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Abstract. This paper presents an approach to recognition where an object is
first aligned with an image using a small number of pairs of model and image
features, and then the aligned model is compared directly against the image. For
instance, the position, orientation, and scale of an object in three-space can be
determined from three pairs of corresponding model and image points. By using a
small fixed number of features to determine position and orientation, the alignment
method avoids structuring the recognition process as an exponential search. To
demonstrate the method, we present some examples of recognizing flat rigid objects
with arbitrary three-dimensional position, orientation, and scale, from a single two-
dimensional image. The recognition system chooses features for alignment using a
scale-space segmentation of edge contours. Segments are described in terms of both
their shape and the structure of the scale-space hierarchy at the next finer level,
producing distinctive features for use in finding possible alignments. Finally, the
method is extended to the domain of non-flat objects as well.
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1 Introduction

Object recognition involves identifying a correspondence between part of an image
and a particular view of a known object. This requires matching the image against
stored object models to determine if any of the models could produce a portion of
the image. For the general recognition problem, the number of possible models is
very large. Most existing recognition systems, however, consider only one or a small
number of object models (see [4] for a recent review of recognition systems).

Even for a single model, a given object can produce substantially different
images depending on its position and angle with respect to the viewer. First, from
a particular view, part of an object may be occluded. Second, an object may be
distorted by projection into the image plane (e.g., foreshortening). Finally, an object
may itself undergo transformations such as having parts that move independently,
or being stretched or bent. Most recognition systems assume that objects are rigid,
and do not undergo any transformation [16)] [5] [11] [3]. Some systems allow for
perspective projection [21], and some have parameterized models with parts that
can articulate [8].

The presence of more than one object in an image also complicates the recogni-
tion problem. First, objects may occlude one another. Second, different objects in
the image must somehow be individuated. In the case of touching and overlapping
objects this generally cannot be done prior to recognition, but rather must be part
of the recognition process itself.

Considerable attention has been paid to the problem of recognizing planar
objects with two-dimensional positional uncertainty (we will refer to this as the 2D
recognition problem). There are several 2D recognition systems that can find a
given object in a grey-scale image, even when the object is partially occluded [16]
[5].

Recognizing objects in three-space has generally been approached using a depth
map, which specifies the distance from the sensor at each pixel (the 3D from 3D
recognition problem). A depth map can be derived from a laser scanner, stereo
matcher, or shape from motion, shading, contours, etc. Relatively successful sys-
tems have been developed for the 3D from 3D recognition task, using laser scanners
to derive a depth map [17] [6).

Lowe’s recent work [21] addresses the problem of recognizing objects with three-
dimensional positional uncertainty given a single two-dimensional view (the 3D from
2D recognition problem). In 3D from 2D recognition, the sensory data only partially
specifies the position of the object. Thus it appears to be more difficult than 3D from
3D recognition. People, however, seem to be good at this task, making it unclear
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whether three-dimensional sensory input is actually necessary for recognition.

The Task

In this paper we consider the problem of matching a two-dimensional view of a
rigid object against a potential model. The viewed object can have arbitrary three-
dimensional position, orientation, and scale, and may be touching or occluded by
other objects. First we consider the domain of flat rigid objects such as the wid-
get shown in Figure 1. While the viewed object is flat, the problem is not two-
dimensional because a flat object positioned in three-space can undergo distortion
such as foreshortening when projected into the image plane. This task, like the
general recognition task, suffers from problems of occlusion and of individuating
multiple objects in an image. There is also a limited kind of shape distortion
caused by projecting a rigid object into the image. We then consider extending
the method to the domain of rigid objects in general, such as the station wagon in
Figure 2.

Figure 1. A widget used in recognition.

The current task cannot be handled by recognition systems that assume rigid objects
with no distortion [16] [5] [11] [3], or by systems that only allow parameterized
variation of rigid models [8]. The task is similar to that of Lowe, who addresses the
problem of three-dimensional recognition from a single two-dimensional view [21].
The task considered by Lowe is more restricted, however, because it is assumed that
objects are polyhedral, and are viewed such that parallel surfaces appear more or
less parallel.

In order to solve this task, we present a new approach to recognition in which
the process of matching a model to an image is divided into two stages. In the first
stage, the model is aligned with the image using a small number of model and image
features. In the second stage, the alignment is used to transform the model into
image coordinates. Once the position and orientation have been determined, the
model can be compared directly with the image. The key observation underlying
the alignment operation is that the position and orientation of a rigid object can be
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Figure 2. A station wagon used in recognition.

determined from a small number of position and orientation measures. In contrast,
many recognition systems search for the largest set of model and image feature
pairs that are consistent with a single position and orientation of a rigid object.
The number of such sets is exponential, requiring the use of various techniques to
limit the search.

Aligning a Model With an Image

For 2D recognition, only two pairs of corresponding model and image points are
needed to align a model with an image. Consider two pairs, (am,a;) and (bp, b;),
such that model point a,, corresponds to image point a; and model point b, cor-
responds to image point b;. Figure 3a shows the edge contours of two widgets,
labeled with these four points. The two-dimensional alignment of the contours has
three steps. First the model is translated such that a,, is coincident with a; as
shown in Figure 3b. Then it is rotated about the new a,, such that the edge ambm
is coincident with the edge a;b; as shown in part (c). Finally the scale factor is
computed to make b,, coincident with a,,, as shown in part (d). These two trans-
lations, one rotation, and a scale factor make each unoccluded point of the model
coincident with its corresponding image point, as long as the initial correspondence
of (am, a;) and (bm, b;) is correct.

For 3D from 2D recognition, the alignment method is similar, requiring three
pairs of model and image points to perform a three-dimensional transformation
and scaling of the model. Section 6 presents the 3D from 2D alignment method
in detail, showing how to use three pairs of model and image points to position
and orient a model in three-space given a single two-dimensional view, assuming
orthographic projection. A transformation from the model to the image consists of
two-dimensional translation, three-dimensional rotation, and a linear scale factor
that is proportional to the viewing distance. Under normal viewing conditions,
orthographic projection plus scale is a reasonable approximation to perspective
viewing. Under high perspective distortion — when the object occupies much of the
field of view - the approximation is poor. It appears, however, that under such
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Figure 3. Two dimensional translation, rotation and scaling of one object to
match another.

conditions recognition is also difficult for humans.

The alignment method requires identifying potentially corresponding model
and image points such as (a,,, a;) in Figure 3. These pairs are then used to determine
possible alignments of the model with the image. Local orientation measures can
also be used to solve for possible alignments. The problem of finding points and
orientations for alignment is addressed in Section 3 and Section 4. In Section 5,
a system for recognizing flat objects with three-dimensional positional freedom is
described. Some recognition examples are also presented in that section. The details
of the 3D from 2D alignment computation are given in Section 6, and the method
is extended to handle non-planar objects in Section 7.

2 Matching Models and Images: Previous Approaches

Object recognition is generally viewed as a two stage process. First, possible object
models are hypothesized. Second, each hypothesis is tested to determine if the
model can be positioned and oriented such that it matches the image data. Most
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recognition systems address the problem of matching a model to an image, assuming
that an appropriate model has already been hypothesized [8] [5] [11]. Some recent
work has addressed the problem of hypothesizing relevant models, but only for
two-dimensional recognition, and relatively small object libraries [20].

Assuming that one or a small number of possible objects have been hypothe-
sized, there are several systems for matching a model of a rigid object to an image
(cf. [4]). These systems all exploit rigidity by noting that for a given position and
orientation of a rigid object, there must be a single transformation that maps each
model feature onto its corresponding image feature. This transformation consists
of a three-dimensional rotation and translation in 3D from 3D recognition, and a
solution to the perspective viewing equation in 3D from 2D recognition [21].

