MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo No. 930 December, 1986

Simplifying Decision Trees

J. R. Quinlan!

Abstract: Many systems have been developed for constructing decision trees from collec-
tions of examples. Although the decision trees generated by these methods are accurate
and efficient, they often suffer the disadvantage of excessive complexity that can render
them incomprehensible to experts. It is questionable whether opaque structures of this
kind can be described as knowledge, no matter how well they function. This paper dis-
cusses techniques for simplifying decision trees without compromising their accuracy. Four
methods are described, illustrated, and compared on a test-bed of decision trees from a
variety of domains.

Acknowledgements: Much of the work described in this report was carried out at the
Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support
for the Laboratory’s artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-85-K-0124.

1Permanent address: School of Computing Sciences, New South Wales Institute of Technology, Sydney,
N.S.W. 2007, Australia.

1. Introduction

Since people began building knowledge-based systems, it has become painfully obvious
that the ability to function at an expert level in some task domain does not necessarily
confer a corresponding ability to articulate this know-how. The knowledge for most early
and many current expert systems has been amassed by an interview process in which a
knowledge engineer interacts with a domain expert to extract and refine a set of rules. This
process can be taxing for all concerned because the expert, as Waterman (1986) puts it,

“has a tendency to state [his] conclusions and the reasoning behind them in
general terms that are too broad for effective machine analysis ... the pieces
of basic knowledge are assumed and combined so quickly that it is difficult for
him to describe the process.”

Consequently, the productivity of the interview method is usually low. This led Feigen-
baum (1981) to identify knowledge acquisition as the “bottleneck” problem in building
knowledge-based systems.

One way around this bottleneck, long advocated by Donald Michie (1983) and others, uses
inductive methods to extract general rules from concrete examples. The expert is not asked
to articulate his skill but instead to provide a framework of important concepts in the task
domain, augmented perhaps by a collection of tutorial examples; the hard work is carried
out by a suitable induction engine. Most researchers in Machine Learning will be familiar
with Meta-DENDRAL and its synthesis of chemical knowledge (Buchanan and Mitchell,
1978) and with AQ11’s results on soybean diagnosis (Michalski and Chilausky, 1980). The
feasibility of this inductive approach to knowledge acquisition has also been confirmed in
several industrial projects, such as British Petroleum’s recent successful construction of
a 2500-rule expert system for the design of hydrocarbon separation vessels in just one
man-year (Ezpert Systems User, August 1986, pp16-19).

Many current commercial induction packages (including Ez-Tran, RuleMaster and 1st-
Class) express the derived rules in the form of decision trees. From the standpoint of
execution efficiency this is a simple and economical representation, but the trees can be-
come complex and thus opaque (Michie, 1986). If a decision tree that measures up very
well on the performance criterion is nevertheless totally incomprehensible to a human ex-
pert, can it be described as knowledge? Under the common-sense definition of this term as
material that might be assimilated and used by human beings, it is not, in just the same
way that a large program coded in assembly language is not knowledge.

This paper examines four methods for improving the intelligibility of decision trees and
thereby making them more knowledge-like. Three of the methods involve prunming the
decision tree by replacing one or more subtrees with leaves, while the remaining method
reformulates the decision tree as a set of production rules. Section 2 introduces the methods
and illustrates their operation with respect to a small but real example. Section 3 presents
an empirical comparison of the methods using sets of decision trees from six task domains.

2. Methods for Simplifying Decision Trees

Induction algorithms that develop decision trees view the task domain as one of classifi-
cation. The underlying framework consists of a collection of attributes or properties which
are used to describe individual cases, each case belonging to exactly one of a set of classes.
Attributes may be either continuous or discrete. A case’s value of a continuous attribute is
always a real number while its value of a discrete attribute is one of a small set of possible
values for that attribute. In real-life tasks it is also important to recognize that a case may
have unknown values for one or more of the attributes.

A decision tree may be either a leaf identified by a class name, or a structure of the form

CI: D1
Cz: D2
C,. D,

where the Ci’s are mutually exclusive and exhaustive logical conditions and the D,’s are
themselves decision trees. The set of conditions involves only one of the attributes, each
condition being

A<TorA>T
for a continuous attribute A, where T is some threshhold, or
A=V or Ain {V;}

for a discrete attribute A, where V is one of its possible values and {V;} is a subset of
them. To improve legibility, the non-leaf subordinate decision trees above will be indented
when the trees are printed.

