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ABSTRACT: This paper examines the problem of shape-based object
recognition, and proposes a new approach, the alignment of pictorial descrip-
tions. The first part of the paper reviews general approaches to visual object
recognition, and divides these approaches into three broad classes: invariant
properties methods, object decomposition methods, and alignment methods.

The second part presents the alignment method. In this approach the
recognition process is divided into two stages. The first determines the trans-
formation in space that is necessary to bring the viewed object into alignment
with possible object-models. This stage can proceed on the basis of minimal
information, such as the object’s dominant orientation, or a small number
of corresponding feature points in the object and model. The second stage
determines the model that best matches the viewed object. At this stage,
the search is over all the possible object-models, but not over their possible
views, since the transformation has already been determined uniquely in the
alignment stage.

The proposed alignment method also uses abstract description, but un-
like structural description methods, it uses them pictorially, rather than in
symbolic structural descriptions.

(© Massachusetts Institute of Technology 1986

Acknowledgments. This report describes research done within the Artificial
Intelligence Laboratory at the Massachusetts Institute of Technology. Support
for the A.I Laboratory’s artificial intelligence research is provided in part
by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N0014-85-K-0124. Support was also
provided by NSF Grant IST-8312240.



AN APPROACH TO OBJECT RECOGNITION:
ALIGNING PICTORIAL DESCRIPTIONS

1. THE PROBLEM OF SHAPE-BASED RECOGNITION

Object recognition is one of the most important, yet least understood,
aspects of visual perception. In computational vision, the problem of rec-
ognizing objects from visual input has met so far with only limited success.
Most of the work in computational vision in recent years has concentrated on
the so called “lower level” parts of the visual process. These early process-
ing stages are involved primarily in the extraction of physical properties of
the visible environment, such as depth to different points in the visual field,
surface orientation, contours of discontinuities, color, material properties, and
motion.

The processes that are involved in the extraction of these properties, such
as edge detection, stereo, and motion analysis, have been investigated exten-
sively, and many algorithms have been developed to deal with these problems.
Although the performance of current algorithms often cannot match that of
the human visual system, it appears that the computation of a reasonably
accurate low-level representation of the visible environment is becoming fea-
sible.

In contrast, the recognition of common objects is still way beyond the
capabilities of any computer vision scheme. The objects such as the ones
depicted in Fig. 1 can be recognized immediately and effortlessly by young
children, but not by any recognition scheme proposed so far. The difficul-
ties involved in this problem do not seem to result from the lack of sufficient
progress in our understanding of the early processing stages. That is, it does
not seem that further improvements in edge detection or stereo computation
would be of fundamental importance for making progress in the area of vi-
sual object recognition. What is required, instead, is a better understanding
of the underlying issues: Why is object recognition difficult? Are there dif-
ferent types of object recognition processes? Can the overall task be broken
down into more manageable problems? Different possible approaches to visual
object recognition will then have to be identified, developed, and evaluated.

Goals of the Paper

This paper has two goals. The first is to examine critically the main
classes of approaches that have been proposed for object recognition. The goal
is not to give a comprehensive survey of the large number of different methods
proposed in the literature (for recent reviews, see Binford 1982, Pinker 1984,
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Figure 1. Objects that can be recognized readily on the basis of the shape
of their contours. Courtesy of Barron’s Educational Series, Inc.
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Besl & Jain 1985), but to classify the approaches into a smaller number of
major classes. The different approaches are classified into three main classes:
recognition by invariant properties, recognition by part decomposition, and
alignment methods. Various combinations of the first two have been used
extensively in the past, while the third, with a few exceptions, has not been
used for object recognition.

The second goal of the paper is to present an approach that appears to
offer a promising general strategy for a variety of object recognition problems.
This approach belongs primarily to the class of alignment methods (although
it uses some of the ideas of the other classes), and is termed the alignment of
pictorial descriptions.

Scope of the Problem: Shape-Based Recognition

Visual object recognition is not a single problem. One reason for the
diversity of approaches to the problem is that there are several different paths
leading to visual object recognition.

We often recognize an object (a car, a familiar face, a printed character)
visually on the basis of its characteristic shape. We may also use visual, but
non-shape cues, such as color and texture. The recognition of a tree of a given
type is based more on texture properties, branching pattern, and color, than
on precise shape. Similarly, various material types, and different scene types
such as “mountainous terrain” can be recognized visually, without relying on
precise shape. Certain animals such as a tiger or a giraffe can sometimes be
recognized on the basis of texture and color pattern rather than shape.

Objects can also be recognized visually solely on the basis of their location
relative to other objects. For example, a door knob may have a non-standard
shape, and still be recognized immediately as a door knob purely on the basis
of its location relative to the door. Yet another possibility is to recognize
objects visually on the basis of their characteristic motion, rather than specific
shape. For example, a fly in the room may be perceived as a small dark blob,
and still be recognized as a fly, on the basis of its characteristic erratic motion

(Johansson 1973, Cutting 1977).

In all of the above examples, recognition can be said to be primarily
visual, i.e., the recognition process proceeds primarily on the basis of the visual
data. There are also situations in which the recognition process uses sources
that are better classified as not primarily visual in nature. One example
has to do with the use of prior knowledge and expectations (Potter 1975).
For example, one may recognize a white object on one’s desk as being a
telephone even when the visual image does not contain enough detail for clear
object recognition (because the viewing was too brief, or the illumination level



too low, etc.). Finally, in some cases, visual recognition employs processes
that may be described as reasoning. For example, the recognition of a fence
surrounding a house may be based primarily not on the similarity of its shape
_to some typical fence, but derived from the fact that its size and location with
respect to the house are appropriate for serving a certain function.
These examples of different “paths” leading to visual object recognition
are summarized in Table 1. The table is not intended to be complete, but to
illustrate the point that visual object recognition includes a number of distinct

processes that may be best addressed separately.

PATHS TO RECOGNITION

VISUAL SUPPTEMENTED
BY OTHER SOURCES

PRIMARTTLY VISUAL

SHAPE EXPECTATION
PRIOR KNOWLEDGE
TEXTURE AND COLOR

LOCATION REASCNING

CHARACTERISTIC
MOTICN

Table 1. Different paths leading to visual recognition.

This paper is concerned with the problem of shape-based recognition. Most
common objects, such as the ones in Fig. 1, can be recognized in isolation,
without the use of context or expectations. For many objects color, texture,
and motion play only a secondary role. In these cases, the objects are rec-
ognized by their shape properties. This is probably the most common and
important aspect of visual recognition and therefore “object recognition” is



often taken to mean the visual recognition of objects based on their shape
properties. There are some difficulties in defining the term “shape” unequiv-
ocally, but such a precise definition will not be required in the ensuing discus-
sion. The main point is that certain types of visual object recognition, e.g.
on the basis of color or motion alone, will not be considered here.

Difficulties with the Definition of “Object Recognition”

Although we are constantly engaged in the process of object recognition,
it 1s not easy to define the term “object recognition” in a simple, precise and
uncontroversial manner. A first approximation may be something like: “given
an image of an object, name the object.” A closer scrutiny reveals, however,
many problems with such a definition.

First, naming an object is not a necessary requirement for its recognition.
Animals can recognize objects without naming them. One can recognize a
particular face without naming it. While this objection is valid, it does not
appear to be a particularly important one. We may replace “naming x” by
“producing a response specific to x,” and naming can be taken as a simple
example of such a specific response.

More serious difficulties are associated with the term “object”. Some-
times, we want to recognize an individual object, or a specific “token” (such
as: “my car”), while in other cases recognition means identifying the object as
a member of a certain class (“a truck”). Furthermore, an object may belong
to a number of classes or categories simultaneously (e.g. my cat, a Siamese
cat, a cat, an animal). Recognition would require in such cases a classification
at the appropriate level, and what is considered appropriate may depend on
the circumstances.

An image often contains multiple objects, and each object may contain a
number of recognizable parts. Again, the problem of appropriateness arises.
In a cat-image, one may also recognize an eye, a whisker, or a tail. If the
question is, “what’s in the image”, different answers may be appropriate under
different circumstances.

These and related issues pose important problems for the general theory
of object recognition, but they will not be considered in this paper. For the
purpose of the present discussion we will focus on the recognition of individ-
ual objects (although the methods discussed are often applicable to classes of
objects as well). We will assume first that we are given an image of a single
object, or that a region containing an object has been identified in the image.
That is, we will not confront directly the segmentation problem. (The recog-
nition scheme must take into account, however, the possibility that parts of
the object may be occluded.) Given such a region (that will be called the
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“image of the object”, or a “viewed object”), the problem is to identify (e.g.,
to name) the object that gave rise to the image in question.

Why Object Recognition is Difficult: The Regularity Problem

The process of object recognition requires the inversion of a complicated
one-to-many mapping. The image cast by a single object will change when the
object translates or rotates in space. It will also change with the illumination
conditions: the level of illumination, the positions and distribution of the
light sources, their spectral composition, etc. Formally, one can think of a
mapping M that maps a given object 0; to one of a large set of possible views
(Viyy.. ., Vi,;). Given a single view of the object, the problem is in a sense to
invert M and recover the original object O;. This problem is not limited to
recognition based on visual sensory information. Objects can be recognized,
for example, from their radar or infra-red images. In these cases, the mapping
M depends on such properties as the object’s density and temperature. As
. in-vision, object recognition from such-images involves the inversion of a one-
to-many mapping.

The recognition problem is difficult because the set of possible views of
a given object is large, and because different views of the same object can be
widely dissimilar.

The problem of dissimilarity between different views of the same object
is important in evaluating the main sources of difficulties in object recognition
and it merits, therefore, a brief discussion.

One may argue that the notion of similarity between views depends on
the particular similarity measure used. The dissimilarity problem may go
away if we can define an appropriate similarity measure between object views.
We may, therefore, try to define a similarity measure that would render all
different views of the same object as closely similar to one another, and will
assign a large measure of dissimilarity to views belonging to different objects.
In fact, the entire process of object recognition can be thought of as providing
such a similarity measure: two images of the same object that are taken,
for instance, from widely different viewing positions, are judged ultimately
to be closely related. The point is, however, that from the point of view of
providing an explanation, assuming the existence of such a similarity measure
would just bypass the problem, since the problem would then be to explain
how such a similarity measure is defined and computed.

Certain similarity measures that can in fact be implemented directly by
known mechanisms have been proposed in the past for the purpose of object
recognition. In particular; mechanisms known as associative memories can
store a large set of patterns (P;, P;... P,), and then, given an input pattern



Q, they can retrieve the pattern P; which is most similar to Q (Kohonen 1978,
Hopfield 1982, Huberman & Hogg 1984).

Have associative memories of this type solved the problem of object recog-
nition? Discussions of associative memories sometimes suggest that they have.
When the system has stored a representative view, or a few views, of each ob-
ject, a new view would automatically retrieve the stored representation which
most closely resembles it.

