the only way to regularize ill-posed problems. Different or additional
constraints such as shape (monotonicity, convexity) have been proposed.

The most obvious way to solve inverse ill-posed problems without requir-
ing smoothness of the solution is to use Markov Random Fields as proposed
in [36]. In this approach, discontinuities can be preserved introducing ap-
propriate line processes34:35] and appropriate potential terms. A possible
problem in this approach is the critical dependency of the solution on the
parameters coupling the different Markov Random Fields.

12.1. Stereo matching

Not all inverse problems of early vision can be solved using the regularizing
techniques introduced in Part One. For example, stereopsis, which is the
process that computes depth from two images of the same scene obtained by
two eyes or cameras, appears as an inverse problem that may be approached
with standard regularization techniques. It turns out that this 1s, however,
quite difficult. The critical problem in stereopsis is the correspondence prob-
lem, that is, the matching of corresponding features in the two images. Let
us consider the 1-D matching problem, by considering the intensity profile
— or some corresponding feature map — on conjugated epipolar lines!™!
In this case, the obvious way to match the right image R(z) with the left
one L(zr) is to find the disparity d(z) such that the two mtensity profiles
L(r) and R(x + d(r)) are as close as possible. We can formalize this in the
following way: let us define an operator Py that depends on the 1mage as

Prf(z) — R(z + f(z)). (12.2)
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The disparity function that we want could be seen as the solution to the
inverse problem:
L(z) = Prd(x). (12.3)
The operator in Equation (12.3) which has to be inverted depends on the
data and is not known a priori. This class of problems is not covered by
the available mathematical results. We could still try to determine d(x) by
minimizing

IIL{z) — R(x + d(z))]. (12.4)
A sufficient condition for the solution of (12.4) to be unique is that L(z)
and R(r) are strictly monotonic functions of z. This is clearly a very re-
strictive condition, almost never satisfied by real images. In general, the
problem adimnits many solutions unless constraints are imposed on d(z). If
we use constraints of the Tikhonov type, we can look for a solution d(x) that
mininuzes
1L(x) = R(x +d(z))|| +A][ld'(z (12.5)
The second term in (12.5) is the disparity gradient, wluch is thus introduced
as a direct consequence of regularization methods.

One important property of the disparity is that d(z) can be discontin-
uous. Furthermore, there are often occlusions, that is regions in one image
that do not correspond to any part in the other i image. In this case, d(z) is
not defined.

Because of the presence of occlusions and discontinuities in the dispar-
ity, Equation (12.5) does not provide a physically plausible solution. Equa-
tion (12.5) requires d(x) to be continuous and differentiable. Equation (12.5)
is, however, valid if the disparity gradient is strictly less than 2 (Julesz’ def-
inition): in this case there are no occlusions and Equation (12.5) provides a
physically plausible solution.

Another problem with Equation (12.5) is that in many instances match-
ing is not performed between the intensity profiles in the two images, but
between features maps. In this case, L(z) and R(x) are not continuous
functions of r.

12.2. Pseudoinverses versus regularized solutions

It may be useful to summarize some mathematical conclusions on the re-
lationship between pseudoinverses and regularized solutions that may be
relevant in early vision.
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(1) When we are dealing with operators defined on Hilbert spaces X, Y’
of the type
L:X—Y, (12.6)

we have three main cases:

(a) if L is injective, linear, and continuous, and the range of L is given
by R(L) = Y. the inverse problem is trivially well-posed because the
inverse operator is continuous:

(b) if L is not injective, and R(L) is closed, then by the method of pseu-
dosolutions, the inverse problem becomes well-posed in the sense that
the generalized inverse is continuous;

(c) if R(L)is not closed, the use of pseudosolutions by itself does not guar-
antee the existence and continuity of the inverse solution in the case of
noisy data; then, we have to apply regularization methods. This case is
the normal one in early vision problems, because noise is always present
in the data.

(2) When we are considering operators defined on finite dimensional
spaces R" and R™, of the type

L:R"— R™ (12.7)
we have again three main cases:

(a) If p denotes the rank of the matrix associated with the operator L and
p=n = m, then L is injective and R(L) = R™. A solution always exist
and is unique and the inverse problem is well defined.