In this framework, recognition is generally structured as a search for the largest
pairing of model and image features for which there is a single transformation
mapping each model feature to its corresponding image feature [11] [5] [16] [8] [21].
For i image features and m model features there are at most p = ¢ X m pairs of
features. Because of occluded image points, and image points that do not correspond
to the model, any subset of these p pairs could be the largest set of matching model
and image points, and thus the number of possible matches is exponential in the
size of p.

Two methods are used to limit the number of possible matchings of model and
image features. The first is to use the identity of features to specify which model
features can match which image features, thereby reducing the number of pairs, p
[5] [21). Even in the case that each model feature has only a single corresponding
image feature, however, there may be multiple matches because the image features
may actually correspond to some other object.

A problem with using the identity of features in recognition is that there is a
tradeoff between the uniqueness of a feature and the robustness with which it can
be recognized. Because systems that rely heavily on the identity of features must
use highly distinctive features, they tend to be sensitive to noise and occlusion in
the image.

The second method for limiting the search is to use relations between features
to eliminate pairs of model and image features that are inconsistent [16] [5] [11]. For
instance, in order for two pairs of model and image features (am,a;) and (bm, b;)
to be part of a consistent match, the distance between the image features a; and b;
must be the same as the distance between the model features a,, and b,,, within
some error bound. Similarly, the angle between orientation measures for any pair
of image features must match the angle between the corresponding pair of model
features.

A problem with using relations between features in recognition is that the
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relations must be measurable in the image. Since relations such as distance and
angle are not invariant under projection, three-dimensional recognition systems that
use these relations require three-dimensional data. Relations that are invariant
under projection tend to be much weaker than distance and angle relations.

Using the Identity of Features

This section considers several recognition systems that rely heavily on the identity
of individual features. The features used in recognition are generally local shape
properties, or parts, of an object. Global properties such as moments of inertia (cf.
[4]) are also used as features for matching. Global properties of objects are highly
sensitive to occlusion, however, making them inappropriate for tasks such as the
ones considered here.

The LFF [5] and 3DPO [6] systems look for a variety of pre-determined features
such as corners and holes, which are grouped together based on proximity. A “focus
feature” in each group is chosen for use in matching. This feature is described in
terms of its type (e.g., corner, hole), and the type, distance, and angle of the other
features in the cluster. By clustering local features, the LFF system produces highly
distinctive labels for the focus features. Using proximity to cluster image features,
however, may yield clusters composed of features from multiple objects. Such image
clusters will generally not match the correct model cluster. This makes the system
sensitive to the position and orientation of neighboring and occluding objects.

The SCERPO 3D from 2D recognition system [21] [22] uses proximity and
parallelism to group edge fragments together into simple features. As in the LFF
system, the use of proximity can be problematic when there are neighboring or
occluding objects. Since parallelism is not invariant under viewing position, “al-
most parallel” segments are also grouped together. This too, however, may fail
under some viewing conditions. The strong reliance on parallelism restricts this
classification scheme to polyhedral objects, where parallel surfaces appear almost
parallel.

Various shape descriptions have been proposed that use local features to de-
scribe objects (SLS [7], LRS [14], curvature primal sketch [2], codons [19]). Some
of these representations have been used in recognition systems (e.g., SLS [10]), and
others have been discussed as possible representations for recognition (e.g., codons
[19]). These shape descriptions are intended to produce highly unique features for
use in matching models against images. Thus an object model is matched to an
image using primarily the identity of individual image and model features, rather
than structural relations between features.

The curvature primal sketch [2] is a shape description composed of a hierarchy
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of approximations to edge contours at various scales. At a given scale, the curvature
primal sketch consists of a cubic spline approximation to a two-dimensional edge
contour. The endpoints of the splines occur at local maxima in the smoothed cur-
vature of the edge contour. There are two major problems with using the curvature
primal sketch for recognition. First, splines connecting maximal curvature points
are only a good approximation at relatively fine scales, when the local maxima in
curvature do not occur very far apart. Second, maximum curvature points are un-
stable under three-dimensional rotation and projection. This issue is considered in
Section 4 on finding points for use in alignment.

Symmetry-based shape descriptions [7] [14], including generalized cones or
cylinders [23] [8], discard a lot of shape information. Symmetry is a shape attribute
that can only be computed at relatively large scales, making it difficult to encode
detailed shape information in such a representation. Because symmetry is a rela-
tively global shape property it is also quite sensitive to occlusion. The information
preserved by symmetry representations, such as lengths and orientations of axes, is
not invariant under projection, making such representations inappropriate for 3D
from 2D recognition tasks. Symmetry axes can, however, be used as orientation
measures for alignment, as described in Section 4.

Using Relations Between Features

At the other extreme are systems that do not use feature identity at all, but rather
rely exclusively on structural relations between image and model points. Grimson
and Lozano-Pérez [16] [17] structure recognition as a search through a tree of all
pairs of model and image points. A given level of the tree pairs a particular image
point with each model point. Distance and angle relations between pairs of points
are used to prune the tree. If at any point along a path, a node specifies a pair
of points that are inconsistent with some previous node on that path, then the
remainder of the path is not explored because it cannot lead to a consistent set of
pairs. In order to handle image points from other objects, there is a special model
point called the null face that will match any image point. The null face is expanded
last in searching the tree, and the longest path (not counting null face branches) is
always expanded first.

It has been demonstrated that this tree search converges rapidly for both 2D
from 2D [16] and 3D from 3D [17] recognition tasks. The success of the algorithm
is due to the power of the distance and angle constraints to prune the exponential
tree of possible matches. The fact that any model and image points are allowed
to match makes the system robust in the face of partial information, such as when
there is substantial occlusion. The strong reliance on distance and angle relations,
however, makes the method inapplicable to the problem of 3D from 2D recognition.
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In addition to empirical demonstrations of the power of distance and angle
relations among features, it has been shown that given a noise bound for the sensory
data, pairwise distance relations can be used to develop an O(n?) time algorithm for
recognizing an isolated object with n features, which can undergo two-dimensional
rotation and translation [3].

The LFF and 3DPO systems [5] [6] use distance and angle relations between
features as well as the identity of individual features. Model and image features
of the same type are paired together. The space of possible subsets of these pairs
is then searched using a graph matching algorithm. Pairwise distance and angle
relations are used to form a graph structure. Each pair of model and image features
is represented by a node, and each consistent pair of nodes is connected by an arc.
A maximum clique of this graph constitutes a largest pairwise consistent match of
model and image features.

This method has been shown to find a maximally consistent match for a variety
of images in a two-dimensional recognition task. Much of the success of the algo-
rithm is attributable to the use of local feature clusters to restrict the number of
possible initial pairs of model and image features. As discussed above, this reliance
on local context makes the system sensitive to overlapping objects.

ACRONYM (8] uses both the identity of features and the relations between
features in recognition. The features are generalized cones, which are described
in terms of axes and cross sections. The presence of a given feature is used to
predict the positions and orientations of other features. Therefore, like the other
systems discusssed in this section, given two-dimensional data ACRONYM can
perform only 2D recognition. While ACRONYM'’s geometric modeling component
is heavily three-dimensional, the system was tested using aerial photographs, which
are two-dimensional in nature.

The SCERPO system [21] [22] is the only one that addresses the problem of
three-dimensional recognition from a single two-dimensional view. The problem of
finding a best match is structured as a tree search (similar to [16]), however the check
for a consistent match is different from previous systems. A given set of model and
image feature pairs are consistent if there is a solution to the perspective viewing
equation that maps each model feature onto its corresponding image feature. There
are no simple pairwise checks such as distance and angle relations that can be used
to test the consistency of a set of pairs incrementally, given an added pair. Instead,
the perspective viewing equation is solved for each added pair of model and image
points. This is done using Newton-Raphson iteration, which allows a solution to be
modified to account for a new pair.