The problem is that the notion of similarity used in associative memories
is a restricted one. The typical similarity measure used is the so-called “Ham-
ming distance.” This measure is defined for two binary vectors. Suppose that
u and v are two binary vectors (i.e., two strings composed of 1’s and 0’s only),
of length n. The Hamming distance between u and v is simply the number
of coordinates in which they disagree. Suppose that we now wish to use such
an associative memory to recognize objects, e.g. the letters in the alphabet.
We first have to translate each image into a binary string in such a manner
that all the A’s will map onto vectors separated by a small Hamming distance,
and at the same time the Hamming distance between a vector representing an
A and a vector representing any other letter must be sufficently large. This
coding problem, mapping views onto the appropriate vectors is, however, the
crucial part that makes the recognition problem difficult.

The situation, then, is that certain similarity measures between input
images, such as the Hamming distance and some variations of it, can be
implemented directly by known mechanisms. In terms of these similarity
measures, however, different views of the same object can be widely dissimilar.
The problem remains, therefore, to find the processes by which the disparate
views can be identified as representing the same object.

The Direct Approach

One extreme view to the problem of object recognition would be to store
a sufficiently large number of different views associated with each object, and
still use one of the simple similarity measures discussed above. This may be a
feasible approach in some special applications where the total number of pos-
sible views is restricted. For the general problem of visual object recognition
this direct approach is implausible for two reasons. First, the space of all pos-
sible views of all the objects to be recognized is likely to be prohibitively large.
Second, objects can be recognized from novel views, whereas in the extreme
direct approach, generalization to new views would be severely limited.

It will be possible to outperform the direct approach significantly when
the set of views belonging to a given object is not arbitrary, but contains cer-
tain regularities. To recognize, for instance, triangles of any shape, position,
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and size, it is clearly not necessary to store in memory a large number of
representative shapes. All of the shapes in this set have certain properties in
common, and these regularities can be used to overcome the two limitations
of the direct approach mentioned above. That is, it will become possible to
limit the number of stored representations, and it will be possible to recognize
novel shapes that are not similar in any simple direct measure to triangles seen
before.

The conclusion is that finding regularities in the set of views that belong
to a single object (or class or objects) is the key to visual object recogni-
tion. I will refer to this problem below as the “regularity problem” in object
recognition. As we shall see, different approaches to object recognition can
. be classified into a small number of major classes according to their proposed
solution to the regularity problem.

The problem of defining these regularities becomes difficult when we
consjider natural objects under various possible viewing conditions. For sim-
- ple geometrical shapes, such as triangles, the set of transformations that a
member in the family of views may undergo is well-defined and straightfor-
ward to characterize. For the family of views representing a 3-D object, the set
of “allowable transformations” that the views may undergo cannot be defined
easily, especially when the object can undergo non-rigid transformations. For
example, what would be, the regularities in the transformations linking the
different possible views of a rabbit?

Different approaches to visual object recognition differ in the type of
regularities they propose to exploit. The proposal is not always made explicit,
but any theory of object recognition that goes beyond the direct approach
must make some assumptions regarding the expected regularities within a
family of views that belong to the same object.

In the following sections, prevailing theories of object recognition are
classified on the basis of their approach to the regularity problem. Three
main classes of theories are distinguished: (i) invariant properties methods,
(ii) parts decomposition methods, and (iii) alignment methods. Theories in
the first class assume that certain simple properties remain invariant under
the transformations that an object is allowed to make. This approach leads
to the notion of invariances, feature spaces, clustering, and separation tech-
niques. The second class relies on the decomposition of objects into parts.
This leads into the notions of symbolic structural decriptions, feature hierar-
chies and syntactic pattern recognition. By and large, the first of these general
approaches was the dominant one in the earlier days of pattern recognition
and the second approach has become more popular in recent years. It will be
argued that both of these approaches are insufficient for the general problem
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of shape-based visual recognition. A third approach, called the alignment
method, will be presented and compared to the previous two.

The classification into invariant properties, part decomposition, and align-
ment methods, is a taxonomy of the underlying ideas, not of existing schemes.
That is, a given scheme is not required to belong strictly to one of these classes,
but may employ one or more of these ideas. The point is that the variety of
methods used seem to rely on a small number of basic ideas for dealing with
the regularity problem, and these ideas fall under the three mentioned cate-
gories.

The plan of the remainder of the paper is as follows. Sections 2, 3, and 4,
describe the invariant properties, decomposition, and alignment approaches.
The second part of the paper, Sections 5-7 discuss the recognition of objects
using the alignment of pictorial descriptions.

2. INVARIANT PROPERTIES AND FEATURE SPACES

A common approach to object recognition has been to assume that ob-
jects have certain invariant properties that are common to all of their views.
For example, in identifying different types of biological cells a “compactness
measure”, defined as the ratio between the cell’s apparent area and its perime-
ter length, has been used as a useful characteristic. Cells that tend to be round
and compact will have a high score on this measure, whereas long-and-narrow
cells will have a low score.

Formally, a property of this type can be defined as a function from the
set of object-views to the real numbers. It is also important that these proper-
ties be relatively simple to compute. Otherwise, in recognizing, for example,
different instances of the letter “A”, one may define a function whose value
is 1 if the viewed object is the letter “A”, and 0 otherwise. This function
would be an invariant of the letter A, but the problem of computing this in-
variance would be, of course, equivalent to the original problem of recognizing
the letter. The invariant properties approach must therefore prescribe, to-
gether with the set of invariant properties proposed, effective procedures for
extracting these properties.

In an invariant properties scheme the overall recognition process is thus
broken down into the extraction of a number of different properties followed
by a final decision based on these properties, where each of these stages is
relatively simple to compute.

The Domain of Binary Vectors

The invariant properties approach is illustrated schematically in Table 2
for the simplified domain of binary vectors. This domain does not incorporate
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many of the complexities of real objects, but, as discussed above in the context
of associative memory, it is often a useful domain to illustrate in a simple and
schematic manner some underlying principle.

Suppose that the set of “images” consists simply of binary vectors, i.e.,
strings of 0’s and 1’s, all six-elements long. As in visual object recognition,
we assume that a given object may give rise to different sequences. In lack
of any regularity in the set of “views” belonging to a given object there will
not be a more efficient “object recognition” scheme in this domain than the
direct approach. The set of 64 possible sequences may include, for example,
eight different “objects”, each one giving rise to eight different sequences. If
no regularities can be found, recognition would require essentially storing all

of the sequences in memory.

Object-1 Object-2

010010 111011
001010 011110
000000 101111
110100 110101

Table 2. Recognition by invariant properties in the domain of binary
vectors. All the vectors representing object-1 have at most three 1’s,

those representing object-2 have four or more.

Table 2 shows a simpler case, in which only eight sequences are considered.
Four of them (on the left) are classified as “object-1”, the remaining four as
“object-2”. In this case, a simple property would suflice for distinguishing
between the two objects: all the instances of object-1 include at most three
1’s in them, and the sequences representing object-2 have four or more. This
simplified example illustrates in a schematic manner the essence of recognition
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by invariant properties. Rather than storing a large number of representative
shapes, recognition proceeds by computing a small number of simple func-
tions (properties) of the viewed objects. These properties are supposed to be
common to all of the views representing a given object (or class of objects),
and to distinguish this class of views from other classes. The properties are
also often global, as in the above example: they are not associated with any
restricted part of the object, but depend for their computation on the object
as a whole.

Feature Spaces and Separating Functions

In some approaches, a property defined for a given object (or class of
objects) is not expected to remain entirely invariant, but to lie within some
range. Properties of different objects may have partially overlapping ranges,
but the hope is that by defining a number of different properties, it will be-
-come:possible to define-each object (or class) uniquely. This leads naturally to
the concept of “feature spaces” which have been used extensively in pattern
recognition. If n different properties are measured, each viewed object is char-
acterized by a vector of n real numbers. It then becomes possible to represent
a given view by a point in an n-dimensional space, R". The set of all the
views induced by a given object define in this manner a subspace of R™ (e.g.,
Tou & Gonzalez 1974). This representation could become useful for identify-
ing and classifying objects, provided that the subspaces have simple shapes.
For example, suppose that each class to be recognized is contained within a
sphere in R™, and the spheres for the different classes are non-overlapping.
Each class can then be represented simply by the center point and the radius
of its sphere. A viewed object, including a novel view, would then be classified
by determining the sphere in which the point lies in R™.

Another common method of carving up the space R™ is by a set of linear
separating functions. In the case of n = 3, for example, the three dimensional
feature space is divided into subspaces using a set of 2-D planes. The main
reason for using planar separating functions is to keep the computations in-
volved manageable. When the shape of the subspaces does not permit the use
of simple separation functions, the space can sometimes be “corrected”, e.g.
by re-scaling different axes.

Another approach that belongs to the general category of invariant-
properties theories is Gibson’s theory of high-order invariances (Gibson 1950,
1979). Gibson suggested that invariant properties of objects may be reflected
in so-called “higher order” invariances in the optic array. Such invariances
may be based, for example, on spatial and temporal gradients of texture den-
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sity. A set of invariances may be “picked up”, according to this view, by the
visual system, and may be used to characterize objects and object classes.

How useful have invariant-properties methods been for approaching the
problem of visual object recognition? The invariant properties approach, in-
cluding the construction of feature spaces and their separation into sub-spaces,
have probably been studied more extensively than any other method for ob-
ject recognition. It has met with some success within certain limited domains:
a number of industrial vision systems perform simple recognition of industrial
parts based on the measurement of global properties such as area, elongation,
perimeter length, and different moments (see a review in Bolles & Cain 1982).
For the general problem of visual object recognition, however, this general ap-
proach does not seem to be very promising. In limited domains, such as the
recognition of flat unoccluded parts lying parallel to the image plane, prop-
erties of this type may be sufficient to reliably characterize different objects.
In more general visual recognition problems the usefulness of simple invariant
properties appears doubtful. What simple invariances would distinguish, for
example, a fox from a dog? It appears that a more precise description of
shape, rather than a restricted set of basic invariances, would be necessary to
recognize such objects. Even with simpler, man-made objects, it is not clear
how a set of invariances would suffice to capture the regularities in the differ-
ent views of an object or a class of objects. For example, it would be difficult
to recognize the set of all motorcycles using primarily global properties such
as apparent area, perimeter length, different moments, and the like.

In summary, the invariant properties approach offers one possible solu-
tion to the regularity problem of object recognition: performing the required
many-to-one mapping in an efficient manner (compared with the direct ap-
proach). The use of invariant properties makes, however, certain assumptions
about the regularities in the set of views that belong to the same object (or
class of objects). When these assumptions are violated, the invariant prop-
erties approach is in trouble. In some cases, such as the artificial example in
Table 2, simple invariant properties are indeed common to all the members
of a given class. In other cases such invariances may not exist. The weakness
of this approach is that in visual object recognition there is no particular rea-
son to assume the existence of relatively simple properties that are preserved
across the transformations that an object may undergo. It is not surpris-
ing, therefore, that, despite considerable effort, invariant properties of general
applicability for visual object recognition proved difficult to find.