(b) If p <~ n, then uniqueness does not hold, but it can be restored by
considering the generalized Moore-Penrose inverse.

(c) If p < m, then existence does not hold for arbitrary data but it can be
restored again by considering the Moore-Penrose inverse.

For operators in finite dimensional spaces, the inverse or generalized in-
verse is always continuous. Therefore with finite dimensional spaces, the
use of generalized Moore-Penrose inverses is sufficient to guarantee well-
posedness and the use of regularization methods is not strictly required. It
is useful to remember again that well-posed problems can be ill-conditioned,
and in such a case it is necessary to use regularization methods as in the case
of ill-posed problems. This is the case when the input data are very noisy
and when differentiation on the input data is required, as in the recovery of
optical flow or edge detection. Finally, it is useful to observe that:

(3) The distinction between interpolation and approximation of discrete
data is associated with the use of pseudoinverse solutions or regularization
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methods. Regularization methods are intrinsically approximating solutions,
while pseudosolutions can be seen as interpolating solutions through the
original data.

12.3. Learning regularization algorithms from examples

12.4. Limits of regularization methods in vision

We believe that regularizing methods provide a useful and mathematically
sound framework for many problems in early vision. Not all problems in
early vision, however, can be easily treated in this framework (e.g. stereo
matching). Moreover it is often desirable to have solutions that preserve
discontinuities. In this case Markov Random Fields formulations®® are likely
to represent more powerful tools.

Beyond early vision, efficient vision systems are likely to use more com-
plex and elaborate a priori information and to be equipped with reasoning
capabilities which encompass early vision and regularization methods. It is
possible, though as yet unclear, that between early vision and high vision
different sources of low-level informations are integrated into a unified repre-
sentation of surface properties, such as the 2%D sketch. At this point MRF
models could be quite useful in providing a flexible (though complex) tool
for sophisticated integration.
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13. Appendices

13.1. Appendix A.

For the convenience of the reader, we summarize in this appendix some basic
ideas of functional analysis which are used in the paper.

All the questions of existence, uniqueness. and continuity of the solution
have a precise meaning (and a precise answer. when the answer is known) if
we carefully define the sets X and ¥ to which the functions «, g (Equation
(3.1)) belong. In particular, continuity requires that we define what we mean
by the “vicinity” of two functions in X or Y'; i.e., we must introduce a metric

in both spaces.

Among various possible choices of metrics, the one corresponding to a
Hilbert space is the most simple and interesting, since a Hilbert space is the
space most similar to the usual Euclidean space.

A Hilbert space X is a linear space of functions, satisfying the following
conditions:

(a) For any pair of functions u,v € X (with * being complex conjugate, a
complex (real) valued function (u,v)y. called the scalar product in X,
is defined such that:

(1) (u,u)x > 0,=0,if and only if « = 0;
(1) (u,v)x = (v u)y;

(i) (Aw + pe.z)y = Mu,2)x + u(v.z)x for arbitrary complex (real)
numbers A, u;

(b) X is complete;i.e.. the Cauchy criterion for the convergence of sequences
holds true;

(c) X is separable; i.e., there exists a countable orthonormal basis.

The classical example of a Hilbert space is provided by any space of
square integrable functions (L*-spaces), the scalar product being defined by

(u,0)x = /u,(.l')v*(.z')d.z'. (41)

A norm can be introduced in X by means of the relation
1/2
lellx = (u,u)¢”, (42)

and it satisfies the properties:

(i') [Jullx > 0,= 0if and only if u = 0;
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(ii') fAullx = |A]||ullx for any complex (real) A;
(i1i') flu + vllx < |lullx + llvllx (triangle inequality).