Such a decision tree is used to classify a case as follows. If the tree is a leaf, we simply
determine the case’s class to be the one nominated by the leaf. If the tree is a structure,
we find the single condition C; that holds for this case and continue with the associated
decision tree. The only complexity arises when the value of the attribute appearing in the
Cy’s is unknown. In this eventuality we explore all the decision trees associated with the
structure and combine their findings with weights proportional to the estimated probability
of the associated condition being satisfied. (Quinlan, 1986) discusses the procedure in more
detail.

Figure 1 shows such a decision tree for the diagnosis of hypothyroid conditions with classes
{primary hypothyroid, secondary hypothyroid, compensated hypothyroid, negative}.
Some attributes such as TSH and FTI are continuous and have real values, while at-
tributes like thyroid surgery, with possible values {t, f}, are discrete. To classify a case
with this tree, we would first enquire whether the value of TS H was greater than 6.05. If

TSH < 6.05: |
T4U measured = t: negative (1918)
T4U measured = f:
| age > 43.5: negative (58)
| age < 43.5:
I
|

| query hypothyroid = f: negative (41)

| query hypothyroid = t: secondary hypothyroid (1)
TSH > 6.05:

FTI < 64.5:

| thyroid surgery = f:

| | T3 < 2.3: primary hypothyroid (51)

I | T3> 2.3:

I I | sex = M: negative (1)

I I | sex = F: primary hypothyroid (4)

| thyroid surgery = t:

I | referral source = SVI: primary hypothyroid (1)
I | referral source = <other>: negative (2)

FTI > 64.5:
|

|

|

|

I

I

I
|
|
I
I
I
I
|
I
|
| on thyroxine = t: negative (32)

| on thyroxine = f:

| | thyroid surgery = t: negative (3)

I | thyroid surgery = f:

I I | TT4 < 160.5: compensated hypothyroid (120)
| | | TT4 > 160.5: negative (6)

Figure 1: Sample Decision Tree

the value was below this threshhold we would continue with the decision tree commencing
with T4U measured = t, while a value above this threshhold would lead us to the decision
tree headed FTI < 64.5. In either case we would continue in similar fashion until a leaf
was encountered.

The set of cases with known classes from which a decision tree is induced is called the
training set. Other collections of cases not seen while the tree was being developed are
known as test sets and are commonly used to evaluate the performance of the tree.

This paper focusses on simplifying decision trees, not with the inductive methods used
to construct them in the first place. Various ways of developing trees from training sets
may be found in (Breiman, Friedman, Olshen and Stone, 1984), (Kononenko, Bratko and
Rogkar, 1984) and (Quinlan, 1986).

2.1 Cost-Complexity Pruning

Breiman et al (1984) describe a two-stage process in which a sequence of trees Ty, T4, ..., Tk
is generated. T is the original decision tree and each T},; is obtained by replacing one
or more subtrees of T; with leaves until the final tree T} is just a leaf. The second stage
evaluates these trees and selects one of them as the final pruned tree.

Consider a decision tree T used to classify each of the N cases in the training set from
which T' was generated, and let E of them be misclassified. If L(T) is the number of leaves
in T, Breiman et al define the cost-complezity of T' as the sum

E
for some parameter a. Now, suppose we were to replace some subtree S of T by the
best possible leaf. In general, the new tree would misclassify M more of the cases in the
training set but would contain L(S) — 1 fewer leaves. This new tree would have the same
cost-complexity as T if
_ M
*TNxIZBE) -1

As before, let T be the original tree. To produce T;,, from T; we examine each non-leaf
subtree of T; to find the minimum value of & above. The one or more subtrees with that
value of a are then replaced by their respective best leaves.

To illustrate the process, consider the decision tree of Figure 1. This was generated from
2514 cases, where the number in parentheses after each leaf shows how many of these cases
are covered by that leaf.? Consider the subtree

T4U measured = t: negative (1918)
T4U measured = f:

| age > 43.5: negative (58)

| age < 43.

| | query hypothyroid = f: negative (41)

I | query hypothyroid = t: secondary hypothyroid (1)

oo

.

The vast majority of cases at the leaves of this subtree are of class negative which is
clearly the best leaf. If the subtree were replaced by the leaf negative the new tree would
misclassify the lone non-negative case, so M is 1. The new tree would also have three
fewer leaves, giving a value for « of 0.00013 at which the cost-complexity of the original
and modified trees would be equal. This is the lowest such value for any subtree, so the
tree T} would be formed by replacing this subtree as above.