None of the recognition systems discussed in this section can effectively han-
dle the task of recognizing objects that have arbitrary three-dimensional position,
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orientation, and scale, from a single two-dimensional view. Each system solves a
more restricted recognition task, in order to limit the space of possible matchings
of model and image features (e.g., requiring distance and angle relations to be mea-
surable, or parallel surfaces to appear parallel). The next section describes how to
recognize an object by first aligning it with an image. This use of alignment avoids
having to structure the recognition process as an exponential search.

3 The Alignment Method of Recognition

We have seen above that recognition can be viewed as a search through the space
of all possible positions and orientations of all possible objects. The idea of the
alignment approach is to separate this search into two stages. In the first stage, the
position, orientation, and scale of an object are found using a minimal amount of
information, such as three pairs of model and image points. In the second stage, the
alignment is used to map the object model into image coordinates for comparison
with the image.

There are two major advantages of this approach. First, by using a small fixed
number of model and image features, the method avoids structuring recognition as
a search through an exponential space. Second, a given alignment can be used to
match multiple models against the image. If a group of objects are stored such that
they are aligned with one another, then a single alignment computation will map
the entire group of objects into the image.

The key observation behind the approach is that the alignment can be per-
formed with a small amount of information. For example, three image points and
three corresponding model points are sufficient to determine the position, orien-
tation and scale of a rigid object in three-space. Similarly, two points and an
orientation measure can also be used to solve for the three-dimensional alignment.

Consider an object, O, with three-dimensional positional freedom, and a two-
dimensional image, I, which contains a view of O (perhaps along with other objects).
We are interested in using the alignment computation to find O in the image.
Assume that a feature detector returns a set of potentially matching model and
image feature pairs, P (one such detector is described in Section 5). Since three pairs
of model and image features specify a potential alignment of a model with an image,
any triplet in P may specify the position and orientation of the object. In general,
some small number of triplets will specify the correct position and orientation, and
the rest will be due to incorrect matchings of model and image points. Thus the
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recognition problem is to determine which alignment in P defines the transformation
that best maps the model into the image. '

Given a set of pairs of model and image features, P, we solve for the alignment
specified by each triplet in P. For some triplets, there will be no way to position
and orient the three model points such that they project onto their corresponding
image points. Such triplets do not specify a possible alignment of the model and
the image. The remaining triplets each specify a transformation mapping model
points to image points. An alignment is scored by using the transformation to map
the model edges into the image, and comparing the transformed model edges with
the image edges. The best alignment is the one that maps the most model edges
onto image edges.

For m model features and ¢ image features, the number of pairs of model and
image features, p, is at most ¢ x m. With a good labeling scheme, the number
of pairs, p, will be much smaller, approaching m when each model point has one
corresponding image point. Given p pairs of features, there are (;’), or an upper
bound of O(p?), triplets of pairs. Each triplet specifies a possible alignment of the
model and the image. An alignment is scored by mapping the model edges into the
image. If the model edges are of length [, then the worst case running time of the
algorithm is O(Ip®). Thus by structuring the recognition process as an alignment
stage followed by a comparison stage, it is transformed from the exponential problem
of finding the largest consistent set of model and image points, to the polynomial
problem of finding the best triplet of model and image points.

Since the number of possible alignments is cubic in the number of model and
image feature pairs, it is important to label features distinctively in order to limit
the number of pairs. If the number of pairs, p, is small, then little or no search
is necessary to find the correct alignment. For instance, if p = 3 there is only one
possible alignment, and if p = 5 there are (:), or 10, possible alignments. The
problem of labeling features is discussed in Section 4 and Section 5.

Limiting the Number of Possible Alignments

We have formulated the recognition problem as finding the alignment that best
matches the model edges to image edges. Since any triplet of model and image
points could specify that alignment, each one must be considered. Having solved
for a possible alignment, additional pairs of model and image points or orientations
can be used to check the validity of the alignment, before projecting the model into
the image. The fact that a given alignment does not map a model point onto a
corresponding image point does not, however, mean that the alignment is incorrect.
It could also be the case that the additional pair of model and image points is
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incorrect.

For certain kinds of model and image pairs, it is fairly certain that the corre-
spondence of the model and image features is correct. Thus, a failure to align these
additional measures indicates an incorrect alignment. For instance, if the feature
detector returns not only a location and a label, but also an orientation of each
feature, then it is fairly certain that a given feature point and orientation belong to
the same viewed object.

When an orientation measure is associated with each model and image point,
the alignment computation is modified so that each of the three model orientations
is mapped into the image, and compared with the corresponding image orientation.
If all three match, then the triplet specifies a possible alignment, otherwise it is
discarded. '

The use of local orientation measures to filter possible alignments is different
from the use of orientation constraints in existing recognition systems (e.g., [16]
[11] [5]). Here, each model orientation undergoes a three-dimensional alignment
transformation to map it into the image, where it is compared with a corresponding
image orientation. In contrast, existing systems compare the angle between a pair
of model features with the angle between a pair of image features. This requires
that the image measures specify three-dimensional orientation in order to match
them with a three-dimensional model.

Alignment and Identification are Separate Operations

Finding a match of a model to an image requires both aligning the object with
the image, determining its position and orientation, and identifying the object,
determining that it is actually present. However, the operations of alignment and
identification have substantially different data requirements.

Aligning a model with an image requires only a small number of data points.
For instance three pairs of model and image points are sufficient to determine the
three-dimensional position and orientation of an object, plus a linear scale factor. A
small number of data points are not only sufficient for alignment, it is advantageous
to have fewer points, because the number of possible alignments of a model and an
image is cubic in the number of model and image point pairs.

In contrast to alignment, identification requires a fairly large number of data
points. In the worst case, identification can require almost arbitrary amounts of
data, when differentiating between two similar objects.

The difference between alignment and identification is most pronounced in 3D
from 2D recognition. In these tasks, the position and orientation should ideally be
known before attempting to identify an object, as projection distorts an object’s
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shape. Because the alignment method solves for position and orientation using a
minimal amount of information, it is particularly well suited to this problem. The
differing requirements of alignment and identification have led us to propose the
alignment method, where alignment precedes comparison.

When alignment and identification are combined, moderately detailed and
dense features must be used in order to be able to distinguish objects from one
another. The large number of features makes the number of possible positions and
orientations very large, because different n-tuples of points will produce slightly
different positions even though they correspond to the “same” interpretation of the
object. This is illustrated by Grimson and Lozano-Pérez’s system [16], which finds
a large number of highly similar interpretations, differing only slightly in position or
orientation. Since these interpretations are essentially the same, they are grouped
together into a single interpretation. In contrast, by using a small number of coarse
features to first align an object with an image, there will be relatively few possible
positions and orientations (some of which may still be very similar).

Another consequence of combining alignment and identification is the difficulty
of determining that an object is not in the image. All possible interpretations must
be considered and found inconsistent before an object can be rejected. Since the
features are relatively dense, their number is large, and many inconsistent inter-
pretations must be considered and rejected. If alignment and identification are
separated, then the alignment operation alone will indicate that there is no possible
match in cases of a substantial mismatch. In other cases, some comparison will
have to be performed as well.

On Alignment in Human Recognition

There is some evidence that people align two objects before comparing them. For
instance, people appear to be slower at judging if two edge contours are the same
when they are presented at different orientations compared to when they are pre-
sented at the same orientation [26]. The major exception to this is edge contours
that define a region with an “intrinsic axis”. Such contours can be compared rapidly
even when presented at different orientations [29].