3. RECOGNITION USING OBJECT DECOMPOSITION

A second general approach to object recognition relies on the decomposition



13

of objects into constituent parts. This approach clearly has some intuitive
appeal. Many objects seem to contain natural parts: a face, for example, con-
tains the eyes, nose, and mouth as distinct parts that can often be recognized
on their own. These parts could be found first, and then the recognition of
the entire object could use the identified parts.

The approach assumes that each object can be decomposed into a small
set of generic components. The components are “generic” in the sense that
all objects can be described as different combinations of these components.
The decomposition must also be stable, that is, preserved across views. The
recognition process locates the parts, classifies them into the different types
of generic components and then describes the objects in terms of their con-
stituent parts.

The crucial point in this approach is that the many-to-one mapping 1m-
plied by object recognition begins at the part level. This can result in substan-
tial savings compared with the direct approach. The basic idea is illustrated
schematically in Table 3 for the simplified case of binary vectors.

The Domain of Binary Vectors

The domain in this example consists again of binary vectors six com-
ponents long. There are 64 different vectors in this domain. It is assumed,
however, that the first three components of each vector define a “part”, and
the last three another part. Each part can be of type P; or P,. Table 3a
shows how parts (vectors three-components long) are classified as either P; or
P,. 1t can be seen that a many-to-one reduction is achieved at the part level,
since many different sub-sequences are all classified as different instances of
the same part type (P, or Py).

Table 3b gives the final classification of objects in terms of their parts. An
object composed of either (P;, Py) or (P,, P5) is considered object-1, whereas
(P, Py), (P2, Py) are instances of object-2. These rules are sufficient to clas-
sify unambiguously each of the possible sixty-four vectors. Because of the
decompostion into parts, it was possible to avoid the storage of all sixty-four
six-long vectors; two reduced tables were sufficient to cover all of the possi-
-bilities. Substantial saving-is obtained because an object whose first part is,
e.g., P, and the second P, is classified as object-1 regardless of the details
of the internal structure of each of the parts.

It should be noted that the part decomposition scheme and the invariant
properties approach are not mutually exclusive, but can be combined. In
the example given in Table 3, each of the two parts has been defined using
an exhaustive list of its different instances. It is also possible to consider
a situation in which a part is defined, for instance, by having at most two
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Py Ps
0 0 0 0 0 1
1 0 0 0O 1 1
0O 1 0 0o 1 1
1 1 0 1 1 1
a
Object-1 Object-2
Pi1 P2 Pl P]_
P2 P2 P, P;
b

Table 3. Recognition by part decomposition in the domain of binary
vectors. Table a gives the classification of parts P; and Ps, b classifies two

objects in terms of these parts.

1’s in its sequence. An example along this line but less abstract 1s to use a
description such as “a-bushy tail” in the recognition of a squirrel. The idea
behind such descriptions is to combine the advantages of part-decomposition
with the use of invariant properties for classifying the constituent parts.
Following the initial classification of the individual components, there
remains the problem of recognizing the object itself on the basis of the con-
stituent components. In the language of the binary sequences example, the
part classification stage results in a shorter sequence of part-types, and a final
classification must then be performed on the basis of the parts string. In the
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example above this final stage was achieved by an exhaustive listing (given in
Table 3b). In more realistic object recognition problems other methods are
usually employed.

Feature Hierarchies and Syntactic Pattern Recognition

There have been two main approaches to this second classification stage. One
approach is to try to repeat the decomposition process: certain part sub-
groups, containing two or more parts, can be identified as new substructures,
or higher-order parts. As in the process of parts identification, the assumption
is that certain configurations can be classified independent of other parts and
configurations, and that the internal structure of a configuration is immaterial
as far as the recognition process is concerned.

An example of a simple part-hierarchy is to detect straight line segments
as the most basic parts and then detect higher-level parts such as corners and
vertices, based on the already-detected line segments. These parts can be com-
bined in turn into higher-level structures. For example, certain configurations
of lines and vertices can be combined to define triangles. Such approaches
are known as “feature hierarchies”. The simple basic level parts are termed
“features” (a term also used in many other contexts) and higher level struc-
tures are constructed hierarchically (Selfridge 1959, Sutherland 1959, Barlow
1972, Milner 1974). This approach has been motivated in part by physiologi-
cal findings (Hubel & Wiesel 1962, 1968) in the cat and monkey, that can be
interpreted as the extraction by the visual cortex of elementary features such
as oriented edge fragments and line segments.

A close relative of the feature-hierarchy approach is the syntactic pattern
recognition method (Fu 1974). Here, too, the first stage consists of identifying
simple parts in the input image, followed by the grouping of elementary parts
into higher-order ones. The emphasis in the syntactic approach is on the
construction of higher order parts using methods borrowed from the syntactic
analysis of formal languages.

Structural Descriptions

A second approach to the transition from parts to objects can be viewed
as a mixture of part-decomposition with the invariant-properties approach,
where the invariant properties are defined using relations among parts. The
underlying assumption is that it would be easier to capture object invariances
at the level where parts have been identified. For example, the total number
of parts of a given type may be an invariant of the object. A triangle, for
instance, always has three lines, three vertices, and no free line terminators.
This is in fact how perceptrons, which are simple parallel pattern recognition
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devices, have been used to recognize triangles independent of shape, location
and size (Minsky & Papert 1969).

In other instances, simple relations between constituent parts would re-
main invariant under all object views. In the capital letter “A”, for example,
two of the line-segment parts meet at a vertex, and this property holds for
most variations of the letter. Here, again, part decomposition is obtained first,
and in the next stage simple invariances are defined in terms of the constituent
parts. The invariances are expressed in terms of relations between two or more
parts, such as “above”, “to the left of”, “longer then”, “containing”, etc. For
2-D applications, in which objects are restricted to move parallel to the image
plane, simple relations such as distances and angles measured in the image
would remain invariant (Bolles & Cain 1982, Grimson & Lozano-Perez 1984,
Faugeras 1984). In the more general 3-D case, part decomposition schemes
often try to employ relations that would remain invariant over a wide range
of different viewing positions (Marr & Nishihara 1978, Biederman 1985, Lowe
1985).

Some of the experimental results concerning pattern recognition in an-
imals may be interpreted in this context as indicating a certain deficiency,
compared to humans, in this second stage of identifying invariant properties
and relations among parts. It has been reported, for instance, that pigeons
can recognize Charlie Brown pictures in a variety of positions, orientations
and scales (Hernstein 1984). They do not distinguish, however, between a
correct Charlie Brown figure, and a “jumbled up” version where the figure
has been cut in half, and the two halves re-arranged. These facts are more
consistent with recognition on the basis of a collection of local parts and fea-
tures, rather than, for example, a direct comparison (e.g. by correlation) of
complete figures. They also suggest a lack of sensitivity to the relations among
different parts.

When augmented with descriptions of relations among parts, the object
decompostion approach leads to the notion of structural description. Recog-
nition using such structural decriptions has become in recent years.a popular
approach to visual object recognition.

An early example of a theory of this type applied to human vision is
Milner’s (1974) model of visual shape recognition. The main basic-level parts
used in this theory are edges and line segments. This choice was motivated to
a large degree by the classical physiological findings suggesting the detection
of such elements in the image by the primary visual cortex. In a second level,
invariant properties and relations are defined using primarily the total number
of parts (e.g., the number of line segments of a given orientation) and length
ratios of line pairs.
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A recent example of a structural description recognition scheme is Bie-
derman’s (1985) theory of recognition by components (RBC). According to
this scheme, objects are described in terms of a small set of primitive parts
called “geons”. These primitives are similar to the generalized cylinders used
by Binford (1971), Marr & Nishihara (1978), Brooks (1981), and others. They
include simple 3-D shapes such as boxes, cylinders, and wedges. More com-
plex objects are described by decomposing them into their constituent geons,
together with a description of the spatial relations between components. The
number of primitive geons is assumed to be small (less than 50), and objects
are typically composed of a small number of parts (less than 10).

In any scheme that relies on decomposition into parts it is crucial to devise
a reliable and stable procedure for identifying part boundaries. Otherwise, the
same object may give, under slightly different viewing conditions, different
descriptions in terms of its constituent parts. In Biederman’s scheme certain
“non accidental” relationships between contours in the image are used to
determine the part decomposition. These relations include, for example, the

colinearity of points or lines, symmetry and skew symmetry, and parallelism
of curve segments.

Another recent scheme employing part-decomposition is the “codon”
scheme proposed by Hoffman and Richards (1986) for the description and
recognition of contours. Contours are segmented at curvature minima (the
“transversality rule”). The resulting parts are then described in terms of a
small “vocabulary” of shape primitives termed “codons”.

The RBC and the codon schemes are complementary in that they empha-
size different aspects of the problem. The codon scheme concentrates on the
initial stages of analyzing image contours. Biederman’s RBC scheme assumes
that certain analysis of image contours has already been performed and then
goes on to consider the description of complete objects.

Attempts have been made recently at combining these two levels of analy-
sis into working systems that would actually recognize 3-D objects from their
projections. An example is a recent scheme developed by Connell (1985).
This scheme starts at the level of analyzing image contours. It first describes
the contours in terms of constituent parts and their properties, using a rep-
resentation scheme developed by Brady and his co-workers (Asada & Brady
1986). It then proceeds to generate higher-level constructs that eventually
correspond to entire objects. The resulting description can become quite
elaborate. Formally, it has a graph structure in which the nodes represent
components and labelled arcs represent relations between parts. Recognition
can proceed later by matching such graphs generated from the image with
similar graph structures stored in memory.
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Figure 2a shows an example of a contour image of an airplane, 2b shows
the description generated by the system for a part of this figure (the right
elevator).

The schemes mentioned above use primarily 1-D contour segments and
3-D volumes as their primitive shape parts. Other schemes use 2-d surface
patches as their primitives (Dane & Bajcsy 1982, Potmesil 1983, Faugeras
1984, Brady et al 1985). There are significant differences between the various
structural description schemes that have been proposed, but they all share a
basic underlying idea: regularities in the families of views corresponding to an
object (or class of objects) can be best captured by part-decomposition. Dif-
ferent schemes differ in the type of parts they use (contours, surface patches,
primitive volumes, etc.), but they all attempt to employ simple parts, so that
the identification of a part would be significantly simpler than the recognition
of a complex object. The entire object is then recognized in a second stage in
terms of the already classified parts.

.- For a variety of objects, the notion of part decomposition appears to be
natural. A table, for instance, is often composed of a flat surface supported
from below by four legs. Such a description appears much more natural than
trying to characterize table-images in terms of simple properties such as total
area, perimeter length, etc., as used in the invariant properties approach.

It is also true that, as argued by Hoffman (1983) and by Biederman
(1985), human observers sometimes find it easy to identify the parts of an
object even when the object is unfamiliar.