2The counts do not sum to 2514 because cases with unknown values of tested attributes cannot be
associated with any one leaf and are therefore not included.

TSH < 6.05: negative (2018)

TSH > 6.06:

| FTI < 64.5: primary hypothyroid (62)

FTI > 64.5;

| on thyroxine = t: negative (32)

on thyroxine = f:

| thyroid surgery = t: negative (3)

| thyroid surgery = f:

I | TT4 < 160.6: compensated hypothyroid (120)
|

I
|
I
I
I
I
I | TT4 > 150.5: negative (8)

Figure 2: Decision Tree After Cost-Complexity Pruning

The second stage of this process abandons the cost-complexity model and attempts to
select one of the T}’s on the basis of reliability alone. We cannot assess this simply from the
proportion of cases in the original training set that are misclassified. Whatever induction
algorithm was employed has almost certainly built the original tree to fit the training set
and thus the error rate on these cases would be expected to understate the error rate on
unseen cases. We therefore assume some test set containing N' cases and use each T to
classify all of them. Let E’ be the minimum number of errors observed with any T}, with
the standard error of E' being given by

se(E) = \/E' X (x: - EY)

The tree selected is the smallest T; whose observed number of errors on the test set does
not exceed E' + se(E").

In this example, a test set containing 629 cases gave a sequence of eight trees, To being the
original tree and T7 the leaf negative. The selected tree was Ty which appears in Figure 2.
This tree is indeed a great deal simpler than the original and would qualify as ‘knowledge’
under the most stringent criterion. Notice that the class secondary hypothyroid, which is
represented by just a single case in the training set, has sensibly been omitted.

Nevertheless, cost-complexity pruning raises several problematic issues. First, it is unclear
why the particular cost-complexity model used above is superior to other possible models
such as the product of error rate and number of leaves. Secondly, it seems anomalous that
the cost-complexity model used to generate the sequence of subtrees is abandoned when
the best tree is selected. Finally, the procedure requires a test set distinct from the original
training set; the authors show, however, that a cross-validation scheme can be employed
to generate these estimates at the time the original tree is constructed, but at the expense
of a substantial increase in computation.

TSH < 6.05: negative (2018)
TSH > 6.05:

| FTI < 84.5:

| thyroid surgery = f: primary hypothyroid (59)

| thyroid surgery = t:

I | referral source = SVI: primary hypothyroid (1)
| | referral source = <other>: negative (2)

FTI > 64.5:

| on thyroxine = t: negative (32)

| on thyroxine = f:

| | thyroid surgery = t: negative (3)

I | thyroid surgery = f:

] | | TT4 < 160.5: compensated hypothyroid (120)
| | TT4 > 160.5: negative (8)

Figure 3: Decision Tree After Reduced Error Pruning
2.2 Reduced Error Pruning

Rather than form a sequence of trees and then select one of them, a more direct procedure
suggests itself as follows. We again assume a separate test set, each case in which is
classified by the original tree. For every non-leaf subtree S of T we examine the change in
misclassifications over the test set that would occur if S were replaced by the best possible
leaf. If the new tree would give an equal or fewer number of errors and S contains no
subtree with the same property, S is replaced by the leaf. The process continues until any
further replacements would increase the number of errors over the test set.

Using the same example of Figure 1 and the same test set as before, reduced error pruning
generates the tree shown in Figure 3.

As with cost-complexity pruning, this process generates a sequence of trees. Its rationale
is clearer, though, since the final tree is the most accurate subtree of the original tree with
respect to the test set and is the smallest tree with that accuracy. The disadvantages of
the method are, first, that it again requires a separate test set and second, that parts of

the original tree corresponding to rarer special cases not represented in the test set may
be excised.