Then the distance p(u, v) from u to v is defined by

X- (43)

o(u,v) = [lu — v|
A real-valued functional p(u), defined on X, is called a seminorm on X, if it
satisfies properties (ii') and (iii’) of the norm. Then it follows that p(0) = 0
and p(u) > 0 but the condition p(u) = 0 does not necessarily imply « = 0.
The set of the functions such that p(«) = 0 is a linear subspace called the
null space of p, i.e., it contains the zero of X, and, if it contains u, v, then it
contains also Au+pv, for any complex (real) A, u. An example of a seminorm,

which is not a norm, is the following:

plu) = (‘/01 Ju'(m)]zd;r)l/z. (44)

The null space of p(u) contains all the constant functions.

An operator from a Hilbert space X into a Hilbert space Y is defined
by a mapping which transforms functions of a subset of X (the domain of
the operator, denoted by D(L)) into functions of a subset of ¥ (the range
of the operator, denoted by R(L)). When the domain is a linear subspace
and the mapping is linear, the operator is called linear. We use the notation
L:X — Y for denoting a linear operator from X into Y.

If D(L) = X and if, for any sequence u,, converging to u, the sequence
Lu, converges to Lu, then L is a continuous operator. A linear operator L
is continuous if and only if it is bounded, i.e., there exists a constant C such
that, for any v € X

I Zully < Cllul/x. (A5)
The quantity
5 Lul|y
= S| A6
1= e x Tulx (16)

is called the norm of the operator L.

A linear continuous operator L : X — Y always admits an adjoint
operator L* : Y — X, defined by

(Luyv)y = (u,L™v)x (A7)

for any v € X, v € Y. The operator L* is also linear and bounded and

1L = 1L}l

Using the definition of the adjoint operator, we can write Equation (A6)

in the following form
1/2

g = { e ey

weX (u,u)x (48)
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) *
therefore, ||L|| is the square root of the supremum of the spectrum of L L.
Here we have used a result which is an extension of the well-known variational
property of the maximum eigenvalue of a matrix.

A particular class of linear operators is provided by the linear function-
als, which correspond to the case where Y is the space of the real (complex)
numbers. Therefore, a functional is an operator which associates numbers
to elements of X. Linear continuous functionals are characterized by the
Representation Theorem of F. Riesz: let F(u) be a continuous functional on
X, then there exists a unique function ¢ € X such that

F(u) = (u,0)x (A49)
for any u € X.

A linear operator L : X — Y is said to be compact (or also completely
continuous) when it is bounded and transforms any bounded set of X into a
precompact set of ¥ (a precompact set is a set whose closure is compact: i.e.,
it has the Bolzano-Weierstrass property). Compact operators are interesting
since they are the most similar to matrices.

In order to establish the compactness of an operator, one needs com-
pactness criteria in functional spaces. The basic result is the Ascoli-Arzela
Theorem, whose proof is the paradigm of all the proofs of compactness.
Ascoli-Arzela’s theorem states that a sequence of continuous functions u,(z)
1s precompact if:

(1) The functions u,(r) are uniformly bounded; i.e., there exists a constant
C such that

/o

lup(z)] < C (A10)

for any n and any .

(i1) The functions un,(r) are uniformly continuous; i.e., for any = > 0 there
exists & > 0 such that

(U]

!'un('I:) - un('cl)l <

(A11)

for any v, 2’ with |z — z'| < § and any n.

A very simple example of a compact operator in a L?-space is provided
by an integral operator

(Lu)(z) = /K(.t,y)-u(y)dy, (A12)

whose kernel A («r,y) is square integrable

/dr/dy\l\'(a:,y)lz < +00. (A13)
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The most striking property of compact operators in Hilbert spaces 1s
that they have a singular value decomposition (SVD) similar to that of a
matrix. The singular system of a compact operator is defined as the set of
the solutions of the coupled equations

Lup = agvie , Lo = aguy, (A414)

where the oy (the singular values) are positive numbers and the Ug, Uk (the
singular functions) are functions in X and Y respectively.

When L is compact, its singular system always exists and has the fol-
lowing properties: the «j have finite multiplicity and tend to zero when
k — oo (we exclude here the case of a finite rank operator); the u; form an
orthonormal basis in the orthogonal complement of N(L) and the vy form an
orthonormal basis in the orthogonal complement of N(L*), i.e. the closure

of R(L).
It is easy to verify that a function ¢ € Y is in the range of L if and only
if (Picard conditions)

y 2
geNIH- LS ~———|(g’“;)” < +oo. (415)
«
k k

Since ap — 0 when L is not a finite rank operator, it is clear that an arbitrary
function orthogonal to N(L*) does not always satisfy the second condition
in Equation (A15) and therefore R(L) is not closed.