At the same time, it appears that for the purpose of visual object recog-
nition the use of structural descriptions has at least two severe limitations.
The first problem is that the decomposition into generic parts often falls con-
siderably short of characterizing the object in question. For example, a dog,
a fox, and a cat, (as well as several other animals) can probably have similar
and perhaps identical decompositions into main parts. These animals are dis-
tinguishable not because each one has a different arrangement of parts, but
because of differences in the detailed shape at particular locations (such as the
snout). It may be argued, perhaps, that these animals are indistinguishable
at the “basic level category” (Biederman 1985): they are first recognized per-
haps as four-legged animals, and only a second recognition stage distinguishes
among them. This possibility cannot be dismissed on the basis of current ev-
idence, but at the same time, it is not clear that two such separate stages
actually operate in this example. Moreover, the separation into two stages
does not, by iteself, solve the problem; an explanation of how the objects are
eventually recognized is still required.

A second limitation of the structural description approach is that many
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20

objects do not decompose naturally into the union of clearly distinct parts.
What, for example, are the decomposition of the shoe, loaf of bread, or rabbit
shown in Fig. 1?7 It would be difficult to decompose these objects into parts
that are sufficient to characterize the objects, and at the same time generic
l.e., common to many other objects as well. A possible approach, illustrated
by the aircraft example in Fig. 2, is to include in the description very simple
generic parts, such as edges and line segments. The use of such parts causes,
however, the resulting structural descriptions to be highly complex.

It seems, in conclusion, that for many objects the attempt to construct
a structural description results in making strong commitments too early in
the recognition process. The approach forces a categorization of shapes and
relations into a small set of classes, and assumes that, as far as recognition is
concerned, the internal structure (i.e., the details of the shapes and relations
not captured by the structural descriptions) are immaterial.

The approach presented next (the alignment method) attempts to avoid
these limitations. It preserves details of the viewed shape without enforcing
a classification into predetermined categories of parts and spatial relations.

The alignment approach is not incompatible with the notion of part de-
composition. Aspects of both approaches can, in fact, be incorporated in a
single scheme. However, to keep the distinction between the approaches clear,
the alignment approach will be presented first in a simple and “pure” form.
Combinations with other schemes will be considered in a subsequent section.

4. THE ALIGNMENT APPROACH TO OBJECT RECOGNI-
TION

To introduce the alignment approach, it is convenient to view visual
recognition as a problem involving search in a large space: given a viewed
object, a best match is sought in the space of all stored object-models and all
of their possible views. If V denotes the viewed object, (M;) are the different
object-models stored in memory, and (7};) is the set of allowed transforma-
tions that can be applied to object-model M;, then the goal of the search is
to find a particular model and a particular transformation that will maximize
some measure of fit F' between the object and a model. That is, the search
is for a maximum in F(V,(M;,T;;)) over all possible object-models M; and
their transformations T};.

The basic idea of the alignment approach is to decompose this search into
two stages. First, determine the transformation between the viewed object
and the object model. This is the alignment stage. Second, determine the
object-model that best matches the viewed object. At this stage, the search
1s over all the possible object-models, but not over their possible views, since
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the transformation has already been determined uniquely in the alignment
stage.

In terms of the maximization problem stated above, the idea is to de-
termine for each potential object-model M; a unique transformation T;; that
aligns M; and V optimally. (It is also possible to transform the viewed object
V rather than the model M;; see section 6.) The search for a best match is
now reduced to finding the maximum in F(V, M;) only; i.e., a search over the
set of objects, but not over their different views.

A simple example may help to clarify the approach. The example is
taken from the domain of character recognition. This is one of the only
domains in which a rudimentary version of an alignment method has been
attempted (Neisser 1966, Ch. 3), and it can be used to illustrate the differences
between the alignment method and alternative approaches. It is, however, a
somewhat special domain. Learning to recognize the letters in an alphabet
is a difficult task that requires considerable training. It may require the use
- of some specialized skills that are not necessarily representative of object
‘recognition in general. In sections 5 and 6 the application of a more general
alignment approach to other objects will be considered.

Suppose that a character recognition system is required to recognize char-
acters in the alphabet regardless of position, size, and orientation. A simple
alignment scheme would proceed in the following manner. For each charac-
ter, a single instance of the character would be stored in memory. Given an
input character, the system will first go through an alignment phase. The
goal of this stage is to “undo” the shift, scale, and rotation transformations.
This may be accomplished by applying compensating transformations to the
character. For example, to “undo” a possible shift, the center of mass of the
input can be computed, and the character is then shifted, so that its center of
mass always coincides with a fixed pre-determined location. In this manner,
characters that differ in their position in the input image are “transformed
back” to a canonical location. Similarly, scale can be compensated for by
computing, for instance, the area of the character’s convex hull. (The convex
hull is the smallest convex envelope surrounding the character; see Preparata

& Shamos 1985).

Orientation changes are more complicated to compensate for. (They
are often more problematic in human perception as well (Neisser 1966, Rock
1973. Orientation can be determined for some letters on the basis of bilateral
symmetry as in the case of (A, H, I, M, T, U, V, W, X, Y). Many characters
have a line segment that, in the proper orientation, is oriented either vertically
(B,D,E,F,H,IK,L,N, P, R, T) or horizontally (A, E, F,F,H, 1, J, L, T,

Z), and these can be used to determine a small number of likely orientations.
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The detection of bilateral symmetry and the orientation of the component line
segments, together with the computation of center of mass and the convex
hull area, would be performed during the alignment stage. After the shift,
scale, and orientation have been compensated for, the “normalized” input
is matched (possibly in parallel) against the stored representations of the
different characters. Since the transformations have already been removed,
the matching stage itself is expected to be relatively straightforward. At
this stage, an associative memory-like mechanism may suffice to compare the
tranformed input in paralle] with the stored models. It should be noted,
however, that even following the alignment the final matching cannot be as
simple as, e.g., 2-D correlation between the contours. The difference between
different characters, such as O and Q, may be a small but crucial contour
element. Some parts of the model may therefore contribute more to the
overall quality of the match than other parts.

The process of compensating for the transformations prior to comparing
the viewed object with potential models is often referred to as a normalization
stage. The use of such a normalization stage has been limited in the past to
restricted applications, such as the domain of character recognition mentioned
above.

The use of a normalization stage for more general object recognition suf-
fers from two main shortcomings. First, normalization as used in the past
has been usually restricted to changes in position, orientation, and scale, in
the 2-D image plane. In contrast, the set of transformations that must be
compensated for in 3-D object recognition is not limited to these transforma-
tions. When an object moves and rotates in 3-D space the transformations
induced in the image are considerably more complicated. The second reason
is that the methods used for normalization usually relied on global properties
such as the object’s apparent area, perimeter length, or center of mass. Such
measures do not perform well in the face of occlusion, when only a part of the
object is visible.

- The alignment approach described in -the next sections can be viewed as
an extension to the simple notion of normalization. It has the same main goal,
namely, compensating for the transformations separating the viewed object
and potential object models prior to the matching stage. The main differences,
detailed in Sections 5 and 6 below, are that: (1) the alignment process can
compensate for a larger set of transformations, including rigid rotation in
space as well as non-rigid transformations, (2) the proposed alignment method
includes the use of abstract descriptions that are not usually incorporated in
normalization schemes, and (3) the alignment process does not rely on global
measures such as area or center of mass.
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In the domain of character recognition, the normalization scheme outlined
above would perform well provided that the set of allowable transformations
is indeed limited to changes in position, scale, and orientation. If the input
characters are allowed to change in a less restricted manner, so that addi-
tional distortions, changes in style, etc., are also permitted, these additional
transformations should also be compensated for, as much as possible, during
the alignment stage. Examples of a more extended set of transformations are
illustrated in section 6.

The alignment approach can be contrasted with the two alternative ap-
proaches discussed above, the invariance properties and the part decomposi-
tion methods.

In the invariant properties approach characters are identified using prop-
erties that are supposed to be invariant with respect to position, size, orienta-
tion, style, etc. (Alt, 1962). The capital letter “A” may be identified, e.g., on
the basis of relative width, height, and perimeter length, different moments,
the fact that it contains a closed loop, etc.

A part decomposition approach may result in a structural description
similar to the structure diagrammed in Figure 3. The character is decomposed
into its main parts, and these parts and their relations are described in terms
of a fixed “vocabulary” of part and relation types.

Variations and mixtures of these methods are, of course, possible. For
example, if the orientation of the character can be determined in a prelimi-
nary stage, as in the alignment approach, then a structural description scheme
would be able to utilize descriptions such as a “horizontal line segment” (for
part-2 in Fig. 3). The invariant properties approach could also benefit from
an alignment stage: measures such as overall line lengths, or orientation dis-
tribution of line segments could be utilized provided that the character has
been aligned to a canonical size and orientation. The invariant properties
method can be combined with part decomposition techniques and use, e.g.,
the number of line segments, vertices, and line terminators as invariants.

Although the domain of printed characters is a somewhat special one,
the examples are nevertheless useful to illustrate in a schematic manner how
the different approaches may be applied. Each of the above schemes has, in
fact, been implemented in experimental character recognition schemes.

The Domain of Binary Vectors

The alignment approach can also be illustrated schematically using the
domain of one-dimensional vectors used to illustrate the previous two ap-
proaches. For the current discussion, we shall assume that each vector can
contain, in addition to 0's and 1's, also a single occurence of the letter S,
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( OBJECT-1)
SYMMETRIC TOUCH
CROSS >4 CROSS
PART-1 (PART-2 ) PART-3
STRAIGHT STRAIGHT STRAIGHT
LEFT-DIAGONAL HORIZONTAL RIGHT-DIAGONAL

Figure 3. A simplified structural description of the letter “A”.

which can be thought of as the “starting point” of the vector. Two vec-
tors are considered in this example to represent the same object if they are
identical when read, starting from the letter S, to the right, (and “wrapping
around” if the letter S is not the first symbol in the vector). Thus, the vectors
Vi = S100110 and V5, = 0510011 would be considered members of the same
class (see Table 4).

It would be easy in this domain to apply the alignment approach to
“undo” the transformations and verify that V; and V> are, in fact, members
of the same class. At the same time, the two vectors are separated by a
relatively large Hamming distance and therefore the direct approach would
not provide a useful comparison measure. Similarly, the invariant properties
and part decomposition approaches would not be as effective and natural in
this case as the alignment approach.

Which is the Correct Approach?
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Object-1 Object-2
S100110 SO010111
0S10011 1S01011
1051001 1150101
1105100 11715010
0110S10 0111501
0011051 10111S0
100110S 0101118

Table 4. Recognition by alignment in the domain of binary vectors.

Comparing this example to the examples in Tables 2 and 3, it can be
concluded that there is no single best scheme that is appropriate for all cases.
As the tables indicate, a given approach may be clearly superior for one set
of conditions, but not for others. The different approaches represented by
these tables should therefore not be classified as “correct” or “incorrect”,
but, rather, should be evaluated according to their usefulness in dealing with
different types of object transformations.