The effect is illustrated in Figure 4. Part (a) of the figure shows a contour
without a good axis, and part (b) shows a contour with a good axis. Comparison is
rapid for both contours when the orientation is the same. When the orientation is
different, however, recognition is substantially slower for contours without an axis,
as in (a), than for ones with an axis, as in (b) [29].

As discussed in Section 1, in two dimensions two points are sufficient for aligning
a model with an image. Similarly, it is possible to use a point and an orientation
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Figure 4. Orientation affects human matching speed, a) an object without a
good axis which is hard to match, b) an object with a good axis which is easy
to match.

if no change in scale is allowed. The point is used to translate the model, and the
orientation is used to rotate it. The contour in (b) has a distinguished point (e.g.,
the base) and orientation for alignment, whereas the one in (a) does not.

The results of these studies suggest that without sufficient information to per-
form alignment, recognition is more difficult, perhaps requiring explicit rotation of
an object to compare many possible orientations.

4 Alignment Points

The alignment operation requires finding pairs of corresponding model and image
points, and model and image orientations. Because the number of potential align-
ments is cubic in the number of pairs, it is desirable to limit the number of pairs as
much as possible. There must be at least three pairs that correspond to the image
of the object, however, or else the method will fail to find an alignment.

To limit the number of pairs of model and image points (or orientations) it
is necessary to associate labels with these measures, and only pair together model
and image data with the same label. The labels must be relatively insensitive to
partial occlusion, juxtaposition, and projective distortion, while being as distinctive
as possible.

There are several sources of information in an image that can be used to define
and label points and orientations for alignment. We have chosen to use a shape
description based on intensity edges to define labeled edge segments that are used
for alignment. The method is described in Section 5, below. These descriptions can
be augmented using color, texture, shading and depth information to form more
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distinctive descriptions of the alignment points. We intend to exploit such sources
of information in the next version of the system.

It is also possible to define other kinds of alignment points based on intensity
edges. For instance, vertices where multiple edges come together can be used as
alignment points. Other kinds of alignment points are cusps, tips, deep concavities
and small blobs. In the current implementation, however, we have concentrated on
points and local orientations derived from inflections in edge contours.

As long as different kinds of alignment points are identified by distinct labels,
the more kinds of information the better in terms of being able to quickly identify
the correct alignment of a model with an image. A large amount of data is not a
problem, only a large amount of indistinguishable data.

Edge Contour Shape Features

Forming a shape description based on intensity edges requires breaking edge con-
tours into primitive pieces. Many techniques for deriving shape descriptions segment
contours at maximal curvature points, partly because of their supposed psychologi-
cal importance. The studies [1] [12] demonstrating the importance of maximal cur-
vature points, however, do not address the problem of what information is necessary
to recognize an object. Rather, the studies demonstrate that certain information is
suffictent to recognize an object.

For instance, Attneave’s cat, shown in Figure 5a, is constructed by linearly
interpolating between the maximal curvature points in a drawing of a cat. The fact
that the drawing is still easily recognizable has been used to claim that maximal
curvature points are of special significance. Lowe [21], however, points out that the
contour in Figure 5b is also easily recognizable as a cat. This contour is constructed
using the points midway between maximal curvature points.

Thus, it appears that there is sufficient information in a contour that any one
of a variety of sparse descriptions is sufficient for people to be able to recognize an
object. Maximal curvature points, per se, are not important.

Because it is possible to represent contour shape using various sparse repre-
sentations, the choice of points should be motivated by the requirements of the
recognition task being addressed. Maximal curvature points are highly unstable
under three-dimensional rotation and projection, both appearing and disappearing
(without being occluded by other parts of the object), making them inappropriate
for 3D from 2D recognition. For example an ellipse can be rotated about its mi-
nor axis to obtain a circle — illustrating maximal curvature points that disappear.
This circle can then be rotated around another axis to obtain a different ellipse -
illustrating maximal curvature points that appear.
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a) b)

Figure 5. Attneave’s cat, which is intended to demonstrate the importance of
maximal curvature points for representing shape, and Lowe’s cat which shows
other points work as well.

In contrast to curvature maxima, zero crossings of curvature (or inflection
points in the contour) are relatively stable under projection, only disappearing
when the contour is projects to a straight line. False inflection points only appear
when one piece of an object partly occludes another.

Low curvature regions pose a problem because very small changes in curvature
may yield “inflections”. We define significant inflections to occur only in regions
where the curvature is not in the range [—e¢,€]. The recognition system described
in the next section uses significant inflection points and low-curvature regions to
segment edge contours.

5 A 3D from 2D Recognition System

This section describes a system that implements the alignment method of recogni-
tion. The system is consistent with the requirements outlined by the theory, but is
more specific in many respects and thus reflects certain choices of implementation
that are only one of several possible ways of doing things.

In the current implementation, the features used by the system are obtained
from inflections in the intensity edges in a two-dimensional image. These features,
however, can be augmented using other sources of information, as mentioned above.

Shape Features: Segmenting Edge Contours

The recognition system forms edge-based shape features for use in aligning models
with images. The input to the system is a grey-level image, which is processed by
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an edge detector [9]. The output of the edge detector is noisy, containing edges due
to shadows and texture as well as object edges. This causes two problems. First,
the presence of many weak edges will make it difficult to group edges together into
larger shape units. Second, missing pieces of edge contour will make it unclear
whether two pieces of edge contour are part of the same underlying edge in the real
world. The second problem is somewhat easier to deal with, so the strategy utilized
here is to discard relatively weak edges.

Given an array of edge points, the points must be chained together into con-
tours. A simple method is to chain together neighboring points whenever there is an
unambiguous eight-way neighbor. Otherwise, a new chain is started. Chains with
low overall edge strength are then discarded. Thresholding whole chains rather
than individual edge points produces a more stable output. Finally, edge chains
with unambiguous nearest neighbors are merged together if they can be connected
by a smooth spline, without intersecting another edge contour.

Once pieces of edge contour have been chained together, simple shape de-
scriptors are derived using the local curvature of the edge contours.f The edge
contours are segmented by breaking the contour at zero crossings of curvature (in-
flection points in the contour), and at the ends of low-curvature regions; producing
straight, positive curvature and negative curvature segments. As discussed above,
inflections were chosen as segmentation points because they are relatively stable
under three-dimensional rotation and projection.

Multi-Scale Descriptions

The purpose of labeling the edge segments is to produce distinctive labels for use
in pairing together potentially matching model and image points. Most recognition
systems form distinctive labels by using local context to describe a given feature.
The problem with this, however, is that an image feature may be labeled using
context which is not part of the object being recognized (e.g., as in LFF [5] and
SCERPO [21)).

We use a more limited form of context, in which the edge contour is smoothed
at various scales, and the finer scale descriptions are used to label the coarser
scale segments. In other words, the coarser scale segments are used to group finer
scale segments together. This produces distinctive labels without the problem of
accidentally using context from a different object, because the “context” is part of
the same edge contour.

tCurvature is computed as the change in angle (per unit arclength) between local tangent
vectors at neighboring pixels. The tangents are computed using the least squares best
fit line over a small local neighborhood.
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A hierarchy of curve segmentations can be obtained by smoothing the curvature
at different scales, and using the smoothed curvature to segment the edge contour.
Smoothing the curvature preserves only those inflection points in the edge contour
(zero crossings of curvature) that are significant at a given scale. Thus coarser scale
segments correspond to merging neighboring segments at finer scales, producing a
scale-space [30] hierarchy of segments. Since coarser scales of smoothing do not
introduce zero crossings that were not present at finer scales [31], the hierarchy
forms a tree of segments from coarser to finer scales.