We conclude that the problem (3.1) with L compact is ill-posed.

On the other hand, the range of a finite rank compact operator is closed
since its dimension is finite.

Another example of continuous operators with closed range is provided
by the projection operators; i.e., linear operators P such that:
(i) P* = P;
(ii) P? = P.
It follows that | P|| = 1. Furthermore, N(P) is the set of all the functions
u = (I — P)v, where v is an arbitrary function of X and R(P) is the set of all

the functions « such that « = Pu. Therefore R(P) is closed. A projection
operator is compact if and only if the dimension of R(P) is finite.
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13.2. Appendix B

In this Appendix we will outline the proof of the main result stated in Section
3.3; namely, that if the constraint operator C satisfies conditions (1) - (ii1),
there exists a unique C-generalized solution u“g. for any g such that Pg ¢
LD(C). However, we first show that conditions (ii) and (ii1) are satisfied by
seminorms defined in terms of differential operators.

Consider in L?(0,1) the following seminorm:

plu) = (/1 !u““(x)l‘zdw)l/z, (B1)

where u®) = d*u/dz*. The domain of the operator Cu = u'® is the set
of all functions u which have square integrable derivatives at least up to
order k. Therefore, C is not everywhere defined in L?*(0,1) and is not con-
tinuous (bounded). However, a differential operator such as C is a typical
example of a closed operator, i.e., of an operator satisfying the following
conditions®*: if {u,} C D(C) is a sequence convergent to u and such that
{Cup} is a sequence convergent to v € Z, then u € D(C) and Cu = v.
Furthermore, in our specific case, R(C) = L2(0,1) since, given an arbitrary
function v € L?(0,1), there always exists a function u € D(C) such that
w®) = v, Therefore, C satisfies condition (i1). This condition implies that
C has a bounded generalized inverse C* since C7 is Jjust the inverse of the
restriction of C' to N(C)* (the inverse of a closed operator is also closed and
an everywhere-defined closed operator is bounded).

As concerns Condition (ii), notice that N(C) is the set of all the polyno-
mials of degree < k —1. Therefore, N(C) is a k-dimensional closed subspace.
It follows that, whenever L is a linear, continuous operator defined on X
with its range in an arbitrary Hilbert space Y, LN(C) is a k-dimensional
closed subspace in Y.

Finally, as concerns Condition (i), it is satisfied whenever N(L) contains
no polynomials of degree < k — 1.

The proof of the result stated in Section 3.3 is based on the fact that
conditions (i) — (iii) imply the following one: there exists a constant 3? such
that, for any v € D(C)

[Luly + [[Cully = 8% ull%. (B2)
This condition is called by Morozov the completion condition2”). Suppose
we define on D(C) the scalar product

(u,v)o = (Lu,Lv)y + (Cu,Cv)z. (B3)
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Then from Condition (i) it follows that [[ullp = 0 implies le]| = 0, and
D(C) is complete in the topology induced by this scalar product, i.e., D(C)
becomes a Hilbert space. Condition (B2) indeed implies that any Cauchy
sequence in the topology of D(C) is also a Cauchy sequence in X.

In order to prove inequality (B?2), we introduce the space /W =Y ¢ 7

-

and define the operator B: X — IV as follows:

Bu = {Au,Cu}, u € D(C). (B4)

Then, since B is closed, inequality (B2) is equivalent to stating that B has
an inverse B~! and that R(B) is closed in V.