This should not be surprising in view of the general discussion in Section
1. It was noted there that in the most general case, where different views of
the same object (or class of objects) are distributed randomly in the space
of views, a truly effective method that outperforms significantly the direct
method would not be possible. To be effective, a recognition scheme must
therefore exploit well the regularities inherent in a given domain. As shown by
the schematic examples, different types of regularity would give rise naturally
to different recognition schemes. The relevant question is, therefore, not which
of the approaches discussed above is the correct one, but which would be useful

for the purpose of shape-based visual object recognition.
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In sections 2 and 3 it has been argued that the two most popular ap-
proaches, the invariant properties approach and the structural description
approach, are insufficient for dealing with shape-based recognition. It seems
to me that the alignment approach can provide an important, perhaps the
main, missing ingredient.

The discussion above has introduced the general motivation behind the
alignment approach. The next two sections illustrate the application of the
method to the shape-based recognition of simple rigid objects (Section 5) as
well as to more general non-rigid objects (Section 6).

5. THE ALIGNMENT APPROACH APPLIED TO SIMPLE
OBJECTS

This section illustrates the application of the alignment approach to the
recognition of simple objects. It discusses the problem of aligning objects in 3-
D space using examples from a computer implementation by D. Huttenlocher
that uses an alignment approach to recognize of objects of the type shown in
Fig. 4.

The objects are flat machine parts that are allowed to translate, rotate
in space, and change scale (as their distance from the camera changes).

Goal and restrictions

The goal of the recognition system is to demonstrate in a restricted and
simplified application, how the alignment approach described above in general
terms may be used for the recognition of objects. The domain of application of
the current example is simplified in three respects. First, the objects consid-
ered are flat. It should be noted, however, that this is not a 2-D problem, since
the objects are not restricted to move in the plane, but are allowed to move
and rotate in 3-D space. The second restriction is that the transformations
applied to the objects are limited to the class of rigid transformations, com-
bined with changes of scale. Many real objects can undergo more complicated

. transformations, such as bending, stretching and other types of distortions.
The class of allowable transformations is, however, less restrictive than many
examples considered in the past. In various discussions of object recognition
(Milner 1972, Baird 1984) the transformations that the recognition system
1s required to cope with are limited to changes in position, orientation, and
scale. These are relatively simple transformations, that preserve the similarity
of shapes. The transformations considered here are not similarity-preserving,
because the objects are allowed to rotate in 3-D space.

The third simplification in these examples is that only a “pure align-
ment” approach is used. This means that the recognition scheme will not



Figure 4. Machine parts that were used in the recognition example.

be combined with invariant properties or part decomposition methods, but
will be used on its own. The alignment method described 1n this section uses
the boundary and internal contours of objects as object models, without de-
scribing them further, or extracting invariant properties of objects or objects’
parts. Such a simple description would be insuficient in more complicated
situations, for example, when the objects contain parts that can move with
respect to one another in a constrained manner. Useful combinations of the
“pure” alignment scheme with certain aspects of other methods are possible,
and will be discussed in section 6.

The Information Needed for Alignment: Three Points Suffice

In section 1 we have examined the “key problem” of visual recognition:
defining regularities in the set of views that belong to the same object. That
is, given two views, V7 and V,, that at the input level may be quite dissimilar
(using simple distance metrics), the problem is to find methods for deciding
whether or not the two views belong to the same object without necessarily
storing both V; and V> separately in memory. The alignment method ap-
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proaches this problem by noting that objects do not change in an arbitrary
manner: the set of transformations applied to them is often restricted. The
key point about these restrictions is that the transformation can be deter-
mined uniquely on the basis of very limited information.

Three-Point Alignment

To illustrate this concept, assume for the present that three dots, a red
one, a green one, and a blue one, have been painted on every object in the
collection the system is required to recognize. The exact location of the points
on the object’s surface is immaterial. They must only be visible, and must
not be colinear. We will call these points, which are used in the alignment
stage, the “anchor points” of the object.

For each object 0; in the collection, the system stores an internal model,
M;, which is simply a picture of the object in a frontal view. This picture
is an orthographic projection of the object on the image plane. It includes
the projection of the object’s boundary, as well as the position of the three
anchor points (see Fig. 5). The real projection of objects on the retina or a
camera’s image plane is, of course, perspective rather than orthographic, but
an orthographic projection combined with an admissible scale change provides
a good approximation unless the projection center is very close to the viewed
object.

We are now given a view of an unknown object, and the problem is to
decide, for a given model M;, whether or not V matches M; (i.e. whether V
is a possible view of M;). To reach a decision, we can at first ignore the entire
image of the object, and examine only the position of the three anchor points.
Let (P;,P,,P3) be the (3-D) coordinates of the three points in the model, and
(p1,p2,p3) their 2-D image coordinates.

The crucial point is that the model M; and the view V can be aligned in
a unique manner given only the coordinates (P;,P2,P3) (known in the model)
and p;,p2,ps (recovered from the image). In other words, the displacement
D, the rotation in space R, and the scaling S, possibly relating M; to V, are
uniquely determined on the basis of the three corresponding points. These
transformations are now applied to M;. Following the transformations, M;
and V should be in complete registration (Figure 5). Unlike the original
situation, M; and V following the transformations are very similar in the
Hamming or similar distance metrics. If V is not an instance of M;, then
M; and V following the compensating transformations would still be out of
register (Figure 6). The recognition process is decomposed in this manner
into two stages: an initial alignment followed by a matching stage.
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The fact that three corresponding points are sufficient to “undo” the rota-
tion, translation and scale is shown in Appendix 1. These transformations can
be specified by six parameters: three for the rotation, two for the translation
(under orthographic projection, absolute depth remains undetermined), and
one for the scaling. Three points supply six equations (two for each point) and
therefore the number of constraints matches the number of unknowns. This
counting argument by itself is insufficient (a more complete proof is therefore
given in the appendix), but it suggests why such a small number of points
may be sufficient for recovering the transformation uniquely.

It is worth noting that, as shown in Appendix 1, the alignment stage
does not require the extraction of 3-D information from the image: the 2-D
coordinates of the points are sufficient. Three-dimensional information could
be used, when available, to simplify the alignment stage somewhat, but the
process can proceed in the absence of precise 3-D data.

The recognition system illustrated in this section did not in fact use col-
ored points painted on the object. Instead, it identified a small number of
salient points defined by the object’s boundary. Such points included deep
concavities, strong maxima in curvature, and the centers of closed or almost
closed blobs. The anchor points identified and used by the recognition pro-
gram are marked in Fig. 5 and 6. For more discussion on the extraction of
alignment anchor points see (Huttenlocher & Ullman 1987).

Instead of the color of the points, the scheme uses simple labels to de-
termine uniquely the correspondence between image-points and points in the
model. A label of a point includes a point-type, such as blob-center, concavity,
or curvature maximum, and may include a rough description of location. It is
desirable, although not strictly necessary, to obtain a unique correspondence
between object and model anchor points based on their associated lables. If
this correspondence is not unique, a number of transformations will have to
be evaluated, for the different possible transformations.

Following the alignment, a simple matching measure (similar to the Ham-
ming distance) was sufficient in this application domain to unambiguously
select the appropriate model. For more general recognition problems such a
matching criterion may not be sufficient. More general considerations regard-
ing the final matching and model selection are discussed in Section 7.

An alignment scheme somewhat similar to the three-point method has
been used recently in Lowe’s SCERPO system (Lowe 1985, 1986). SCERPO
is one of the only systems in existence that attempts to use an alignment
method for recognizing objects in 3-D space. The alignment procedure used
in the system relies on perspective rather than orthographic projection. The
alignment is not performed in a separate stage, it is intertwined with the
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recognition process. This is implemented as an iterative scheme, based on
Newton’s method. Another difference between the two alignment procedures
is that SCERPO does not attempt to “label” the alignment features in a man-
ner that will eliminate or reduce the required search between corresponding
image and model features.

Alignment Using Simple Image Transformations

For the flat objects considered in this section, the alignment phase can be
decomposed into a sequence of simple operations acting on the image. These
operations include translation and rotation of the image, scaling along one
axis, and a “shear” transformation: scaling along one axis by an amount that
varies linearly with the distance from an orthogonal axis. The order of these
operations and how they are used to bring the viewed object and model into
correspondence is described in Appendix 2.

Orientation Alignment

Unique object-to-model alignment can be performed (for rigid transfor-
mations accompanied by scale changes) using three identifiable anchor points.
The three-point scheme is only an example, other types of alignment schemes
are also possible. In particular, if the object has a well-defined orientation,
then this orientation can be used for alignment instead of the anchor points.

A number of properties can be used to define an overall orientation for
an object, including overall elongation, bilateral symmetry or skew symmetry,
oriented texture on the object surface, the existence of a flat or nearly flat
side, the distribution of mass, and the existence of salient protrusions or nicks.
The process of alignment by orientation is illustrated schematically in Fig. 7,
and described in more detail in Appendix 3. The viewed object (or the model)
is first rotated to align their orientations. Let this common orientation denote
the y-direction. The object is next scaled along the x-direction so that the
viewed object and the model match. A final scaling and shear (in the y
direction) completes the alignment. (In Fig. 7 the final y-transformation is
pure scaling, no shear was necessary.) The amount of scaling and shear can
be deduced from any three locations along the object’s boundary (for details,
see Appendix 3).

Orientation alignment is simpler than the three-point scheme, since orien-
tation is often easier to extract in a reliable and consistent manner, compared
to the extraction of discrete identifiable points. The main disadvantage of
the orientation scheme is in the case that the object or its image does not
have a clearly defined orientation. There are indications that such cases can
also cause difficulties for recognition by humans. That is, in the absence of



33

Py

Figure 7. Orientation alignment. An object (a) and its model (b). The
model is rotated (c), scaled in x (d) and in y (e). In this case no y-shear
was necessary.

a well-defined orientation, human observers are more likely to fail to recog-
nize shapes that are, in fact, identical (Rock, 1973). This suggests that the
extraction of dominant orientation may play an important role in the recog-
nition process used by the human visual system. It also appears that when
the object lacks (perceptually) a preferred orientation, the human visual sys-
tem may use instead an externally defined orientation (such as the direction
of gravity, or the orientation of the page, in the case of printed pictures) to
define orientation for alignment (zb2d.). If orientation is indeed used by the

human visual system for alignment purposes, there are some limitations on
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its use. In particular, complicated figures such as faces, are difficult to recog-
nize when their orientation differs substantially from the familiar one. This
appears to be a general limitation, not specific to faces alone.

Regardless of the exact form of the alignment scheme, the important point
1s that alignment can be performed using only very limited information. I shall
refer to the information extracted from the image to align the viewed object
with a candidate model as its “alignment key”. We have seen above examples
of two such alignment keys. One consists of a small set of identifiable anchor
points (three, for the case of rigid motion and scale changes). The second
consists of a dominant orientation, together with fragments of the object’s
boundary (Appendix 3).

The kind of information required for the alignment keys can, in principle,
be extracted from the image in a bottom—up manner. The reason is that the
alignment keys are defined by the object’s bounding contour, a small number
of salient points, dominant orientation, etc. This kind of information can usu-
ally be extracted by processes that do not require object-specific knowledge.
Using such processes the alignment key can be extracted first, and the object
can be aligned with a potential model, before the object’s identity has been
determined. After alignment has been performed, the viewed object and the
model should be in close agreement (under ideal conditions they should match
exactly) and therefore the task of determining the closest match becomes rel-
atively straightforward. At this stage, a comparison (potentially in parallel)
of the aligned object with all of the models using a simple comparison method
(analogous to the Hamming distance) becomes feasible.