2.3 Pessimistic Pruning
When the original tree T is used to classify the N cases in the training set from which it

was generated, let some leaf account for K of these cases with J of them misclassified. As
observed before, the ratio J/K does not provide a reliable estimate of the error rate of

that leaf when unseen cases are classified, since the tree has been tailored to the training
set. A more realistic error rate might be obtained ‘using the continuity correction for the
binomial distribution (Snedecor and Cochran, 1980, pp. 117ff) in which J is replaced by
J+1/2.3

Let S be a subtree of T' containing L(S) leaves and let ©J and LK be the correspond-
ing sums over the leaves of S. A more pessimistic view of S is that it will misclassify
EJ + L(8)/2 out of TK unseen cases, where the standard error of this number of misclas-
sifications can be determined as before. If S were replaced by the best leaf, let E be the
number of cases from the training set that it misclassifies. The pessimistic pruning method
replaces S by the best leaf whenever E +1/2 is within one standard error of £J + L(S)/2.
All non-leaf subtrees are examined just once to see whether they should be pruned but, of
course, sub-subtrees of pruned subtrees need not be examined at all.

To illustrate the idea we return to the subtree of Figure 1 that commences with the
condition T4U measured = t. As before, ZK is 2018, L(S) is 4, £J is 0, so the estimate
of the number of errors due to S is 2.0 with standard error 1.41. If the subtree is replaced
by the leaf negative it will give one error, so E is 1. Since 1+ 1/2 < 2.0+ 1.41, pessimistic
pruning would indeed replace this subtree. Repeating this evaluation on all subtrees of T
gives a pruned tree identical to that of Figure 2.

This method has two advantages. It is much faster than either of the preceding methods
since each subtree of T is examined at most once. Unlike these methods, it does not require
a test set separate from the cases in the training set from which the tree was constructed.

2.4 Simplifying to Production Rules

This form of simplification does not give a smaller decision tree at all but instead develops
an ‘equivalent’ set of production rules, a representation medium widely used in expert
systems (Winston, 1984). The process has two stages: individual production rules are first
generated and polished, and then the rules produced are evaluated as a collection.

Whenever a decision tree is used to classify a case, a path is established between the top of
the tree and one of its leaves. In order for the case to reach that leaf, it must have satisfied
all the conditions along the path. For example, any case that is classified as negative by
the last leaf of the decision tree in Figure 1 must satisfy all the conditions

TSH > 6.05

FTI > 64.5

on thyrozine = f
thyroid surgery = f
TT4 > 150.5

3This makes the unsurprising assumption that J/K <0.5.

Every leaf of a decision tree thus corresponds to a production rule of the form
if X;AX;A ... A X, then class ¢

where the X;’s are conditions as before and ¢ is the class of the leaf.

Merely rewriting a tree as the collection of these equivalent production rules would not
represent any simplification at all. Instead, the first stage examines each production rule
to see whether it should be generalized by dropping conditions from its left-hand side. Let
X; be one of the conditions and consider those cases in the training set that satisfy all
the other conditions in the rule. With respect only to these cases, the relevance of X; to
determining whether a case belongs to class ¢ (given that the other conditions are satisfied)
can be summarized by the 2 x 2 contingency table

not

class ¢ | class ¢

satisfies X sc s

does not satisfy X; Sc 3¢

where sc is the number of these cases that satisfy X; and belong to class ¢, sz is the number
that satisfy X; but belong to some class other than ¢, and so on. Fisher’s exact test (Finney,
Latscha, Bennett and Hsu, 1963) can then be invoked to assess the probability that the
division by X; arises merely from chance or, in other words, the significance level at which
we can reject the hypothesis that X; is irrelevant to whether a case belongs to class c.*
Each X; is examined in turn to find the one that has the least relevance to classification
and, unless the hypothesis that this X; is not significant can be rejected at the 1% level or
better, the condition is discarded and the process repeated.

Consider the rule above. When the training cases that satisfy all conditions other than
the first are examined, the table for the condition TSH > 6.05 comes out to be

not

class class

negative | negative

TSH > 6.05 6 0
TSH < 6.05 154 0

which shows that this condition is entirely irrelevant. On the other hand, the table of cases
satisfying all conditions other than the last is

4T am indebted to Donald Michie of the Turing Institute for making me aware of this test and its advantages
over the approximate X2 test.

not

class class

negative | negative

TT4 > 150.5 6 0
TT4 < 150.5 0 120

which is significant at better than the 0.1% level. Repeated application of the above process
reduces the original rule to one with a single condition

if TT4 > 150.5 then class negative

The final step in this first stage is to estimate a certainty factor for the simplified rule,
using a device similar to that of pessimistic pruning. If the left-hand side of a rule is
satisfied by V cases in the training set, W of which belong to the class indicated by the
right-hand side, the certainty factor of the production rule is taken as (W — 1/2)/V. In
the example above, the training set contains 246 cases that match the left-hand side, all
of them being class negative, so this rule’s CF is 99.8%.