The existence of B™! is an easy consequence of Condition (1). In order
to prove that R(B) is closed, let {u,} C D(C) be a sequence such that
{Buyn} is convergent in W; we must prove that the limit belongs to R(B).
Since {Bu,} is convergent in W, it follows that {Au,} is convergent in Y
and {Cu,} is convergent in Z. Put u, = v\ + 'V, with u(zg) € N(C) and
MSLE N(C)*. As already remarked, the restriction of C to N(C)* has a
bounded inverse and therefore there exists a constant 7% such that

1Cunll = ICu 1% = v luP|I%. (B3)
This implies that {ug)} is a Cauchy sequence and therefore it is convergent.
Let u'! be the limit. Since the operator C is closed, vV € D(C) and
{Cu,} converges to Cu''. Now we have Lu, = Lu'® + Lu'” and both
{Lu,} and { L'u.g,l)} are convergent. It follows that {Lu (no)} is also convergent,
and, thanks to the closure of LN(C), there exists u(® ¢ N(C) such that
Lul? converges to Lu!®). By combining all the results we have that {Bu,}
converges to B(u'® + u() and therefore R(B) is closed.

Now, starting from the completion condition (B2), the proof of the ex-
istence of the C-generalized solution for any g such that Pg c LD(C) can be
done as in?"l. The proof is Just an easy extension of the proof of the classical
result that any closed and convex set has a unique element of minimal norm.
Notice that in [27], the C-generalized solution is called the solution of the
basic problem.

When the operator C has a bounded inverse C !, conditions (1) - (ii1)
are obviously satisfied. In such a case, the C-generalized L is given in [3]:

Li=Cc (L)Y, (B6)
where (LC ')* is the generalized inverse of the operator LC™!':Z - Y.

An example of an operator C satisfying this assumption is the following:

take X = L?(0,1) and Z = L%(0,1) ® L?%(0,1) and define C by
Cu= {u,u'} (B7)
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with domain the set of the absolutely continuous functions with square inte-
grable first derivative. Then,

1 1 ‘
chlf"}:/ () 2da +/ ' () da, (BS)
0 ]

and we have a functional of the type (5.4).
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13.3. Appendix C

In this appendix we show that the problem of linear interpolation is equiva-
lent to the computation of a generalized solution in a suitable space.

Let X be a space of differentiable functions, defined on the interval [0,1]
and having a square integrable first derivative. X is an Hilbert space if we
define a scalar product by means of the formula

1
(v.v)x = u(0)v(0) +/ W (x)o'(e)de. (C1)
0

Let + € [0,1] be a fixed, arbitrary point; then, from the elementary relation

u(z) = u(0) + /I u'(z')dx! (C2)
0
it follows that
ll(.l‘.) :(U7QJ:)X7 (03)

where

Q:(z') =1+ min {z,z'}. (C4)

Clearly Q. € X for any r, and therefore all the evaluation functionals
(i.e., the functionals which associate to a function u its value in a given point)
are continuous.

A Hilbert space of continuous functions having the previous property is
called a reproducing kernel Hilbert space. The reproducing kernel Q(z,r')
is defined by

Qe,z') = Q:(z') = Qo (), (C5)
and its name is due to the relation
(QJ:»QI’)X :Q(x"cl)' (CG)

Assume now that a function v € X is specified at the points xy,x,,..., N
(rn, € [0,1]) and let g;,9,,...,gn be its values. The interpolation problem
(ie., find v € X such that u(z,) = g, forn = 1,.. ., N) can be formulated,
thanks to (C3), as the problem of determining u € X such that

(v.Q:,)=¢9, ; n=1,....,N (Ccn
and therefore it takes the form (3.12), (3.13). If we recall that the generalized

solution is orthogonal to N(L) (Section 3) and that N(L) is the orthogonal
complement of the subspace spanned by the functions

¢n(£) = Q(I,,,.U) (08)
(L 1s defined as in Equation (3.14)), we conclude that the generalized solution

must be a linear combination of the functions ¢,
N

(@) =D eaQlan, x). (C9)

n=1
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From Equation (C4) it follows that « () is just the linear interpolation of
the data g,.

Interpolation by means of splines of degree m = 2k — 1 (kA > 1) can
be obtained along similar lines by a suitable definition of the reproducing
kernel Hilbert space X [12] Interpolation by means of natural splines of
the same degree'®! can be formulated as the problem of determining, in the
same space, a C-generalized solution which minimizes the seminorm (B1).
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