6. THE ALIGNMENT OF FLEXIBLE OBJECTS

In this section, the alignment scheme described above for flat objects
transforming rigidly is extended to deal with non-flat objects that are allowed
to transform in a non-rigid manner. The goal is not to discuss the problem
of recognizing such objects in detail, but mainly to support the claim that
alignment schemes can play a useful role in the recognition of large classes of
objects.

Dealing with flexible objects is important for the purpose of object recog-
nition for two reasons. First, many objects such as animals and faces can
change in a non-rigid manner. Second, the differences between individual
members of the same class of objects, such as two apples, can often be viewed
as small non-rigid distortions. Dealing with flexible distortions may therefore
provide a tool for handling classes of similar objects.

It also appears that for recognition by the human visual system strict
rigidity is not crucial. Objects can be recognized easily in a distorting mir-
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ror provided that the distortions are not too extreme. Object models can be
constructed (e.g. from playdough) and distorted without affecting recognition
severely. For animals such as the pigeon, rigid transformations play an even
lesser role in recognition. Pigeons can learn to recognize a large variety of
objects (including people, particular individuals, fish, and characters in the
alphabet) from different views and in different contexts. In recognizing ob-
Jects, they apparently do not distinguish, however, small non-rigid distortions
from rigid transformations of simple 3-D objects (Hernstein 1984).

Treating flexible objects as locally rigid and planar

A straightforward generalization of the simple alignment scheme is to
treat regions of the object as locally planar and rigid. This generalization
requires two extensions of the simple scheme:

~ Use more than the minimum set of three anchor points.
— Treat local regions of the object as semi-rigid.

The seoncd of these extensions can be implemented by a simple extension
of the three-point alignment scheme outlined above (Huttenlocher & Ullman
1987). The extension is obtained by imposing a triangulation on the set of an-
chor points. Suppose, for example, that five anchor points have been selected
for alignment. As in Section 5, these points may be curvature extrema, the
extreme points of elongated parts, etc. The spatial arrangement of the points
themselves (without the contours to which they belong) is shown in Figure 8a.
In Figure 8b, a triangulation has been applied to the points. (A triangulation
of a set of points means that the points are connected by non—intersecting
lines in such a way that every region internal to the convex hull of the points
is a triangle, see, e.g., Preparata & Shamos 1985.)

Each triangle is now aligned exactly as before, using its three vertices.
This alignment induces a transformation to all the contours internal to the
triangle. In this manner, the alignment of the anchor points defines a trans-
formation for the entire object. (If the anchor points are all internal to the
- object, some pieces of its bounding contour will fall outside the triangulated
area. These pieces can be treated separately, but this issue will not be dis-
cussed here.)

As before, the final stage consists of comparing the transformed object
with each candidate model. Two examples of this alignment procedure are
shown in Figure 9 and 10.

Figure 9 a and b shows two rabbits that are initially quite different. Figure
¢ shows the first rabbit with the anchor points that have been selected and
their triangulation. The corresponding anchor points in the second rabbit are
shown in d. Figure e shows the superposition of the two rabbits following the
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Figure 8. Triangulating a set of points. a. The original set. b. The set
triangulated.

alignment. Figure j shows the superposition of the two rabbits without any
alignment. It can be seen that the alignment is sufficient to bring the two
figures into close agreement.

Figure 10 shows a similar sequence applied to two different objects, the
car and the rocking-horse (a,b). Anchor points were selected manually on the
two figures in an attempt to bring them to the closest possible match. Figure
e shows the rocking horse following the alignment; it has been transformed
to approximate the car figure as much as possible. Fig. f shows the aligned
figures superimposed. Clearly, the agreement between the two figures is still
poor.

The exapmles in Section 5 used flat objects in rigid transformations. In
this section the objects were not necessarily flat, and the transformations were
not assumed to be entirely rigid. There are also a number of intermediate cases
that deserve special attention.

A common case is one where the objects are general 3-D objects, (rather
than flat), but the transformations are assumed to be strictly rigid. There
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Figure 9. Matching an object to a model using flexible alignment. a.
A rabbit-image. b. A rabbit-model. ¢. The model triangulated. d.
The transformed model and the rabbit-image superimposed. Initially, the
image and model are quite different. Following the alignment they are in

close agreement.



Figure 10. An attempt to match an object with an incorrect model using
flexible alignment. a. A car-image. b. A hdrse-model. ¢. The
model transformed to align it with the image. d. The transformed
model and image superimposed. Because the model is an incorrect one,

the agreement between the two figures following the alignment remains

poor.

38
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are two possible approaches to this problem within the general alignment
-framework. One is to maintain a single 3-D model for each object, and use the
3-D transformations recovered in the alignment stage to transform the model
into alignment with the viewed object. The required transformation will be
complicated from a computational standpoint. The computation will require,
for instance, a process of “hidden line elimination”, i.e., the computation of
which object features are visible from a given viewing position (Lowe 1985,

1986).

An alternative possibility is to store a number of models corresponding to
different viewing positions, and to use, for instance, an alignment procedure
similar to the one outlined above for non-rigid objects. The required com-
putations may be simplified, but at the expense of accuracy: it will become
more difficult to ascertain whether two different views correspond to exactly
the same 3-D object, or to slightly different shapes.

In the first of these alternatives the model is truly object centered and
“view independent (Marr & Nishihara 1978). In the second, the representation
1s view dependent, since a number of different models of the same object
from different viewing positions will be used. (Perrett et al 1985). It is
expected, however, to be view insensitive, since the differences between views
are partially compensated by the alignment process.

As far as the human visual system is concerned, there are indications that
observers can identify under certain situations views that correspond to the
same 3-D object from widely disparate viewing positions (Shepard & Metzler
1971, Shepard & Cooper 1982). The process involved in these judgements
appears to be slow, and may be restricted to relatively simple shapes. It is
still unclear, therefore, whether this process is an integral part of ordinary
object recognition, or a special process that is used for special purposes only.

A second intermediate case of interest concerns articulated objects, con-
taining parts that can move with respect to one another in a constrained
manner. Examples include objects with hinges and joints, such as a pair of
scissors, a hand, a limb, etc. ‘An object of this type has associated with it a
set of allowable transformations that are less restricted than the rigid trans-
formations discussed in Section 5, but more constrained than the non-rigid
transformations discussed above. The problem of representing and matching
such objects is a difficult one, and it will not be examined here. It appears,
however, that the notion of an alignment scheme will be applicable to such
objects as well. The transformations separating a model of an articulated
object of this type and a particular view of it can still be determined on the
basis of partial information. This information can be used, as before, to com-
pensate for the transformations, and bring the viewed object and the model
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into alignment.

The discussion in Sections 5 and 6 suggests that if the alignment stage
is performed properly, then, for both rigid and non-rigid objects, the match
with the correct model would stand out as significantly better than with
all other models. The alignment stage itself raises, however, a number of
difficulties. For example, the anchor points, or other alignment keys, such as
the orientation of the object, or of its parts, must be extracted reliably from
the viewed object and these points must be matched against the corresponding
locations in the model.

These and related difficulties are examined in the next section.

Two Main Requirements from the Alignment Approach

Each of the approaches to visual object recognition makes a number of
critical assumptions that give rise to certain difficulties when the approach is
applied to large classes of natural objects.

The invariant properties approach assumes that simple invariant prop-
erties would be sufficient to characterize the different objects. But finding
properties that are feasible to compute and at the same time powerful enough
to characterize uniquely a large variety of objects did not prove successful,
and the approach has been applied to limited domains only.

The structural description approach assumes the existence of categories
for both parts and spatial relations that are sufficiently sensitive and stable
(Marr & Nishihara 1978). They should be sufficiently sensitive to be able to
make the required distinctions between objects, and at the same time stable
enough to produce the same description for different instances of the same
object (or class of objects). This proved to be difficult, especially for the
categories of spatial relations. The structural description approach also faces
some difficult computational problems ~ such as the reliable segmentation into
parts and the computation of their spatial relations.

The use of alignment in the course of object recognition raises two main
problems. The first is performing consistent alignment in a bottom-up man-
ner. The second is a computational problem of transforming a large number
of models.

Consistent Bottom-Up Alignment

For alignment to be successful, the information required for alignment
(the alignment key) must be extracted reliably from the image. This stage
is performed early in the recognition process, and therefore it must depend
only on general image properties such as the saliency of some special points
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rather than on properties associated with specific objects. If alignment is
performed, for example, on the basis of three points, then a small number of
points, ideally always including the same three, must be extracted from the
image in a reliable and consistent manner.

At least two factors can help this alignment process. The first is the use
of object orientation. As mentioned in Section 5, when a dominant orientation
for the object can be computed, it can substantially facilitate the alignment
process. The alignment process can also be facilitated by using a number of
different models for the same object. If the views become too disparate so
that the use of the same alignment key becomes difficult, a new model can be
added to the library of models.

It remains to be seen to what extent alignment keys can be extracted
reliably from object images. The task appears, however, less demanding than
the problem of decomposing an object in a consistent and reliable manner into
all of its constituent parts. Alignment requires less information, and relatively
stable-prominent properties can be used for the task, such as the most salient
points associated with a given object, or its dominant orientation.

It is also possible that in the recognition of a specific object alignment
may sometimes be obtained in more than a single stage. A matching may
first be obtained with a general category, such as a face. This match may
trigger routines for extracting features that can serve as useful additional
anchor points, such as the eyes, even in cases where these features were not
particularly salient in the image.

Transforming the Models

In matching a viewed object to a potential model using the alignment
method, one of them (at least) must be transformed to compensate for the
transformations between the two. It is possible to transform either the viewed
object, or the stored model, (or both).

Applying the alignment transformations to the viewed object only has
one important advantage: the transformation is applied only once. All the
models remain unchanged. This can be accomplished provided that the vari-
ous models are stored in memory in a common “canonical” form. Consider, for
example, the case in which the viewed object is aligned to the model on the ba-
sis of three anchor points. For simplicity assume that each model has exactly
three anchor points. An alignment transformation applied to the viewed ob-
ject must bring the three points into alignment with the corresponding points
in all of the potentially relevant models simultaneously. This implies that all
of these models must be stored in a canonical form, in which the three anchor
points are already in register.
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A canonical form may be defined in.an analogous manner also for align-
ment based on dominant orientation rather than anchor points. In either
case, however, the use of canonical forms for the models also has its draw-
backs. One complication arises if it is desired to recognize the same object
using different alignment keys. Such a redundancy is useful, e.g., for deal-
ing with occlusion. In a canonical form scheme, each model will have to be
represented by multiple copies, one for each different alignment key.