Note that we need not develop one rule for each leaf of the decision tree. Some leaves give
rise to identical rules while other leaves generate vacuous rules from which all conditions
have been dropped. The number of rules is generally smaller than the number of leaves.

The second stage of this process looks how well the rules will function as a set. This
evaluation depends on the way in which the rules will be used. A simple strategy has been
adopted here:

To classify a case, find a rule that applies to it. If there is more than one,
choose the rule with the higher certainty factor.. If no rule applies, take the
class by default to be the most frequent class in the training set.

For each rule in turn, we now determine how the remaining rules would perform on the
training set if this rule were omitted. If there are rules whose omission would not lead
to an increased number of errors classifying the cases in the training set, or would even
reduce it, the least useful such rule is discarded and the process repeated.

Continuing the example, the decision tree of Figure 1 is reduced by this method to just
three rules:

if TSH <6.05 then class negative [99.9%]

if thyroid surgery = f A
TSH > 6.05 A
FTI < 64.5 then class primary hypothyroid [97.5%)

10

if on thyrozine = f A
thyroid surgery = f A
TSH > 6.05 A
TT4 < 150.5 A
FTI > 64.5 then class compensated hypothyroid [99.6%)]

As with pessimistic pruning, this method does not require a set of test cases apart from
the original training set. In its current implementation it is the slowest of the four tree-
simplifying methods. The method should be able to be improved by adopting a more
sophisticated condition-elimination strategy than the simple hill-climbing approach used
above, and by employing a better production rule interpreter.

2.5 Other Methods

The four methods of simplifying decision trees certainly do not exhaust all possibilities. The
cross-validation method of Breiman et al (1984) has already been mentioned. Kononenko
et al (1984) present an information-based heuristic used in their ASSISTANT system,
but this is now being changed to another form of cross-validation (Lavrag, Mozeti¢ and
Kononenko, 1986). I have previously experimented with a form of pruning based on the
path lengths in the decision tree and observed error rates (Quinlan, Compton, Horn and
Lazarus, 1986).

3. Empirical Comparison

The performance of a simplification method can be assessed in terms of the clarity and
accuracy of its final product. Ideally, the pruned decision tree or set of production rules
should be much more comprehensible than the original decision tree but should not be
significantly less accurate when classifying unseen cases.

To test how well the methods of the previous section measure up to these two criteria,
they were compared using decision trees developed for six task domains. For each domain,
the available data was shuffled, then divided into a training set containing approximately
two-thirds of the data and two equal-sized test sets. This division was carried out so as
to make the proportion of cases belonging to each class as even as possible across the
three sets. The training set was used to induce ten decision trees for the domain. Each
simplification method was applied to each tree and the resulting classifier evaluated on
both test sets.

The six domains include both real-world tasks and synthetic tasks constructed to provide
some particular challenge. They are

¢ Diagnosis of hypothyroid conditions (Hypothyroid): This domain has been encoun-
tered in the running example of the previous section. The data comes from the

11

archives of the Garvan Institute of Medical Research, Sydney, and covers all 3772 thy-
roid assays carried out by Garvan’s clinical laboratory between January and Novem-
ber 1985. The data uses seven continuous and sixteen discrete attributes with quite
high rates of missing information — values of four of the attributes are unknown in
more than 10% of the cases. The 3772 cases, each belonging to one of four classes,
were split into a training set of 2514 and two test sets of 629. This domain is a
good starting point because it uses ‘live’ data from which, warts and all, extremely
accurate classifiers can be constructed.

Discordant assay results (Dsscordant): This domain is taken from the same Garvan
data, this time looking to detect anomalous combinations of thyroid hormone values.
There are two classes and the 3772 cases were divided as above. The percentage
of discordant cases is very low (about 1.5%) and, in contrast with the first domain,
the decision trees generated from this training set perform comparatively poorly on
unseen cases.

Recognizing faulty digits (LED Digits): The third domain comes from (Breiman
et al, 1984). Imagine a seven-element representation for a decimal digit such as
is commonly found on LED or LCD displays. Each element of a faulty display is
subject to a 10% random error, i.e. with probability 0.1 its correct status is inverted.
The data consists of 3000 randomly-generated cases, each described in terms of the
seven binary attributes, with ten equiprobable classes. The training set contains
2000 cases, the test sets 500 each. This artificial domain is interesting because it
tests the ability of the simplification methods to deal with the complex decision trees
commonly obtained from noisy training sets.