Figure 6 shows a three-level scale-space curvature segmentation of the edge
contours of the widget from Figure 1. Each part of the figure shows the same
contour, segmented according to the curvature smoothed at different scales (using
Gaussian filters of size ¢ = 7, 20, and 40 pixels, respectively). The coarsest scale
is at the top of the figure and the finest scale is at the bottom. The endpoints of
each segment are delimited by a dot, and straight regions (at that scale) are shown
in bold. Each segment is labeled with a letter, and a number denoting the level (1
is coarsest and 3 is finest).

€3
F3

Figure 6. A scale-space segmentation of a widget, where the contours are seg-
mented at inflections in the smoothed curvature. The coarsest scale is at the
top..

Each segment of edge contour is classified according to whether it is curved or
straight. The curved segments are further classified by the degree of closure:
open or closed, and the smoothness of the contour: smooth or unsmooth, yielding
a total of five types of segments. Richer descriptions are then obtained by combining
the classifications at multiple scales of smoothing.



Alignment 18

This (multi-rooted) segmentation tree can also be viewed in terms of the corre-
spondence between regions at neighboring scales, as show in Figure 7. Each region
at a coarse scale corresponds to one or more regions at the next finer scale. Each
segment in the tree is indicated by its label from Figure 6 and by the type of
segment: straight, curve, and open-curve.

D1

Al
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Figure 7. The tree corresponding to the curvature scale-space segmentation in
Figure 6.

Multi-scale descriptions are formed using the types of segments at a given scale,
plus the structure of the hierarchy at the next finer scale. Two aspects of the tree
structure are used. First, a segment is classified according to whether it corresponds
(primarily) to one or many segments at the next finer scale: single or multiple.
Second, a multiple segment is classified according to whether or not the finer scale
segments form a regular pattern. A pattern consists of a repetition of the same type
of segment, in either the same or opposite directions of curvature. This yields the
classification irregular, regular-same, and regular-opposite.

For example, using this multi-scale description, the straight segment A1 at
level 1 in the tree is differentiated from the other straight segments C1 and E1 at
the same level, because A1 is composed of multiple, irregular segments at the
next level whereas C1 and E1 are each composed of a single segment.

Using the multi-scale description, at the coarsest scale the widget is composed
of seven segments, only two of which can be confused with one another (the two
straight segments C1 and E1). The seven segments are, Al: straight, multi-
irregular; B1: curve, single, smooth; C1: straight, single; D1: open-curve,
single; E1: straight, single; F1: curve, multi-irregular; G1: closed-curve,
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single, smooth. Thus, the labels resulting from this multi-level description are
highly distinctive even though the individual features are coarse, and relatively
sparsely distributed in the image.

Since the coarse scale segments are relatively distinct, alignment points are
chosen using a coarse scale segmentation. Each segment defines a point used for
alignment, based on its type. For closed segments of contour, the center of the region
defined by the contour is used. This point is found from the intersection of the major
and minor axes of the region. For straight segments the endpoints are used, and
for other curved segments the middle of the curve is used. Since the endpoints of
the segments are at inflection points or the ends of zero curvature regions, they are
relatively stable, making it reasonable to use endpoints and midpoints for matching.

Each alignment point is labeled with the type of its coarse scale segment.
In addition, local orientation measures are defined for straight and open-curve
segments, for use in eliminating the alignments specified by inconsistent triplets (as
described in Section 3).

Using coarse scale regions for choosing alignment points reduces the number of
points, while retaining relatively distinctive labels. It is often possible, however, to
achieve a more accurate alignment by using intermediate or finer scale descriptions.
Therefore, the recognizer first finds the best alignment using coarse-scale features,
and then attempts to improve upon it by performing a second alignment with finer
scale features. Since the model and the image are already almost aligned, this
secondary alignment is relatively fast. In general, each partially aligned model
feature has only one corresponding image feature, and the correspondence of model
and image features is correct.

Recognition Examples

The recognizer is implemented on a Symbolics 3650, and takes from 2-5 minutes for
each of the examples shown in this section, using a pre-computed model. First a
multi-scale description of the edge segments is formed and used to define alignment
points in the image, as described in the previous section. Possible alignments are
then computed using triplets of model and image point pairs, as discussed in Sec-
tion 3. For each alignment, the model is mapped into the image and the transformed
model edges are correlated with the image edges. The alignments are ranked based
on the percentage of the model edge contour for which there is a corresponding
image edge contour. The recognizer returns the best alignment accounting for each
part of the image which is matched by the model.

We present several examples of the recognizer processing grey-scale images of
widgets. The model is the multi-scale description of the widget shown in Figure 6
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and Figure 7. The model is just the result of processing the image of the isolated
widget in Figure 1 in the same manner as any image. Thus for flat objects, models
are formed directly from an image of an object.

Each example is illustrated by a figure with four parts: a) the grey-level image
of the model widget, with the intensity edges superimposed, b) the grey-level image,
c) the image with the intensity edges superimposed, and d) the edges of the aligned
model superimposed on the image. Part (d) also indicates the points which were
used in computing the alignment of the model with the image.

Figure 8. Matching a widget against an image of two widgets in the plane, a) the
grey-level image and intensity edges of the model, b) the grey-level image, c) the
image and the intensity edges, d) the edges of the aligned model superimposed
on (c), with the alignment points marked.

The example in Figure 8 shows two widgets in the plane. The top widget has been
flipped over, and thus cannot be recognized using only two-dimensional transfor-
mations. The recognizer finds two distinct positions and orientations of the model
that match 99% and 98% of the model edge contour to image edges. These two
matches are shown superimposed on the image in part (d) of the figure.

Another position and orientation is found at the alignment stage, but is elim-
inated because the correlation with the image is poor, and the image edges are
accounted for by a better alignment. This alignment is shown in Figure 9 superim-
posed with the image edges. The alignment is found because the two straight edges
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Figure 9. An alignment of a widget with an image that does not match the
model edge contour with image edges.

Figure 10. Matching a widget against an image of a foreshortened widget, a) the
grey-level image and intensity edges of the model, b) the grey-level image, c) the
image and the intensity edges, d) the edges of the aligned model superimposed
on (c), with the alignment points marked.

are indistinguishable, and the three points used in computing the alignment were
the two straight edges and the bend. :

Figure 10 shows a widget that has been tilted approximately 30 degrees by
resting one end of it on a block, foreshortening the image. The recognizer finds a
single best position and orientation, which is shown in part (d) of the figure.

The next example, in Figure 11, shows another widget that has been tilted out
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. !a)

Figure 11. Matching a widget against an image of a tilted widget, a) the grey-
level image and intensity edges of the model, b) the grey-level image, c) the
image and the intensity edges, d) the edges of the aligned model superimposed
on (c), with the alignment points marked.

of the image plane — for instance the circular end is now an oval. The best match
is shown in part (d) of the figure.

Finally, we demonstrate the ability of the recognizer to find partly occluded
objects. As long as three features are visible in the image, the alignment algorithm
will be able to align the model with the image. Figure 12 shows a widget that has a
pile of smaller widgets obscuring the circular end. The best alignment matches 80%
of the model edge contour to image edges, and is shown in part (d) of the figure.
Figure 13 shows two widgets obscured by each other and several smaller objects.
The matcher finds two distinct positions and orientations, which are shown in part

(d) of the figure.

From these examples we see that the alignment algorithm finds a small number
of reasonable matches of widgets to images, even when the widget is foreshortened,
scaled, and partly occluded. The scoring method of transforming the model edges
and correlating them with the image edges provides a simple method for finding
the best alignment. While this scoring method suffices for the examples considered
here, it may be too simple in the general case. For instance, it may be desirable to
have different parts of the model carry different weights in scoring the goodness of
a match.
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Figure 12. Matching a widget against an image of a partly occluded widget,
a) the grey-level image and intensity edges of the model, b) the grey-level im-
age, c) the image and the intensity edges, d) the edges of the aligned model
superimposed on (c), with the alignment points marked.