An alternative would be to apply an alignment transformation separately
to each of the potentially relevant models. In this case, the models need not
be stored in any canonical form, since each one is transformed individually
to align it with the viewed object. This also has the advantage that differ-
ent transformations may be applied to different models. For example, the
model of an object may include 3-D information that is not available from
a particular single view of the object. This 3-D information could be used
in transforming the model and predicting how it will appear from a different

- viewpoint.. The model may also specify, for instance, that a certain point in

the object can serve as a joint, where parts can change their relative orienta-
tion. For this model, but not for other ones, an attempt to align the model
with the object may include bending around this known point. Such individ-
ual transformations add flexibility to the matching process, but at the cost of
increased computational effort.

It is not clear at this stage which approach (transforming the viewed
object or transforming the models) should be preferred. Two additional con-
siderations are relevant in this regard. First, it is not necessary to adopt
an extreme approach, a combination of the two is also possible. For exam-
ple, oriented objects may be stored in a canonical orientation. The viewed
object is then rotated once to bring its own orientation into alignment with
the canonical orientation of the models. Following this common stage, an
additional transformation, such as change of scale, may be applied to each
model individually. More generally, the mixed approach is to apply to the
viewed object all the alignment transformations that are common to all of
the relevant models, yet allow the application of additional transformations
to the different models. The second comment is that it may be possible to
keep the transformations applied individually to the different models simple
in nature, e.g. some scaling or stretching along one direction (as discussed in
Appendix 2). When the discrepancy between a particular view of an object
and its models already stored in memory becomes too large to be overcome
using these restricted transformations, an additional model of the object can
be added to the model library. The transformations that are applied indi-
vidually to the different models may therefore be kept sufficiently restricted,
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so that the computational load required for applying the transformations to
many objects in parallel may be kept within reasonable bounds.

Aligning Pictorial Descriptions

The last few sections have discussed the alignment approach in its “pure”
form. The example used the unarticulated object boundaries, without defining
parts in the object, and without using abstract descriptions for object parts,
as done in the object decomposition approach.

It is also possible, however, to combine the main advantages of the part-
decomposition approach with an alignment approach. The resulting scheme
appears to be more suitable for dealing with the recognition of various objects
that cannot be handled easily by either method alone.

Consider for instance the rooster sketch in figure 11. An internal model
for this figure in a structural description method will contain a number of
parts with their associated shape descriptions, and a description of the spatial
relations among the various parts. A pure alignment method would keep a
replica of the figure as an internal model. In evaluating the match between
this model and a new viewed object, which is another possible instance of a
rooster figure, the method will first try to align the model and the viewed
object as precisely as possible. Clearly, however, the details of the rooster’s
crown have no particular importance in the normal process of recognizing such
a figure. The part decomposition method seems to offer a more appropriate
approach in this case. As mentioned in Section 3, the main step in this
method is to start the many-to-one reduction at the part level. The details of
the part depicting the crown will be ignored and replaced by a more abstract
description, perhaps a “wiggly contour” of a certain type. The same kind of
abstraction can be used in the alignment approach as well. One can imagine
a “label” stating “wiggly line” being overlaid over the crown contour. This
more abstract label is associated with a given location in the figure and it
is shifted along with it in the coarse of the alignment process. When the
aligned figure is then matched against the rooster model, the detailed internal
contours of the crown in the aligned object and the model may not be in good
agreement, but they will both have the same label in corresponding locations.

There are two differences in the manner that abstract descriptions are
used in the alignment scheme compared with the structural description ap-
proach. First, in the alignment method abstract descriptions do not replace
lower-level descriptions — they are added to them. A match may eventually
occur at a low level (the actual contours may be in close agreement), or it may
occur at a higher level (the corresponding abstract descriptions may match
without a good match at the lower level). In the pure structual description
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Figure 11. The use of an abstract label in a pictorial description.

method, without alignment, the low-level components such as boundary con-
tours cannot be expected to match. The scheme must rely instead entirely on
the correct categorization of parts; i.e., that different views of the same part
will end up with the same abstract description. Unlike the part decomposi-
tion scheme, in the alignment scheme the part decomposition is therefore not
required to be complete. Abstract labels may be associated with some loca-
tions, while other pieces of the object may remain unarticulated, not broken
into parts, and not assigned to any category, or described by any abstract
descriptors. Because of the alignment stage, which is not used in the struc-
tural description approach, these unarticulated parts are expected to produce
(following the alignment) a good match with the stored model.

The second difference is that in the alignment method the description may
be called “pictorial”. It is much closer to the image compared with structural
descriptions. In structural descriptions, spatial relations, like part shapes,
are described using a limited set of categories such as “above” “in between”
“near”, etc. The position of part 4 may be described as “above B and near

it, and to the left of ("”. This description is abstract in the sense that many
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different configurations in the input would fit a given category such as “above”
or “left of”. In the alignment approach, in contrast, spatial relations are not
categorized. Instead, the actual position of parts and labels is preserved. The
resulting description consequently has an image-like structure in which labels
are associated with particular locations. Unlike part-decomposition schemes,
descriptive labels are associated with specific locations, without requiring a
precise delineation of part boundaries. In such a scheme it is natural to
associate descriptions with locations such as the cheeks or forehead in a face
image. These are well-defined locations, but not precisely delineated parts in
the sense used in part-decomposition schemes.

The combined scheme, using alignment as well as abstract descriptions,
can be described as the “alignment of pictorial descriptions”. This name im-
plies three components. First, it is an alignment method. Second, it also uses
(unlike the examples in Sections 5 and 6) abstract descriptions. Third, these
descriptions are used pictorially: they are associated with specific locations,
rather.than being described by spatial relation categories. Such descriptions
can be rotated, scaled, stretched, etc. prior to the matching stage.

The entire object recognition process is, in the alignment approach, less
symbolic, more pictorial, and closer to the lower-level visual processes, than
the structural description approach.

7. STEPS IN THE RECOGNITION PROCESS

The last section has advanced the notion of aligning pictorial descriptions
as a general approach to the regularity problem in object recognition. This
approach does not specify directly the processing stages that must take place
in extracting the information from the image prior to the alignment stage,
or the matching that takes place following it. These processing stages are
required not only in the alignment scheme, but also in most other recognition
schemes that have been proposed.

To put the alignment scheme in perspective, this final section will list
briefly some of the major steps that are involved in the recognition process,
and describe the problems that they raise.

Selection. By “Selection” I mean identifying in the image a region that is
likely to contain an object of interest. A human observer rarely scans the entire
scene in a systematic manner. Very often, objects of interest somehow attract
our attention, and subsequent processing seems to be concentrated at these
locations. Lowe (1986) has proposed a scheme in which feature configurations
that have the least probability of arising by coincidence are examined first. (A
similar notion has been suggested by Witkin & Tenenbaum 1983.) In human
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vision the initial selection appears to be based on simpler criteria. The human
visual system seems unable to extract relational properties among features in
the early, pre-attentive, parallel stage (Treisman & Gelade 1980). Selection
may be based instead on some measure of saliency defined by local differences
in contrast, color, size, orientation, etc. (Mahoney 1986).

Segmentation. By “segmentation” in this context I mean the delineation
of a sub-part of the image to which subsequent recognition processes will be
applied. Segmentation schemes have been investigated extensively in the field
of image processing, but their goals are usually more ambitious than what
is required for recognition by alignment. For example, they often attempt
to segment the entire image, as opposed to just the region of interest. Seg-
mentation for recognition, applied to the region of interest only, can therefore
be obtained by universal routines (Ullman 1984) that are spatially focused,
rather than as a part of the base representations, where the computation is
spatially uniform. For recognition by alignment, the main requirement from
the segmentation stage is that the alignment key will be selected from a region
that is likely to correspond to a single object. The exact delineation of the
entire object is not of major importance at this stage.

Description. The next stage involves the extraction from the region of
interest the information that will be used for matching the viewed object
with stored object-models. Most recognition schemes propose that the viewed
object is described for this purpose in some fashion, using 1-D contours (Baker
1977), 2-D surface patches (Dane & Bajcsy 1982, Potmesil 1983, Faugeras
1984, Brady et al 1985), or 3-D volumetric descriptions (Marr & Nishihara
1978, Biederman 1985).

An important decision at this stage is to what extent the description of
the viewed object should rely on detailed 3-D information. Some recognition
schemes (see Besl & Jain 1985) assume the availability of a detailed and
precise depth map of the visible surfaces. Such information is not always
available in the image, and from_human vision it appears that recognition
can often proceed in the absence of detailed 3-D information. It is desirable,
therefore, for the recognition process not to depend critically on detailed 3-D
information, although such information may be used when available.

If detailed 3-D information is not required, it appears that descriptions
based on object contours are better suited for the recognition task than sur-
face based, and to some extent volumetric, descriptions. At the same time,
it is important not to identify object contours with intensity edges. Many
intensity edges in the image are irrelevant for the purpose of recognition, and
recognition can proceed in the lack of intensity edges altogether. For exam-
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ple, objects can be recognized in random dot stereograms. In this case object
-contours are defined, e.g., by discontinuities in depth and surface orientation,
but not by intensity changes.

Alignment key extraction.  The alignment key is used to bring the viewed
object and internal models into alignment. As discussed in section 5, a number
of different alignment procedures may be used, depending on some properties
of the viewed object. For example, if it has a clearly defined orientation, then
this orientation may be used for alignment. If the object is unoriented, the
alignment key may be composed of salient points.

Alignment. This stage brings the object into register with potentially
matching objects. As suggested in Section 6, it may be possible to break down
the alignment stage into two successive steps. In the first, which may be called
“common alignment”, the viewed object is brought into correspondence with a
large number of models stored in memory in some canonical form. The second
stage is composed of individual alignments: different models align themselves
individually to the viewed object. A number of problems remain regarding
the parallel execution of this stage. Can a large number of models be aligned

simultaneously? If not, how can the load required by individual alignments
be reduced?

Model filtering. Following alignment, the degree of match between the
viewed object and different models must be assessed, and the best match
selected. A number of different recognition schemes precede the final match
with a process of model filtering. The goal of this stage is to use some simple
criteria to “filter out” unlikely models, and obtain a smaller set of likely
candidates. In other schemes this stage also includes rank-ordering of the
models, so that matching with the more likely ones is attempted first.

It is not clear, however, that model filtering of this type can lead to
significant savings in the required computations. If we start with a large
number of models, it is probably unreasonable to expect that a simple filtering
scheme would be sufficient to select a small number of candidates, since this
will place the burden of the recognition process on the filtering stage. It seems,
therefore, that the viewed object will have to be matched, perhaps in parallel,
against a large number of object models.

Similarly, rank-ordering the models is not likely to result in substantial
savings. In many instances the matching process will not result in a perfect
match. We still wish to retrieve in these cases the best matching model. This
means that the matching process will have to be fairly exhaustive, unless
a perfect match is encountered. It seems, in conclusion, that filtering and
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rank-ordering may help to limit the search in some specific sequential imple-
mentations, but in the more general case matching against a large number of
object models is probably unavoidable.

Matching. Following the alignment stage, the correct model and the viewed
object are expected to be in better agreement, but usually differences between
them will still exist. A measure of the degree of match is therefore required to
decide which of the models resembles the viewed object most closely. I will not
attempt to define such a measure, but only define three general requirements
for this measure.