Assessing consumer credit applications (Credit): The data for this domain was pro-
vided by a large bank. Each case concerns an application for credit card facilities
described by 9 discrete and 6 continuous attributes, with two decision classes. The
690 cases making up the data are divided into a training set of 460 and two test
sets of 115. Some discrete attributes have large collections of possible values (one of
them has 14) resulting in broad, shallow decision trees. This data is also both scanty
and noisy, giving decision trees that are extremely complex and not very accurate
On unseen cases.

King and rook versus king and knight (Endgame): This domain from a chess endgame
seeks to decide whether the rook’s side can capture the opposing knight and/or
checkmate in 3 ply. Positions are described by 39 binary attributes, with all possible
board positions giving rise to 551 distinct cases. This domain models an idealized
noise-free environment with no missing information in which the accuracy of the
decision tree depends only on the completeness of the training set. Here the training
set contains 367 cases, the test sets 92 cases each.

Probabilistic classification over disjunctions (Prob-Dssj): The last domain is an arti-
ficial one designed to model tasks in which only probabilistic classification is possible
and which contains explicit disjunctions. There are ten boolean attributes a through

12

Original Cost- Reduced | Pessimistic | Production

Decision | Complexity Error Pruning Rule

Trees Pruning Pruning Form
Hypothyroid | 23.6 nodes | 11.4 nodes | 14.4 nodes | 11.0 nodes 3.0 rules
Discordant 52.4 nodes | 11.8 nodes | 12.4 nodes | 13.6 nodes 1.8 rules
LED Digits 92.2 nodes | 45.6 nodes | 59.0 nodes | 56.0 nodes 15.8 rules
Credit 248.0 nodes 9.7 nodes | 26.3 nodes | 32.5 nodes 7.8 rules
Endgame 88.8 nodes | 51.0 nodes | 55.6 nodes | 62.6 nodes 11.6 rules
Prob-Dis;j 190.0 nodes | 30.4 nodes | 43.0 nodes | 42.6 nodes 4.2 rules

Table 1: Average Size Before and After Simplification

ay and the criterion used to generate the data can be expressed as: if ag A a; A a,
or az A a4 A as or ag A az A ag then the class is Y with probability 0.9, N with prob-
ability 0.1; otherwise, the class is N with probability 0.9, Y with probability 0.1.
(The remaining attribute ay is irrelevant.) Because the class of a case is determined
probabilistically, no classification procedure can achieve more than 90% accuracy on
this task. Six hundred cases with random values for each attribute were generated
and classified as above. Of these, 400 are used as the training set, leaving test sets
of 100 cases each.

The results of these experiments are summarized in the following tables. The effectiveness
of the simplification methods in reducing the size of the original decision trees is shown
in Table 1, each entry being the average over the ten decision trees in that domain. As
a general observation, all the methods achieve significant simplification in all domains.
Cost-complexity pruning tends to produce smaller decision trees than either reduced error
or pessimistic pruning, especially in the Credit domain. While the complexity of decision
trees and sets of production rules cannot be compared directly, it would appear that
the last method achieves the greatest reduction overall, its advantages being particularly
noteworthy in the Prob-Disj domain.

The other side of the coin is the effect of simplification on classification accuracy. Table 2
shows the results in each domain of using the ten original decision trees and their simplified
counterparts to classify cases in the two test sets, expressed as the average percentage of
misclassifications over each set. Perhaps surprisingly, the simplified trees on the whole
are of superior or equivalent accuracy to the originals, so pruning has been beneficial on
both counts. Note, though, that both the cost-complexity and reduced error methods

13

Original Cost- Reduced Pessimistic | Production
Decision | Complexity Error Pruning Rule
Trees Pruning Pruning Form
Hypothyroid
Test 1 0.3% 0.4% 0.3% 0.5% 0.3%
Test 2 0.8% 0.7% 0.8% 0.6% 1.0%
Discordant
Test 1 1.6% 1.1% 1.0% 1.0% 1.1%
Test 2 2.1% 1.6% 1.7% 1.5% 1.5%
LED Digits
Test 1 30.0% 29.9% 27.8% 28.8% 31.3%
Test 2 27.9% 28.7% 28.0% 27.4% 28.3%
Credit
Test 1 20.2% 14.4% 12.9% 15.8% 15.2%
Test 2 21.0% 17.1% 17.4% 16.4% 17.8%
Endgame
Test 1 11.8% 13.8% 10.0% 13.1% 11.1%
Test 2 10.5% 13.4% 11.6% 12.1% 7.3%
Prob-Disj ’
Test 1 17.0% 14.2% 10.1% 14.0% 10.0%
Test 2 18.4% 17.2% 17.8% 15.8% 10.0%