6 The 3D from 2D Alignment Method

This section presents the alignment method in detail. It is shown that the position,
orientation, and scale of an object in three-space can be determined from a two-
dimensional image using three pairs of corresponding model and image points.

The description of the alignment method is divided into three parts. First we
discuss the use of orthographic projection and a linear scale factor to approximate
perspective viewing. Then we present the alignment method using explicit three-
dimensional rotation. Finally we present a version of the alignment method that
simulates three-dimensional rotation using planar operations.

Perspective Projection

Consideration of how to align an object with a two-dimensional image raises the
issue of what model of projection to use. The imaging characteristics of cameras
and human eyes are well approximated by the perspective projection model. Under
perspective projection, imaging size is inversely proportional to the distance from
an object to the center of projection, as illustrated in part (a) of Figure 14. Imaging
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a)
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Figure 13. Matching a widget against an image of two partly occluded widgets,
a) the grey-level image and intensity edges of the model, b) the grey-level im-
age, c) the image and the intensity edges, d) the edges of the aligned model
superimposed on (c), with the alignment points marked.

size is also dependent on f, the focal length of the device, which can be assumed to
be constant for a given sensor.

Under orthographic projection, on the other hand, imaging size is independent
of distance. Therefore all positions along the viewing axis are indistinguishable
from one another, as illustrated in part (b) of Figure 14. Orthographic projection is
simpler to solve for than perspective projection, but is not necessarily an adequate
model of actual viewing conditions.

There are two major practical consequences of perspective viewing. The first is
that objects that are further away look smaller. The second is that objects that are
large relative to the viewing distance appear distorted, because the distant parts of
an object project smaller images than the closer parts do. People appear to have
difficulty recognizing objects under conditions of high projective distortion.

For objects that are not large relative to the viewing distance, the major effect
of perspective projection is scaling proportional to the distance of the object. There-
fore, in these cases perspective projection can be well approximated by orthographic
projection plus a linear scale factor.

Orthographic projection plus scale can be solved for unambiguously using three
pairs of model and image points, as described in the next section. Under ortho-
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Figure 14. a) perspective, and b) orthographic projection.

graphic projection, position along the viewing axis and reflection about the view
plane are indistinguishable. Thus the solution is unique up to position in z and
reflection about the z = 0 plane.

An unambiguous solution for the position and orientation of an object under
perspective projection can require up to six pairs of model and image points [13)].
Using three pairs of points there can be up to four distinct perspective solutions.
It is interesting to note that the ambiguous cases involve positions and orientations
where part of the object is extremely close to the viewer and part is far away -
cases where there is high perspective distortion. Thus three points are sufficient to
solve for position and orientation under perspective viewing if solutions with high
perspective distortion are discarded.

The Explicit Three-Dimensional Method

Consider three model points a,,, bm and ¢,, and three corresponding image points
a;, b; and c;, where the model points specify three-dimensional positions, (z,y, 2),
and the image points specify positions in the image plane, (z,y,0). The alignment
task is to find a transformation that maps the plane defined by the three model
points onto the image plane, such that each model point coincides with its corre-
sponding image point. If no such transformation exists, then the alignment process
must determine this fact.

Since the viewing direction is along the z-axis, an alignment is a transformation
that positions the model such that a,, projects along the z-axis onto a;, and similarly
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for b,, onto b;, and ¢,, onto ¢;. The transformation consists of translations in z and
y, and rotations about three orthogonal axes. There is no translation in z because all
points along the viewing axis are equivalent under orthographic projection. Instead,
distance from the viewer is reflected by a change in scale. First we show how to solve
for the alignment assuming no change in scale, and then modify the computation
to allow for a linear scale factor.

The first step in finding an alignment is to translate the model points so that
one point projects along the z-axis onto its corresponding image point. Using the
point a,,, for this purpose, the model points are translated by (z,,~Za,,, Ya; —Ya,.» 0),
yielding the model points a/,,, b, and c},. This brings a/,;, the projection of ai,
into the image plane, into correspondence with a;, as illustrated in Figure 15a.

Now it is necessary to rotate the model about three orthogonal axes to align
b, and c,, with their corresponding image points. First we align one of the model
edges with its corresponding image edge by rotating the model about the z-axis.
Using the a!, b}, edge we rotate the model by. the angle between the image edge
a;b;, and the projected model edge a',;b.,;, yielding the new model points 4}, and
cir, as illustrated in Figure 15b.

To simplify the presentation, the coordinate axes are now shifted so that a; is
the origin, and the z-axis runs along the a;b; edge.

1
Because b;,,;,

it can be brought into correspondence with b; by simply rotating the model about
the y-axis. The amount of rotation is determined by the relative lengths of ambm
and a;b;, because the model must be rotated such that the projected model edge
is the same length as the image edge. If the model edge is shorter than the image
edge, then there is no such rotation, and hence the model cannot be aligned with
the image.

the projection of b, into the image plane, lies along the z-axis,

Thus, the model points 4!, and c!!, are rotated about the y-axis by ¢ to obtain
b and ¢, where
l15: - (1,0,0)|]
[15m - (1,0,0)]|
for 0 < cos ¢ < 1. The result of this rotation is illustrated in Figure 15c.

cos ¢ =

Finally, ¢ is brought into correspondence with ¢; by rotation about the z-

axis. The degree of rotation is again determined by the relative lengths of model
and image edges. In the previous case, however, the edges were parallel to the
z-axis, and therefore the length was the same as the z component of the length. In
this case, the edges need not be parallel to the y axis, and therefore the y component
of the lengths must be used. Thus, the rotation about the z-axis is 8, where

llei - (0,1,0)]]
cosf = 2)
llem - (0,1, 0)| (
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a) b)
bm
am 4 am
cm
ai H
ai o bm
) / bi
ci ci

Figure 15. The alignment process: a) the points a; and am are brought into
correspondence, b) the ab edges are aligned, c) the points b; and bm are brought
into correspondence, d) the points ¢; and ¢m are brought into correspondence.
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for 0 <cosf <1.

If the model distance is shorter than the image distance, there is no trans-
formation that aligns the model and the image. Furthermore, if the rotation does
not actually bring cli'; into correspondence with c¢;, then there is also no alignment.
This latter case can result because the rotations are those that will bring the points
into alignment if there actually is a consistent solution. If there is no solution then
it may still be possible to solve for the rotations, but they will not bring all three

points into alignment.

The final rotation brings the plane defined by the three model points into cor-
respondence with the image plane, as illustrated in Figure 15d. This combination
of translations and rotations can now be used to map the model into the image,
in order to determine if the object is in fact in the image at this position and
orientation.

Now it is necessary to solve for a linear scale factor as a sixth unknown, in order
to simulate distance from the viewer by a scale factor. The final two rotations which
align b,, with b;, and ¢,, with ¢; are the only computations affected by a change in
scale. The alignment of b,, involves movement of b,,; along the z-axis, whereas the
alignment of ¢,, involves movement of ¢,z in both the z and y directions.