First, as mentioned in Section 4, the contributions of different parts of
the object to the match quality may carry different weights. Some parts may
be small in size, but still be crucial for defining the object. In some cases
it is also expected that the distinction between highly similar objects may
require an additional separate stage. Two objects that differ only in small
details would not be distingushed immediately, but would trigger a specialized
routine (Ullman 1984) to distinguish between them.

Second, in aligning pictorial descriptions a match may be obtained at
different levels, such as the underlying object contours, or the level of more
abstract descriptors. The contributions of the different levels will have to be
combined in an appropriate manner.

Finally, the decision regarding the best matching model will be affected
by factors other than similarity of shape. The degree of match may have to
take into account, for instance, the amount of distortion that was required to
bring the viewed object and model into registration. As discussed in Section
1, the selection of the appropirate model may also be biased, for example, by
prior expectation and by proximity to other objects in the scene.
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APPENDIX 1
Three-Point ‘Alignment: Uniqueness

We will consider a flat object-model F, which is simply a collection of
points in the image plane z = 0. F then undergoes a transformation T in
space, composed of a translation D, rotation R, and a scaling by a factor
5 (S > 0). The new image of F is its orthographic projection F' on the
image plane. The transformation T also induces a transformation 7" in the
image plane 7' : F' — F' that matches each point in F with its new location
in the image. We will call 7 the “image transformation” of F.

The alignment proposition:

Given the coordinates of three non-colinear points in the model and in
the image, the image transformation is uniquely determined.

The proposition means that if we can identify three corresponding (non-
colinear) points in the model and in the image of a flat-ob ject, then we can
predict how the entire object will appear in the image following the transfor-
mation.

The transformation in space 7 is also determined uniquely, except for the
residual ambiguities that are unavoidable in orthographic pro jection. That is,
S is determined uniquely, D is determined up to translation in depth, and R
is determined up to a possible reflection about the image plane.

Proof:

In an orthographic projection, the translation in (z,y) can be determined
immediately from the image translation of one of the points. We can therefore
assume without loss of generality that the object is fixed at one point, and
undergoes a transformation T composed of a scaling S and a rotation R around
that point. Let the coordinates of the three points before the transformation
be (0, Py, P;), and following the transformation (0,Q1,Q2). Without loss of
generality (P, P;) are assumed to be in the image plane z = 0. The coordinate
(Q1,Q2) in space are not known, we only observe the projection of (@1, @2)
on the image plane.

We will assume that the transformation is not unique. That is, there
is another transformation T, composed of a scaling S and rotation R, that
transforms (0, Py, P;) into (0,Q1,Q2) in such a manner that the projection
of (0,Q1,Q2) and (0,Q1,Q:) coincide. We wish to show that, except for the
unavoidable reflection ambiguity, T = T.

The transformation T can be represented by the matrix SR (the rotation
matrix R multiplied at every coordinate by the scalar S ), and T by SR. Let
B represent the difference matrix B = SR — SR.



50

BP; has the form (0,0, 2;) since SRP; and SRP; coincide in their z and
y components. Similarly, BP, = (0,0, 22), and z;; 25, are not both 0. Assume
z1 # 0, and define a new point a: a = ffPl — P,. Since P,,P,, are non-
colinear, a # 0, but Ba = 0 (where 0 here is the zero vector). It follows that
SRa = SRa, and since ||Ra|| = ||Ra|| = ||a||, it follows that § = §.

The scale factor is therefore uniquely determined. To examine the rota-
tion, let U denote R — R. U maps Py, P,, and therefore the entire z,y plane
onto the z axis. In particular, U maps (0,0,1) and (0, 1,0) onto the z axis.
This implies that U has the form:

0 0 U1s
U= 0 0 U223
U3 t‘13.2 U3s
This implies that in the rotation matrices R, R, r1; = 711,712 = T12,721 =
21,722 = T22. Since in a rotation matrix r33 = 71179 — r12721, it follows that
r33 = T33. From this it follows that either R = R, or that R has the form:

11 T12 —T13
R=| r Te2  —Ta3
—T31 —T32 733

In this latter case TF is the mirror reflection of TF about the image
plane (but the projection of TF and T'F on the image plane coincide).

APPENDIX 2
Three-Point Alignment: Computation

The uniqueness proof in Appendix 1 is not a constructive one. In this
appendix two methods are given for actually performing the alignment based
on three corresponding points in the model and the object. The first method
recovers the transformation in space (translation, rotation, and scale change)
‘that brings the model into alignment with the viewed object. The sec-
ond method specifies a sequence of simple image transformations (rotation,
stretch, shear) that accomplish the same task.

The problem to solve is the following. We are given the 3-D coordinates of
three non-colinear points. Without loss of generality we can assume that the
three points lie initially in the plane z = 0 (the “image plane”). We are next
given the image of the same points following a transformation T. This image
1s an orthographic projection on the image plane, and the transformation
is composed of an unknown rotation R and scaling S. The objective is to
determine R and S (subject to the limitation of R discussed in Appendix
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1). As discussed above, the translation component of the transformation can
be ignored, and we assume that the object is fixed at one point. It is also
assumed that a correspondence between the points has been established.

Let the coordinates of the three model points be (0, 0,0), (z;,0,0), (zz2, y2,0).
(This means that the first point was chosen as the origin, and the second point
was defined as lying on the z axis.) Let the position of the same points follow-
ing the transformation (the “object points”) be (0,0, 0),(Z1,0,21),(Z2, 92, 22)-
This means that the image of the object has been rotated so that the second
point lies on the z axis. The z coordinates 7, Z, are, of course, unknown, as
is the transformation relating the two sets of points. Let us assume first that
no scaling has been involved. Since the necessary rotation about the z axis
has already been performed, the model can be brought into alignment with
the object points using two successive rotations: a rotation around the z axis
by an angle 6, followed by a rotation about the y axis by an angle ¢. The full
rotation matrix composed of these two rotations is:

cos¢p —singsin@ sin ¢pcosf
R= 0 cosf stnf
—-sing —cospsinl cospcosh
If scaling is allowed as well then the relations between model and object
points should satisfy:

S-R(zl,0,0)z(il,O,El) (1)
S R(z2,y2,0) = (2,72, 22)
These equations simply relate the positions of the points before and after
the transformation. Expanding (1) explicitly using the matrix R yields:

(¢) SXicosé =z, (2)
(i2) Syzcosf = 7
(ii7) Szacosd — Syzsingsingd = 7,
From (i) and (ii) we can obtain expressions for sing and sinf respectively,
and substitute in (iii). This yields a quadratic equation in S? of the form:

AS*+BS*+C =0 (3)

The coefficients A, B,C are all expressed in terms of observable quanti-
ties:

A=zly] (4)

B = —(2193 + 2392 + (2271 — 22)?)
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C =171y

There will be at most two solution for S? and since S > 0 at most two
solutions for S itself. However, because of the uniqueness result for S, only
one of the two will in fact solve the three equations in (2) above. Equations
(i) and (i1) will determine cos¢ and cosé respectively. A freedom in the choice
of the sign for sin¢ will yield the two solutions for the rotation (R and R in
Appendix 1).

Alignment by image transformations

We have obtained above formulas for solving for the transformation pa-
rameters in space. When the model is entirely flat, it is possible to align the
model with the viewed object using a sequence of simple image transforma-
tions: image rotation, stretch, and shear. In the terminology of Appendix 1,
this method recovers the image transformation 7" rather than the transfor-
mation T itself.

Assume first that the transformation is composed of rotation only. As
before, the rotation of the model is broken down into a rotation in the image
plane (about the z axis), followed by rotations about the z and y axes. The
rotation about the z axis simply induces a stretch in the y direction (“y-
scaling”) by a factor S, = (%) The subsequent rotation about the y axis
induces a transformation that can be expressed as x-scaling by a factor S, =

(%‘;), followed by a shear transformation of the form: ¢ — z 4+ Ay. The value
of A is given by: A = aarz=paly

If scaling is added to the rotation, its effect can be subsumed by the
y-scaling and x-scaling stages, and exactly the same sequence of image trans-
formations would align the model with the viewed object. Given three model
points and the three corresponding image points it is possible to apply in this
manner a sequence of image transformations to the model to align it with
the viewed object. In summary, the model can be aligned with the viewed
object using the following sequence of operations: rotation in the image plane,
y-scaling, x-scaling, and shear.

Unlike the first method, the image alignment will match any three model
points with any three image points, even if the image set is not a possible pro-
jection of the model. At least one additional point will therefore be required
to reject a model. Another difference between the two methods is that image
alignment is applicable to planar models only. The first method is applicable
to non-planar models as well. Based on three points the transformation (in
space) is determined, and this transformation can then be applied to any 3-D
model to determine its new position in space.

APPENDIX 3
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Orientation Alignment

Appendix 1 and 2 have shown how a viewed object can be aligned with
a potential model using three corresponding points. This is only one example
of an alignment procedure; alternative procedures are also possible. In partic-
ular, if the viewed object has a prominent orientation, this orientation can be
used for alignment. For a planar region, the orientation together with small
pieces of the region’s bounding contour are sufficient for alignment, without
using any identifiable points in the object and model. This procedure also
assumes that the occlusion is not too severe, as specified below.

The use of orientation means that it is possible to identify an orientation

u in the image, which, following the alignment, should be parallel to a known

direction v in the model. This information is more restricted than the use

of an axis: an axis is a line whose position as well as orientation are known.

Oriented texture on the object, for example, may specify an orientation in the
-image. without specifying an axis location.

Given the orientation u in the image, the first step in the alignment is
to rotate the model (or the image) until the direction of u is parallel to the
desired direction v. The alignment can be completed by applying to the model
the following sequence of operations:

x-scaling, i.e. (z,y) — (yz,y)

y-scaling, i.e. (z,y) — (z,By)

y-shear, ie. (z,y) — (z,y + az)
translation, i.e. (z,y) — (z + Az,y + Ay)

The amount of x-scaling can be determined directly. Scaling the model
by 7 in the x-direction should make the overall width of the model and the
viewed object identical. (This assumes limited occlusion: the extrema of the
viewed object in the x direction should be in view. If they are not in view,
internal contours can be used instead.) The translation in the x direction is
also immediately recoverable following this step.

The remaining parameters (o, 8, Ay) can now be recovered from any
three points along the object boundary. For each point on the viewed object’s
boundary, the corresponding point in the model is already known: it is a
point with the same x-coordinate (since all of the transformations involving
the x dimension have already been performed). Three boundary points will
supply three simple linear equations in (@, 3, Ay). The process can be further
simplified by the appropriate selection of points. For example, from two points

with the same z but different y coordinates the value of 8 can be recovered
directly.
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This orientation-alignment uses no identifiable “anchor” points that are
- used in the three-point alignment. It is also possible to use various intermedi-
ate approaches. For example, if an axis, rather than a dominant orientation,
can be identified in the image, the alignment process can be facilitated, and
can become more tolerant to occlusions.
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