Table 2: Average Error Rates on Test Sets

have “seen” the first training set in performing their respective simplifications. The slight
superiority of reduced error pruning, coupled with the fact that cost-complexity pruning
produces smaller trees, suggests that the latter may be slightly over-pruning. Despite not
having seen the first test set, the performance of pessimistic pruning is marginally better
than cost-complexity pruning averaged over all domains. Simplification to production
rules, though, scores pretty clear wins in the last two domains. In the Prob-Disy domain
in particular, this can be explained by observing that disjunctive concepts tend to scatter
cases from some disjuncts throughout the decision tree. Pruning the tree is unable to
re-collect these cases, but simplification of rules can.

One further possibility has been explored. There is no obvious way to merge distinct
decision trees, so pruned trees from different originals cannot be combined to form a
composite tree that reflects the various strengths of its components. No such limitation
applies to the production rule representation, though, because the union of sets of rules .
is itself a set. This line of thought led to a final experiment in which, for each domain,
the rule sets produced from all ten decision trees were amalgamated and the collection
winnowed as before. The composite rule set was then used to classify all cases in the test

14

Number | Error Rates

of Rules | Test 1 | Test 2
Hypothyroid 3 0.3% | 1.0%
Discordant 2 0.6% | 1.4%
LED Digits 23 28.2% | 25.8%
Credit 11 13.0% | 15.7%
Endgame 12 9.8% | 5.4%
Prob-Disj 4 10.0% | 10.0%

Table 3: Error Rates of Composife Rule Sets

sets. The results in Table 3 show that these composite sets of production rules are both
compact and accurate classifying mechanisms, matching or outperforming the best of all
other methods on nine of the twelve test sets.

4. Conclusion

The intention of this paper has been to investigate methods for simplifying decision trees
without compromising their accuracy. The motivation behind this drive towards simplicity
is the desire to turn decision trees into knowledge for use in expert systems.

Four methods have been discussed, all of which managed to achieve significant simplifica-
tion when put to the test on sets of decision trees from six task domains. This simplification
was often coupled with an actual improvement in classification accuracy on unseen cases.
Two of the four methods needed a separate set of test cases in order to carry out the
simplification and, since these did not perform noticeably better than the remaining two
methods, the requirement of additional test data is a weakness. The last method, in which
decision trees are reformulated as sets of production rules, has proved especially powerful.

Acknowledgements

I am grateful to the Garvan Institute of Medical Research for providing access to the
thyroid data, and to Les Lazarus and Paul Compton in particular for their help. This
work has been supported in part by grants from the Australian Research Grants Scheme
and the Westinghouse Corporation.

15

References

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984), Classification and
Regression Trees, Belmont: Wadsworth.

Buchanan, B.G., and Mitchell, T.M. (1978), Model-directed learning of production rules, in
Pattern Directed Inference Systems, (D.A. Waterman and F. Hayes-Roth, Eds.), Academic
Press.

Feigenbaum, E.A. (1981), Expert systems in the 1980s, in State of the Art Report on
Machine Intelligence, (A. Bond, Ed.), Maidenhead: Pergamon-Infotech.

Finney, D.J., Latscha, R., Bennett, B.M. and Hsu, P. (1963), Tables for Testing Signifi-
cance in a 2 X 2 Contingency Table, Cambridge University Press.

Kononenko, I, Bratko, I., and Rogkar, E. (1984), Exﬁeriments in automatic learning of
medical diagnostic rules, Technical Report, Jozef Stefan Institute, Ljubljana, Yugoslavia.

Lavrat, N., Mozeti¢, I. and Kononenko, I. (1986), An experimental comparison of two
learning programs in three medical domains, Proceedings of ISSEK Workshop 86, Turing
Institute, Glasgow.

Michalski, R.S. and Chilausky, R.L. (1980), Learning by being told and learning by ex-
amples: an experimental comparison of the two methods of knowledge acquisition in the
context of developing an expert system for soybean disease diagnosis, International Journal
of Policy Analysis and Information Systems 4, 2.