Because the movement of b,,; is a sliding along the z-axis, only the z-component,
s, changes. The change is given by the rotation ¢ about the y-axis, as in (1). With
a scale factor, s, this becomes

xy, = szp(cos @). (3)
Similarly the movement of c,,; in the y direction is given by the rotation 6§ about
the z-axis, as in (2). With a scale factor this becomes

Yo = syc(cos ). (4)
The movement of ¢,,; in the z direction is given by the rotations about both
the z- and the y-axis. From the matrix for a combined rotation about the z- and
y- axis we obtain
z' = (z cos8 + ysin $sinb).
Thus with the scale factor, the r component of ¢,, is
z!, = s(z.cos b + y.sin ¢ sinb). (5)

Now we have three equations in the three unknowns, s, 6, and ¢. One method
to solve for s is to substitute for cosd, siné, and sin¢ in (5). From (3) we know
that,

sing = L s2z? — 2. (6)
ST

— /TI— 2. (7)

SYe

And similarly from (4),

sinf =
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Substituting (6) and (7) into (5) and simplifying yields
s*(zsa, — ze2p)? = (s%af — 2 )(s%yZ — o).
Expanding out the terms we obtain
s*(2hy2) — P (eFyl + 2yl + (mowe — zewy)?) + 2Ry,
a quadratic in s2. While there are generally two possible solutions, it can be shown
that only one of the solutions will specify possible values of cos ¢ and cosé [28].

Having solved for the scale of an object, the final two rotations ¢ and 6 can be
computed using (1) and (2) modified to account for the scale factor,

115 - (1,0,0)])
s(cos¢) = [6m - (1,0,0)]]
g llei - (0,1,0)]]
Cs )y
s(cosf) = llem - (0,1,0))|

Thus solving for scale involves the computation of s, and slight a modification to
the computation of the final two rotations.

The Planar Method

For planar models, the three-dimensional alignment task only involves mapping
points from one plane to another. Therefore, a planar model can be aligned with an
image using only planar operations. In effect, the actual three-dimensional rotation
and translation are simulated in the plane.

Initially the model points are translated and rotated such that a; and a,, are
coincident, and the a;b; and anmb, edges are aligned. Then a coordinate shift is
performed to place a; and a,, at (0,0), and b; and b,, on the z-axis, as shown
in Figure 16a. This is the two-dimensional analog of the translation and z-axis
rotation done in the three-dimensional alignment algorithm of the previous section.

Now, rather than performing three-dimensional rotations to align b, with
b;, and ¢,, with c¢;, the model is simply scaled and then sheared. In the three-
dimensional case, there is a rotation about the y-axis that moves b, in the z-
direction, a rotation about the z-axis that moves ¢, in the y-direction, and a
combined rotation about the two axes that moves c,, in the z-direction. Thus the
planar operations must simulate these three motions.

To make b,, coincident with b;, simulating the rotation about the y-axis, it is
only necessary to scale the z-coordinates of the model points by

Al
|om |

obtaining &), and ¢}, as illustrated in Figure 16b.
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Figure 16. The planar alignment process: a) the points a; and am are brought
into correspondence and the ab edges are aligned, b) the points b; and bm are
brought into correspondence, c) the point ¢y is brought onto the line through
¢; and parallel to the z-axis, and d) the points ¢; and ¢m are brought into

correspondence.
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Making ¢, coincident with ¢; involves two steps. First, simulating the rotation
about the z-axis, the y-coordinates of the model points are scaled by
llei - (0, |
llem - (0, D)
This puts ¢/, on the line through the point ¢;, and parallel to the z-axis, as illus-
trated in Figure 16c¢.

Now c! moves in the z-direction such that it is coincident with ¢;. For the

point ¢,,, the distance d, is
Tp,

Tg;

§ —xcm

2 ®)
In general, a point will move in the z-direction proportional to its y-position, be-
cause points further from the z-axis will move more due to the combined effect of
the two three-dimensional rotations. Thus the general form for computing the new
z-coordinate of a point is

¢ =z +dL

Ye;

for d given in (8). This final shearing brings all three points into correspondence,
as shown in Figure 16d.

Unlike the three-dimensional alignment algorithm, the planar alignment algo-
rithm finds an alignment for any triplet of model and image points, because the
and y scaling and shearing can bring any two pairs of points into alignment. Thus
an additional point must be used to ensure that the alignment is consistent. This
also provides an added flexibility in matching, however, because operations such
as stretching of an object will not cause the matching to fail. Then the fact that
there are separate scale factors for the z and y directions will allow other points in
a planar model to be aligned with a stretched image of an object.

7 Aligning Non-Flat Objects

We have seen how to align and match flat objects which have three-dimensional
positional uncertainty. In this section, we briefly consider several means of extending
the alignment method to the domain of non-flat objects.

At one extreme, an object can be represented by a single three-dimensional
model. Using such a representation, the alignment computation is the same as for a
flat object. A triplet of corresponding model and image points are used to determine
the position and orientation of the model. In order to project the aligned model
into the image, however, it is necessary to determine which portions of the object
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are visible given its position and orientation. This is accomplished using standard
hidden line and surface elimination algorithms (cf. [15]).

In order for an alignment of a three-dimensional model with an image to be
valid, it must be the case that the three points used in alignment are all visible
given the position and orientation of the object that they specify. Thus for each
possible alignment, the three model points must be checked to make sure that they
are not on hidden edges or surfaces.

A single three-dimensional model is not well suited to the problem of visual
recognition, because it does not explicitly represent information about viewpoint.
Thus, before a three-dimensional model can be matched to an image, hidden lines
and surfaces be removed.

Furthermore, it is difficult to construct a single three-dimensional model from
image data, because multiple views must be integrated together. While there are
systems for building models from multiple views [18], the problem is quite difficult,
and often requires a large number of images. Therefore, most vision systems require
object models to be entered explicitly, rather than forming them automatically
from images. Moreover, forming a single three-dimensional model discards the
viewpoint information which is necessary for recognition. Thus, viewpoint must be
reconstructed by eliminating hidden surfaces.

It also appears to be the case that people do not use a single three-dimensional
model of an object for recognition. Matching such a model against an image requires
rotating the model in three-space to bring it into correspondence with the image
(or vice versa). There is evidence, however, that people are quite slow at three-
dimensional mental rotation [27]. Recognition, on the other hand, is extremely
rapid. This suggests that people may not manipulate three-dimensional models in
recognition.

Planar Models

At the opposite extreme, it is possible to model an object in terms of planar views.
In other words, to use the 2D projection of an object from a given viewing position
as a flat model. For this kind of representation, it is necessary to have multiple
models of a single object, corresponding to different possible views.

A planar view of an object will only match images that are taken at exactly
the same viewing angle as the model view. At any other angle, the object is only
approximated. Therefore the use of planar models comes at the cost of some inac-
curacy in the matching process. The use of planar models, however, simplifies the
recognition process. First, a flat model can be aligned with an image using only the
planar operations of translation, rotation, scaling and shearing — simulating three-
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dimensional motion in the plane. Second, it is not necessary to eliminate hidden
surfaces in order to match the model with the image.

@O C
=

Figure 17. a) a planar model of a cube, b) two different views of the cube, c)
planar alignments of the model with the views.

A planar view of a non-planar object specifies only two-dimensional information
about points that actually have three-dimensional position. Therefore, an alignment
of such a model with an image will only correctly transform points that are coplanar
(in three-dimensions) with the three model points used for alignment. Other model
points will be treated as if they are the same plane even though they are not. The
amount of error this introduces is proportional to both the distance from the point
to the match plane, and the difference in angle between the model viewpoint and the
image viewpoint. For an object like a cube, which is poorly approximated by a single
plane, the error rapidly becomes substantial as the object is rotated. Figure 17a
shows an isometric view of a cube which will serve as a planar model. Part (b) of
the figure shows two views of the cube, rotated by & and %, respectively. In part
(c), the model has been aligned with each of the views, using the three alignment
points marked by dots. Since the model is planar, the alignment is only correct for
those edges which are coplanar (on the actual object) with the alignment points.