Michie, D. (1983), Inductive rule generation in the context of the Fifth Generation, Pro-
ceedings of the Second International Machine Learning Workshop, University of Illinois at
Urbana-Champaign.

Michie, D. (1986), Current developments in expert systems, Proceedings of the Second
Australian Conference on Applications of Expert Systems, Sydney.

Quinlan, J.R. (1986), Induction of decision trees, Machine Learning 1, 1.

Quinlan, J.R., Compton, P.J., Horn, K.A. and Lazarus, L. (1986), Inductive knowledge
acquisition: a case study, Proceedings of the Second Australian Conference on Applications
of Ezxpert Systems, Sydney.

Snedecor, G.W. and Cochran, W.G. (1980), Statistical Methods (7th edition), Iowa State
University Press.

Waterman, D.A. (1986), A Guide to Ezpert Systems, Addison-Wesley.
Winston, P.H. (1984), Artificial Intelligence (2nd edition), Addison-Wesley.

16

CS-TR Scanning Project
Document Control Form Date: /% /18 |95

Report# _Ajm- 15¢

Each of the following should be identified by a checkmark:
Originating Department:

X Artificial Intellegence Laboratory (Al)
O Laboratory for Computer Science (LCS)

Document Type:

[J Technical Report MR) X Technical Memo (TM)
O other:

Document Information Number of pages: lé(J1 - imaGes)

Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
Single-sided or [OJ Single-sided or
O Double-sided X Double-sided
Print type:
[0 Typewriter [] oOffset Press X Laser Print
[inksetPrinter [] Unknown [other;

Check each if included with document:

)Z(DOD Form O Funding Agent Form O cover Page

O spine O Printers Notes O Photo negatives
O other:

Page Data:

Blank Pageswy page umben:

Photographs/Tonal Material oy pege numbes:

Other (note descriptionpage numben).
Description : Page Number:

Tones mapi(l-16) PAGE s #s0 |-[¢
(12- &) ScnracaArrRoL) DOD)\I—RGTS (z)

Scanning Agent Signoff:
Date Received: 10 / {%/95 Date Scanned: _[0/2%/95 Date Returned: [0 /36 /5

R

Scanning Agent Signature: A V. Co Rev /o4 DSLCS Form -

UNCLASSIFIED

SECTURITY C_ASSIFICATION OF THiS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPRESTONS
! REPOAT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPMIENT'S CATALOG NUMBER
AIM-930 AD-AI236IS
4 TITLE rand Subtitle) S. TYYPE OF REPORT & PERIOD COVERED
SIMPLIFYING- DECLS (6A) TREES AT~ Mewro

§. PERFORMING ORG. REPORT NUMBER

7. AUTHORC(S) 8. CONTRACT OR GRANT NUMBER(s)

TR QuINLAN NOOO 14 -85 -K ~O124

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

1t. CONTROLLING OFF|CE NAME AND ADODRESS 12. REPORTY DATE

Advanced Research Projects Agency DECEMBER, 1980
1400 Wilson Blvd. 13, NUMBER OF PAGES
Arlington, VA 22209 Lb

14 MONITORING AGENCY NAME & ADDRESS(!f ditterent from Controlling Otfice) 18. SECURITY CLASS. 7o/ this report)
Office of Naval Research

Information Systems UNCLASSIFIED

Arlington, VA 22217 182, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tWe abstract entered in Biock 20, I{ different from Report)

18. SUPPLEMENTARY NOTES

None

18. KEY WORDS (Continue on reverse side !l neceseary and identily by block number)

Wduchow, decision Pees, prming, ?vodu,dwn Yudes

vaw-(zd.ﬁz W o

20. ABSTRACT (Contitnue on reverse elde il nrcessary and identity v Black ~rmmber)

Abstract: Many systems have been developed for constructing decision trees from collec-
tions of examples. Although the decision trees generated by these methods are accurate

and efficient, they often suffer the disadvantage of excessive complexity that can render
them incomprehensible to experts. It is questionable whether opaque struc.tures of f:i}lli
kind can be described as knowledge, no matter how well they f.upctlon.. This pa,perFour
cusses techniques for simplifying decision trees without compromising thle.r aciuracy;.rom !
methods are described, illustrated, and compared on a test-bed of decision trees

variety of domains.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