Multiple Planar Alignments

An intermediate possible representation is to use multiple views, rather than a
single object-centered model, but not have the views be simple two-dimensional
projections of the object. For instance, it is possible to use a “2.5D” representation
which encodes a given view of an object in terms of almost-planar pieces. Thus
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each planar section of the model could be aligned with the image separately. Using
such a representation, the cube model in Figure 17a would have each face marked
as being a different planar piece.

This representation requires a model for each viewpoint from which a different
set of planar pieces are visible. A multiple-view model of a cube, for example,
would consist of three views: a view when one surface is visible, a view when two
surfaces are visible, and a view when three surfaces are visible. A cube with each
surface distinctly marked would have twenty-six different views: eight views with
three visible surfaces (one for each vertex), twelve views with two visible surfaces
(one for each edge), and one view of each of the six surfaces alone.

a) b)

Figure 18. Two non-cubes that match a cube using the locally-rigid alignment
algorithm.

Using this representation, and aligning each model plane separately, the cube model
can be matched perfectly against the views in parts (b) and (c) of Figure 17. The
problem with this matching scheme is that it is too general, accepting the non-cubes
in Figure 18 as cubes.

This over-generality can be restricted by noting that the alignments for the
various planes must be related. Even without knowing the true three-dimensional
angles between faces, if the object is convex then it cannot be rotated such that both
external edges become lower than the internal edge without exposing a new surface
on the bottom. The convexity of the external contour must be maintained. This
eliminates the non-cube in Figure 18a. We are currently investigating the use of
such relations to limit the flexibility of the multiple-alignment method of matching.

Human recognition of three-dimensional objects from two-dimensional images
is also characterized by overly general matching. For instance, the partial pyramid
in Figure 19 cannot actually be a projection of a solid object, even though it appears
to be one [24]. In order to correspond to a real object the three numbered edges
must come together at a point, but they do not. This over-generality is probably
not due to acuity limitations, as evidenced by another set of experiments.
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Figure 19. While appearing to be a partial pyramid, this figure cannot corre-
spond to an actual solid object (from [24]).

Even for common objects, people are quite lax about what contours they accept
as being real projections of an object. For instance, in deciding whether cube-like
figures are actually projections of cubes people are only about 85% correct {24]. The
errors are apparently due to the way people match models to images, rather than
limitations in visual acuity. This is demonstrated by the fact that performance can
be greatly improved using special tricks. In order for a figure to be a projection of
a cube, the angles about the central vertex must all be at least 90 degrees. Using
this rule, people can score nearly 100% correct on the cube classification task [24].

Local Alignment

In order to perform separate alignments for each object plane, it is necessary to
know what parts of the object are nearly coplanar. One possibility is to use “2.5D”
models that indicate which parts of the object are on the same local plane. Thus
the models still specify only two-dimensional positional information, but they group
edges together according to what actual object plane they lie on.

Another possibility is to determine where the different object planes are at
recognition time. One method of doing this is to use the pairs of model and image
features to define regions for local alignment. For instance, the set of model points
can be triangulated, and then each triangular region can be aligned with the image
separately. To map the model to the image, all the model points inside a given
triangle are transformed using the alignment for that triangle. To the extent that
a triangle falls on a nearly planar part of an object, this will produce a correct
alignment for that region. By aligning each locally neighboring triple of model
features found in the triangulation, rigidity is preserved for each triangle, but not
for the object as a whole. :

Points in a given triangle will not be mapped into the image correctly if they are
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not on the same plane of the object as the three points defining the triangle. Such
points, however, will usually be transformed to a point near their correct position
because the alignment will be partially correct. Therefore the locally-rigid alignment
process can be iterated, starting with a three-point alignment, and using the partial
match to pick potential corresponding model and image points for computing more
refined, and less globally rigid, alignments.

This algorithm starts by computing a standard three-point rigid alignment. If
the initial alignment does not match any portion of the model to the image, then no
further action is taken. If there is a match, however, then the alignment is used to
pick additional corresponding pairs of model and image points. The model points
are triangulated and each triangle is aligned separately. This process is repeated
until either a good match of the model to the image is obtained, or the triangles
become small.

To show how the local alignment algorithm works, we consider aligning two
slightly different views of a station wagon. First, we show that a single rigid align-
ment is not sufficient to align the two views.  Figure 20 shows a single three-
dimensional alignment, using three points chosen on the rear of the station wagon.
Part (a) shows the “model” image that will be transformed, and part (b) shows
the image. The three corresponding points in the two images are marked. Part (c)
shows the synthetic image formed by aligning the “model” points with the image
points — translating, rotating and scaling the “model” according to the alignment
points. Part (d) shows the superposition of the image with the synthetic image. It
can be seen from the superposition that the side of the wagon has been substantially
foreshortened in the two images. Therefore, similarly to the cube in the previous
section, the alignment brings the rear plane of the wagon into good agreement, but
does not do so for the side.

Figure 21 shows the same two views with a set of corresponding model and
image points marked. The points are triangulated, and separate local alignments are
performed for each triangle. The synthetic image in part (c) is formed by mapping
each pixel from the “model” image according to the transformation specified by
the triangle that the pixel falls in. Pixels that fall in no triangle are transformed
using triangles formed between the four corners of the image and the convex hull
of the point set. The superposition of the image with the synthetic image in part
(d) shows that the alignment is very good.

Thus by using a relatively small number of corresponding points, two different
planar views of an object can be matched to one another with a high degree of
accuracy. This multiple alignment method allows three-dimensional objects with
three-dimensional positional freedom to be recognized from a single two-dimensional
view using planar models.
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Figure 20. Three-dimensional alignment of two views of a station wagon: a)
“model” with three points marked, b) image with three points marked, c) syn-
thetic image created by aligning “model” with image, d) superposition of image
and synthetic image.
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b)

Fiiettiies $325iett ~?§¥‘
Figure 21. Multiple local alignment of two views of a station wagon: a) “model”
with three points marked, b) image with three points marked, c) synthetic image
created by aligning “model” with image, d) superposition of image and synthetic
image.
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8 Summary

Recognition is generally viewed as a search through the space of possible positions
and orientations of objects. The idea of the alignment approach is to separate this
search into two stages. In the first stage, the position, orientation, and scale of
an object are found using a minimal amount of information, such as three pairs of
model and image points. In the second stage, the alignment is used to map the
object model into image coordinates for comparison with the image.

There are two major advantages of this approach. First, by using a small fixed
number of model and image features, we avoid structuring recognition as search
through an exponential space. Second, by storing object models such that they
are aligned with one another, a single alignment computation can be used to map
multiple objects into the image.

The key observation behind the approach is that the alignment can be per-
formed with a small amount of information. For example, three points are sufficient
to determine the position, orientation and scale of a rigid object in three-space from
a single two-dimensional image. Similarly, two points and an orientation measure
can also be used to solve for this alignment.

We have implemented a recognizer using the alignment method. This system
chooses features for alignment using a scale-space segmentation of edge contours.
The multiple scale description is used for choosing reliable alignment points, and for
associating descriptive labels with them. Coarse scale segments are described both
in terms of their shape, and the structure of the scale-space hierarchy at the next
finer level. This produces relatively distinctive features for use in finding possible
alignments of a model and an image.

To demonstrate the recognition method, several examples were shown of the
recognizer finding a widget with arbitrary three-dimensional position and orienta-
tion, in a two-dimensional image. From these examples it can be seen that the
alignment algorithm finds a small number of reasonable matches of widgets to im-
ages, even when the widget is foreshortened, scaled, and partly occluded.

Finally, we have briefly discussed how the alignment method can be extended
to recognize rigid objects in general, either by using a three-dimensional model, or
by using two-dimensional models and multiple local alignments.
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